51
|
Guo X, Wang P, Li Y, Chang Y, Wang X. Microbiomes in pancreatic cancer can be an accomplice or a weapon. Crit Rev Oncol Hematol 2024; 194:104262. [PMID: 38199428 DOI: 10.1016/j.critrevonc.2024.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
Recently, several investigations have linked the microbiome to pancreatic cancer progression. It is critical to reveal the role of different microbiomes in the occurrence, development, and treatment of pancreatic cancer. The current review summarizes the various microbiota types in pancreatic cancer while updating and supplementing the mechanisms of the representative gut, pancreatic, and oral microbiota, and their metabolites during its pathogenesis and therapeutic intervention. Several novel strategies have been introduced based on the tumor-associated microbiome to optimize the early diagnosis and prognosis of pancreatic cancer. The pros and cons involving different microbiomes in treating pancreatic cancer are discussed. The microbiome-related clinical trials for pancreatic cancer theranostics are outlined. This convergence of cutting-edge knowledge will provide feasible ideas for developing innovative therapies against pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoyu Guo
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Pan Wang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| | - Yuan Li
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yawei Chang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaobing Wang
- All authors are from the National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
52
|
Hamza A, Masliah-Planchon J, Neuzillet C, Lefèvre JH, Svrcek M, Vacher S, Bourneix C, Delaye M, Goéré D, Dartigues P, Samalin E, Hilmi M, Lazartigues J, Girard E, Emile JF, Rigault E, Dangles-Marie V, Rioux-Leclercq N, de la Fouchardière C, Tougeron D, Casadei-Gardini A, Mariani P, Peschaud F, Cacheux W, Lièvre A, Bièche I. Pathogenic alterations in PIK3CA and KMT2C are frequent and independent prognostic factors in anal squamous cell carcinoma treated with salvage abdominoperineal resection. Int J Cancer 2024; 154:504-515. [PMID: 37908048 DOI: 10.1002/ijc.34781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
The management of anal squamous cell carcinoma (ASCC) has yet to experience the transformative impact of precision medicine. Conducting genomic analyses may uncover novel prognostic biomarkers and offer potential directions for the development of targeted therapies. To that end, we assessed the prognostic and theragnostic implications of pathogenic variants identified in 571 cancer-related genes from surgical samples collected from a homogeneous, multicentric French cohort of 158 ASCC patients who underwent abdominoperineal resection treatment. Alterations in PI3K/AKT/mTOR, chromatin remodeling, and Notch pathways were frequent in HPV-positive tumors, while HPV-negative tumors often harbored variants in cell cycle regulation and genome integrity maintenance genes (e.g., frequent TP53 and TERT promoter mutations). In patients with HPV-positive tumors, KMT2C and PIK3CA exon 9/20 pathogenic variants were associated with worse overall survival in multivariate analysis (Hazard ratio (HR)KMT2C = 2.54, 95%CI = [1.25,5.17], P value = .010; HRPIK3CA = 2.43, 95%CI = [1.3,4.56], P value = .006). Alterations with theragnostic value in another cancer type was detected in 43% of patients. These results suggest that PIK3CA and KMT2C pathogenic variants are independent prognostic factors in patients with ASCC with HPV-positive tumors treated by abdominoperineal resection. And, importantly, the high prevalence of alterations bearing potential theragnostic value strongly supports the use of genomic profiling to allow patient enrollment in precision medicine clinical trials.
Collapse
Affiliation(s)
- Abderaouf Hamza
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | | | - Cindy Neuzillet
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Jérémie H Lefèvre
- Department of Digestive Surgery, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Paris, France
| | - Magali Svrcek
- Department of Pathology, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Christine Bourneix
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Matthieu Delaye
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Diane Goéré
- Department of Digestive Surgery, Gustave Roussy Institute, Villejuif, France
| | - Peggy Dartigues
- Department of Pathology, Gustave Roussy Institute, Villejuif, France
| | - Emmanuelle Samalin
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France
| | - Marc Hilmi
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Julien Lazartigues
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Elodie Girard
- INSERM U900 Research Unit, Institut Curie, PSL Research University, Paris, France
| | - Jean-François Emile
- Department of Pathology, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, UVSQ, BECCOH, Hôpital Ambroise-Paré, Boulogne-Billancourt, France
| | - Eugénie Rigault
- Department of Gastroenterology, Rennes University Hospital, Rennes, France
| | - Virginie Dangles-Marie
- Laboratory of preclinical investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, Paris, France
| | | | | | - David Tougeron
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Pascale Mariani
- Department of Surgery, Institut Curie, PSL Research University, Paris, France
| | - Frédérique Peschaud
- Department of Digestive and Oncologic Surgery, Ambroise Paré Hospital, Versailles Saint-Quentin University, Paris Saclay University, Boulogne-Billancourt, France
| | - Wulfran Cacheux
- Department of Medical Oncology, Hôpital Privé Pays de Savoie, Annemasse, France
| | - Astrid Lièvre
- Department of Gastroenterology, Rennes University Hospital, Rennes, France
- Rennes 1 University, Inserm U1242, COSS (Chemistry Oncogenesis Stress Signaling), Rennes, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, INSERM U1016, Paris, France
| |
Collapse
|
53
|
Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. EBioMedicine 2024; 100:104963. [PMID: 38183840 PMCID: PMC10808938 DOI: 10.1016/j.ebiom.2023.104963] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal central nervous systems (CNS) tumours in adults. As supplements to standard of care (SOC), various immunotherapies improve the therapeutic effect in other cancers. Among them, tumour vaccines can serve as complementary monotherapy or boost the clinical efficacy with other immunotherapies, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapy. Previous studies in GBM therapeutic vaccines have suggested that few neoantigens could be targeted in GBM due to low mutation burden, and single-peptide therapeutic vaccination had limited efficacy in tumour control as monotherapy. Combining diverse antigens, including neoantigens, tumour-associated antigens (TAAs), and pathogen-derived antigens, and optimizing vaccine design or vaccination strategy may help with clinical efficacy improvement. In this review, we discussed current GBM therapeutic vaccine platforms, evaluated and potential antigenic targets, current challenges, and perspective opportunities for efficacy improvement.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Michael Olin
