51
|
Gao Z, Wu D, Zheng W, Zhu T, Sun T, Yuan L, Fei F, Fu P. Prognostic value of immune-related lncRNA pairs in patients with bladder cancer. World J Surg Oncol 2021; 19:304. [PMID: 34663340 PMCID: PMC8522197 DOI: 10.1186/s12957-021-02419-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The characteristics of immune-related long non-coding ribonucleic acids (ir-lncRNAs), regardless of their specific levels, have important implications for the prognosis of patients with bladder cancer. METHODS Based on The Cancer Genome Atlas database, original transcript data were analyzed. The ir-lncRNAs were obtained using a coexpression method, and their differentially expressed pairs (DE-ir-lncRNAs) were identified by univariate analysis. The lncRNA pairs were verified using a Lasso regression test. Thereafter, receiver operating characteristic curves were generated, and an optimal risk model was established. The clinical value of the model was verified through the analysis of patient survival rates, clinicopathological characteristics, presence of tumor-infiltrating immune cells, and chemotherapy efficacy evaluation. RESULTS In total, 49 pairs of DE-ir-lncRNAs were identified, of which 21 were included in the Cox regression model. A risk regression model was established on the premise of not involving the specific expression value of the transcripts. CONCLUSIONS The method and model used in this study have important clinical predictive value for bladder cancer and other malignant tumors.
Collapse
Affiliation(s)
- Zhenzhen Gao
- Department of Clinical Oncology, The Second Affiliated Hospital of Jiaxing University, 1518 huanchen Rd, Jiaxing, 314000, China.,Jiaxing hospice and palliative care center, The second affiliated hospital of Jiaxing, Jiaxing, China
| | - Dongjuan Wu
- Department of Clinical Oncology, The Second Affiliated Hospital of Jiaxing University, 1518 huanchen Rd, Jiaxing, 314000, China.,Jiaxing hospice and palliative care center, The second affiliated hospital of Jiaxing, Jiaxing, China
| | - Wenwen Zheng
- Jiaxing hospice and palliative care center, The second affiliated hospital of Jiaxing, Jiaxing, China
| | - Taohong Zhu
- Jiaxing hospice and palliative care center, The second affiliated hospital of Jiaxing, Jiaxing, China.,Department of General Medicine, Nanhu District Central Hospital of Jiaxing, Jiaxing, China
| | - Ting Sun
- Jiaxing hospice and palliative care center, The second affiliated hospital of Jiaxing, Jiaxing, China.,Department of General Medicine, Nanhu District Central Hospital of Jiaxing, Jiaxing, China
| | - Lianhong Yuan
- Department of General Medicine, Nanhu District Central Hospital of Jiaxing, Jiaxing, China
| | - Faming Fei
- Department of Clinical Oncology, The Second Affiliated Hospital of Jiaxing University, 1518 huanchen Rd, Jiaxing, 314000, China. .,Jiaxing hospice and palliative care center, The second affiliated hospital of Jiaxing, Jiaxing, China.
| | - Peng Fu
- Department of Clinical Oncology, The Second Affiliated Hospital of Jiaxing University, 1518 huanchen Rd, Jiaxing, 314000, China. .,Department of Orthopedic Oncology, The Second Affiliated Hospital of Jiaxing University, 1518 huanchen Rd, Jiaxing, 314000, China.
| |
Collapse
|
52
|
Blaschke CRK, Hartig JP, Grimsley G, Liu L, Semmes OJ, Wu JD, Ippolito JE, Hughes-Halbert C, Nyalwidhe JO, Drake RR. Direct N-Glycosylation Profiling of Urine and Prostatic Fluid Glycoproteins and Extracellular Vesicles. Front Chem 2021; 9:734280. [PMID: 34646811 PMCID: PMC8503230 DOI: 10.3389/fchem.2021.734280] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Expressed prostatic secretions (EPS), also called post digital rectal exam urines, are proximal fluids of the prostate that are widely used for diagnostic and prognostic assays for prostate cancer. These fluids contain an abundant number of glycoproteins and extracellular vesicles secreted by the prostate gland, and the ability to detect changes in their N-glycans composition as a reflection of disease state represents potential new biomarker candidates. Methods to characterize these N-glycan constituents directly from clinical samples in a timely manner and with minimal sample processing requirements are not currently available. In this report, an approach is described to directly profile the N-glycan constituents of EPS urine samples, prostatic fluids and urine using imaging mass spectrometry for detection. An amine reactive slide is used to immobilize glycoproteins from a few microliters of spotted samples, followed by peptide N-glycosidase digestion. Over 100 N-glycan compositions can be detected with this method, and it works with urine, urine EPS, prostatic fluids, and urine EPS-derived extracellular vesicles. A comparison of the N-glycans detected from the fluids with tissue N-glycans from prostate cancer tissues was done, indicating a subset of N-glycans present in fluids derived from the gland lumens. The developed N-glycan profiling is amenable to analysis of larger clinical cohorts and adaptable to other biofluids.
Collapse
Affiliation(s)
- Calvin R K Blaschke
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Jordan P Hartig
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Grace Grimsley
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Liping Liu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - O John Semmes
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.,The Leroy T. Canoles Jr., Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Jennifer D Wu
- Departments of Urology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph E Ippolito
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Chanita Hughes-Halbert
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States.,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Julius O Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States.,The Leroy T. Canoles Jr., Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.,Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
53
|
Zhang Y, Kim JS, Wang TZ, Newton RU, Galvão DA, Gardiner RA, Hill MM, Taaffe DR. Potential Role of Exercise Induced Extracellular Vesicles in Prostate Cancer Suppression. Front Oncol 2021; 11:746040. [PMID: 34595123 PMCID: PMC8476889 DOI: 10.3389/fonc.2021.746040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Physical exercise is increasingly recognized as a valuable treatment strategy in managing prostate cancer, not only enhancing supportive care but potentially influencing disease outcomes. However, there are limited studies investigating mechanisms of the tumor-suppressive effect of exercise. Recently, extracellular vesicles (EVs) have been recognized as a therapeutic target for cancer as tumor-derived EVs have the potential to promote metastatic capacity by transferring oncogenic proteins, integrins, and microRNAs to other cells and EVs are also involved in developing drug resistance. Skeletal muscle has been identified as an endocrine organ, releasing EVs into the circulation, and levels of EV-containing factors have been shown to increase in response to exercise. Moreover, preclinical studies have demonstrated the tumor-suppressive effect of protein and microRNA contents in skeletal muscle-derived EVs in various cancers, including prostate cancer. Here we review current knowledge of the tumor-derived EVs in prostate cancer progression and metastasis, the role of exercise in skeletal muscle-derived EVs circulating levels and the alteration of their contents, and the potential tumor-suppressive effect of skeletal muscle-derived EV contents in prostate cancer. In addition, we review the proposed mechanism of exercise in the uptake of skeletal muscle-derived EVs in prostate cancer.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology, Harbin Medical University, Harbin, China.,Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Jin-Soo Kim
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Tian-Zhen Wang
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Department of Pathology, Harbin Medical University, Harbin, China
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Robert A Gardiner
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia.,Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Michelle M Hill
- UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
54
|
Fiard G, Stavrinides V, Chambers ES, Heavey S, Freeman A, Ball R, Akbar AN, Emberton M. Cellular senescence as a possible link between prostate diseases of the ageing male. Nat Rev Urol 2021; 18:597-610. [PMID: 34294916 DOI: 10.1038/s41585-021-00496-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Senescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome - known as the senescence-associated secretory phenotype - is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer. Indeed, a number of signalling pathways provide biological plausibility for the role of senescence in both BPH and prostate cancer, although proving causality is difficult. The theory of senescence as a mechanism for prostate disease has a number of clinical implications and could offer opportunities for targeting in the future.
Collapse
Affiliation(s)
- Gaelle Fiard
- UCL Division of Surgery & Interventional Science, University College London, London, UK.
- Department of Urology, Grenoble Alpes University Hospital, Grenoble, France.
