51
|
Li X, Qi X, Liu X, Zhu J, Hu L. Lipopolysaccharide Imprinted Polymers for Specific Recognition of Bacterial Outer Membrane Vesicles. Anal Chem 2024; 96:19803-19811. [PMID: 39572928 DOI: 10.1021/acs.analchem.4c05288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Outer membrane vesicles (OMVs) secreted by bacteria are emerging diagnostic markers for bacterial infection or disease detection due to their carriage of various signaling molecules. However, actual biological samples of patients are extremely complex, and applying OMVs to clinical diagnosis remains a major challenge. One of the major challenges is that there are still great difficulties in the enrichment of OMVs including tedious steps and lower concentration. And some commonly used exosome enrichment methods, such as ultracentrifugation, still have some shortcomings. Herein, we introduce lipopolysaccharide (LPS) molecularly imprinted polymer (MIP) for efficient capturing and analyzing OMVs, enabling a novel approach to bacterial disease diagnosis based on biorecognition materials. LPS, as a unique structure of Gram-negative bacteria, also widely expressed on the surface of OMVs, which will form cyclic hydrogen bonds with functional monomers of MIP with affinity interactions. The prepared MIP efficiently can isolate OMVs from 100 μL of culture broth via specific affinity LPS in less than 40 min with a recovery rate of over 95%. Moreover, MIP exhibits good reusability, with almost identical enrichment performance after 5 repeated cycles, contributing to reducing experimental costs in both time and economy. The captured OMVs can be detected using Western blotting with target protein antibodies or in combination with proteomic analysis, providing a proteomic biomarker platform for early bacteria disease diagnosis.
Collapse
Affiliation(s)
- Xiaojun Li
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiulei Qi
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xingguo Liu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jun Zhu
- Jingjie PTM BioLab Co. Ltd., Hangzhou 310018, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
52
|
Dartois V, Dick T. Toward better cures for Mycobacterium abscessus lung disease. Clin Microbiol Rev 2024; 37:e0008023. [PMID: 39360834 PMCID: PMC11629636 DOI: 10.1128/cmr.00080-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
53
|
Zhang S, Stewart C, Gao X, Li H, Zhang X, Ni W, Hu F, Kuang Y, Zhang Y, Huang H, Li F, Han J. A Universal Method for Fingerprinting Multiplexed Bacteria: Evolving Pruned Sensor Arrays via Machine Learning-Driven Combinatorial Group-Specificity Strategy. ACS NANO 2024; 18:33452-33467. [PMID: 39620647 DOI: 10.1021/acsnano.4c10203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Array-based sensing technology holds immense potential for discerning the intricacies of biological systems. Nevertheless, developing a universal strategy for simultaneous identification of diverse types of multianalytes and meeting the diagnostic needs of a range of multiclassified clinical diseases poses substantial challenges. Herein, we introduce a combination method for constructing sensor arrays by assembling two types of group-specific elements. Such a method enables the rapid generation of a library of 100 sensing units, each with dual bacterial targeting capabilities. By employing a three-step screening strategy optimized by machine learning algorithms, various optimal five-element arrays were rapidly obtained for diverse clinical infectious models. Moreover, the pruned arrays successfully identified disparate mixing ratios and quantitative detection of clinically prevalent bacterial strains. Optimized through nine multiclassification algorithms, the top-performing multilayer perceptron (MLP) model demonstrated impressive recognition capabilities, achieving 100% accuracy for diagnosing clinical urinary tract infection (UTI) and 99.4% accuracy for clinical sepsis detection in the test models we collected. Such a combinatorial library construction and screening process should be standard and provides insights into successfully generating powerful high-recognition sensor elements and configuring them into highly discriminative mini-sensor arrays.
Collapse
Affiliation(s)
- Shuming Zhang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Callum Stewart
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, Sha Tin 999077 Hong Kong
| | - Xu Gao
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Huihai Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyue Zhang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Fengqing Hu
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yongbin Kuang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yanliang Zhang
- Nanjing Research Center for Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210006, China
| | - Hui Huang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
54
|
Kurata A, Aimatsu K, Kimura Y, Hashiguchi H, Maeda A, Imai T, Yamasaki-Yashiki S, Hamada K, Fujimoto Y, Fujii A, Uegaki K. Characterization of the membrane vesicle fraction from Acetobacter sp. WSS15. J Biosci Bioeng 2024; 138:495-500. [PMID: 39242325 DOI: 10.1016/j.jbiosc.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 09/09/2024]
Abstract
A bacterium that produces membrane vesicles (MVs), strain WSS15, was isolated from a traditional vinegar in Japan called Kurozu. A phylogenetic analysis of 16S rRNA gene sequences indicated that this bacterium belongs to the genus Acetobacter. MVs and peptidoglycan-associated lipoprotein (Pal) were detected in the MV fraction of strain WSS15. In the presence of the WSS15 MV fraction, murine macrophages produced the pro-inflammatory cytokine interleukin-6 (IL-6) via the recognition by superficial Toll-like receptor 2 (TLR2). WSS15 MVs adhered to the cell surface of macrophages. The macrophages secreted IL-6 through the TLR2 recognition of an acylated N-terminal peptide of Pal. We elucidated the mode of action of WSS15 MVs on immune cells and identified the Pal peptide from strain WSS15 as an agonist of TLR2.
Collapse
Affiliation(s)
- Atsushi Kurata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 204-3327 Nakamachi, Nara, Nara 631-8505, Japan.
| | - Kota Aimatsu
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 204-3327 Nakamachi, Nara, Nara 631-8505, Japan
| | - Yuki Kimura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 204-3327 Nakamachi, Nara, Nara 631-8505, Japan
| | - Hinako Hashiguchi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 204-3327 Nakamachi, Nara, Nara 631-8505, Japan
| | - Asami Maeda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 204-3327 Nakamachi, Nara, Nara 631-8505, Japan
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Kensaku Hamada
- Sakamoto Kurozu, Inc., 21-15 Uenosono-cho, Kagoshima, Kagoshima 890-0052, Japan
| | - Yuki Fujimoto
- Sakamoto Kurozu, Inc., 21-15 Uenosono-cho, Kagoshima, Kagoshima 890-0052, Japan
| | - Akira Fujii
- Sakamoto Kurozu, Inc., 21-15 Uenosono-cho, Kagoshima, Kagoshima 890-0052, Japan
| | - Koichi Uegaki
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 204-3327 Nakamachi, Nara, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 204-3327 Nakamachi, Nara, Nara 631-8505, Japan
| |
Collapse
|
55
|
Cao J, Li Y, Liu W, Ma S, Pei D, Li A. Association Between Periodontitis and Preeclampsia: A Bidirectional Mendelian Randomisation Analysis. Int Dent J 2024; 74:1438-1446. [PMID: 38853053 PMCID: PMC11551586 DOI: 10.1016/j.identj.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVES Studies have increasingly focussed on the relationship between periodontitis (PD) and preeclampsia (PE). However, conclusions have not been consistent, and it is unclear whether any causal relationship exists between them and whether causality is bidirectional. This study employed Mendelian randomisation (MR) analysis to investigate the potential bidirectional causal relationship between PD and PE. METHODS Genetic variants strongly linked to PD (17,353 cases and 28,210 controls), chronic periodontitis (CP; 1817 cases and 2215 controls), aggressive periodontitis (AgP; 851 cases and 6580 controls), and PE (7212 cases and 194,266 controls) in the genome-wide association study (GWAS) of European ancestry were used as instrumental variables (IVs). Inverse variance weighting (IVW) served as the primary method for causal inference. MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) was utilised to analyse horizontal pleiotropy. Cochrane Q tests and leave-one-out analyses were used to assess heterogeneity and stability amongst IVs. RESULTS The MR analysis revealed no causal impacts of PD or its 2 subtypes-CP and AgP-on PE. Similarly, no significant causal effect of PE on PD was found in the reverse-MR analysis (IVW odds ratio, 0.97; 95% confidence interval, 0.91-1.05; P = .58). The findings from MR-Egger, weighted median, weighted mode, and the simple modelling approaches, as well as the pleiotropy and sensitivity analyses, aligned with those of the IVW method. CONCLUSIONS The MR analysis suggests no bidirectional causal relationship between PD and PE; hence, PD and PE might not increase or prevent the risk of one other. CLINICAL RELEVANCE Genetically, periodontitis or its subtypes chronic periodontitis and aggressive periodontitis may not require specific clinical attention to prevent the development of preeclampsia.
Collapse
Affiliation(s)
- Jiao Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pediatric Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
56
|
Gasser MT, Liu A, Altamia MA, Brensinger BR, Brewer SL, Flatau R, Hancock ER, Preheim SP, Filone CM, Distel DL. Membrane Vesicles Can Contribute to Cellulose Degradation by Teredinibacter turnerae, a Cultivable Intracellular Endosymbiont of Shipworms. Microb Biotechnol 2024; 17:e70064. [PMID: 39659293 PMCID: PMC11632262 DOI: 10.1111/1751-7915.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut. However, the mechanisms by which T. turnerae secretes lignocellulolytic enzymes are incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce membrane vesicles (MVs) that include a variety of proteins identified by liquid chromatography-mass spectrometry (LC-MS/MS) as carbohydrate-active enzymes (CAZymes) with predicted activities against cellulose, hemicellulose and pectin. Reducing sugar assays and zymography confirm that these MVs exhibit cellulolytic activity, as evidenced by the hydrolysis of CMC. Additionally, these MVs were enriched with TonB-dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations indicate a potential role for MVs in lignocellulose utilisation by T. turnerae in the free-living state, suggest possible mechanisms for host-symbiont interaction and may be informative for commercial applications such as enzyme production and lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Mark T. Gasser
- Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | - Annie Liu
- Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | - Marvin A. Altamia
- Ocean Genome Legacy CenterNortheastern UniversityNahantMassachusettsUSA
| | | | - Sarah L. Brewer
- Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | - Ron Flatau
- Ocean Genome Legacy CenterNortheastern UniversityNahantMassachusettsUSA
| | - Eric R. Hancock
- Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | | | | | - Daniel L. Distel
- Ocean Genome Legacy CenterNortheastern UniversityNahantMassachusettsUSA
| |
Collapse
|
57
|
Jeppesen DK, Zhang Q, Coffey RJ. Extracellular vesicles and nanoparticles at a glance. J Cell Sci 2024; 137:jcs260201. [PMID: 39641198 DOI: 10.1242/jcs.260201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Cells can communicate with neighboring and more distant cells by secretion of extracellular vesicles (EVs). EVs are lipid bilayer membrane-bound structures that can be packaged with proteins, nucleic acids and lipids that mediate cell-cell signaling. EVs are increasingly recognized to play numerous important roles in both normal physiological processes and pathological conditions. Steady progress in the field has uncovered a great diversity and heterogeneity of distinct vesicle types that appear to be secreted from most, if not all, cell types. Recently, it has become apparent that cells also release non-vesicular extracellular nanoparticles (NVEPs), including the newly discovered exomeres and supermeres. In this Cell Science at a Glance article and the accompanying poster, we provide an overview of the diversity of EVs and nanoparticles that are released from cells into the extracellular space, highlighting recent advances in the field.