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
54
|
Cao Y, Xia H, Tan X, Shi C, Ma Y, Meng D, Zhou M, Lv Z, Wang S, Jin Y. Intratumoural microbiota: a new frontier in cancer development and therapy. Signal Transduct Target Ther 2024; 9:15. [PMID: 38195689 PMCID: PMC10776793 DOI: 10.1038/s41392-023-01693-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/24/2023] [Indexed: 01/11/2024] Open
Abstract
Human microorganisms, including bacteria, fungi, and viruses, play key roles in several physiological and pathological processes. Some studies discovered that tumour tissues once considered sterile actually host a variety of microorganisms, which have been confirmed to be closely related to oncogenesis. The concept of intratumoural microbiota was subsequently proposed. Microbiota could colonise tumour tissues through mucosal destruction, adjacent tissue migration, and hematogenic invasion and affect the biological behaviour of tumours as an important part of the tumour microenvironment. Mechanistic studies have demonstrated that intratumoural microbiota potentially promote the initiation and progression of tumours by inducing genomic instability and mutations, affecting epigenetic modifications, promoting inflammation response, avoiding immune destruction, regulating metabolism, and activating invasion and metastasis. Since more comprehensive and profound insights about intratumoral microbiota are continuously emerging, new methods for the early diagnosis and prognostic assessment of cancer patients have been under examination. In addition, interventions based on intratumoural microbiota show great potential to open a new chapter in antitumour therapy, especially immunotherapy, although there are some inevitable challenges. Here, we aim to provide an extensive review of the concept, development history, potential sources, heterogeneity, and carcinogenic mechanisms of intratumoural microorganisms, explore the potential role of microorganisms in tumour prognosis, and discuss current antitumour treatment regimens that target intratumoural microorganisms and the research prospects and limitations in this field.
Collapse
Affiliation(s)
- Yaqi Cao
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Xueyun Tan
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Daquan Meng
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Mengmeng Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Respiratory Diseases of National Health Commission, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Engineering Research Center for Tumour-Targeted Biochemotherapy, MOE Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Province Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
55
|
Routy B, Jackson T, Mählmann L, Baumgartner CK, Blaser M, Byrd A, Corvaia N, Couts K, Davar D, Derosa L, Hang HC, Hospers G, Isaksen M, Kroemer G, Malard F, McCoy KD, Meisel M, Pal S, Ronai Z, Segal E, Sepich-Poore GD, Shaikh F, Sweis RF, Trinchieri G, van den Brink M, Weersma RK, Whiteson K, Zhao L, McQuade J, Zarour H, Zitvogel L. Melanoma and microbiota: Current understanding and future directions. Cancer Cell 2024; 42:16-34. [PMID: 38157864 PMCID: PMC11096984 DOI: 10.1016/j.ccell.2023.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Over the last decade, the composition of the gut microbiota has been found to correlate with the outcomes of cancer patients treated with immunotherapy. Accumulating evidence points to the various mechanisms by which intestinal bacteria act on distal tumors and how to harness this complex ecosystem to circumvent primary resistance to immune checkpoint inhibitors. Here, we review the state of the microbiota field in the context of melanoma, the recent breakthroughs in defining microbial modes of action, and how to modulate the microbiota to enhance response to cancer immunotherapy. The host-microbe interaction may be deciphered by the use of "omics" technologies, and will guide patient stratification and the development of microbiota-centered interventions. Efforts needed to advance the field and current gaps of knowledge are also discussed.
Collapse
Affiliation(s)
- Bertrand Routy
- University of Montreal Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada; Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC H2X 3E4, Canada
| | - Tanisha Jackson
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA
| | - Laura Mählmann
- Seerave Foundation, The Seerave Foundation, 35-37 New Street, St Helier, JE2 3RA Jersey, UK
| | | | - Martin Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Allyson Byrd
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Kasey Couts
- Department of Medicine, Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Diwakar Davar
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lisa Derosa
- Gustave Roussy Cancer Center, ClinicoBiome, 94805 Villejuif, France; Université Paris Saclay, Faculty of Medicine, 94270 Kremlin Bicêtre, France; Inserm U1015, Equipe Labellisée par la Ligue Contre le Cancer, 94800 Villejuif, France
| | - Howard C Hang
- Departments of Immunology & Microbiology and Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geke Hospers
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94905 Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | - Kathy D McCoy
- Department of Physiology & Pharmacology, Snyder Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA USA
| | - Sumanta Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Ze'ev Ronai
- Sanford Burnham Prebys Discovery Medical Research Institute, La Jolla, CA 92037, USA
| | - Eran Segal
- Weizmann Institute of Science, Computer Science and Applied Mathematics Department, 234th Herzel st., Rehovot 7610001, Israel
| | - Gregory D Sepich-Poore
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Micronoma Inc., San Diego, CA 92121, USA
| | - Fyza Shaikh
- Johns Hopkins School of Medicine, Department of Oncology, Baltimore, MD 21287, USA
| | - Randy F Sweis
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Giorgio Trinchieri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marcel van den Brink
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology, Sloan Kettering Institute, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, New Jersey Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NY 08901, USA
| | - Jennifer McQuade
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Hassane Zarour
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA.