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France.
| | - Vasilis Stavrinides
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Emma S Chambers
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Susan Heavey
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Alex Freeman
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rhys Ball
- Department of Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Arne N Akbar
- Division of Medicine, The Rayne Building, University College London, London, UK
| | - Mark Emberton
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
55
|
Liu J, Cvirkaite-Krupovic V, Commere PH, Yang Y, Zhou F, Forterre P, Shen Y, Krupovic M. Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments. THE ISME JOURNAL 2021; 15:2892-2905. [PMID: 33903726 PMCID: PMC8443754 DOI: 10.1038/s41396-021-00984-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Membrane-bound extracellular vesicles (EVs), secreted by cells from all three domains of life, transport various molecules and act as agents of intercellular communication in diverse environments. Here we demonstrate that EVs produced by a hyperthermophilic and acidophilic archaeon Sulfolobus islandicus carry not only a diverse proteome, enriched in membrane proteins, but also chromosomal and plasmid DNA, and can transfer this DNA to recipient cells. Furthermore, we show that EVs can support the heterotrophic growth of Sulfolobus in minimal medium, implicating EVs in carbon and nitrogen fluxes in extreme environments. Finally, our results indicate that, similar to eukaryotes, production of EVs in S. islandicus depends on the archaeal ESCRT machinery. We find that all components of the ESCRT apparatus are encapsidated into EVs. Using synchronized S. islandicus cultures, we show that EV production is linked to cell division and appears to be triggered by increased expression of ESCRT proteins during this cell cycle phase. Using a CRISPR-based knockdown system, we show that archaeal ESCRT-III and AAA+ ATPase Vps4 are required for EV production, whereas archaea-specific component CdvA appears to be dispensable. In particular, the active EV production appears to coincide with the expression patterns of ESCRT-III-1 and ESCRT-III-2, rather than ESCRT-III, suggesting a prime role of these proteins in EV budding. Collectively, our results suggest that ESCRT-mediated EV biogenesis has deep evolutionary roots, likely predating the divergence of eukaryotes and archaea, and that EVs play an important role in horizontal gene transfer and nutrient cycling in extreme environments.
Collapse
Affiliation(s)
- Junfeng Liu
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China ,grid.428999.70000 0001 2353 6535Archaeal Virology Unit, Institut Pasteur, Paris, France
| | | | - Pierre-Henri Commere
- grid.428999.70000 0001 2353 6535Institut Pasteur, Flow Cytometry Platform, Paris, France
| | - Yunfeng Yang
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Fan Zhou
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Patrick Forterre
- grid.428999.70000 0001 2353 6535Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Yulong Shen
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Mart Krupovic
- grid.428999.70000 0001 2353 6535Archaeal Virology Unit, Institut Pasteur, Paris, France
| |
Collapse
|
56
|
Linxweiler J, Kolbinger A, Himbert D, Zeuschner P, Saar M, Stöckle M, Junker K. Organ-Specific Uptake of Extracellular Vesicles Secreted by Urological Cancer Cells. Cancers (Basel) 2021; 13:cancers13194937. [PMID: 34638418 PMCID: PMC8508228 DOI: 10.3390/cancers13194937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Extracellular vesicles (EVs) play an important role in the communication of cancer cells with their local microenvironment and distant organ systems, in order to promote a supportive tumor microenvironment, as well as to prepare premetastatic niches. In this study, we aimed to analyze if the EVs secreted by urological cancer cells are taken up by specific organ systems, depending on their origin. After the intravenous injection of fluorescence-labeled EVs from benign and malignant prostate, kidney, and bladder cells in immunodeficient mice, their organs were harvested and analyzed for the presence of fluorescent EVs. We could show that (i) EVs are taken up not entirely organ-specifically but in different amounts, depending on their origin; (ii) EVs from malignant cells are taken up more efficiently than EVs from benign cells; and (iii) EVs are taken up very fast. These observations hint to an organotropism in EV uptake, which needs to be further investigated. Abstract Extracellular vesicles (EVs) secreted by cancer cells have been shown to take a pivotal part in the process of local and systemic tumor progression by promoting the formation of a supportive local tumor microenvironment and preparing premetastatic niches in distant organ systems. In this study, we analyzed the organ-specific uptake of EVs secreted by urological cancer cells using an innovative in-vivo approach. EVs from benign and malignant prostate, kidney, and bladder cells were isolated using ultracentrifugation, fluorescence-labeled and injected intravenously in immunodeficient mice. After 12 or 24 h, the animals were sacrificed, their organs were harvested and analyzed for the presence of EVs by high-resolution fluorescence microscopy. Across all entities, EVs were taken up fast (12 h > 24 h), and EVs from malignant cells were taken up more efficiently than EVs from benign cells. Though not entirely organ-specific, EVs were incorporated in different amounts, depending on the entity (prostate: lung > liver > brain; kidney: brain > lung > liver; bladder: lung > liver > brain). EV uptake in other organs than lung, liver, brain, and spleen was not observed. Our results suggest a role of EVs in the formation of premetastatic niches and an organotropism in EV uptake, which have to be examined in more detail in further studies.
Collapse
|
57
|
Zeuschner P, Zaccagnino A, Junker K. [Biomarkers for renal cell tumours]. Aktuelle Urol 2021; 52:452-463. [PMID: 34157774 DOI: 10.1055/a-1517-6259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
During the last three decades, renal tumours have become increasingly well differentiated on the basis of their histopathological and molecular features. This subtyping has increasingly impacted clinical practice because more therapeutic options are available in organ-confined and metastatic renal cell tumours. The knowledge of the underlying molecular alterations is essential to develop molecular targeted therapies and to select the most effective systemic therapy for each patient. This manuscript gives an overview of the molecular differentiation on the one hand, and on diagnostic, prognostic and predictive biomarkers on the other hand.
Collapse
Affiliation(s)
- Philip Zeuschner
- Klinik für Urologie und Kinderurologie, Universitätsklinikum des Saarlandes, Homburg/Saar
| | - Angela Zaccagnino
- Klinik für Urologie und Kinderurologie, Universitätsklinikum des Saarlandes, Homburg/Saar
| | - Kerstin Junker
- Klinik für Urologie und Kinderurologie, Universitätsklinikum des Saarlandes, Homburg/Saar
| |
Collapse
|
58
|
Surman M, Kędracka-Krok S, Jankowska U, Drożdż A, Stępień E, Przybyło M. Proteomic Profiling of Ectosomes Derived from Paired Urothelial Bladder Cancer and Normal Cells Reveals the Presence of Biologically-Relevant Molecules. Int J Mol Sci 2021; 22:ijms22136816. [PMID: 34202855 PMCID: PMC8268130 DOI: 10.3390/ijms22136816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Protein content of extracellular vesicles (EVs) can modulate different processes during carcinogenesis. Novel proteomic strategies have been applied several times to profile proteins present in exosomes released by urothelial bladder cancer (UBC) cells. However, similar studies have not been conducted so far on another population of EVs, i.e., ectosomes. In the present study we used a shotgun nanoLC-MS/MS proteomic approach to investigate the protein content of ectosomes released in vitro by T-24 UBC cells and HCV-29 normal ureter epithelial cells. In addition, cancer-promoting effects exerted by UBC-derived ectosomes on non-invasive cells in terms of cell proliferation and migratory properties were assessed. In total, 1158 proteins were identified in T-24-derived ectosomes, while HCV-29-derived ectosomes contained a lower number of 259 identified proteins. Qualitative analysis revealed 938 proteins present uniquely in T-24-derived ectosomes, suggesting their potential applications in bladder cancer management as diagnostic and prognostic biomarkers. In addition, T-24-derived ectosomes increased proliferation and motility of recipient cells, likely due to the ectosomal transfer of the identified cancer-promoting molecules. The present study provided a focused identification of biologically relevant proteins in UBC-derived ectosomes, confirming their role in UBC development and progression, and their applicability for further biomarker-oriented studies in preclinical or clinical settings.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Urszula Jankowska
- Proteomics and Mass Spectrometry Core Facility, Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Anna Drożdż
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, 30-348 Kraków, Poland; (A.D.); (E.S.)