Collapse
Affiliation(s)
- Dennis K Jeppesen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qin Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
58
|
Shen Z, Qin J, Xiang G, Chen T, Nurxat N, Gao Q, Wang C, Zhang H, Liu Y, Li M. Outer membrane vesicles mediating horizontal transfer of the epidemic blaOXA-232 carbapenemase gene among Enterobacterales. Emerg Microbes Infect 2024; 13:2290840. [PMID: 38044873 PMCID: PMC10810626 DOI: 10.1080/22221751.2023.2290840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
OXA-232 is one of the most common OXA-48-like carbapenemase derivatives and is widely disseminated in nosocomial settings across countries. The blaOXA-232 gene is located on a 6-kb non-conjugative ColKP3-type plasmid, while the dissemination of blaOXA-232 into different Enterobacterales species and the polyclonal dissemination of OXA-232-producing K. pneumoniae revealed the horizontal transfer of blaOXA-232. However, it's still unclear how this non-conjugative ColKP3 plasmid could facilitate the mobilization of blaOXA-232. Here, we observed the in vivo intraspecies transfer of blaOXA-232 during a nosocomial outbreak of OXA-232-producing K. pneumoniae. We demonstrated the presence of ColKP3 OXA-232 plasmid in the outer membrane vesicles (OMVs) derived from clinical isolates, and OMVs could facilitate the horizontal transfer of blaOXA-232 among Enterobacterales. In contrast, for the most prevalent carbapenemase genes, including blaKPC-2 and blaNDM-1, though the presence of carbapenemase genes and plasmid backbones in the vesicular lumen was observed, OMVs couldn't promote effective transformation, probably due to the low copy number of plasmids in clinical isolates and the low number of plasmids loaded into vesicles. Conjugation assay revealed that the epidemic IncX3 NDM-1 and IncFII(pHN7A8)/IncR KPC-2 plasmids were conjugative and could be horizontally transferred via independent conjugation or with the help of a co-existent conjugative plasmid. For the large-size and low-copy number conjugative plasmids carrying carbapenemase genes, OMVs-mediated gene exchange may only serve as an alternative pathway for horizontal transfer. In conclusion, diverse mobilization strategies were employed by plasmids harbouring carbapenemase genes, and plasmids display a proper choice of mobility pathway due to their individual properties.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Juanxiu Qin
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Tianchi Chen
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Nadira Nurxat
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qianqian Gao
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chen Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haomin Zhang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yao Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
59
|
Li Z, Li M, Fang X, Yu D, Hu X. Dietary Lactobacillus johnsonii-derived extracellular vesicles ameliorate acute colitis by regulating gut microbiota and maintaining intestinal barrier homeostasis. Food Funct 2024; 15:11757-11779. [PMID: 39545264 DOI: 10.1039/d4fo04194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease with intricate pathogenesis, and clinical treatment is still not ideal. The imbalance of gut microbiota is associated with IBD progression. Various probiotics have been used as functional foods for the prevention and treatment of IBD, but the specific mechanism is still not fully understood. Lactobacillus johnsonii (L. johnsonii) is a potential anti-inflammatory bacterium, and compared to other probiotic Lactobacillus species, its colonization in the gut of colitis patients is significantly reduced. In this study, we first found that dietary L. johnsonii exerts strong anti-inflammatory and antioxidant effects in colitis mice, and this beneficial effect is directly related to its derived extracellular vesicles (LJ-EVs). Further experimental results indicate that LJ-EVs effectively prevented colitis symptoms and modulated gut microbiota and metabolic pathways. Meanwhile, we have studied for the first time the protective effect of LJ-EVs on the intestinal barrier from the perspective of reducing oxidative stress. We found that LJ-EVs can be directly taken up by intestinal epithelial cells and activate the Nrf2/HO-1 antioxidant signaling pathway, reducing endotoxin damage to cells and maintaining intestinal barrier homeostasis, which cascades to alleviate intestinal inflammation response. This study reveals the mechanism of L. johnsonii in treating colitis and provides a new approach for the development of oral LJ-EVs for the treatment of colitis.
Collapse
Affiliation(s)
- Zhiguo Li
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China.
| | - Mengyu Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xin Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, P. R. China.
| |
Collapse
|
60
|
Jin P, Liu H, Chen X, Liu W, Jiang T. From Bench to Bedside: The Role of Extracellular Vesicles in Cartilage Injury Treatment. Biomater Res 2024; 28:0110. [PMID: 39583872 PMCID: PMC11582190 DOI: 10.34133/bmr.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024] Open
Abstract
Cartilage repair is the key to the treatment of joint-related injury. However, because cartilage lacks vessels and nerves, its self-repair ability is extremely low. Extracellular vesicles (EVs) are bilayer nanovesicles with membranes mainly composed of ceramides, cholesterol, phosphoglycerides, and long-chain free fatty acids, containing DNA, RNA, and proteins (such as integrins and enzymes). For mediating intercellular communication and regulating mechanisms, EVs have been shown by multiple studies to be effective treatment options for cartilage repair. This review summarizes recent findings of different sources (mammals, plants, and bacteria) and uses of EVs in cartilage repair, mechanisms of EVs captured by injured chondrocytes, and quantification and storage of EVs, which may provide scientific guidance for promoting the development of EVs in the field of cartilage injury treatment.
Collapse
Affiliation(s)
- Pan Jin
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Huan Liu
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Xichi Chen
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Wei Liu
- Health Science Center,
Yangtze University, Jingzhou 434023, Hubei, China
| | - Tongmeng Jiang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Haikou Trauma, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University,
Hainan Medical University, Haikou 571199, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma; Hainan Provincial Stem Cell Research Institute; Hainan Academy of Medical Sciences,
Hainan Medical University, Haikou 571199, China
| |
Collapse
|
61
|
Li J, Li C, Han Y, Yang J, Hu Y, Xu H, Zhou Y, Zuo J, Tang Y, Lei C, Li C, Wang H. Bacterial membrane vesicles from swine farm microbial communities harboring and safeguarding diverse functional genes promoting horizontal gene transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175639. [PMID: 39168346 DOI: 10.1016/j.scitotenv.2024.175639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Antibiotic resistance (AMR) poses a significant global health challenge, with swine farms recognized as major reservoirs of antibiotic resistance genes (ARGs). Recently, bacterial membrane vesicles (BMVs) have emerged as novel carriers mediating horizontal gene transfer. However, little is known about the ARGs carried by BMVs in swine farm environments and their transfer potential. This study investigated the distribution, sources, and microbiological origins of BMVs in three key microbial habitats of swine farms (feces, soil, and fecal wastewater), along with the ARGs and mobile genetic elements (MGEs) they harbor. Characterization of BMVs revealed particle sizes ranging from 20 to 500 nm and concentrations from 108 to 1012 particles/g, containing DNA and proteins. Metagenomic sequencing identified BMVs predominantly composed of members of the Proteobacteria phyla, including Pseudomonadaceae, Moraxellaceae, and Enterobacteriaceae, carrying diverse functional genes encompassing resistance to 14 common antibiotics and 74,340 virulence genes. Notably, multidrug resistance, tetracycline, and chloramphenicol resistance genes were particularly abundant. Furthermore, BMVs harbored various MGEs, primarily plasmids, and demonstrated the ability to protect their DNA cargo from degradation and facilitate horizontal gene transfer, including the transmission of resistance genes. In conclusion, this study reveals widespread presence of BMVs carrying ARGs and potential virulence genes in swine farm feces, soil, and fecal wastewater. These findings not only provide new insights into the role of extracellular DNA in the environment but also highlight concerns regarding the gene transfer potential mediated by BMVs and associated health risks.
Collapse
Affiliation(s)
- Jinpeng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Chao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China; Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650000, China.
| | - Yun Han
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Jian Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Yulian Hu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Heting Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Yi Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Jing Zuo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Yizhi Tang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610000, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
62
|
Wagner M, Hicks C, El-Omar E, Combes V, El-Assaad F. The Critical Role of Host and Bacterial Extracellular Vesicles in Endometriosis. Biomedicines 2024; 12:2585. [PMID: 39595151 PMCID: PMC11591939 DOI: 10.3390/biomedicines12112585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Endometriosis is a chronic, inflammatory, oestrogen-dependent disorder that is defined by the presence of endometrium-like tissue in the extra-uterine environment. It is estimated to affect approximately 10% of women of reproductive age, and the cause is still largely unknown. The heterogenous nature and complex pathophysiology of the disease results in diagnostic and therapeutic challenges. This review examines the emerging role of host extracellular vesicles (EVs) in endometriosis development and progression, with a particular focus on bacterial extracellular vesicles (BEVs). EVs are nano-sized membrane-bound particles that can transport bioactive molecules such as nucleic acids, proteins, and lipids, and therefore play an essential role in intercellular communication. Due to their unique cargo composition, EVs can play a dual role, both in the disease pathogenesis and as biomarkers. Both host and bacterial EVs (HEVs and BEVs) have been implicated in endometriosis, by modulating inflammatory responses, angiogenesis, tissue remodelling, and cellular proliferation within the peritoneal microenvironment. Understanding the intricate mechanisms underlying EVs in endometriosis pathophysiology and modulation of the lesion microenvironment may lead to novel diagnostic tools and therapeutic targets. Future research should focus on uncovering the specific cargo, the inter-kingdom cell-to-cell interactions, and the anti-inflammatory and anti-microbial mechanisms of both HEVs and BEVs in endometriosis in the hope of discovering translational findings that could improve the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Michaela Wagner
- Microbiome Research Centre, St George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (M.W.); (C.H.); (E.E.-O.)
| | - Chloe Hicks
- Microbiome Research Centre, St George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (M.W.); (C.H.); (E.E.-O.)
| | - Emad El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (M.W.); (C.H.); (E.E.-O.)
| | - Valery Combes
- Malaria and Microvesicles Research Group, School of Life Science, Faculty of Science, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia;
| | - Fatima El-Assaad
- Microbiome Research Centre, St George and Sutherland Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; (M.W.); (C.H.); (E.E.-O.)