| | - Laurence Zitvogel
- Gustave Roussy Cancer Center, ClinicoBiome, 94805 Villejuif, France; Université Paris Saclay, Faculty of Medicine, 94270 Kremlin Bicêtre, France; Inserm U1015, Equipe Labellisée par la Ligue Contre le Cancer, 94800 Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Gustave Roussy, 94805 Villejuif, France.
| |
Collapse
|
56
|
Muyas F, Rodriguez MJG, Cascão R, Afonso A, Sauer CM, Faria CC, Cortés-Ciriano I, Flores I. The ALT pathway generates telomere fusions that can be detected in the blood of cancer patients. Nat Commun 2024; 15:82. [PMID: 38167290 PMCID: PMC10762111 DOI: 10.1038/s41467-023-44287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Telomere fusions (TFs) can trigger the accumulation of oncogenic alterations leading to malignant transformation and drug resistance. Despite their relevance in tumour evolution, our understanding of the patterns and consequences of TFs in human cancers remains limited. Here, we characterize the rates and spectrum of somatic TFs across >30 cancer types using whole-genome sequencing data. TFs are pervasive in human tumours with rates varying markedly across and within cancer types. In addition to end-to-end fusions, we find patterns of TFs that we mechanistically link to the activity of the alternative lengthening of telomeres (ALT) pathway. We show that TFs can be detected in the blood of cancer patients, which enables cancer detection with high specificity and sensitivity even for early-stage tumours and cancers of high unmet clinical need. Overall, we report a genomic footprint that enables characterization of the telomere maintenance mechanism of tumours and liquid biopsy analysis.
Collapse
Affiliation(s)
- Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Afonso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Claudia C Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK.
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
57
|
Li Z, Li H, Fang K, Lin X, Yu C. Uncovering the link between human endogenous retroviruses, inflammatory pathways, and gastric cancer development. Cancer Biomark 2024; 41:103-113. [PMID: 39331091 PMCID: PMC11492024 DOI: 10.3233/cbm-230417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/25/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Endogenous retroviruses, previously deemed "junk" DNA, have gained attention in recent scientific studies. These inherited genomic elements are now recognized for their potential roles in diseases, especially cancer, highlighting their value as potential diagnostic or therapeutic targets. OBJECTIVE This research aims to explore the association between human endogenous retroviruses (HERV) and gastric cancer, focusing on discerning HERV expression patterns and understanding their implications in gastric cancer pathology. METHODS A quantitative analysis of HERV expression was conducted, employing Support Vector Machine (SVM) and AdaBoost algorithms to identify discriminative HERVs. The co-regulation network between protein-coding genes and HERVs was constructed using the Weighted Gene Co-expression Network Analysis (WGCNA). RESULTS Three distinct HERVs (LTR16A|72|451, LTR91|636|874, LTR27D|87|222) were identified as significantly different. Strong correlations were found between HERVs, and gene sets enriched in the inflammatory pathway. CONCLUSIONS HERVs appear to influence abnormal inflammatory responses, suggesting a pivotal role in gastric cancer development.
Collapse
Affiliation(s)
- Zhengtai Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Hongjiang Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Kun Fang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xinglei Lin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
58
|
Ahmadi M, Shahbahrami R, Khajeh F, Khodaeivandi S, Kakavandi E, Raziabad RH, Ghanati K. Aflatoxin B1 and viruses' combined pathogenesis: A mini systematics review of invitro and invivo studies. Acta Histochem 2024; 126:152116. [PMID: 38101290 DOI: 10.1016/j.acthis.2023.152116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION The combined pathogenesis of Aflatoxin B1 (AFB1) and several viruses such as HBV, EBV and influenza virus have been investigated yet the molecular mechanism of their interaction and possible synergistic effects is not fully understood. OBJECTIVES The aim of the current systematic review was to review in-vitro and in-vivo studies investigating the combined pathogenesis of aflatoxins and viruses. METHODS This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. PECO (Population, Exposure, Comparator, and Outcome) criteria for invitro and invivo studies were used to evaluate the eligibility of the studies for systematic review. RESULTS 21 studies were eligible for qualitative analysis based on the inclusion criteria. Of all the included studies, 9 (42.9 %) were invivo, 7 (33.3 %) were invitro-invivo and 5(23.8) articles conducted only invitro assay. Furthermore 14 (66.6 %) article explored hepatitis B virus (HBV) combination with AFB1, 4 (19 %) studied influenza A virus (SIV), 2 (9.7 %) were about Epstein-Barr virus (EBV) and only 1 (4.7 %) included hepatitis C virus (HCV). CONCLUSION The limited collected evidence suggests that AFB1 enhanced EBV and influenza virus pathogenesis. AFB1 also operated as a cofactor for HBV and EBV-mediated carcinogenesis. On the other hand HBV and HCV also induced AFB-1 carcinogenesis. Due to the limited amount of included studies and the inconsistency of their results further studies especially on HBV and SIV are essential for better understanding of their combined mechanisms.