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Kraków, 30-348 Kraków, Poland; (A.D.); (E.S.)
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
- Correspondence: ; Tel.: +48-12-664-6462
| |
Collapse
|
59
|
Signore M, Alfonsi R, Federici G, Nanni S, Addario A, Bertuccini L, Aiello A, Di Pace AL, Sperduti I, Muto G, Giacobbe A, Collura D, Brunetto L, Simone G, Costantini M, Crinò L, Rossi S, Tabolacci C, Diociaiuti M, Merlino T, Gallucci M, Sentinelli S, Papalia R, De Maria R, Bonci D. Diagnostic and prognostic potential of the proteomic profiling of serum-derived extracellular vesicles in prostate cancer. Cell Death Dis 2021; 12:636. [PMID: 34155195 PMCID: PMC8215487 DOI: 10.1038/s41419-021-03909-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) and their cargo represent an intriguing source of cancer biomarkers for developing robust and sensitive molecular tests by liquid biopsy. Prostate cancer (PCa) is still one of the most frequent and deadly tumor in men and analysis of EVs from biological fluids of PCa patients has proven the feasibility and the unprecedented potential of such an approach. Here, we exploited an antibody-based proteomic technology, i.e. the Reverse-Phase Protein microArrays (RPPA), to measure key antigens and activated signaling in EVs isolated from sera of PCa patients. Notably, we found tumor-specific protein profiles associated with clinical settings as well as candidate markers for EV-based tumor diagnosis. Among others, PD-L1, ERG, Integrin-β5, Survivin, TGF-β, phosphorylated-TSC2 as well as partners of the MAP-kinase and mTOR pathways emerged as differentially expressed endpoints in tumor-derived EVs. In addition, the retrospective analysis of EVs from a 15-year follow-up cohort generated a protein signature with prognostic significance. Our results confirm that serum-derived EV cargo may be exploited to improve the current diagnostic procedures while providing potential prognostic and predictive information. The approach proposed here has been already applied to tumor entities other than PCa, thus proving its value in translational medicine and paving the way to innovative, clinically meaningful tools.
Collapse
Affiliation(s)
- Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Romina Alfonsi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Simona Nanni
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonio Addario
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Bertuccini
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Aurora Aiello
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy
| | - Anna Laura Di Pace
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giovanni Muto
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Alessandro Giacobbe
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Devis Collura
- Department of Urology, Humanitas University, Turin, Italy.,Department of Urology, S. Giovanni Bosco Hospital, Turin, Italy
| | - Lidia Brunetto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Simone
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Manuela Costantini
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy
| | - Lucio Crinò
- Department of Oncology, IRST-Meldola, Meldola, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Diociaiuti
- Department of Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Tania Merlino
- IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Gallucci
- Department of Urology-IRCCS Regina Elena National Cancer Institute of Rome, Rome, Italy.,Department of Urology, Sapienza University of Rome, Rome, Italy
| | | | | | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore Largo F. Vito 1, 00168, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Désirée Bonci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy. .,IRCCS, Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW In this review, we describe the biology of extracellular vesicles (EV) and how they contribute to bone-associated cancers. RECENT FINDINGS Crosstalk between tumor and bone has been demonstrated to promote tumor and metastatic progression. In addition to direct cell-to-cell contact and soluble factors, such as cytokines, EVs mediate crosstalk between tumor and bone. EVs are composed of a heterogenous group of membrane-delineated vesicles of varying size range, mechanisms of formation, and content. These include apoptotic bodies, microvesicles, large oncosomes, and exosomes. EVs derived from primary tumors have been shown to alter bone remodeling and create formation of a pre-metastatic niche that favors development of bone metastasis. Similarly, EVs from marrow stromal cells have been shown to promote tumor progression. Additionally, EVs can act as therapeutic delivery vehicles due to their low immunogenicity and targeting specificity. EVs play critical roles in intercellular communication. Multiple classes of EVs exist based on size on mechanism of formation. In addition to a role in pathophysiology, EVs can be exploited as therapeutic delivery vehicles.
Collapse
Affiliation(s)
- Jinlu Dai
- Department of Urology, University of Michigan, NCRC B14 RM116, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Alison B Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Evan T Keller
- Department of Urology, University of Michigan, NCRC B14 RM116, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
61
|
von Siebenthal M, Besic M, Gheinani AH, Akshay A, Lizun-Platoni S, Kunz N, Burkhard FC, Monastyrskaya K. Urinary miRNA profiles discriminate between obstruction-induced bladder dysfunction and healthy controls. Sci Rep 2021; 11:10204. [PMID: 33986358 PMCID: PMC8119692 DOI: 10.1038/s41598-021-89535-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Urgency, frequency and incomplete emptying are the troublesome symptoms often shared between benign prostatic obstruction-induced (BLUTD) and neurogenic (NLUTD) lower urinary tract dysfunction. Previously, using bladder biopsies, we suggested a panel of miRNA biomarkers for different functional phenotypes of the bladder. Urine is a good source of circulating miRNAs, but sex- and age-matched controls are important for urinary metabolite comparison. In two groups of healthy subjects (average age 32 and 57 years old, respectively) the total protein and RNA content was very similar between age groups, but the number of secreted extracellular vesicles (uEVs) and expression of several miRNAs were higher in the young healthy male volunteers. Timing of urine collection was not important for these parameters. We also evaluated the suitability of urinary miRNAs for non-invasive diagnosis of bladder outlet obstruction (BOO). A three urinary miRNA signature (miR-10a-5p, miR-301b-3p and miR-363-3p) could discriminate between controls and patients with LUTD (BLUTD and NLUTD). This panel of representative miRNAs can be further explored to develop a non-invasive diagnostic test for BOO. The age-related discrepancy in the urinary miRNA content observed in this study points to the importance of selecting appropriate, age-matched controls.
Collapse
Affiliation(s)
- Michelle von Siebenthal
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland
| | - Mustafa Besic
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland
| | - Ali Hashemi Gheinani
- Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Akshay Akshay
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland
| | | | - Nadine Kunz
- Department of Urology, Inselspital University Hospital, 3010, Bern, Switzerland
| | - Fiona C Burkhard
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland.,Department of Urology, Inselspital University Hospital, 3010, Bern, Switzerland
| | - Katia Monastyrskaya
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, Bern, Switzerland. .,Department of Urology, Inselspital University Hospital, 3010, Bern, Switzerland.
| |
Collapse
|
62
|
Weng J, Xiang X, Ding L, Wong ALA, Zeng Q, Sethi G, Wang L, Lee SC, Goh BC. Extracellular vesicles, the cornerstone of next-generation cancer diagnosis? Semin Cancer Biol 2021; 74:105-120. [PMID: 33989735 DOI: 10.1016/j.semcancer.2021.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Cancer has risen up to be a major cause of mortality worldwide over the past decades. Despite advancements in cancer screening and diagnostics, a significant number of cancers are still diagnosed at a late stage with poor prognosis. Hence, the discovery of reliable and accurate methods to diagnose cancer early would be of great help in reducing cancer mortality. Extracellular vesicles (EVs) are phospholipid vesicles found in many biofluids and are released by almost all types of cells. In recent years, using EVs as cancer biomarkers has garnered attention as a novel technique of cancer diagnosis. Compared with traditional tissue biopsy, there are many advantages that this novel diagnostic tool presents - it is less invasive, detects early-stage asymptomatic cancers, and allows for monitoring of tumour progression. As such, EV biomarkers have great potential in improving the diagnostic accuracy of cancers and guiding subsequent therapeutic decisions. Efficient isolation and accurate characterization of EVs are essential for reliable outcomes of clinical application. However, these are complicated by the size and biomolecular diversity of EVs. In this review, we present an analysis and evaluation of the current techniques of EV isolation and characterization, as well as discuss the potential EV biomarkers for specific types of cancer. Taken together, EV biomarkers have a lot of potential as a novel method in cancer diagnostics and diagnosis. However, more work is still needed to streamline the purification, characterization and biomarker identification process to ensure optimal outcomes for patients.