| |
Collapse
|
63
|
Zhang L, Ma S, Liang H, Chen X, Zhao J. AKK-derived outer membrane vesicles alleviate indomethacin-induced mucin secretion reduction in LS174T cells by inhibiting endoplasmic reticulum stress. Front Mol Biosci 2024; 11:1418876. [PMID: 39606029 PMCID: PMC11599736 DOI: 10.3389/fmolb.2024.1418876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction AKK-derived outer membrane vesicles (AKK-OMVs) have shown potential in modulating intestinal mucosal immunity by increasing the number of intestinal goblet cells. However, it remains unclear whether AKK-OMVs can directly regulate MUC2 secretion in goblet cells exposed to indomethacin in vitro and the underlying mechanisms involved. Methods The abnormal mucin secretion model in LS174T cells was established using indomethacin, with treatment including Akkermansia muciniphila (AKK) supernatant, AKK-OMVs, and extracellular vesicle removal supernatant. The effects of these treatment on MUC2 expression were observed. Transcriptomic sequencing analysis was used to explore the underlying regulatory mechanisms, which were further validated through qRT-PCR and western blotting. Results The treatment with AKK supernatant and AKK-OMVs alleviated the indomethacin-induced reduction in MUC2 secretion in goblet cells. Mechanistically, transcriptomic analysis showed that the gene expression associated with endoplasmic reticulum (ER) stress were upregulated after indomethacin treatment in LS174T cells. This suggests that AKK-OMVs, as the active component in the supernatant, improved MUC2 expression by inhibiting ER stress. Conclusion AKK-OMVs can directly stimulate goblet cells to promote MUC2 secretion, providing potential for further in vivo studies to confirm their protective effects against indomethacin-induced intestinal injury.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuang Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huixi Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin Institute of Digestive Diseases, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Digestive Diseases, Tianjin Institute of Digestive Diseases, Tianjin, China
| |
Collapse
|
64
|
Richards VA, Ferrell BD, Polson SW, Wommack KE, Fuhrmann JJ. Soybean Bradyrhizobium spp. Spontaneously Produce Abundant and Diverse Temperate Phages in Culture. Viruses 2024; 16:1750. [PMID: 39599864 PMCID: PMC11599138 DOI: 10.3390/v16111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Soybean bradyrhizobia (Bradyrhizobium spp.) are symbiotic root-nodulating bacteria that fix atmospheric nitrogen for the host plant. The University of Delaware Bradyrhizobium Culture Collection (UDBCC; 353 accessions) was created to study the diversity and ecology of soybean bradyrhizobia. Some UDBCC accessions produce temperate (lysogenic) bacteriophages spontaneously under routine culture conditions without chemical or other apparent inducing agents. Spontaneous phage production may promote horizontal gene transfer and shape bacterial genomes and associated phenotypes. A diverse subset (n = 98) of the UDBCC was examined for spontaneously produced virus-like particles (VLPs) using epifluorescent microscopy, with a majority (69%) producing detectable VLPs (>1 × 107 mL-1) in laboratory culture. Phages from the higher-producing accessions (>2.0 × 108 VLP mL-1; n = 44) were examined using transmission electron microscopy. Diverse morphologies were observed, including various tail types and lengths, capsid sizes and shapes, and the presence of collars or baseplates. In many instances, putative extracellular vesicles of a size similar to virions were also observed. Three of the four species examined (B. japonicum, B. elkanii, and B. diazoefficiens) produced apparently tailless phages. All species except B. ottawaense also produced siphovirus-like phages, while all but B. diazoefficiens additionally produced podovirus-like phages. Myovirus-like phages were restricted to B. japonicum and B. elkanii. At least three strains were polylysogens, producing up to three distinct morphotypes. These observations suggest spontaneously produced phages may play a significant role in the ecology and evolution of soybean bradyrhizobia.
Collapse
Affiliation(s)
- Vanessa A. Richards
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Barbra D. Ferrell
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19713, USA
- Microbiology Graduate Program, University of Delaware, Newark, DE 19713, USA
| | - K. Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Microbiology Graduate Program, University of Delaware, Newark, DE 19713, USA
| | - Jeffry J. Fuhrmann
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Microbiology Graduate Program, University of Delaware, Newark, DE 19713, USA
| |
Collapse
|
65
|
Zhang Y, Song M, Fan J, Guo X, Tao S. Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. J Anim Sci Biotechnol 2024; 15:149. [PMID: 39506860 PMCID: PMC11542448 DOI: 10.1186/s40104-024-01102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024] Open
Abstract
Probiotic extracellular vesicles (pEVs) are biologically active nanoparticle structures that can regulate the intestinal tract through direct or indirect mechanisms. They enhance the intestinal barrier function in livestock and poultry and help alleviate intestinal diseases. The specific effects of pEVs depend on their internal functional components, including nucleic acids, proteins, lipids, and other substances. This paper presents a narrative review of the impact of pEVs on the intestinal barrier across various segments of the intestinal tract, exploring their mechanisms of action while highlighting the limitations of current research. Investigating the mechanisms through which probiotics operate via pEVs could deepen our understanding and provide a theoretical foundation for their application in livestock production.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Mengzhen Song
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Jinping Fan
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Xuming Guo
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
66
|
González MJ, Navarro N, Cruz E, Sánchez S, Morales JO, Zunino P, Robino L, Lima A, Scavone P. First report on the physicochemical and proteomic characterization of Proteus mirabilis outer membrane vesicles under urine-mimicking growth conditions: comparative analysis with Escherichia coli. Front Microbiol 2024; 15:1493859. [PMID: 39568990 PMCID: PMC11578119 DOI: 10.3389/fmicb.2024.1493859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Uropathogenic bacteria employ multiple strategies to colonize the urinary tract, including biofilm formation, invasion of urothelial cells, and the production of adhesins, toxins, and siderophores. Among the most prevalent pathogens causing urinary tract infections (UTIs) are Uropathogenic Escherichia coli and Proteus mirabilis. A notable feature of Gram-negative bacteria is their ability to produce outer membrane vesicles (OMVs), which play critical roles in bacterial survival, virulence, and host-pathogen interactions, including UTIs. Methods In this study, OMVs were isolated and characterized from two clinical strains, E. coli U144 and P. mirabilis 2,921, cultured in both Luria-Bertani broth and artificial urine. Result and discussion The OMVs ranged in size from 85 to 260 nm, with the largest vesicles observed in artificial urine. Proteomic analysis allowed the identification of 282 proteins in OMVs from E. coli and 353 proteins from P. mirabilis when cultured LB medium, while 215 were identified from E. coli and 103 from P. mirabilis when cultured in artificial urine. The majority of these proteins originated from the bacterial envelope, while others were linked to motility and adhesion. Notably, the protein composition of OMVs varied depending on the growth medium, and proteins associated with zinc and iron uptake being more prominent in artificial urine, suggesting their importance in the urinary environment. Crucially, this is the first report to characterize P. mirabilis OMVs under different culture conditions, offering novel insights into the role of OMVs in UTI pathogenesis. These findings provide a deeper understanding of the molecular mechanisms by which OMVs contribute to bacterial virulence, establishing the foundation for potential therapeutic interventions targeting OMV-mediated processes in UTIs.
Collapse
Affiliation(s)
- María José González
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Nicolás Navarro
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Erlen Cruz
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Sofía Sánchez
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Javier O Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Center of New Drugs for Hypertension and Heart Failure (CENDHY), Santiago, Chile
| | - Pablo Zunino
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Luciana Robino
- Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Analía Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo & Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Paola Scavone
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
67
|
Tang M, Lei Y, Chen K, Ding M, Ou Q, Tang J, Zhang Y, Tang T, Wang C. Reducing the degree of crosslinking of peptidoglycan in Listeria monocytogenes promoted the secretion of membrane vesicles. Biotechnol Bioeng 2024; 121:3629-3641. [PMID: 39014884 DOI: 10.1002/bit.28807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/23/2024] [Indexed: 07/18/2024]
Abstract
Listeria monocytogenes (LM) is a Gram-positive (G+) bacterium that secretes nanoscale membrane vesicles (MVs). LM MVs comprise various bacterial components and may have potential as an antigen or drug-delivery vehicle; however, the low yield of the LM MVs limits related research. G+-bacterial MVs germinate from the bacterial plasma membrane and must pass through a thick crosslinked peptidoglycan layer for release. Herein, we aimed to increase the release of MVs by reducing the degree of crosslinking of peptidoglycan. We knocked out two genes related to the longitudinal crosslinking of peptidoglycan, dal and dat, and supplemented the knocked-out dal gene through plasmid expression to obtain a stably inherited recombinant strain LMΔdd::pCW633. The structure, particle size, and main protein components of MVs secreted by this recombinant strain were consistent with those secreted from the wild strain, but the yield of MVs was considerably increased (p < 0.05). Furthermore, Listeria ivanovii (LI) was found to secrete MVs that differed in the composition of the main proteins compared with those of LM MVs. The abovementioned method was also feasible for promoting the secretion of MVs from the attenuated LM strain and LI wild-type and attenuated strains. Our study provides a new method to increase the secretion of MVs derived from Listeria that could be extended to other G+ bacteria.
Collapse
Affiliation(s)
- Mingyuan Tang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yao Lei
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Kehan Chen
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Qian Ou
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Tang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yunwen Zhang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tian Tang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
68
|
Malet-Villemagne J, Vidic J. Extracellular vesicles in the pathogenesis of Campylobacter jejuni. Microbes Infect 2024; 26:105377. [PMID: 38866352 DOI: 10.1016/j.micinf.2024.105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Bacteria in genus Campylobacter are the leading cause of foodborne infections worldwide. Here we describe the roles of extracellular vesicles in the pathogenesis of these bacteria and current knowledge of vesicle biogenesis. We also discuss the advantages of this alternative secretion pathway for bacterial virulence.
Collapse
Affiliation(s)
- Jeanne Malet-Villemagne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350, Jouy en Josas, France.
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Domaine de Vilvert, 78350, Jouy en Josas, France.
| |
Collapse
|
69
|
Buck AH, Nolte-'t Hoen ENM. The Nature and Nurture of Extracellular Vesicle-Mediated Signaling. Annu Rev Genet 2024; 58:409-432. [PMID: 39231450 DOI: 10.1146/annurev-genet-111523-102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In the last decade, it has become clear that extracellular vesicles (EVs) are a ubiquitous component of living systems. These small membrane-enclosed particles can confer diverse functions to the cells that release, capture, or coexist with them in an environment. We use examples across living systems to produce a conceptual framework that classifies three modes by which EVs exert functions: (a) EV release that serves a function for producing cells, (b) EV modification of the extracellular environment, and (c) EV interactions with, and alteration of, receiving cells. We provide an overview of the inherent properties of EVs (i.e., their nature) as well as factors in the environment and receiving cell (i.e., nurture) that determine whether transmission of EV cargo leads to functional cellular responses. This review broadens the context for ruminating on EV functions and highlights the emergent properties of EVs that define their role in biology and will shape their applications in medicine.