Collapse
Affiliation(s)
- Mehdi Ahmadi
- Student Research Committee, (Department and Faculty of Nutrition Sciences and Food Technology), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Shahbahrami
- Department of Medical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khajeh
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Khodaeivandi
- Department of Food Science and Technology, Afagh Higher Education institute, Urmia, Iran
| | - Ehsan Kakavandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Hazrati Raziabad
- Student Research Committee, (Department and Faculty of Nutrition Sciences and Food Technology), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiandokht Ghanati
- Student Research Committee, (Department and Faculty of Nutrition Sciences and Food Technology), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
59
|
Shadbash P, Hosseini SM, Shoraka S, Ghaemi A, Haghazali M, Mohebbi SR. Possible association between polyomaviruses and gastrointestinal complications: a narrative review. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2024; 17:121-131. [PMID: 38994506 PMCID: PMC11234488 DOI: 10.22037/ghfbb.v17i2.2796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/03/2024] [Indexed: 07/13/2024]
Abstract
Polyomaviruses are a group of small, double-stranded DNA viruses that are known to be associated with the development of certain human diseases, but there is evidence that these viruses might be associated with gastrointestinal (GI) cancers. Several polyomaviruses have been identified, such as JC polyomavirus (JCPyV), BK polyomavirus (BKPyV) and recently Merkel cell polyomavirus (MCPyV). Although the direct effects of polyomaviruses on transformation of human cells and cancer development are not clearly recognized, their association with certain human diseases including GI cancers has been proposed through several molecular and epidemiological studies. For example, JCPyV and BKPyV have been linked to colorectal cancer, as there is growing evidence of finding viral genomes in cancerous tissues. Nevertheless, the major role of JCPyV, BKPyV and MCPyV in colorectal cancer progression is still under extensive investigation, and further surveys is required to establish a conclusive cause-and-effect relationship. Understanding the role of these viruses in cancer development has significant implications for diagnosis, treatment, and prevention strategies. It seems that proving a causal link between polyomaviruses and GI cancers might provide a novel path for targeted therapies or design and development of specific therapeutic vaccines. In addition, performing research on the possible link can provide insights into the underlying molecular mechanisms of carcinogenesis, potentially leading to the identification of novel biomarkers. This review focuses on polyomaviruses, in particular a recently discovered polyomavirus, MCPyV, and their possible link with human gastrointestinal disorders.
Collapse
Affiliation(s)
- Piruz Shadbash
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shahrzad Shoraka
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Haghazali
- Behbood Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
60
|
Huang J, Duan F, Xie C, Xu J, Zhang Y, Wang Y, Tang YP, Leung ELH. Microbes mediated immunogenic cell death in cancer immunotherapy. Immunol Rev 2024; 321:128-142. [PMID: 37553793 DOI: 10.1111/imr.13261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
Immunogenic cell death (ICD) is one of the 12 distinct cell death forms, which can trigger immune system to fight against cancer cells. During ICD, a number of cellular changes occur that can stimulate an immune response, including the release of molecules called damage-associated molecular patterns (DAMPs), signaling to immune cells to recognize and attack cancer cells. By virtue of their pivotal role in immune surveillance, ICD-based drug development has been a new approach to explore novel therapeutic combinations and personalized strategies in cancer therapy. Several small molecules and microbes can induce ICD-relevant signals and cause cancer cell death. In this review, we highlighted the role of microbe-mediate ICD in cancer immunotherapy and described the mechanisms through which microbes might serve as ICD inducers in cancer treatment. We also discussed current attempts to combine microbes with chemotherapy regimens or immune checkpoint inhibitors (ICIs) in the treatment of cancer patients. We surmise that manipulation of microbes may guide personalized therapeutic interventions to facilitate anticancer immune response.
Collapse
Affiliation(s)
- Jumin Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Fugang Duan
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Chun Xie
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Jiahui Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
| | - Yizhong Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Dr. Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yuwei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau (SAR), China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau (SAR), China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| |
Collapse
|
61
|
Ye R, Wang A, Bu B, Luo P, Deng W, Zhang X, Yin S. Viral oncogenes, viruses, and cancer: a third-generation sequencing perspective on viral integration into the human genome. Front Oncol 2023; 13:1333812. [PMID: 38188304 PMCID: PMC10768168 DOI: 10.3389/fonc.2023.1333812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
The link between viruses and cancer has intrigued scientists for decades. Certain viruses have been shown to be vital in the development of various cancers by integrating viral DNA into the host genome and activating viral oncogenes. These viruses include the Human Papillomavirus (HPV), Hepatitis B and C Viruses (HBV and HCV), Epstein-Barr Virus (EBV), and Human T-Cell Leukemia Virus (HTLV-1), which are all linked to the development of a myriad of human cancers. Third-generation sequencing technologies have revolutionized our ability to study viral integration events at unprecedented resolution in recent years. They offer long sequencing capabilities along with the ability to map viral integration sites, assess host gene expression, and track clonal evolution in cancer cells. Recently, researchers have been exploring the application of Oxford Nanopore Technologies (ONT) nanopore sequencing and Pacific BioSciences (PacBio) single-molecule real-time (SMRT) sequencing in cancer research. As viral integration is crucial to the development of cancer via viruses, third-generation sequencing would provide a novel approach to studying the relationship interlinking viral oncogenes, viruses, and cancer. This review article explores the molecular mechanisms underlying viral oncogenesis, the role of viruses in cancer development, and the impact of third-generation sequencing on our understanding of viral integration into the human genome.