Collapse
Affiliation(s)
- Jiayi Weng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 20203, China
| | - Lingwen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore.
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
63
|
Tomiyama E, Matsuzaki K, Fujita K, Shiromizu T, Narumi R, Jingushi K, Koh Y, Matsushita M, Nakano K, Hayashi Y, Wang C, Ishizuya Y, Kato T, Hatano K, Kawashima A, Ujike T, Uemura M, Takao T, Adachi J, Tomonaga T, Nonomura N. Proteomic analysis of urinary and tissue-exudative extracellular vesicles to discover novel bladder cancer biomarkers. Cancer Sci 2021; 112:2033-2045. [PMID: 33721374 PMCID: PMC8088963 DOI: 10.1111/cas.14881] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Proteomic analysis of urinary extracellular vesicles (EVs) is a powerful approach to discover potential bladder cancer (BCa) biomarkers, however urine contains numerous EVs derived from the kidney and normal urothelial epithelium, which can obfuscate information related to BCa cell-derived EVs. In this study, we combined proteomic analysis of urinary EVs and tissue-exudative EVs (Te-EVs), which were isolated from culture medium of freshly resected viable BCa tissues. Urinary EVs were isolated from urine samples of 11 individuals (7 BCa patients and 4 healthy individuals), and Te-EVs were isolated from 7 BCa tissues. We performed tandem mass tag (TMT)-labeling liquid chromatography (LC-MS/MS) analysis for both urinary EVs and Te-EVs and identified 1960 proteins in urinary EVs and 1538 proteins in Te-EVs. Most of the proteins identified in Te-EVs were also present in urinary EVs (82.4%), with 55 of these proteins showing upregulated levels in the urine of BCa patients (fold change > 2.0; P < .1). Among them, we selected 22 membrane proteins as BCa biomarker candidates for validation using selected reaction monitoring/multiple reaction monitoring (SRM/MRM) analysis on urine samples from 70 individuals (40 BCa patients and 30 healthy individuals). Six urinary EV proteins (heat-shock protein 90, syndecan-1, myristoylated alanine-rich C-kinase substrate (MARCKS), MARCKS-related protein, tight junction protein ZO-2, and complement decay-accelerating factor) were quantified using SRM/MRM analysis and validated as significantly upregulated in BCa patients (P < .05). In conclusion, the novel strategy that combined proteomic analysis of urinary EVs and Te-EVs enabled selective detection of urinary BCa biomarkers.
Collapse
Affiliation(s)
- Eisuke Tomiyama
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kyosuke Matsuzaki
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kazutoshi Fujita
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of UrologyKindai University Faculty of MedicineSayamaJapan
| | - Takashi Shiromizu
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Ryohei Narumi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular PhysiologyOsaka University Graduate School of Pharmaceutical SciencesSuitaJapan
| | - Yoko Koh
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Makoto Matsushita
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kosuke Nakano
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yujiro Hayashi
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Cong Wang
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yu Ishizuya
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Taigo Kato
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of Urological Immuno‐oncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Koji Hatano
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Atsunari Kawashima
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Takeshi Ujike
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Motohide Uemura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of Urological Immuno‐oncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Tetsuya Takao
- Department of UrologyOsaka General Medical CenterOsakaJapan
| | - Jun Adachi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Takeshi Tomonaga
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Norio Nonomura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
64
|
Luo ZW, Xia K, Liu YW, Liu JH, Rao SS, Hu XK, Chen CY, Xu R, Wang ZX, Xie H. Extracellular Vesicles from Akkermansia muciniphila Elicit Antitumor Immunity Against Prostate Cancer via Modulation of CD8 + T Cells and Macrophages. Int J Nanomedicine 2021; 16:2949-2963. [PMID: 33907401 PMCID: PMC8068512 DOI: 10.2147/ijn.s304515] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Prostate cancer (PCa) is one of the most common malignancies in males. Despite the success of immunotherapy in many malignant cancers, strategies are still needed to improve therapeutic efficacy in PCa. This study aimed to investigate the effects of Akkermansia muciniphila-derived extracellular vesicles (Akk-EVs) on PCa and elucidate the underlying immune-related mechanism. METHODS Akk-EVs were isolated by ultracentrifugation and intravenously injected to treat syngeneic PCa-bearing immune-competent mice. Immunophenotypic changes in immune cells, such as cytotoxic T lymphocytes and macrophages, were measured via flow cytometry analysis. Histological examination was used to detect morphological changes in major organs after Akk-EVs treatments. In vitro, flow cytometry was performed to confirm the effects of Akk-EVs on the activation of CD8+ T cells. Quantitative PCR and immunofluorescence staining were carried out to test the impact of Akk-EVs on macrophage polarization. Cell counting kit-8 (CCK-8) analysis, colony formation assays, and scratch wound healing assays were conducted to assess the effects of Akk-EVs-treated macrophages on the proliferation and invasion of PCa cells. CCK-8 assays also confirmed the impact of Akk-EVs on the viability of normal cells. RESULTS Intravenous injection of Akk-EVs in immune-competent mice reduced the tumor burden of PCa without inducing obvious toxicity in normal tissues. This treatment elevated the proportion of granzyme B-positive (GZMB+) and interferon γ-positive (IFN-γ+) lymphocytes in CD8+ T cells and caused macrophage recruitment, with increased tumor-killing M1 macrophages and decreased immunosuppressive M2 macrophages. In vitro, Akk-EVs increased the number of GZMB+CD8+ and IFN-γ+CD8+ T cells and M1-like macrophages. In addition, conditioned medium from Akk-EVs-treated macrophages suppressed the proliferation and invasion of prostate cells. Furthermore, the effective dose of Akk-EVs was well-tolerated in normal cells. CONCLUSION Our study revealed the promising prospects of Akk-EVs as an efficient and biocompatible immunotherapeutic agent for PCa treatment.
Collapse
Affiliation(s)
- Zhong-Wei Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Kun Xia
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yi-Wei Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jiang-Hua Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Xiangya Nursing School, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xiong-Ke Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Chun-Yuan Chen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhen-Xing Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hui Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan, People’s Republic of China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
65
|
Lee SA, Choi C, Yoo TH. Extracellular vesicles in kidneys and their clinical potential in renal diseases. Kidney Res Clin Pract 2021; 40:194-207. [PMID: 33866768 PMCID: PMC8237124 DOI: 10.23876/j.krcp.20.209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are cell-derived lipid bilayer membrane particles, which deliver information from host cells to recipient cells. EVs are involved in various biological processes including the modulation of the immune response, cell-to-cell communications, thrombosis, and tissue regeneration. Different types of kidney cells are known to release EVs under physiologic as well as pathologic conditions, and recent studies have found that EVs have a pathophysiologic role in different renal diseases. Given the recent advancement in EV isolation and analysis techniques, many studies have shown the diagnostic and therapeutic potential of EVs in various renal diseases, such as acute kidney injury, polycystic kidney disease, chronic kidney disease, kidney transplantation, and renal cell carcinoma. This review updates recent clinical and experimental findings on the role of EVs in renal diseases and highlights the potential clinical applicability of EVs as novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Sul A Lee
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, MetroWest Medical Center, Framingham, MA, USA
| | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon, Republic of Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine and Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
66
|
Lourenço C, Constâncio V, Henrique R, Carvalho Â, Jerónimo C. Urinary Extracellular Vesicles as Potential Biomarkers for Urologic Cancers: An Overview of Current Methods and Advances. Cancers (Basel) 2021; 13:1529. [PMID: 33810357 PMCID: PMC8036842 DOI: 10.3390/cancers13071529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Urologic cancers are a heterogeneous group of tumors, some of which have poor prognosis. This is partly due to the unavailability of specific and sensitive diagnostic techniques and monitoring tests, ideally non- or minimally invasive. Hence, liquid biopsies are promising tools that have been gaining significant attention over the last decade. Among the different classes of biomarkers that can be isolated from biofluids, urinary extracellular vesicles (uEVs) are a promising low-invasive source of biomarkers, with the potential to improve cancer diagnosis and disease management. Different techniques have been developed to isolate and characterize the cargo of these vesicles; however, no consensus has been reached, challenging the comparison among studies. This results in a vast number of studies portraying an extensive list of uEV-derived candidate biomarkers for urologic cancers, with the potential to improve clinical outcome; however, without significant validation. Herein, we review the current published research on miRNA and protein-derived uEV for prostate, bladder and kidney cancers, focusing on different uEV isolation methods, and its implications for biomarker studies.