Collapse
Affiliation(s)
- Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom;
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands;
| |
Collapse
|
70
|
Du X, Li P, Fan C, Tian J, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yuan M, Yu X, Tsuda K, Li B. Holliday junction resolvase RuvC targets biofilm eDNA and confers plant resistance to vascular pathogens. NATURE PLANTS 2024; 10:1710-1723. [PMID: 39384943 DOI: 10.1038/s41477-024-01817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
A biofilm lifestyle is critical for bacterial pathogens to colonize and protect themselves from host immunity and antimicrobial chemicals in plants and animals. The formation and regulation mechanisms of phytobacterial biofilm are still obscure. Here we found that the protein Ralstonia solanacearum resistance to ultraviolet C (RuvC) is highly abundant in biofilm and positively regulates pathogenicity by controlling systemic movement in tomato xylem. RuvC protein accumulates at the later stage of biofilm development and specifically targets Holliday junction (HJ)-like structures to disrupt the biofilm extracellular DNA (eDNA) lattice, thus facilitating biofilm dispersal. Recombinant RuvC protein can resolve extracellular HJ to prevent bacterial biofilm formation. Heterologous expression of R. solanacearum or Xanthomonas oryzae pv. oryzae RuvC with plant secretion signal in tomato or rice confers resistance to bacterial wilt or bacterial blight disease, respectively. Plant chloroplast-localized HJ resolvase monokaryotic chloroplast 1 (MOC1), which shares structural similarity with bacterial RuvC, shows a strong inhibitory effect on bacterial biofilm formation. Relocalization of SlMOC1 to apoplast in tomato roots leads to increased resistance to bacterial wilt. Our novel finding reveals a critical pathogenesis mechanism of R. solanacearum and provides an efficient biotechnology strategy to improve plant resistance to bacterial vascular disease.
Collapse
Affiliation(s)
- Xinya Du
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Pengyue Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Changqiu Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jingjing Tian
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Meng Yuan
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
71
|
Kho K, Cheng T, Buddelmeijer N, Boneca IG. When the Host Encounters the Cell Wall and Vice Versa. Annu Rev Microbiol 2024; 78:233-253. [PMID: 39018459 DOI: 10.1146/annurev-micro-041522-094053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Peptidoglycan (PGN) and associated surface structures such as secondary polymers and capsules have a central role in the physiology of bacteria. The exoskeletal PGN heteropolymer is the major determinant of cell shape and allows bacteria to withstand cytoplasmic turgor pressure. Thus, its assembly, expansion, and remodeling during cell growth and division need to be highly regulated to avoid compromising cell survival. Similarly, regulation of the assembly impacts bacterial cell shape; distinct shapes enhance fitness in different ecological niches, such as the host. Because bacterial cell wall components, in particular PGN, are exposed to the environment and unique to bacteria, these have been coopted during evolution by eukaryotes to detect bacteria. Furthermore, the essential role of the cell wall in bacterial survival has made PGN an important signaling molecule in the dialog between host and microbes and a target of many host responses. Millions of years of coevolution have resulted in a pivotal role for PGN fragments in shaping host physiology and in establishing a long-lasting symbiosis between microbes and the host. Thus, perturbations of this dialog can lead to pathologies such as chronic inflammatory diseases. Similarly, pathogens have devised sophisticated strategies to manipulate the system to enhance their survival and growth.
Collapse
Affiliation(s)
- Kelvin Kho
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Thimoro Cheng
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Nienke Buddelmeijer
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| | - Ivo G Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Integrative and Molecular Microbiology, INSERM U1306, Host-Microbe Interactions and Pathophysiology, Unit of Biology and Genetics of the Bacterial Cell Wall, Paris, France;
| |
Collapse
|
72
|
Dorner H, Stolzer I, Mattner J, Kaminski S, Leistl S, Edrich LM, Schwendner R, Hobauer J, Sebald A, Leikam S, Gonzalez Acera M, Düll M, Lang R, Seidel G, Seitz T, Hellerbrand C, Fuhrmann G, Distler U, Tenzer S, Eichhorn P, Vieth M, Schramm C, Arnold P, Becker C, Weidinger C, Siegmund B, Atreya R, Leppkes M, Naschberger E, Sampaziotis F, Dietrich P, Rauh M, Wirtz S, Kremer AE, Neurath MF, Günther C. Gut Pathobiont-Derived Outer Membrane Vesicles Drive Liver Inflammation and Fibrosis in Primary Sclerosing Cholangitis-Associated Inflammatory Bowel Disease. Gastroenterology 2024; 167:1183-1197.e16. [PMID: 38992449 DOI: 10.1053/j.gastro.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND & AIMS Primary sclerosing cholangitis (PSC), often associated with inflammatory bowel disease (IBD), presents a multifactorial etiology involving genetic, immunologic, and environmental factors. Gut dysbiosis and bacterial translocation have been implicated in PSC-IBD, yet the precise mechanisms underlying their pathogenesis remain elusive. Here, we describe the role of gut pathobionts in promoting liver inflammation and fibrosis due to the release of bacterial outer membrane vesicles (OMVs). METHODS Preclinical mouse models in addition to ductal organoids were used to acquire mechanistic data. A proof-of-concept study including serum and liver biopsies of a patient cohort of PSC (n = 22), PSC-IBD (n = 45), and control individuals (n = 27) was performed to detect OMVs in the systemic circulation and liver. RESULTS In both preclinical model systems and in patients with PSC-IBD, the translocation of OMVs to the liver correlated with enhanced bacterial sensing and accumulation of the NLRP3 inflammasome. Using ductal organoids, we were able to precisely attribute the pro-inflammatory and pro-fibrogenic properties of OMVs to signaling pathways dependent on Toll-like receptor 4 and NLRP3-gasdermin-D. The immunostimulatory potential of OMVs could be confirmed in macrophages and hepatic stellate cells. Furthermore, when we administered gut pathobiont-derived OMVs to Mdr2-/- mice, we observed a significant enhancement in liver inflammation and fibrosis. In a translational approach, we substantiated the presence of OMVs in the systemic circulation and hepatic regions of severe fibrosis using a PSC-IBD patient cohort. CONCLUSIONS This study demonstrates the contribution of gut pathobionts in releasing OMVs that traverse the mucosal barrier and, thus, promote liver inflammation and fibrosis in PSC-IBD. OMVs might represent a critical new environmental factor that interacts with other disease factors to cause inflammation and thus define potential new targets for fibrosis therapy.
Collapse
Affiliation(s)
- Heidrun Dorner
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sophie Kaminski
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sofia Leistl
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa-Maria Edrich
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raphael Schwendner
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Hobauer
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian Sebald
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Leikam
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miguel Gonzalez Acera
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miriam Düll
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gerald Seidel
- Microbiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tatjana Seitz
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gregor Fuhrmann
- Department of Biology, Pharmaceutical Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Phillip Eichhorn
- Institute of Pathology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth, Germany
| | - Christoph Schramm
- Department of Medicine, Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carl Weidinger
- Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Siegmund
- Division of Gastroenterology, Infectiology and Rheumatology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raja Atreya
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fotios Sampaziotis
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom; Cambridge Liver Unit, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Peter Dietrich
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Research Laboratory, Division of Pediatrics, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany; Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
73
|
De Langhe N, Van Dorpe S, Guilbert N, Vander Cruyssen A, Roux Q, Deville S, Dedeyne S, Tummers P, Denys H, Vandekerckhove L, De Wever O, Hendrix A. Mapping bacterial extracellular vesicle research: insights, best practices and knowledge gaps. Nat Commun 2024; 15:9410. [PMID: 39482295 PMCID: PMC11528011 DOI: 10.1038/s41467-024-53279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Bacterial extracellular vesicles (BEVs) enable communication between bacteria and their natural habitats, including multicellular organisms such as humans. Consequently, the study of BEVs has rapidly gained attention with recent research raising the prospect of developing BEVs as biomarkers and treatments to manage (mal)functioning of natural habitats. Although diverse technologies are available, the composition of their source, their heterogeneity in biophysical and biochemical features, and their multifaceted cargo composition challenges the analysis of BEVs. To map current practices in BEV research, we analyzed 845 publications released in 2015-2021, reporting 3338 BEV-related experiments. The extracted data are accessible via the publicly available EV-TRACK knowledgebase ( https://evtrack.org/ ). We identify the need for transparent reporting, delineate knowledge gaps, outline available best practices and define areas in need of guidance to ensure advances in BEV research and accelerate BEV applications.
Collapse
Affiliation(s)
- Nele De Langhe
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - Sofie Van Dorpe
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | - Niké Guilbert
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Amélie Vander Cruyssen
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Quentin Roux
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- CRCI²NA, Nantes Université, INSERM, CNRS, Nantes, France
| | - Sarah Deville
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Laboratory for Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, Hasselt, Belgium
| | - Sándor Dedeyne
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Philippe Tummers
- Department of Gynecology, Ghent University Hospital, Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Oncology, Ghent University Hospital, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
74
|
Liu L, Zheng C, Xu Z, Wang Z, Zhong Y, He Z, Zhang W, Zhang Y. Intranasal administration of Clostridium butyricum and its derived extracellular vesicles alleviate LPS-induced acute lung injury. Microbiol Spectr 2024; 12:e0210824. [PMID: 39472001 PMCID: PMC11619349 DOI: 10.1128/spectrum.02108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 12/08/2024] Open
Abstract
Acute lung injury (ALI) is associated with high morbidity and mortality rates. However, its clinical treatment is limited. Currently, the treatment of lung diseases by regulating the lung microbiota has become a research hotspot. In this study, we investigated the protective effects of the intranasal administration of Clostridium butyricum and its derived extracellular vesicles (EVs) against lipopolysaccharide (LPS)-induced ALI. The results demonstrated that compared with the LPS group, the pre-treatment group with C. butyricum and its EVs reduced the expression of pro-inflammatory cytokines and alleviated the symptoms in ALI mice by inhibiting the TLR4/MyD88 signaling pathway. Moreover, C. butyricum and its derived EVs inhibited the expression of apoptosis-related proteins and increased the expression of lung barrier proteins. Additionally, the intervention of C. butyricum changed the composition of the pulmonary microbiota. At the species level, LPS significantly increased the relative abundance of Acinetobacter johnsonii, while C. butyricum reversed this effect. In conclusion, these data demonstrate that intranasal administration of C. butyricum and its EVs can prevent LPS-induced ALI by reducing inflammation, inhibiting apoptosis, and improving lung barrier function. Additionally, C. butyricum regulated the pulmonary microbiota of mice to alleviate LPS-induced ALI.IMPORTANCEThe disorder of pulmonary microbiota plays an important role in the progression of acute lung injury (ALI). However, very few studies have been conducted to treat ALI by modulating pulmonary microbiota. In this study, the diversity and composition of pulmonary microbiota were altered in lipopolysaccharide (LPS)-induced ALI mice, but the ecological balance of the pulmonary microbiota was restored by intranasal administration of Clostridium butyricum. Moreover, the study reported the mechanism of C. butyricum and its derived extracellular vesicles for the treatment of LPS-induced ALI. These results reveal the importance of pulmonary microbiota in ALI disease. It provides a new approach for the treatment of ALI with new-generation probiotics.