Collapse
Affiliation(s)
- Ruichen Ye
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Pathology Single-cell & Bioinformatics Laboratory, Bronx, NY, United States
- Stony Brook University, Stony Brook, NY, United States
| | - Angelina Wang
- Tufts Friedman School of Nutrition, Boston, MA, United States
| | - Brady Bu
- Horace Mann School, Bronx, NY, United States
| | - Pengxiang Luo
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Deng
- Clinical Proteomics Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shanye Yin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Einstein Pathology Single-cell & Bioinformatics Laboratory, Bronx, NY, United States
| |
Collapse
|
62
|
Huo JT, Tuersun A, Yu SY, Zhang YC, Feng WQ, Xu ZQ, Zhao JK, Zong YP, Lu AG. Leveraging a KRAS-based signature to predict the prognosis and drug sensitivity of colon cancer and identifying SPINK4 as a new biomarker. Sci Rep 2023; 13:22230. [PMID: 38097680 PMCID: PMC10721872 DOI: 10.1038/s41598-023-48768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
KRAS is one of the leading mutations reported in colon cancer. However, there are few studies on the application of KRAS related signature in predicting prognosis and drug sensitivity of colon cancer patient. We identified KRAS related differentially expressed genes (DEGs) using The Cancer Genome Atlas (TCGA) database. A signature closely related to overall survival was recognized with Kaplan-Meier survival analysis and univariate cox regression analysis. Then we validated this signature with overall expression score (OE score) algorithm using both scRNA-seq and bulk RNA-seq data. Based on this signature, we performed LASSO cox regression to establish a prognostic model, and corresponding scores were calculated. Differences in genomic alteration, immune microenvironment, drug sensitivity between high- and low-KRD score groups were investigated. A KRAS related signature composed of 80 DEGs in colon cancer were recognized, among which 19 genes were selected to construct a prognostic model. This KRAS related signature was significantly correlated with worse prognosis. Furthermore, patients who scored lower in the prognostic model presented a higher likelihood of responding to chemotherapy, targeted therapy and immunotherapy. Furthermore, among the 19 selected genes in the model, SPINK4 was identified as an independent prognostic biomarker. Further validation in vitro indicated the knockdown of SPINK4 promoted the proliferation and migration of SW48 cells. In conclusion, a novel KRAS related signature was identified and validated based on clinical and genomic information from TCGA and GEO databases. The signature was proved to regulate genomic alteration, immune microenvironment and drug sensitivity in colon cancer, and thus might serve as a predictor for individual prognosis and treatment.
Collapse
Affiliation(s)
- Jian-Ting Huo
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Abudumaimaitijiang Tuersun
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Su-Yue Yu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Yu-Chen Zhang
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Wen-Qing Feng
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Zhuo-Qing Xu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China
| | - Jing-Kun Zhao
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China.
| | - Ya-Ping Zong
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China.
| | - Ai-Guo Lu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200020, People's Republic of China.
| |
Collapse
|
63
|
Ghelani GH, Zerdan MB, Jacob J, Spiess PE, Li R, Necchi A, Grivas P, Kamat A, Danziger N, Lin D, Huang R, Decker B, Sokol ES, Cheng L, Pavlick D, Ross JS, Bratslavsky G, Basnet A. HPV-positive clinically advanced squamous cell carcinoma of the urinary bladder (aBSCC): A comprehensive genomic profiling (CGP) study. Urol Oncol 2023; 41:486.e15-486.e23. [PMID: 37821306 DOI: 10.1016/j.urolonc.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Advanced bladder squamous cell carcinoma (aBSCC) is an uncommon form of urinary bladder malignancy when compared with the much higher urothelial carcinoma incidence. We studied the genomic alteration (GA) landscape in a series of aBSCC based on the association with human papilloma virus (HPV) to determine if differences in GA would be observed between the positive and negative groups. METHODS Using a hybrid capture-based FDA-approved CGP assay, a series of 171 aBSCC were sequenced to evaluate all classes of GA. Tumor mutational burden (TMB) was determined on up to 1.1 Mbp of sequenced DNA and microsatellite instability (MSI) was determined on up to 114 loci. Programmed cell death ligand -1 (PD-L1) expression was determined by IHC (Dako 22C3) with negative expression when PD-L1 was 0, lower expression of positivity set at 1 to 49%, and higher expression set at ≥50% expression. RESULTS Overall, 11 (6.4%) of the aBSCC were found to harbor HPV sequences (10 HPV16 and 1 HPV 11). HPV+ status was identified slightly more often in women (NS) and in younger patients (P = 0.04); 2 female patients with aBSCC had a prior history of SCC including 1 anal SCC and 1 vaginal SCC. HPV+ aBSCC had fewer GA/tumor (P < 0.0001), more inactivating mutations in RB1 (P = 0.032), and fewer inactivating GA in CDKN2A (P < 0.0001), CDKN2B (P = 0.05), TERT promoter (P = 0.0004) and TP53 (P < 0.0001). GA in genes associated with urothelial carcinoma including FGFR2 and FGFR3 were similar in both HPV+ and HPV- aBSCC groups. MTAP loss (homozygous deletion) which has emerged as a biomarker for PRMT5 inhibitor-based clinical trials was not identified in any of the 11 HPV+ aBSCC cases, which was significantly lower than the 28% positive frequency of MTAP loss in the HPV- aBSCC group (P < 0.0001). MTOR and PIK3CA pathway GA were not significantly different in the 2 groups. Putative biomarkers associated with immunotherapy (IO) response, including MSI and TMB status, were also similar in the 2 groups. PD-L1 expression data was available for a subset of both HPV+ and HPV- cases and showed high frequencies of positive staining which was not different in the 2 groups. CONCLUSIONS HPV+ aBSCC tends to occur more often in younger patients. As reported in other HPV-associated squamous cell carcinomas, HPV+ aBSCC demonstrates significantly reduced frequencies of inactivating mutations in cell cycle regulatory genes with similar GA in MTOR and PIK3CA pathways. The implication of HPV in the pathogenesis of bladder cancer remains unknown but warrants further exploration and clinical validation.