Collapse
Affiliation(s)
- Catarina Lourenço
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (C.L.); (Â.C.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPO Porto Research Center (CBEG CI-IPOP), Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (R.H.)
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Vera Constâncio
- IPO Porto Research Center (CBEG CI-IPOP), Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (R.H.)
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- IPO Porto Research Center (CBEG CI-IPOP), Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (R.H.)
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Ângela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (C.L.); (Â.C.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- IPO Porto Research Center (CBEG CI-IPOP), Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (V.C.); (R.H.)
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
67
|
Circulating extracellular vesicles release oncogenic miR-424 in experimental models and patients with aggressive prostate cancer. Commun Biol 2021; 4:119. [PMID: 33500545 PMCID: PMC7838273 DOI: 10.1038/s42003-020-01642-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are relevant means for transferring signals across cells and facilitate propagation of oncogenic stimuli promoting disease evolution and metastatic spread in cancer patients. Here, we investigated the release of miR-424 in circulating small EVs or exosomes from prostate cancer patients and assessed the functional implications in multiple experimental models. We found higher frequency of circulating miR-424 positive EVs in patients with metastatic prostate cancer compared to patients with primary tumors and BPH. Release of miR-424 in small EVs was enhanced in cell lines (LNCaPabl), transgenic mice (Pb-Cre4;Ptenflox/flox;Rosa26ERG/ERG) and patient-derived xenograft (PDX) models of aggressive disease. EVs containing miR-424 promoted stem-like traits and tumor-initiating properties in normal prostate epithelial cells while enhanced tumorigenesis in transformed prostate epithelial cells. Intravenous administration of miR-424 positive EVs to mice, mimicking blood circulation, promoted miR-424 transfer and tumor growth in xenograft models. Circulating miR-424 positive EVs from patients with aggressive primary and metastatic tumors induced stem-like features when supplemented to prostate epithelial cells. This study establishes that EVs-mediated transfer of miR-424 across heterogeneous cell populations is an important mechanism of tumor self-sustenance, disease recurrence and progression. These findings might indicate novel approaches for the management and therapy of prostate cancer. Following on reports that miR-424 expression promotes oncogenesis, Domenico Albino et al. find that extracellular vesicles (EVs) in the plasma of prostate cancer patients secrete miR-424. Using cell-based and animal models, they demonstrate that EV-mediated release of miR-424 can transfer oncogenic signals across cells to promote recurrence and metastatic progression.
Collapse
|
68
|
Extracellular vesicle-transferred long noncoding RNAs in bladder cancer. Clin Chim Acta 2021; 516:34-45. [PMID: 33450212 DOI: 10.1016/j.cca.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) secreted by a variety of cells, including cancer cells, in the tumor microenvironment play crucial roles in cancer progression by transferring molecular cargos. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are important biomolecules that can be transferred by EVs to modulate cancer development. The potential clinical application of EV-transferred lncRNAs in biological fluids for cancer diagnosis has also been verified. Over the past decade, research on the biological roles and applications of EVs and their contents in human cancers has reached new heights. Therefore, a detailed discussion of the roles of EV-transferred lncRNAs in various cancers, including bladder cancer (BC), will provide a novel strategy for cancer diagnosis and therapy. In this review, we summarized and discussed the current studies on the detection technologies of EV-transferred lncRNAs. The diagnostic values of EV-transferred lncRNAs in various biological fluids, including urine, serum, and plasma, for BC diagnosis and prognosis were compared. Moreover, the biofunctional roles and clinical applications of these EV-transferred lncRNAs in BC were further discussed. In addition, we also highlighted the research directions and suggestions for future research on BC-associated EV-transferred lncRNAs. In conclusion, BC-associated EV-transferred lncRNAs show significant potential as noninvasive biomarkers or therapeutic targets for BC diagnosis and treatment.
Collapse
|
69
|
Manini C, López JI. Insights into Urological Cancer. Cancers (Basel) 2021; 13:204. [PMID: 33429960 PMCID: PMC7827315 DOI: 10.3390/cancers13020204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
The year the Covid-19 pandemic appeared has been quite prolific in urological cancer research, and the collection of articles, perspectives, and reviews on renal, prostate, and urinary tract tumors merged in this Urological Cancer 2020 issue is just a representative sample of this assertion [...].
Collapse
Affiliation(s)
- Claudia Manini
- Department of Pathology, San Giovanni Bosco Hospital, 10154 Turin, Italy
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
70
|
Mo Z, Cheong JYA, Xiang L, Le MTN, Grimson A, Zhang DX. Extracellular vesicle-associated organotropic metastasis. Cell Prolif 2021; 54:e12948. [PMID: 33145869 PMCID: PMC7791170 DOI: 10.1111/cpr.12948] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis refers to the progressive dissemination of primary tumour cells and their colonization of other tissues and is associated with most cancer-related mortalities. The disproportional and systematic distribution pattern of distant metastasis in different cancers has been well documented, as is termed metastatic organotropism, a process orchestrated by a combination of anatomical, pathophysiological, genetic and biochemical factors. Extracellular vesicles (EVs), nanosized cell-derived membrane-bound particles known to mediate intercellular communication, are now considered crucial in organ-specific metastasis. Here, we review and summarize recent findings regarding EV-associated organotropic metastasis as well as some of the general mechanisms by which EVs contribute to this important process in cancer and provide a future perspective on this emerging topic. We highlight studies that demonstrate a role of tumour-derived EVs in organotropic metastasis via pre-metastatic niche modulation. The bioactive cargo carried by EVs is of diagnostic and prognostic values, and counteracting the functions of such EVs may be a novel therapeutic strategy targeting metastasis. Further investigations are warranted to better understand the functions and mechanisms of EVs in organotropic metastasis and accelerate the relevant clinical translation.
Collapse
Affiliation(s)
- Zhenzhen Mo
- Department of PaediatricsPeople's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jia Yang Alex Cheong
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lirong Xiang
- Department of PaediatricsPeople's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Minh T. N. Le
- Institute for Digital Medicine and Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Andrew Grimson
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Daniel Xin Zhang
- Department of Biomedical SciencesJockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong SAR
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| |
Collapse
|
71
|
Wang Y, Li Q, Shi H, Tang K, Qiao L, Yu G, Ding C, Yu S. Microfluidic Raman biochip detection of exosomes: a promising tool for prostate cancer diagnosis. LAB ON A CHIP 2020; 20:4632-4637. [PMID: 33169756 DOI: 10.1039/d0lc00677g] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tumor-derived exosomes, which contain RNA, DNA, and proteins, are a potentially rich non-invasive source of biomarkers. However, no efficient isolation or detection methods are yet available. Here, we developed a microfluidic Raman biochip designed to isolate and analyze exosomes in situ. Anti-CD63 magnetic nanoparticles were used to enrich exosomes through mixing channels of a staggered triangular pillar array. EpCAM-functionalized Raman-active polymeric nanomaterials (Raman beads) allow rapid analysis of exosome samples within 1 h, with a quantitative signal at 2230 cm-1. The limit of detection of this biochip approaches 1.6 × 102 particles per mL with 20 μL samples. The newly developed biochip assay was successfully applied in the determination of exosomes from clinical serum samples. Thus, this novel device may have potential as a clinical exosome analysis tool for prostate cancer.