Collapse
Affiliation(s)
- Li Liu
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Cihua Zheng
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhenyang Xu
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhuoya Wang
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Yuchun Zhong
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhidong He
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Wenming Zhang
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuanbing Zhang
- Clinical School of Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
75
|
Yamasaki-Yashiki S, Shiraishi T, Gyobu M, Sasaki H, Kunisawa J, Yokota SI, Katakura Y. Immunostimulatory activity of lipoteichoic acid with three fatty acid residues derived from Limosilactobacillus antri JCM 15950 T. Appl Environ Microbiol 2024; 90:e0119724. [PMID: 39240119 PMCID: PMC11497808 DOI: 10.1128/aem.01197-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Some strains of lactic acid bacteria can regulate the host's intestinal immune system. Bacterial cells and membrane vesicles (MVs) of Limosilactobacillus antri JCM 15950T promote immunoglobulin A (IgA) production in murine Peyer's patch cells via toll-like receptor (TLR) 2. This study aimed to investigate the role of lipoteichoic acid (LTA), a ligand of TLR2, in the immunostimulatory activity of these bacterial cells and their MVs. LTA extracted from bacterial cells was purified through hydrophobic interaction chromatography and then divided into fractions LTA1 and LTA2 through anion-exchange chromatography. LTA1 induced greater interleukin (IL)-6 production from macrophage-like RAW264 cells than LTA2, and the induced IL-6 production was suppressed by TLR2 neutralization using an anti-TLR2 antibody. The LTAs in both fractions contained two hexose residues in the glycolipid anchor; however, LTA1 was particularly rich in triacyl LTA. The free hydroxy groups in the glycerol phosphate (GroP) repeating units were substituted by d-alanine (d-Ala) and α-glucose in LTA1, but only by α-glucose in LTA2. The dealanylation of LTA1 slightly suppressed IL-6 production in RAW264 cells, whereas deacylation almost completely suppressed IL-6 production. Furthermore, IL-6 production induced by dealanylated LTA1 was markedly higher than that induced by dealanylated LTA2. These results indicated that the critical moieties for the immunostimulatory activity of L. antri-derived LTA were the three fatty acid residues rather than the substitution with d-Ala in GroP. LTA was also detected in MVs, suggesting that the triacyl LTA, but not the diacyl LTA, translocated to the MVs and conferred immunostimulatory activity. IMPORTANCE Some lactic acid bacteria activate the host intestinal immune system via toll-like receptor (TLR) 2. Lipoteichoic acid (LTA) is a TLR2 ligand; however, the moieties of LTA that determine its immunostimulatory activity remain unclear because of the wide diversity of LTA partial structures. We found that Limosilactobacillus antri JCM 15950T has three types of LTAs (triacyl, diacyl, and monoacyl LTAs). Specifically, structural analysis of the LTAs revealed that triacyl LTA plays a crucial role in immunostimulation and that the fatty acid residues are essential for the activity. The three acyl residues are characteristic of LTAs from many lactic acid bacteria, and our findings can explain the immunostimulatory mechanisms widely exhibited by lactic acid bacteria. Furthermore, the immunostimulatory activity of membrane vesicles released by L. antri JCM 15950T is due to the transferred LTA, demonstrating a novel mechanism of membrane vesicle-mediated immunostimulation.
Collapse
Affiliation(s)
- Shino Yamasaki-Yashiki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition, Ibaraki, Osaka, Japan
| | - Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Mai Gyobu
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| | - Haruna Sasaki
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition, Ibaraki, Osaka, Japan
| | - Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yoshio Katakura
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka, Japan
| |
Collapse
|
76
|
Wang J, Li X, Zhao X, Yuan S, Dou H, Cheng T, Huang T, Lv Z, Tu Y, Shi Y, Ding X. Lactobacillus rhamnosus GG-derived extracellular vesicles promote wound healing via miR-21-5p-mediated re-epithelization and angiogenesis. J Nanobiotechnology 2024; 22:644. [PMID: 39427198 PMCID: PMC11490139 DOI: 10.1186/s12951-024-02893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
Extracellular vesicles (EVs), especially those derived from stem cells, have emerged as a novel treatment for promoting wound healing in regenerative medicine. However, the clinical application of mammalian cells-derived EVs is hindered by their high cost and low yields. Inspired by the ability of EVs to mediate interkingdom communication, we explored the therapeutic potential of EVs released by the probiotic strain Lactobacillus rhamnosus GG (LGG) in skin wound healing and elucidated the underlying mechanism involved. Using full-thickness skin wound-healing mouse models, we found that LGG-EVs accelerated wound healing procedures, including increased re-epithelialization and promoted angiogenesis. Using in vitro experiments, we further demonstrated that LGG-EVs boosted the proliferation and migration capacities of both epithelial and endothelial cells, as well as promoted endothelial tube formation. miRNA profiling analysis revealed that miR-21-5p was highly enriched in LGG-EVs and LGG-EV treatment significantly increased miR-21-5p level in recipient cells. Mechanically, LGG-EVs induced regulatory effects via miR-21-5p mediated metabolic signaling rewiring. Our results suggest that EVs derived from LGG could serve as a promising candidate for accelerating wound healing and possibly for treating chronic and impaired healing conditions.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiaojie Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xinyue Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Siqi Yuan
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Hanyu Dou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ting Cheng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Taomin Huang
- Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Zhi Lv
- Shanghai Inoherb R&D Center, Shanghai, 200444, China
| | - Yidong Tu
- Shanghai Inoherb R&D Center, Shanghai, 200444, China
| | - Yejiao Shi
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
77
|
Kozhakhmetova S, Bekbayeva A, Zholdybayeva E, Krivoruchko T, Dashevskaya N, Mukhanbetzhanova Z, Vinogradova E, Kushugulova A, Kozhakhmetov S. Subinhibitory concentrations of meropenem stimulate membrane vesicle production and modulate immune response in Bacteroides fragilis infection. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100294. [PMID: 39525957 PMCID: PMC11546947 DOI: 10.1016/j.crmicr.2024.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
This study explores an adaptation mechanism of Bacteroides fragilis to subinhibitory concentrations of meropenem, characterized by an alteration in the production of membrane vesicles (MVs) and modulation of the host inflammatory response. Using a rat model of infection, we demonstrated a significant increase in the size of MVs accompanied by a nonsignificant increase in their number in the meropenem-treated group compared to the infected control. Both infected groups showed significantly altered hematological parameters and shifts in monocyte on day 8 (average increase of 21.5 %). At the same time, significant changes in neutrophils (decrease by 26 %) and eosinophils (increase by 3 %) were observed only in the infected group but not in the infected meropenem-treated group. On day 16, increased macrophage activation, neovascularization, and fibrosis were observed in the tissues of the antibiotic-treated group. Immunological profile analysis revealed a slight increase in the levels of pro-inflammatory cytokines (IL-5, IL-6, IFN-γ and G-CSF) on day 8 of the experiment, followed by a sharp decrease on day 16 in both infected groups compared to the negative control. At the same time, network analysis of correlations between these immunological factors showed complex changes in response to subinhibitory concentrations of meropenem. The bacterial load did not differ between the infected groups on days 8 and 16, but only in the meropenem-free group a significant decrease in the number of bacteria was observed on day 16 in all samples. These findings suggest that subinhibitory antibiotic concentrations can influence the pathophysiological progression of B. fragilis infection, modulating both the bacterial response and the host immune reaction, potentially leading to a more complex and chronic disease course.
Collapse
Affiliation(s)
- Saniya Kozhakhmetova
- National Scientific Shared Laboratory of Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | - Ayazhan Bekbayeva
- National Scientific Shared Laboratory of Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | - Elena Zholdybayeva
- National Scientific Shared Laboratory of Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | - Tatyana Krivoruchko
- National Scientific Shared Laboratory of Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | - Natalya Dashevskaya
- National Scientific Shared Laboratory of Biotechnology, National Center for Biotechnology, Astana, Kazakhstan
| | - Zhanel Mukhanbetzhanova
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Elizaveta Vinogradova
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Almagul Kushugulova
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Samat Kozhakhmetov
- Laboratory of Microbiome, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
78
|
Wang L, Feng Z, Shen S, Wang S, Xing J, Huang R, Shen H, Yan P, Wang J, Zhang W, Liu Y, He W, Mo R. Stabilized Cell Membrane-Derived Vesicles by Lipid Anchoring for Enhanced Drug Delivery. ACS NANO 2024; 18:28081-28094. [PMID: 39360741 DOI: 10.1021/acsnano.4c07341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
A cell membrane-derived vesicle (MV) that has cell-mimicking features with characteristic functionalities holds vast appeal for biomimetic nanomedicine and drug delivery but suffers from a major limitation of innate fragility and poor stability. Herein, we report a lipid-anchoring strategy for stabilizing MV for enhanced drug delivery. An array of amphiphilic mono-acyl phosphatidylcholines (MPCs) with specific hydrophobic moieties are synthesized and readily engineered on MV based on their commendable aqueous solubility and efficient membrane insertability. Incorporation of MPCs containing rigid ring structures in the hydrophobic segment demonstrates the potency of stabilizing MV by the combined ordering and condensing effects. The optimized MPC-stabilized MV exhibits prolonged circulation in the bloodstream, elevated accumulation within a tumor, and enhanced therapeutic effects of chemotherapeutic and photothermal drugs. Moreover, doxorubicin-loaded MV, engineered with mono-all-trans retinoyl phosphatidylcholine as an MV stabilizer and a therapeutic prodrug, potently suppresses growth and metastasis of high-stemness tumors.
Collapse
Affiliation(s)
- Leikun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Zhizi Feng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Shiyang Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Shengdi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaqi Xing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Renqi Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - He Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Pengyi Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jingyao Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjing Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yiru Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wei He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
79
|
Chen Z, Liu Y, Jiang L, Zhang C, Qian X, Gu J, Song Z. Bacterial outer membrane vesicles increase polymyxin resistance in Pseudomonas aeruginosa while inhibiting its quorum sensing. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135588. [PMID: 39181004 DOI: 10.1016/j.jhazmat.2024.135588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The persistent emergence of multidrug-resistant bacterial pathogens is leading to a decline in the therapeutic efficacy of antibiotics, with Pseudomonas aeruginosa (P. aeruginosa) emerging as a notable threat. We investigated the antibiotic resistance and quorum sensing (QS) system of P. aeruginosa, with a particular focused on outer membrane vesicles (OMVs) and polymyxin B as the last line of antibiotic defense. Our findings indicate that OMVs increase the resistance of P. aeruginosa to polymyxin B. The overall gene transcription levels within P. aeruginosa also reveal that OMVs can reduce the efficacy of polymyxin B. However, both OMVs and sublethal concentrations of polymyxin B suppressed the transcription levels of genes associated with the QS system. Furthermore, OMVs and polymyxin B acted in concert on the QS system of P. aeruginosa to produce a more potent inhibitory effect. This suppression was evidenced by a decrease in the secretion of virulence factors, impaired bacterial motility, and a notable decline in the ability to form biofilms. These results reveal that OMVs enhance the resistance of P. aeruginosa to polymyxin B, yet they collaborate with polymyxin B to inhibit the QS system. Our research contribute to a deeper understanding of the resistance mechanisms of P. aeruginosa in the environment, and provide new insights into the reduction of bacterial infections caused by P. aeruginosa through the QS system.