Collapse
Affiliation(s)
| | | | - J Jacob
- Upstate Medical University, Syracuse, NY
| | - P E Spiess
- Department of GU Oncology, Moffitt Cancer Center, Tampa, FL
| | - R Li
- Department of GU Oncology, Moffitt Cancer Center, Tampa, FL
| | - A Necchi
- IRCCS San Raffaele Hospital and Scientific Institute, Milan, Italy
| | - P Grivas
- University of Washington, Seattle, WA
| | - A Kamat
- University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - D Lin
- Foundation Medicine, Cambridge, MA
| | - R Huang
- Foundation Medicine, Cambridge, MA
| | - B Decker
- Foundation Medicine, Cambridge, MA
| | | | - L Cheng
- Department of Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, Providence, RI
| | | | - J S Ross
- Upstate Medical University, Syracuse, NY
| | | | - A Basnet
- Upstate Medical University, Syracuse, NY
| |
Collapse
|
64
|
Hu J, Zhao J, Wang C, Jia M, Su M, Li S. Epstein-Barr virus reactivation correlates with worse outcomes for patients exposed to hepatitis B virus after haploidentical hematopoietic stem cell transplantation. Ann Hematol 2023; 102:3593-3601. [PMID: 37831153 DOI: 10.1007/s00277-023-05492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Hepatitis B virus (HBV)has a high, chronic infection rate in Asian populations, but only few studies have analyzed the effect of Epstein-Barr virus (EBV) or Cytomegalovirus (CMV) reactivation in patients exposed to HBV after haploidentical hematopoietic stem cell transplantation (haplo-HSCT). This study aimed to assess the clinical outcomes of these patients. We conducted a retrospective research including 61 patients exposed to HBV after undergoing haplo-HSCT. The patients were classified into two groups: the CMV reactivation group and no CMV reactivation group. The results were compared between the two groups using the K-W test for continuous variables, Pearson's chi-square test for categorical variables, Kaplan-Meier curves to estimate overall survival (OS) and leukemia-free survival (LFS), and a Cox proportional hazards model to analyze multivariable influences. The 3-year cumulative HBV reactivation rate was 8.2%. The median duration of HBV reactivation was 16 months (16-22 months) after haplo-HSCT. The CMV reactivation group had a higher cumulative incidence of HBV reactivation than the group without CMV reactivation. The EBV reactivation was substantially higher in the CMV reactivation group compared to that in the no CMV reactivation group (37.0% vs.5.9% respectively; P = 0.002). Furthermore, EBV reactivation was a risk factor for 1-year LFS and 1-year OS. Based on our data, EBV reactivation was related to worse outcomes in patients exposed to HBV after haplo-HSCT, whereas CMV reactivation was not.
Collapse
Affiliation(s)
- Jiajia Hu
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Jie Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Chunyan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China
| | - Ming Su
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China.
| | - Shanshan Li
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China.
| |
Collapse
|
65
|
Choo ZN, Behr JM, Deshpande A, Hadi K, Yao X, Tian H, Takai K, Zakusilo G, Rosiene J, Da Cruz Paula A, Weigelt B, Setton J, Riaz N, Powell SN, Busam K, Shoushtari AN, Ariyan C, Reis-Filho J, de Lange T, Imieliński M. Most large structural variants in cancer genomes can be detected without long reads. Nat Genet 2023; 55:2139-2148. [PMID: 37945902 PMCID: PMC10703688 DOI: 10.1038/s41588-023-01540-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/19/2023] [Indexed: 11/12/2023]
Abstract
Short-read sequencing is the workhorse of cancer genomics yet is thought to miss many structural variants (SVs), particularly large chromosomal alterations. To characterize missing SVs in short-read whole genomes, we analyzed 'loose ends'-local violations of mass balance between adjacent DNA segments. In the landscape of loose ends across 1,330 high-purity cancer whole genomes, most large (>10-kb) clonal SVs were fully resolved by short reads in the 87% of the human genome where copy number could be reliably measured. Some loose ends represent neotelomeres, which we propose as a hallmark of the alternative lengthening of telomeres phenotype. These pan-cancer findings were confirmed by long-molecule profiles of 38 breast cancer and melanoma cases. Our results indicate that aberrant homologous recombination is unlikely to drive the majority of large cancer SVs. Furthermore, analysis of mass balance in short-read whole genome data provides a surprisingly complete picture of cancer chromosomal structure.