Collapse
Affiliation(s)
- Yanlin Wang
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Qiaoyu Li
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Haimei Shi
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chuanfan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shaoning Yu
- Department of Chemistry, Fudan University, Shanghai 200433, China. and Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
72
|
Ding L, Jiang M, Wang R, Shen D, Wang H, Lu Z, Zheng Q, Wang L, Xia L, Li G. The emerging role of small non-coding RNA in renal cell carcinoma. Transl Oncol 2020; 14:100974. [PMID: 33395751 PMCID: PMC7719974 DOI: 10.1016/j.tranon.2020.100974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
SncRNAs contribute to the progress of renal cell carcinoma. SncRNAs are promising biomarkers for diagnosis and prognosis of renal cell carcinoma. Despite the potential of sncRNA-based cancer therapy, some obstacles remain, including several severe adverse effect.
Noncoding RNAs are transcribed in the most regions of the human genome, divided into small noncoding RNAs (less than 200 nt) and long noncoding RNAs (more than 200 nt) according to their size. Compelling evidences suggest that small noncoding RNAs play critical roles in tumorigenesis and tumor progression, especially in renal cell carcinoma. MiRNA, the most famous small noncoding RNA, has been comprehensively explored for its fundamental role in cancer. And several miRNA-based therapeutic strategies have been applied to several ongoing clinical trials. However, piRNAs and tsRNAs, have not received as much research attention, because of several technological limitations. Nevertheless, some studies have revealed the presence of aberration of piRNAs and tsRNAs in renal cell carcinoma, highlighting a potentially novel mechanism for tumor onset and progression. In this review, we provide an overview of three classes of small noncoding RNA: miRNAs, piRNAs and tsRNAs, that have been reported dysregulation in renal cell carcinoma and have the potential for advancing diagnosis, prognosis and therapeutic applications of this disease.
Collapse
Affiliation(s)
- Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Minxiao Jiang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liya Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
73
|
Himbert D, Zeuschner P, Ayoubian H, Heinzelmann J, Stöckle M, Junker K. Characterization of CD147, CA9, and CD70 as Tumor-Specific Markers on Extracellular Vesicles in Clear Cell Renal Cell Carcinoma. Diagnostics (Basel) 2020; 10:diagnostics10121034. [PMID: 33276608 PMCID: PMC7761541 DOI: 10.3390/diagnostics10121034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted by healthy and tumor cells and are involved in cell–cell communication. Tumor-released EVs could represent a new class of biomarkers from liquid biopsies. The aim of this study was to identify tumor-specific EV markers in clear cell renal carcinoma (ccRCC) using cell lines and patient-derived tissue samples. EVs from ccRCC cell lines (786-O, RCC53, Caki1, and Caki2) and patient tissues were isolated via ultracentrifugation. EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting using exosome and putative tumor markers (epithelial cell adhesion molecule (EpCAM), carbonic anhydrase 9 (CA9), CD70, CD147). The tumor markers were verified using immunohistochemistry. CA9 was expressed in Caki2 cells and EVs, and CD147 was found in the cells and EVs of all tested ccRCC cell lines. In tumor tissues, we found an increased expression of CA9, CD70, and CD147 were increased in cell lysates and EV fractions compared to normal tissues. In contrast, EpCAM was heterogeneously expressed in tumor samples and positive in normal tissue. To conclude, we developed an effective technique to isolate EVs directly from human tissue samples with high purity and high concentration. In contrast to EpCAM, CA9, CD70, and CD147 could represent promising markers to identify tumor-specific EVs in ccRCC.
Collapse
Affiliation(s)
- Dirk Himbert
- Department of Urology and Pediatric Urology, Saarland University, 66421 Homburg/Saar, Germany; (D.H.); (P.Z.); (H.A.); (J.H.); (M.S.)
| | - Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, 66421 Homburg/Saar, Germany; (D.H.); (P.Z.); (H.A.); (J.H.); (M.S.)
| | - Hiresh Ayoubian
- Department of Urology and Pediatric Urology, Saarland University, 66421 Homburg/Saar, Germany; (D.H.); (P.Z.); (H.A.); (J.H.); (M.S.)
| | - Joana Heinzelmann
- Department of Urology and Pediatric Urology, Saarland University, 66421 Homburg/Saar, Germany; (D.H.); (P.Z.); (H.A.); (J.H.); (M.S.)
- Department of Ophthalmology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06108 Halle/Saale, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University, 66421 Homburg/Saar, Germany; (D.H.); (P.Z.); (H.A.); (J.H.); (M.S.)
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, 66421 Homburg/Saar, Germany; (D.H.); (P.Z.); (H.A.); (J.H.); (M.S.)
- Correspondence:
| |
Collapse
|
74
|
Davey M, Benzina S, Savoie M, Breault G, Ghosh A, Ouellette RJ. Affinity Captured Urinary Extracellular Vesicles Provide mRNA and miRNA Biomarkers for Improved Accuracy of Prostate Cancer Detection: A Pilot Study. Int J Mol Sci 2020; 21:ijms21218330. [PMID: 33172003 PMCID: PMC7664192 DOI: 10.3390/ijms21218330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Serum prostate-specific antigen (sPSA) testing has helped to increase early detection of and decrease mortality from prostate cancer. However, since sPSA lacks specificity, an invasive prostate tissue biopsy is required to confirm cancer diagnosis. Using urinary extracellular vesicles (EVs) as a minimally invasive biomarker source, our goal was to develop a biomarker panel able to distinguish prostate cancer from benign conditions with high accuracy. We enrolled 56 patients in our study, 28 negative and 28 positive for cancer based on tissue biopsy results. Using our Vn96 peptide affinity method, we isolated EVs from post-digital rectal exam urines and used quantitative polymerase chain reaction to measure several mRNA and miRNA targets. We identified a panel of seven mRNA biomarkers whose expression ratio discriminated non-cancer from cancer with an area under the curve (AUC) of 0.825, sensitivity of 75% and specificity of 84%. We also identified two miRNAs whose combined score yielded an AUC of 0.744. A model pairing the seven mRNA and two miRNA panels yielded an AUC of 0.843, sensitivity of 79% and specificity of 89%. Addition of EV-derived PCA3 levels and clinical characteristics to the biomarker model further improved test accuracy. An AUC of 0.955, sensitivity of 86% and specificity of 93% were obtained. Hence, Vn96-isolated urinary EVs are a clinically applicable and minimally invasive source of mRNA and miRNA biomarkers with potential to improve on the accuracy of prostate cancer screening and diagnosis.
Collapse
Affiliation(s)
- Michelle Davey
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (M.D.); (S.B.); (A.G.)
| | - Sami Benzina
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (M.D.); (S.B.); (A.G.)
| | - Marc Savoie
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB E1C 2Z3, Canada; (M.S.); (G.B.)
| | - Guy Breault
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB E1C 2Z3, Canada; (M.S.); (G.B.)
| | - Anirban Ghosh
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (M.D.); (S.B.); (A.G.)
| | - Rodney J. Ouellette
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada; (M.D.); (S.B.); (A.G.)
- Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB E1C 2Z3, Canada; (M.S.); (G.B.)
- Correspondence:
| |
Collapse
|
75
|
Zhang H, Deng Y, Liu X, Sun J, Ma L, Ding Y, Zhan Z, Zhang H, Yang Y, Gu Y, Iliuk AB, Yang C, Tao WA. Glass Fiber-Supported Hybrid Monolithic Spin Tip for Enrichment of Phosphopeptides from Urinary Extracellular Vesicles. Anal Chem 2020; 92:14790-14797. [PMID: 33074658 PMCID: PMC8281360 DOI: 10.1021/acs.analchem.0c03557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are attracting increasing interest with their intriguing role in intercellular communications. Protein phosphorylation in EVs is of great importance for understanding intercellular signaling processes. However, the study of EV phosphoproteomics is impeded by their relatively low amount in limited clinical sample volumes, and it is necessary to have a sensitive and efficient enrichment method for EV phosphopeptides. Herein, a novel Ti(IV)-functionalized and glass fiber-supported hybrid monolithic spin tip, termed PhosTip, was prepared for enriching phosphopeptides from urinary EVs. Glass fiber as the stationary phase positions the hybrid monolith in a standard pipet tip and prevents the monolith from distortion during experiments. The preparation procedure for the new PhosTip is simple and time-saving. The hybrid monolithic PhosTip provides excellent enrichment efficiency of low-abundance phosphopeptides from cell digests and urinary EVs with minimum contamination and sample loss. Using the PhosTip, we demonstrate that 5373 and 336 unique phosphopeptides were identified from 100 and 1 μg of cell lysates, while 3919 and 217 unique phosphopeptides were successfully identified from 10 and 1 mL of urinary samples, respectively. The PhosTip was finally applied to enrich phosphopeptides in urine EVs from prostate cancer patients and healthy controls and quantify 118 up-regulated proteins with phosphosites in prostate cancer samples. These results demonstrated that the PhosTip could be a simple and convenient tool for enriching phosphopeptides from clinical samples and for broader applications in biomarker discovery.