Collapse
Affiliation(s)
- Zhihui Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yucheng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
80
|
Wen AX, Herman C. Horizontal gene transfer and beyond: the delivery of biological matter by bacterial membrane vesicles to host and bacterial cells. Curr Opin Microbiol 2024; 81:102525. [PMID: 39190937 PMCID: PMC11444307 DOI: 10.1016/j.mib.2024.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Membrane vesicles (MVs) are produced in all domains of life. In eukaryotes, extracellular vesicles have been shown to mediate the horizontal transfer of biological material between cells [1]. Therefore, bacterial MVs are also thought to mediate horizontal material transfer to host cells and other bacteria, especially in the context of cell stress. In this review, we discuss the mechanisms of bacterial MV production, evidence that their contents can be trafficked to host cells and other bacteria, and the biological relevance of horizontal material transfer by bacterial MVs.
Collapse
Affiliation(s)
- Alice X Wen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor College of Medicine Medical Scientist Training Program, Houston, TX 77030, USA; Robert and Janice McNair Foundation/ McNair Medical Institute M.D./Ph.D. Scholars program, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
81
|
Bai Z, Wang X, Liang T, Xu G, Cai J, Xu W, Yang K, Hu L, Pei P. Harnessing Bacterial Membrane Components for Tumor Vaccines: Strategies and Perspectives. Adv Healthc Mater 2024; 13:e2401615. [PMID: 38935934 DOI: 10.1002/adhm.202401615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Tumor vaccines stand at the vanguard of tumor immunotherapy, demonstrating significant potential and promise in recent years. While tumor vaccines have achieved breakthroughs in the treatment of cancer, they still encounter numerous challenges, including improving the immunogenicity of vaccines and expanding the scope of vaccine application. As natural immune activators, bacterial components offer inherent advantages in tumor vaccines. Bacterial membrane components, with their safer profile, easy extraction, purification, and engineering, along with their diverse array of immune components, activate the immune system and improve tumor vaccine efficacy. This review systematically summarizes the mechanism of action and therapeutic effects of bacterial membranes and its derivatives (including bacterial membrane vesicles and hybrid membrane biomaterials) in tumor vaccines. Subsequently, the authors delve into the preparation and advantages of tumor vaccines based on bacterial membranes and hybrid membrane biomaterials. Following this, the immune effects of tumor vaccines based on bacterial outer membrane vesicles are elucidated, and their mechanisms are explained. Moreover, their advantages in tumor combination therapy are analyzed. Last, the challenges and trends in this field are discussed. This comprehensive analysis aims to offer a more informed reference and scientific foundation for the design and implementation of bacterial membrane-based tumor vaccines.
Collapse
Affiliation(s)
- Zhenxin Bai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xuanyu Wang
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Tianming Liang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, P.R. China
| | - Guangyu Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinzhou Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, P.R. China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| |
Collapse
|
82
|
Ji P, Wu P, Wang L, Wang Y, Guo X, Gao R, Guo Z, Zhou H, Liu Z, Liang Y, Lu F, Yang G, Ji G. Lysosome-Targeting Bacterial Outer Membrane Vesicles for Tumor Specific Degradation of PD-L1. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400770. [PMID: 38934533 DOI: 10.1002/smll.202400770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Increased expression of immune check point genes, such as PD-L1, is one of the main reasons for immunosuppression, especially for colon cancer. Development of novel therapeutic strategies is of great importance to improve the prognosis. In this study, outer membrane vesicles (OMV) derived from Gram-negative bacteria are engineered to immune checkpoint blockade nanosystem for efficient elicitation of anti-tumor immunity. Briefly, the OMVs are engineered with Lyp1-Traptavidin (S52G, R53D mutant of streptavidin) fusion protein displayed on the surface. The Lyp-1 endows the OMV with the capacity to target tumor tissues, while the Traptavidin ensures easy decoration of biotinylated anti-PD-L1 and biotinylated M6P (mannose 6-phosphate). The simultaneously anchored anti-PD-L1 and M6P (ligand for cation-independent mannose 6-phosphate receptor) on the engineered OMVs coordinately direct the membrane PD-L1 to lysosome for degradation, and thus unleash the anti-tumor immunity. With syngeneic tumor model, the engineered OMVs are confirmed to boost immunity, inhibit cancer growth, and thus prolong survival. Together, A proposed OMV-based modular nanosystem that enables assembly of biotinylated anti-PD-L1 and M6P on the surface for tumor-targeted immune checkpoint blockade.
Collapse
Affiliation(s)
- Panpan Ji
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Pengying Wu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Lantian Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yufei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Guo
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Ruiqi Gao
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhiyu Guo
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Haikun Zhou
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhaoyou Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yuan Liang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Fan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Biochemistry and Molecular Biology, Military Medical Innovation Center, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Ji
- Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
83
|
Michaelis S, Gomez-Valero L, Chen T, Schmid C, Buchrieser C, Hilbi H. Small molecule communication of Legionella: the ins and outs of autoinducer and nitric oxide signaling. Microbiol Mol Biol Rev 2024; 88:e0009723. [PMID: 39162424 PMCID: PMC11426016 DOI: 10.1128/mmbr.00097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
SUMMARYLegionella pneumophila is a Gram-negative environmental bacterium, which survives in planktonic form, colonizes biofilms, and infects protozoa. Upon inhalation of Legionella-contaminated aerosols, the opportunistic pathogen replicates within and destroys alveolar macrophages, thereby causing a severe pneumonia termed Legionnaires' disease. Gram-negative bacteria employ low molecular weight organic compounds as well as the inorganic gas nitric oxide (NO) for cell-cell communication. L. pneumophila produces, secretes, and detects the α-hydroxyketone compound Legionella autoinducer-1 (LAI-1, 3-hydroxypentadecane-4-one). LAI-1 is secreted by L. pneumophila in outer membrane vesicles and not only promotes communication among bacteria but also triggers responses from eukaryotic cells. L. pneumophila detects NO through three different receptors, and signaling through the volatile molecule translates into fluctuations of the intracellular second messenger cyclic-di-guanylate monophosphate. The LAI-1 and NO signaling pathways are linked via the pleiotropic transcription factor LvbR. In this review, we summarize current knowledge about inter-bacterial and inter-kingdom signaling through LAI-1 and NO by Legionella species.
Collapse
Affiliation(s)
- Sarah Michaelis
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Tong Chen
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Camille Schmid
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
84
|
Ware JP, Shea DK, Nicholas SL, Stimson EA, Riesterer JL, Ibsen SD. Recovery and Analysis of Bacterial Membrane Vesicle Nanoparticles from Human Plasma Using Dielectrophoresis. BIOSENSORS 2024; 14:456. [PMID: 39451671 PMCID: PMC11505931 DOI: 10.3390/bios14100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024]
Abstract
Bacterial membrane vesicle (BMV) nanoparticles are secreted naturally by bacteria throughout their lifecycle and are a rich source of biomarkers from the parent bacteria, but they are currently underutilized for clinical diagnostic applications, such as pathogen identification, due to the time-consuming and low-yield nature of traditional recovery methods required for analysis. The recovery of BMVs is particularly difficult from complex biological fluids. Here, we demonstrate a recovery method that uses dielectrophoretic (DEP) forces generated on electrokinetic microfluidic chips to isolate and analyze BMVs from human plasma. DEP takes advantage of the natural difference in dielectric properties between the BMVs and the surrounding plasma fluid to quickly and consistently collect these particles from as little as 25 µL of plasma. Using DEP and immunofluorescence staining of the LPS biomarker carried on BMVs, we have demonstrated a lower limit of detection of 4.31 × 109 BMVs/mL. The successful isolation of BMVs from human plasma using DEP, and subsequent on-chip immunostaining for biomarkers, enables the development of future assays to identify the presence of specific bacterial species by analyzing BMVs from small amounts of complex body fluid.
Collapse
Affiliation(s)
- Jason P. Ware
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA (S.L.N.); (E.A.S.); (J.L.R.)
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - Delaney K. Shea
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA (S.L.N.); (E.A.S.); (J.L.R.)
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - Shelby L. Nicholas
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA (S.L.N.); (E.A.S.); (J.L.R.)
| | - Ella A. Stimson
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA (S.L.N.); (E.A.S.); (J.L.R.)
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - Jessica L. Riesterer
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA (S.L.N.); (E.A.S.); (J.L.R.)
| | - Stuart D. Ibsen
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA (S.L.N.); (E.A.S.); (J.L.R.)
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| |
Collapse
|
85
|
Sanwlani R, Bramich K, Mathivanan S. Role of probiotic extracellular vesicles in inter-kingdom communication and current technical limitations in advancing their therapeutic utility. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:509-526. [PMID: 39697628 PMCID: PMC11648425 DOI: 10.20517/evcna.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/24/2024] [Accepted: 09/05/2024] [Indexed: 12/20/2024]
Abstract
Diverse functions of probiotic extracellular vesicles (EVs) have been extensively studied over the past decade, proposing their role in inter-kingdom communication. Studies have explored their therapeutic role in pathophysiological processes ranging from cancer, immunoregulation, and ulcerative colitis to stress-induced depression. These studies have highlighted the significant and novel potential of probiotic EVs for therapeutic applications, offering immense promise in addressing several unmet clinical needs. Additionally, probiotic EVs are being explored as vehicles for targeted delivery approaches. However, the realization of clinical utility of probiotic EVs is hindered by several knowledge gaps, pitfalls, limitations, and challenges, which impede their wider acceptance by the scientific community. Among these, limited knowledge of EV biogenesis, markers and regulators in bacteria, variations in cargo due to culture conditions or EV isolation method, and lack of proper understanding of gut uptake and demonstration of in vivo effect are some important issues. This review aims to summarize the diverse roles of probiotic EVs in health and disease conditions. More importantly, it discusses the significant knowledge gaps and limitations that stand in the way of the therapeutic utility of probiotic EVs. Furthermore, the importance of addressing these gaps and limitations with technical advances such as rigorous omics has been discussed.