Collapse
Affiliation(s)
- Zi-Ning Choo
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional MD PhD Program, Weill Cornell Medicine, New York, NY, USA
- Physiology and Biophysics PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Julie M Behr
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Aditya Deshpande
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Kevin Hadi
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Physiology and Biophysics PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Xiaotong Yao
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Tri-institutional PhD Program in Computational Biology and Medicine, New York, NY, USA
| | - Huasong Tian
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Kaori Takai
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - George Zakusilo
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Joel Rosiene
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Britta Weigelt
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy Setton
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N Powell
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Klaus Busam
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Titia de Lange
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY, USA
| | - Marcin Imieliński
- New York Genome Center, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
66
|
Warkentin S, Braunschweig TA, Jonigk D, Losen I, Cassataro MA, Kleines M. Detection of HHV-6 Virus in specimen of a ductal pancreatic adenocarcinoma with comparison in tumor and normal tissue. Diagn Pathol 2023; 18:124. [PMID: 37964347 PMCID: PMC10644576 DOI: 10.1186/s13000-023-01402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
AIMS The association of human herpesvirus 6 (HHV-6) species with pancreatic cancer is controversially discussed. The aim of this study was to further investigate the postulated association and to identify the basis of HHV-6 DNA positivity reported for pancreatic cancer tissue. METHODS All samples of patients with pancreatic cancer (cancer and surrounding tissue) were analyzed for presence of HHV-6 DNA by PCR and then selected cases by immunohistochemistry. RESULTS Sixty eight per cent (68% = 52/77) of all patients were HHV-6 DNA positive in any of the samples, 49% (38/77) were positive in tumor tissue. Specimens of just one patient were HHV-6A DNA positive, all other patients were positive for HHV-6B. Immunohistochemical analysis of HHV-6 DNA positive samples did not reveal any specific HHV-6B protein positive tumor cell. In contrast, supposed immune cells presented intra- and peritumorally expressed HHV-6B-protein. The cause of presence of these cells in the tumor stroma is unknown, as of yet. CONCLUSIONS HHV-6 DNA-positivity of pancreatic cancer tissue described by us and others is probably not due to the infection of pancreatic cells by HHV-6, but rather due to the migration of HHV-6 positive immune cells into the pancreas. Based on our data, we suppose that there is no direct evidence for HHV-6 as a causative agent of pancreatic cancer, but further in-depth studies (including investigation of immune status of patients) are necessary to make definitive conclusions.
Collapse
Affiliation(s)
| | | | - D Jonigk
- RWTH Aachen University DE, Aachen, Germany
| | - I Losen
- RWTH Aachen University DE, Aachen, Germany
| | | | - M Kleines
- RWTH Aachen University DE, Aachen, Germany.
| |
Collapse
|
67
|
Hatano Y. The Pathology according to p53 Pathway. Pathobiology 2023; 91:230-243. [PMID: 37963443 PMCID: PMC11313058 DOI: 10.1159/000535203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Observations play a pivotal role in the progress of science, including in pathology. The cause of a disease such as cancer is analyzed by breaking it down into smaller organs, tissues, cells, and molecules. The current standard cancer diagnostic procedure, microscopic observation, relies on preserved morphological characteristics. In contrast, molecular analyses explore oncogenic pathway activation that leads to genetic mutations and aberrant protein expression. Such molecular analyses could potentially identify therapeutic targets and has gained considerable attention in clinical oncology. SUMMARY This review summarizes the cardinal biomarkers of the p53 pathway, p53, p16, and mouse double minute 2 (MDM2), in the context of traditional surgical pathology and emerging genomic oncology. The p53 pathway, which is dysregulated in more than a half of all cancers, can be applied in several diagnostic settings. A four-classification model of immunophenotype for p53 pathway gene status, tumor types with a high frequency of abnormalities for each p53 pathway gene, and a minimal p53 pathway immunohistochemical panel is also described. KEY MESSAGES Immunohistochemistry of oncogenic signals should be interpreted according to molecular findings based on genomic oncology, in addition to the microscopic findings of diagnostic pathology.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Pathology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
68
|
Phan TA, Sarower F, Duan J, Tian JP. Stochastic dynamics of human papillomavirus delineates cervical cancer progression. J Math Biol 2023; 87:85. [PMID: 37951849 PMCID: PMC11085997 DOI: 10.1007/s00285-023-02018-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Starting from a deterministic model, we propose and study a stochastic model for human papillomavirus infection and cervical cancer progression. Our analysis shows that the chronic infection state as random variables which have the ergodic invariant probability measure is necessary for progression from infected cell population to cervical cancer cells. It is shown that small progression rate from infected cells to precancerous cells and small microenvironmental noises associated with the progression rate and viral infection help to establish such chronic infection states. It implicates that large environmental noises associated with viral infection and the progression rate in vivo can reduce chronic infection. We further show that there will be a cervical cancer if the noise associated with precancerous cell growth is large enough. In addition, comparable numerical studies for the deterministic model and stochastic model, together with Hopf bifurcations in both deterministic and stochastic systems, highlight our analytical results.