Collapse
Affiliation(s)
- Haiyang Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Yuanyuan Deng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Xinyi Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Jie Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Zhen Zhan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Yuchen Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 68, Changle Road, Nanjing 210009, China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 68, Changle Road, Nanjing 210009, China
| | - Anton B Iliuk
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chenxi Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center of Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
76
|
Avilés-Jurado FX, Muñoz C, Meler C, Flores JC, Gumà J, Benaiges E, Mora J, Camacho M, León X, Vilaseca I, Terra X. Circulating microRNAs modulating glycolysis as non-invasive prognostic biomarkers of HNSCC. Eur Arch Otorhinolaryngol 2020; 278:1585-1594. [PMID: 32737645 DOI: 10.1007/s00405-020-06240-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The identification of prognostic non-invasive biomarkers is a priority for cancer patients' care. Circulating microRNA (miRNAs) have been described in numerous human malignancies as diagnostic, prognostic, and therapeutic cancer biomarkers. The aim of our study was to analyze the expression profile of a set of miRNAs, involved in the modulation of the glycolytic pathway, as prognostic factors in human head and neck squamous cell carcinomas (HNSCC). METHODS Serum samples of 54 patients with untreated HNSCC were obtained at the time of diagnosis. The prognostic value of circulating miR-26b, miR-124, miR-155 and miR-375 was evaluated towards disease-free survival. RESULTS We found that there were optimal miRNAs cut-off values for lower risk of recurrence in HNSCC patients. Kaplan-Meier curves showed that higher levels of miR-26b and lower levels of miR-155 were associated with better disease-free survival rates. In the multivariate analysis, patients with serum miR-26b > 0.062 and miR-155 < 0.159 presented more than 2.9 times lower risk of poor outcome. CONCLUSION Our results suggest that two miRNAs that modulate the glycolytic pathway, miR-26b and miR-155, are independently associated with the risk of recurrence in patients with HNSCC. The overall results in this study supports the evidence that the glucose homeostasis may be a target to improve the outcomes for patients with HNSCC. LEVEL OF EVIDENCE Individual retrospective cohort study (2b).
Collapse
Affiliation(s)
- Francesc Xavier Avilés-Jurado
- Otorhinolaryngology Head-Neck Surgery Department, Hospital Clínic, IDIBAPS Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain. .,Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR), Generalitat de Catalunya, 2017-SGR-01581, Barcelona, Spain. .,Asociación Española Contra el Cáncer (AECC), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain.
| | - Carmen Muñoz
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Carla Meler
- Doctoral Programme in Biomedicine, Universitat Rovira i Virgili, Tarragona, Spain. .,Otorhinolaryngology Department, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| | - Joan Carles Flores
- Otorhinolaryngology Department, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Josep Gumà
- Oncology Department, Intsitut d'Investigació Sanitària Pere Virgili, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Ester Benaiges
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain.,Endocrinology and Nutrition Department, Hospital Universitari de Tarragona Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Josefina Mora
- Biochemistry Department, Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercedes Camacho
- Genomics of Complex Diseases, Research Institute Hospital Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Xavier León
- Otorhinolaryngology Head-Neck Surgery Department, Hospital de la Santa Creu i Sant Pau and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, MICINN, ISCIII), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Isabel Vilaseca
- Otorhinolaryngology Head-Neck Surgery Department, Hospital Clínic, IDIBAPS Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain.,Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR), Generalitat de Catalunya, 2017-SGR-01581, Barcelona, Spain.,Asociación Española Contra el Cáncer (AECC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-Res), Madrid, Spain
| | - Ximena Terra
- Asociación Española Contra el Cáncer (AECC), Madrid, Spain.,MoBioFood Research Group, Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
77
|
Linxweiler J, Hajili T, Körbel C, Berchem C, Zeuschner P, Müller A, Stöckle M, Menger MD, Junker K, Saar M. Cancer-associated fibroblasts stimulate primary tumor growth and metastatic spread in an orthotopic prostate cancer xenograft model. Sci Rep 2020; 10:12575. [PMID: 32724081 PMCID: PMC7387494 DOI: 10.1038/s41598-020-69424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The unique microenvironment of the prostate plays a crucial role in the development and progression of prostate cancer (PCa). We examined the effects of cancer-associated fibroblasts (CAFs) on PCa progression using patient-derived fibroblast primary cultures in a representative orthotopic xenograft model. Primary cultures of CAFs, non-cancer-associated fibroblasts (NCAFs) and benign prostate hyperplasia-associated fibroblasts (BPHFs) were generated from patient-derived tissue specimens. These fibroblasts were coinjected together with cancer cells (LuCaP136 spheroids or LNCaP cells) in orthotopic PCa xenografts to investigate their effects on local and systemic tumor progression. Primary tumor growth as well as metastatic spread to lymph nodes and lungs were significantly stimulated by CAF coinjection in LuCaP136 xenografts. When NCAFs or BPHFs were coinjected, tumor progression was similar to injection of tumor cells alone. In LNCaP xenografts, all three fibroblast types significantly stimulated primary tumor progression compared to injection of LNCaP cells alone. CAF coinjection further increased the frequency of lymph node and lung metastases. This is the first study using an orthotopic spheroid culture xenograft model to demonstrate a stimulatory effect of patient-derived CAFs on PCa progression. The established experimental setup will provide a valuable tool to further unravel the interacting mechanisms between PCa cells and their microenvironment.
Collapse
Affiliation(s)
- Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany.
| | - Turkan Hajili
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Christina Körbel
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Carolina Berchem
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Andreas Müller
- Department of Diagnostic and Interventional Radiology, Saarland University, Homburg/Saar, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| | - Matthias Saar
- Department of Urology and Pediatric Urology, Saarland University, Kirrberger Straße 100, Gebäude 6, 66424, Homburg/Saar, Germany
| |
Collapse
|
78
|
Nicoliche CYN, de Oliveira RAG, da Silva GS, Ferreira LF, Rodrigues IL, Faria RC, Fazzio A, Carrilho E, de Pontes LG, Schleder GR, Lima RS. Converging Multidimensional Sensor and Machine Learning Toward High-Throughput and Biorecognition Element-Free Multidetermination of Extracellular Vesicle Biomarkers. ACS Sens 2020; 5:1864-1871. [PMID: 32597643 DOI: 10.1021/acssensors.0c00599] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are a frontier class of circulating biomarkers for the diagnosis and prognosis of different diseases. These lipid structures afford various biomarkers such as the concentrations of the EVs (CV) themselves and carried proteins (CP). However, simple, high-throughput, and accurate determination of these targets remains a key challenge. Herein, we address the simultaneous monitoring of CV and CP from a single impedance spectrum without using recognizing elements by combining a multidimensional sensor and machine learning models. This multidetermination is essential for diagnostic accuracy because of the heterogeneous composition of EVs and their molecular cargoes both within the tumor itself and among patients. Pencil HB cores acting as electric double-layer capacitors were integrated into a scalable microfluidic device, whereas supervised models provided accurate predictions, even from a small number of training samples. User-friendly measurements were performed with sample-to-answer data processing on a smartphone. This new platform further showed the highest throughput when compared with the techniques described in the literature to quantify EVs biomarkers. Our results shed light on a method with the ability to determine multiple EVs biomarkers in a simple and fast way, providing a promising platform to translate biofluid-based diagnostics into clinical workflows.