Collapse
Affiliation(s)
| | | | - Suresh Mathivanan
- Correspondence to: Prof. Suresh Mathivanan, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, Science Drive, Melbourne 3086, Victoria, Australia. E-mail:
| |
Collapse
|
86
|
Jia T, Bi X, Li M, Zhang C, Ren A, Li S, Zhou T, Zhang Y, Liu Y, Liu X, Deng Y, Liu B, Li G, Yang L. Hfq-binding small RNA PqsS regulates Pseudomonas aeruginosa pqs quorum sensing system and virulence. NPJ Biofilms Microbiomes 2024; 10:82. [PMID: 39261499 PMCID: PMC11391009 DOI: 10.1038/s41522-024-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Pseudomonas aeruginosa is a widespread nosocomial pathogen with a significant to cause both severe planktonic acute and biofilm-related chronic infections. Small RNAs (sRNAs) are noncoding regulatory molecules that are stabilized by the RNA chaperone Hfq to trigger various virulence-related signaling pathways. Here, we identified an Hfq-binding sRNA in P. aeruginosa PAO1, PqsS, which promotes bacterial pathogenicity and pseudomonas quinolone signal quorum sensing (pqs QS) system. Specifically, PqsS enhanced acute bacterial infections by inducing host cell death and promoting rhamnolipid-regulated swarming motility. Meanwhile, PqsS reduced chronic infection traits including biofilm formation and antibiotic resistance. Moreover, PqsS repressed pqsL transcript, increasing PQS levels for pqs QS. A PQS-rich environment promoted PqsS expression, thus forming a positive feedback loop. Furthermore, we demonstrated that the PqsS interacts and destabilizes the pqsL mRNA by recruiting RNase E to drive degradation. These findings provide insights for future research on P. aeruginosa pathogenesis and targeted treatment.
Collapse
Affiliation(s)
- Tianyuan Jia
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Xianbiao Bi
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Menglu Li
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Chenhui Zhang
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Anmin Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Shangru Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Tian Zhou
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Yingdan Zhang
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Yang Liu
- Medical Research Center, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Xue Liu
- Department of Pharmacology, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Bin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
| | - Guobao Li
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China
| | - Liang Yang
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science a-nd Technology, Shenzhen, China.
| |
Collapse
|
87
|
Zhang CH, Lu DC, Liu Y, Wang L, Sethi G, Ma Z. The role of extracellular vesicles in pyroptosis-mediated infectious and non-infectious diseases. Int Immunopharmacol 2024; 138:112633. [PMID: 38986299 DOI: 10.1016/j.intimp.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Pyroptosis, a lytic and pro-inflammatory cell death, is important in various pathophysiological processes. Host- and bacteria-derived extracellular vesicles (EVs), as natural nanocarriers messengers, are versatile mediators of intercellular communication between different types of cells. Recently, emerging research has suggested that EVs exhibit multifaceted roles in disease progression by manipulating pyroptosis. This review focuses on new findings concerning how EVs shape disease progression in infectious and non-infectious diseases by regulating pyroptosis. Understanding the characteristics and activity of EVs-mediated pyroptotic death may conducive to the discovery of novel mechanisms and more efficient therapeutic targets in infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Cai-Hua Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; Department of Oncology, People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing 404100, China
| | - Ding-Ci Lu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ying Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600 Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, 117599 Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.
| |
Collapse
|
88
|
Gasser MT, Liu A, Altamia M, Brensinger BR, Brewer SL, Flatau R, Hancock ER, Preheim SP, Filone CM, Distel DL. Membrane vesicles can contribute to cellulose degradation by Teredinibacter turnerae, a cultivable intracellular endosymbiont of shipworms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587001. [PMID: 38585906 PMCID: PMC10996688 DOI: 10.1101/2024.03.27.587001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose, and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut. However, the mechanisms by which T. turnerae secretes lignocellulolytic enzymes are incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce membrane vesicles (MVs) that include a variety of proteins identified by LC-MS/MS as carbohydrate-active enzymes (CAZymes) with predicted activities against cellulose, hemicellulose, and pectin. Reducing sugar assays and zymography confirm that these MVs exhibit cellulolytic activity, as evidenced by the hydrolysis of CMC. Additionally, these MVs were enriched with TonB-dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations indicate a potential role for MVs in lignocellulose utilization by T. turnerae in the free-living state, suggest possible mechanisms for host-symbiont interaction, and may be informative for commercial applications such as enzyme production and lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Mark T. Gasser
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Annie Liu
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Marvin Altamia
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| | - Bryan R. Brensinger
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Sarah L. Brewer
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Ron Flatau
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| | - Eric R. Hancock
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | | | - Claire Marie Filone
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA 20723
| | - Dan L. Distel
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, USA 01908
| |
Collapse
|
89
|
Xuan G, Lu D, Lin H, Wang Y, Wang J. Outer Membrane Vesicle Production by Escherichia coli Enhances Its Defense against Phage Infection. Microorganisms 2024; 12:1836. [PMID: 39338510 PMCID: PMC11433858 DOI: 10.3390/microorganisms12091836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Several studies have investigated the multifunctional characteristics of outer membrane vesicles (OMVs), but research on their role in mediating phage-bacteria interactions is limited. Employing Escherichia coli as a model, we engineered a mutant strain overproducing OMVs for protective experiments against phage infections. The addition of exogenous OMVs proved highly effective in safeguarding the bacterial host against various phages, mitigating predatory threats. Screening for phage-resistant strains and adsorption experiments revealed that inhibiting phage adsorption is a crucial pathway through which OMVs protect against phage predation. Although OMVs conferred tolerance to the phage-sensitive strains (those easily infected by phages), they could not restore the phage-resistant strains (those that effectively resist phage infection) to a sensitive phenotype. This study provides valuable insights for the future development of novel biotechnological approaches aimed at utilizing OMVs to protect fermentative strains and reduce the risk of phage contamination.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Di Lu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Yinfeng Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Jingxue Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| |
Collapse
|
90
|
Hu C, Chen Q, Wu T, Du X, Dong Y, Peng Z, Xue W, Sunkara V, Cho YK, Dong L. The Role of Extracellular Vesicles in the Treatment of Prostate Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311071. [PMID: 38639331 DOI: 10.1002/smll.202311071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Prostate cancer (PCa) has become a public health concern in elderly men due to an ever-increasing number of estimated cases. Unfortunately, the available treatments are unsatisfactory because of a lack of a durable response, especially in advanced disease states. Extracellular vesicles (EVs) are lipid-bilayer encircled nanoscale vesicles that carry numerous biomolecules (e.g., nucleic acids, proteins, and lipids), mediating the transfer of information. The past decade has witnessed a wide range of EV applications in both diagnostics and therapeutics. First, EV-based non-invasive liquid biopsies provide biomarkers in various clinical scenarios to guide treatment; EVs can facilitate the grading and staging of patients for appropriate treatment selection. Second, EVs play a pivotal role in pathophysiological processes via intercellular communication. Targeting key molecules involved in EV-mediated tumor progression (e.g., proliferation, angiogenesis, metastasis, immune escape, and drug resistance) is a potential approach for curbing PCa. Third, EVs are promising drug carriers. Naïve EVs from various sources and engineered EV-based drug delivery systems have paved the way for the development of new treatment modalities. This review discusses the recent advancements in the application of EV therapies and highlights EV-based functional materials as novel interventions for PCa.
Collapse
Affiliation(s)
- Cong Hu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qi Chen
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tianyang Wu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinxing Du
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yanhao Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zehong Peng
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Vijaya Sunkara
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science Ulsan, Ulsan, 44919, Republic of Korea
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
91
|
Artuyants A, Hong J, Dauros-Singorenko P, Phillips A, Simoes-Barbosa A. Lactobacillus gasseri and Gardnerella vaginalis produce extracellular vesicles that contribute to the function of the vaginal microbiome and modulate host-Trichomonas vaginalis interactions. Mol Microbiol 2024; 122:357-371. [PMID: 37485746 DOI: 10.1111/mmi.15130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Trichomonas vaginalis is an extracellular protozoan parasite of the human urogenital tract, responsible for a prevalent sexually transmitted infection. Trichomoniasis is accompanied by a dysbiotic microbiome that is characterised by the depletion of host-protective commensals such as Lactobacillus gasseri, and the flourishing of a bacterial consortium that is comparable to the one seen for bacterial vaginosis, including the founder species Gardnerella vaginalis. These two vaginal bacteria are known to have opposite effects on T. vaginalis pathogenicity. Studies on extracellular vesicles (EVs) have been focused on the direction of a microbial producer (commensal or pathogen) to a host recipient, and largely in the context of the gut microbiome. Here, taking advantage of the simplicity of the human cervicovaginal microbiome, we determined the molecular cargo of EVs produced by L. gasseri and G. vaginalis and examined how these vesicles modulate the interaction of T. vaginalis and host cells. We show that these EVs carry a specific cargo of proteins, which functions can be attributed to the opposite roles that these bacteria play in the vaginal biome. Furthermore, these bacterial EVs are delivered to host and protozoan cells, modulating host-pathogen interactions in a way that mimics the opposite effects that these bacteria have on T. vaginalis pathogenicity. This is the first study to describe side-by-side the protein composition of EVs produced by two bacteria belonging to the opposite spectrum of a microbiome and to demonstrate that these vesicles modulate the pathogenicity of a protozoan parasite. Such as in trichomoniasis, infections and dysbiosis co-occur frequently resulting in significant co-morbidities. Therefore, studies like this provide the knowledge for the development of antimicrobial therapies that aim to clear the infection while restoring a healthy microbiome.
Collapse
Affiliation(s)
| | - Jiwon Hong
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | | | - Anthony Phillips
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
92
|
Luo Z, Cheng X, Feng B, Fan D, Liu X, Xie R, Luo T, Wegner SV, Ma D, Chen F, Zeng W. Engineering Versatile Bacteria-Derived Outer Membrane Vesicles: An Adaptable Platform for Advancing Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400049. [PMID: 38952055 PMCID: PMC11434149 DOI: 10.1002/advs.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/13/2024] [Indexed: 07/03/2024]
Abstract
In recent years, cancer immunotherapy has undergone a transformative shift toward personalized and targeted therapeutic strategies. Bacteria-derived outer membrane vesicles (OMVs) have emerged as a promising and adaptable platform for cancer immunotherapy due to their unique properties, including natural immunogenicity and the ability to be engineered for specific therapeutic purposes. In this review, a comprehensive overview is provided of state-of-the-art techniques and methodologies employed in the engineering of versatile OMVs for cancer immunotherapy. Beginning by exploring the biogenesis and composition of OMVs, unveiling their intrinsic immunogenic properties for therapeutic appeal. Subsequently, innovative approaches employed to engineer OMVs are delved into, ranging from the genetic engineering of parent bacteria to the incorporation of functional molecules. The importance of rational design strategies is highlighted to enhance the immunogenicity and specificity of OMVs, allowing tailoring for diverse cancer types. Furthermore, insights into clinical studies and potential challenges utilizing OMVs as cancer vaccines or adjuvants are also provided, offering a comprehensive assessment of the current landscape and future prospects. Overall, this review provides valuable insights for researchers involved in the rapidly evolving field of cancer immunotherapy, offering a roadmap for harnessing the full potential of OMVs as a versatile and adaptable platform for cancer treatment.