Collapse
Affiliation(s)
- Caroline Y. N. Nicoliche
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Ricardo A. G. de Oliveira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Giulia S. da Silva
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Larissa F. Ferreira
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Ian L. Rodrigues
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Ronaldo C. Faria
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Adalberto Fazzio
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Emanuel Carrilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| | - Letícia G. de Pontes
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13566-590, Brazil
| | - Gabriel R. Schleder
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
79
|
Yoshiko Y, Minamizaki T. Emerging roles of microRNAs as extracellular vesicle cargo secreted from osteoblasts. J Oral Biosci 2020; 62:228-234. [PMID: 32535286 DOI: 10.1016/j.job.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extracellular vesicles (EVs) have come into the spotlight as messengers, delivering cargo for cell-cell communication. Concomitantly, increasing attention has been focused on microRNAs (miRNAs) as EV cargo. Besides their well-known role in extracellular matrix mineralization, whether matrix vesicles (MVs) - which are in a broad sense a class of EV - also deliver miRNAs to regulate the function of recipient cells remains unclear. HIGHLIGHT We recently found that MVs budding from osteoblasts contain many miRNAs that can be transferred to the bone matrix. Of these, miR-125b was released into the bone marrow microenvironment during bone resorption, where it targeted the transcriptional repressor Prdm1 in osteoclast precursors, resulting in increased expression of anti-osteoclastogenic factors and suppression of osteoclastogenesis, thereby increasing bone mass in mice. CONCLUSION Beyond their well-established action in bone mineralization, MVs play a role in the transport of miRNAs from osteoblasts into the bone matrix. Similar to the miR-125b axis in osteoclastogenesis, it seems likely that other miRNAs that accumulate in bone via MV transport may also act as mediators of cell-cell communication in the skeletal system.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | - Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
80
|
Sabo AA, Birolo G, Naccarati A, Dragomir MP, Aneli S, Allione A, Oderda M, Allasia M, Gontero P, Sacerdote C, Vineis P, Matullo G, Pardini B. Small Non-Coding RNA Profiling in Plasma Extracellular Vesicles of Bladder Cancer Patients by Next-Generation Sequencing: Expression Levels of miR-126-3p and piR-5936 Increase with Higher Histologic Grades. Cancers (Basel) 2020; 12:cancers12061507. [PMID: 32527011 PMCID: PMC7352804 DOI: 10.3390/cancers12061507] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is the tenth most frequent cancer worldwide. Due to the need for recurrent cystoscopies and the lack of non-invasive biomarkers, BC is associated with a high management burden. In this respect, small non-coding RNAs (sncRNAs) have been investigated in urine as possible biomarkers for BC, but in plasma their potential has not yet been defined. The expression levels of sncRNAs contained in plasma extracellular vesicles (EVs) from 47 men with BC and 46 healthy controls were assessed by next-generation sequencing. The sncRNA profiles were compared with urinary profiles from the same subjects. miR-4508 resulted downregulated in plasma EVs of muscle-invasive BC patients, compared to controls (adj-p = 0.04). In World Health Organization (WHO) grade 3 (G3) BC, miR-126-3p was upregulated both in plasma EVs and urine, when compared to controls (for both, adj-p < 0.05). Interestingly, two sncRNAs were associated with the risk class: miR-4508 with a downward trend going from controls to high risk BC, and piR-hsa-5936 with an upward trend (adj-p = 0.04 and adj-p = 0.05, respectively). Additionally, BC cases with low expression of miR-185-5p and miR-106a-5p or high expression of miR-10b-5p showed shorter survival (adj-p = 0.0013, adj-p = 0.039 and adj-p = 0.047, respectively). SncRNAs from plasma EVs could be diagnostic biomarkers for BC, especially in advanced grade.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend und Frauenmedizin, Pediatrics 2 (General and Special Pediatrics), 70174 Stuttgart, Germany;
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, 041434 Bucharest, Romania
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (S.A.); (A.A.); (G.M.)
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM) 10060 Candiolo, Italy; (A.N.); (P.V.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania;
| | - Serena Aneli
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (S.A.); (A.A.); (G.M.)
| | - Alessandra Allione
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (S.A.); (A.A.); (G.M.)
| | - Marco Oderda
- Department of Surgical Sciences, University of Turin and Città della Salute e della Scienza, 10126 Turin, Italy; (M.O.); (M.A.); (P.G.)
| | - Marco Allasia
- Department of Surgical Sciences, University of Turin and Città della Salute e della Scienza, 10126 Turin, Italy; (M.O.); (M.A.); (P.G.)
| | - Paolo Gontero
- Department of Surgical Sciences, University of Turin and Città della Salute e della Scienza, 10126 Turin, Italy; (M.O.); (M.A.); (P.G.)
| | | | - Paolo Vineis
- Italian Institute for Genomic Medicine (IIGM) 10060 Candiolo, Italy; (A.N.); (P.V.)
- MRC-HPA Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.B.); (S.A.); (A.A.); (G.M.)
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM) 10060 Candiolo, Italy; (A.N.); (P.V.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence:
| |
Collapse
|
81
|
Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int J Mol Sci 2020; 21:ijms21072514. [PMID: 32260425 PMCID: PMC7178048 DOI: 10.3390/ijms21072514] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles act as shuttle vectors or signal transducers that can deliver specific biological information and have progressively emerged as key regulators of organized communities of cells within multicellular organisms in health and disease. Here, we survey the evolutionary origin, general characteristics, and biological significance of extracellular vesicles as mediators of intercellular signaling, discuss the various subtypes of extracellular vesicles thus far described and the principal methodological approaches to their study, and review the role of extracellular vesicles in tumorigenesis, immunity, non-synaptic neural communication, vascular-neural communication through the blood-brain barrier, renal pathophysiology, and embryo-fetal/maternal communication through the placenta.
Collapse
|
82
|
Abstract
Extracellular vesicles (EVs) play an important role in cell-to-cell communication by carrying molecular messages that reflect physiological and pathological conditions of the parent cells. EVs have been identified in all body fluids; and among them, urine stands out as a sample that is easy and inexpensive to obtain and can be collected over time to monitor changes. Various protocols have been established to study urinary extracellular vesicles (UEVs) and they have shown great potential as a biomarker source for clinical applications, not only for urological, but also non-urological diseases. Due to the high variability and low reproducibility of pre-analytical and analytical methods for UEVs, establishing a standardized protocol remains a challenge in the field of diagnosis. Here, we review UEV studies and present the techniques that are most commonly used, those that have been applied as new developments, and those that have the most potential for future applications. The workflow procedures from the sampling step to the qualitative and quantitative analysis steps are summarized along with advantages and disadvantages of the methodologies, in order to give consideration for choosing the most promising and suitable method to analyze human UEVs.
Collapse
Affiliation(s)
- Piyawan Paisrisarn
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University.,Japan Science and Technology Agency (JST), PRESTO.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University.,Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology
| |
Collapse
|
83
|
Martín-Gracia B, Martín-Barreiro A, Cuestas-Ayllón C, Grazú V, Line A, Llorente A, M. de la Fuente J, Moros M. Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies. J Mater Chem B 2020; 8:6710-6738. [DOI: 10.1039/d0tb00861c] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selecting the appropriate nanoparticle, functionalization chemistry and sensing methodology can speed up the translation of liquid biopsies into the clinic.
Collapse
Affiliation(s)
- Beatriz Martín-Gracia
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - Alba Martín-Barreiro
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | | | - Valeria Grazú
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - Aija Line
- Latvian Biomedical Research and Study Centre
- Riga
- Latvia
| | - Alicia Llorente
- Department of Molecular Cell Biology
- Institute for Cancer Research
- Oslo University Hospital
- Oslo
- Norway
| | - Jesús M. de la Fuente
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - María Moros
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| |
Collapse
|