Collapse
Affiliation(s)
- Ziheng Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiang Cheng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Bin Feng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Duoyang Fan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Xiaohui Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ruyan Xie
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Ting Luo
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and PathobiochemistryUniversity of Münster48149MünsterGermany
| | - Dayou Ma
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Fei Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangsha410013China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic DiseasesChangsha410078China
| |
Collapse
|
93
|
Cano-Castaño B, Corral-Lugo A, Gato E, Terrón MC, Martín-Galiano AJ, Sotillo J, Pérez A, McConnell MJ. Loss of Lipooligosaccharide Synthesis in Acinetobacter baumannii Produces Changes in Outer Membrane Vesicle Protein Content. Int J Mol Sci 2024; 25:9272. [PMID: 39273220 PMCID: PMC11395390 DOI: 10.3390/ijms25179272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Outer membrane vesicles (OMVs) are nanostructures derived from the outer membrane of Gram-negative bacteria. We previously demonstrated that vaccination with endotoxin-free OMVs isolated from an Acinetobacter baumannii strain lacking lipooligosaccharide (LOS) biosynthesis, due to a mutation in lpxD, provides full protection in a murine sepsis model. The present study characterizes the protein content of highly-purified OMVs isolated from LOS-replete and LOS-deficient strains. Four purification methods were evaluated to obtain highly purified OMV preparations: ultracentrifugation, size exclusion chromatography (SEC), ultracentrifugation followed by SEC, and Optiprep™. OMVs from each method were characterized using nanoparticle tracking analysis and electron microscopy. OMVs from LOS-deficient and LOS-replete strains purified using the Optiprep™ method were subjected to LC-MS/MS analysis to determine protein content. Significant differences in protein composition between OMVs from LOS-deficient and LOS-replete strains were found. Computational analyses using Bepipred 3.0 and SEMA 2.0 indicated that the lack of LOS led to the overexpression of immunogenic proteins found in LOS-containing OMVs and the presence of immune-stimulating proteins absent in LOS-replete OMVs. These findings have important implications for developing OMV-based vaccines against A. baumannii, using both LOS-containing and LOS-free OMVs preparations.
Collapse
Affiliation(s)
- Beatriz Cano-Castaño
- Intrahospital Infections Laboratory, Instituto de Salud Carlos III (ISCIII), National Centre for Microbiology, 28220 Madrid, Spain
- Escuela internacional de Doctorado, Ciencias de la Salud, Universidad Nacional de Educación a Distancia (UNED), 28015 Madrid, Spain
| | - Andrés Corral-Lugo
- Protein Synthesis Quality Control, Institute of Genetics and Development of Rennes, 35000 Rennes Cedex, France
| | - Eva Gato
- Intrahospital Infections Laboratory, Instituto de Salud Carlos III (ISCIII), National Centre for Microbiology, 28220 Madrid, Spain
| | - María C Terrón
- Electron Microscopy Unit, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Antonio J Martín-Galiano
- Core Scientific and Technical Units, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Instituto de Salud Carlos III (ISCIII), National Centre for Microbiology, 28220 Madrid, Spain
| | - Astrid Pérez
- Intrahospital Infections Laboratory, Instituto de Salud Carlos III (ISCIII), National Centre for Microbiology, 28220 Madrid, Spain
| | - Michael J McConnell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
94
|
Yılmaz Çolak Ç. Bacterial Membrane Vesicles as a Novel Vaccine Platform against SARS-CoV-2. Curr Microbiol 2024; 81:317. [PMID: 39164527 DOI: 10.1007/s00284-024-03846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Throughout history, infectious diseases have plagued humanity, with outbreaks occurring regularly worldwide. Not every outbreak affects people globally; however, in the case of Coronavirus Disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), it reached a pandemic level within a remarkably short period. Fortunately, advancements in medicine and biotechnology have facilitated swift responses to the disease, resulting in the development of therapeutics and vaccines. Nevertheless, the persistent spread of the virus and the emergence of new variants underscore the necessity for protective interventions, leading researchers to seek more effective vaccines. Despite the presence of various types of vaccines, including mRNA and inactivated vaccines against SARS-CoV-2, new platforms have been investigated since the pandemic, and research on bacterial membrane vesicles (BMVs) has demonstrated their potential as a novel COVID-19 vaccine platform. Researchers have explored different strategies for BMV-based COVID-19 vaccines, such as mixing the vesicles with antigenic components of the virus due to their adjuvant capacity or decorating the vesicles with the viral antigens to create adjuvanted delivery systems. These approaches have presented promising results in inducing robust immune responses, but obstacles such as reproducibility in obtaining and homogeneous characterization of BMVs remain in developing vesicle-based vaccines. Overall, the development of BMV-based vaccines represents a novel and promising strategy in the fight against COVID-19. Additional research and clinical trials are needed to further evaluate the potential of these vaccines to offer long-lasting protection against SARS-CoV-2 and its evolving variants.
Collapse
Affiliation(s)
- Çiğdem Yılmaz Çolak
- Life Sciences, Marmara Research Center, TUBITAK, Kocaeli, Türkiye.
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul, Türkiye.
| |
Collapse
|
95
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
96
|
Dehinwal R, Gopinath T, Smith RD, Ernst RK, Schifferli DM, Waldor MK, Marassi FM. A pH-sensitive motif in an outer membrane protein activates bacterial membrane vesicle production. Nat Commun 2024; 15:6958. [PMID: 39138228 PMCID: PMC11322160 DOI: 10.1038/s41467-024-51364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have key roles in cell envelope homeostasis, secretion, interbacterial communication, and pathogenesis. The facultative intracellular pathogen Salmonella Typhimurium increases OMV production inside the acidic vacuoles of host cells by changing expression of its outer membrane proteins and modifying the composition of lipid A. However, the molecular mechanisms that translate pH changes into OMV production are not completely understood. Here, we show that the outer membrane protein PagC promotes OMV production through pH-dependent interactions between its extracellular loops and surrounding lipopolysaccharide (LPS). Structural comparisons and mutational studies indicate that a pH-responsive amino acid motif in PagC extracellular loops, containing PagC-specific histidine residues, is crucial for OMV formation. Molecular dynamics simulations suggest that protonation of histidine residues leads to changes in the structure and flexibility of PagC extracellular loops and their interactions with the surrounding LPS, altering membrane curvature. Consistent with that hypothesis, mimicking acidic pH by mutating those histidine residues to lysine increases OMV production. Thus, our findings reveal a mechanism for sensing and responding to environmental pH and for control of membrane dynamics by outer membrane proteins.
Collapse
Affiliation(s)
- Ruchika Dehinwal
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, USA
- Department of Microbiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA
| | - Tata Gopinath
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard D Smith
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Dieter M Schifferli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, USA.
- Department of Microbiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.
| | | |
Collapse
|
97
|
Chen M, Xia L, Wu C, Wang Z, Ding L, Xie Y, Feng W, Chen Y. Microbe-material hybrids for therapeutic applications. Chem Soc Rev 2024; 53:8306-8378. [PMID: 39005165 DOI: 10.1039/d3cs00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| |
Collapse
|
98
|
Meng Y, Kong C, Ma Y, Sun J, Zhang G. Bacterial outer membrane vesicles in the fight against cancer. Chin Med J (Engl) 2024:00029330-990000000-01174. [PMID: 39118214 PMCID: PMC11407815 DOI: 10.1097/cm9.0000000000003234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/10/2024] Open
Abstract
ABSTRACT Bacterial outer membrane vesicles (OMVs) are diminutive vesicles naturally released by Gram-negative bacteria. These vesicles possess distinctive characteristics that attract attention for their potential use in drug administration and immunotherapy in cancer treatment. Therapeutic medicines may be delivered via OMVs directly to the tumor sites, thereby minimizing exposure to healthy cells and lowering the risk of systemic toxicity. Furthermore, the activation of the immune system by OMVs has been demonstrated to facilitate the recognition and elimination of cancer cells, which makes them a desirable tool for immunotherapy. They can also be genetically modified to carry specific antigens, immunomodulatory compounds, and small interfering RNAs, enhancing the immune response to cancerous cells and silencing genes associated with disease progression. Combining OMVs with other cancer treatments like chemotherapy and radiation has shown promising synergistic effects. This review highlights the crucial role of bacterial OMVs in cancer, emphasizing their potential as vectors for novel cancer targeted therapies. As researchers delve deeper into the complexities of these vesicles and their interactions with tumors, there is a growing sense of optimism that this avenue of study will bring positive outcomes and renewed hope to cancer patients in the foreseeable future.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Cuicui Kong
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yushu Ma
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| |
Collapse
|
99
|
Li Y, Wang Y, Lin X, Sun S, Wu A, Ge Y, Yuan M, Wang J, Deng X, Tian Y. Algicidal bacteria-derived membrane vesicles as shuttles mediating cross-kingdom interactions between bacteria and algae. SCIENCE ADVANCES 2024; 10:eadn4526. [PMID: 39110793 PMCID: PMC11305373 DOI: 10.1126/sciadv.adn4526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Bacterial membrane vesicles (BMVs) are crucial biological vehicles for facilitating interspecies and interkingdom interactions. However, the extent and mechanisms of BMV involvement in bacterial-algal communication remain elusive. This study provides evidence of BMVs delivering cargos to targeted microalgae. Membrane vesicles (MVs) from Chitinimonas prasina LY03 demonstrated an algicidal profile similar to strain LY03. Further investigation revealed Tambjamine LY2, an effective algicidal compound, selectively packaged into LY03-MVs. Microscopic imaging demonstrated efficient delivery of Tambjamine LY2 to microalgae Heterosigma akashiwo and Thalassiosira pseudonana through membrane fusion. In addition, the study demonstrated the versatile cargo delivery capabilities of BMVs to algae, including the transfer of MV-carried nucleic acids into algal cells and the revival of growth in iron-depleted microalgae by MVs. Collectively, our findings reveal a previously unknown mechanism by which algicidal bacteria store hydrophobic algicidal compounds in MVs to trigger target microalgae death and highlight BMV potency in understanding and engineering bacterial-algae cross-talk.
Collapse
Affiliation(s)
- Yixin Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yuezhou Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaolan Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuqian Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Anan Wu
- State Key Laboratory for Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yintong Ge
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Menghui Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jianhua Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yun Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| |
Collapse
|
100
|
Casillo A, D'Amico R, Lanzetta R, Corsaro MM. Marine Delivery Vehicles: Molecular Components and Applications of Bacterial Extracellular Vesicles. Mar Drugs 2024; 22:363. [PMID: 39195479 DOI: 10.3390/md22080363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
In marine ecosystems, communication among microorganisms is crucial since the distance is significant if considered on a microbial scale. One of the ways to reduce this gap is through the production of extracellular vesicles, which can transport molecules to guarantee nutrients to the cells. Marine bacteria release extracellular vesicles (EVs), small membrane-bound structures of 40 nm to 1 µm diameter, into their surrounding environment. The vesicles contain various cellular compounds, including lipids, proteins, nucleic acids, and glycans. EVs may contribute to dissolved organic carbon, thus facilitating heterotroph growth. This review will focus on marine bacterial EVs, analyzing their structure, composition, functions, and applications.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Raffaele D'Amico
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Monte S. Angelo, 80126 Naples, Italy
| |
Collapse
|