Collapse
Affiliation(s)
- Tuan Anh Phan
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83844, USA
| | - Farhana Sarower
- Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM, 88001, USA
| | - Jinqiao Duan
- Departments of Mathematics, School of Sciences, Great Bay University, Dongguan, 523000, Guangdong, China
| | - Jianjun Paul Tian
- Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM, 88001, USA.
| |
Collapse
|
69
|
Shin D, Kim J, Lee JH, Kim JI, Oh YM. Profiling of Microbial Landscape in Lung of Chronic Obstructive Pulmonary Disease Patients Using RNA Sequencing. Int J Chron Obstruct Pulmon Dis 2023; 18:2531-2542. [PMID: 38022823 PMCID: PMC10644840 DOI: 10.2147/copd.s426260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The aim of the study was to use RNA sequencing (RNA-seq) data of lung from chronic obstructive pulmonary disease (COPD) patients to identify the bacteria that are most commonly detected. Additionally, the study sought to investigate the differences in these infections between normal lung tissues and those affected by COPD. Patients and Methods We re-analyzed RNA-seq data of lung from 99 COPD patients and 93 non-COPD smokers to determine the extent to which the metagenomes differed between the two groups and to assess the reliability of the metagenomes. We used unmapped reads in the RNA-seq data that were not aligned to the human reference genome to identify more common infections in COPD patients. Results We identified 18 bacteria that exhibited significant differences between the COPD and non-COPD smoker groups. Among these, Yersinia enterocolitica was found to be more than 30% more abundant in COPD. Additionally, we observed difference in detection rate based on smoking history. To ensure the accuracy of our findings and distinguish them from false positives, we double-check the metagenomic profile using Basic Local Alignment Search Tool (BLAST). We were able to identify and remove specific species that might have been misclassified as other species in Kraken2 but were actually Staphylococcus aureus, as identified by BLAST analysis. Conclusion This study highlighted the method of using unmapped reads, which were not typically used in sequencing data, to identify microorganisms present in patients with lung diseases such as COPD. This method expanded our understanding of the microbial landscape in COPD and provided insights into the potential role of microorganisms in disease development and progression.
Collapse
Affiliation(s)
- Dongjin Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Juhyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jang Ho Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genomic Medicine Institute, Seoul National University, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
70
|
Trivedi V, Noronha V, Sreekanthreddy P, Desai S, Poojary D, Varghese L, Gowda P, Butle A, Mishra R, Bal M, Mittal N, Rane S, Kane S, Basu S, Patil V, Menon N, Singh AK, Chaturvedi P, Chandrani P, Choughule A, Veldore V, Prabhash K, Dutt A. Association of Cutibacterium acnes with human thyroid cancer. Front Endocrinol (Lausanne) 2023; 14:1152514. [PMID: 38027096 PMCID: PMC10668118 DOI: 10.3389/fendo.2023.1152514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION The diverse subtypes of thyroid carcinoma have distinct clinical outcomes despite a comparable spectrum of underlying genetic alterations. Beyond genetic alterations, sparse efforts have been made to characterize the microbes associated with thyroid cancer. In this study, we examine the microbial profile of thyroid cancer. METHODS We sequenced the whole transcriptome of 70 thyroid cancers (40 papillary and 30 anaplastic). Using Infectious Pathogen Detector IPD 2.0, we analysed the relative abundance of 1060 microbes across 70 tumours from patients with thyroid cancer against 118 tumour samples from patients with breast, cervical, colorectal, and tongue cancer. RESULTS Our analysis reveals a significant prevalence of Cutibacterium acnes in 58.6% thyroid cancer samples compared to other cancer types (p=0.00038). Immune cell fraction analysis between thyroid cancer samples with high and low Cutibacterium loads identify enrichment of immunosuppressive cells, including Tregs (p=0.015), and other anti-inflammatory cytokines in the tumour microenvironment, suggesting an immune evasion/immunosuppression milieu is associated with the infection. A higher burden of Cutibacterium acnes was also found to be associated with poor survival defining a distinct sub-group of thyroid cancer. CONCLUSION Cutibacterium acnes is associated with immune suppression and poor prognosis in a subpopulation of thyroid cancer. This study may help design novel therapeutic measures involving appropriate antibiotics to manage the disease better.
Collapse
Affiliation(s)
- Vaishakhi Trivedi
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vanita Noronha
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | | | - Sanket Desai
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Disha Poojary
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Linu Varghese
- 4baseCare Oncosolutions Pvt ltd, Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Pooja Gowda
- 4baseCare Oncosolutions Pvt ltd, Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Ashwin Butle
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Rohit Mishra
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Munita Bal
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Neha Mittal
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Swapnil Rane
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Department of Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Shubhada Kane
- Consultant Onco-pathologist, Jaslok Hospital, Mumbai, Maharashtra, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Vijay Patil
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Nandini Menon
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Ajay Kumar Singh
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Pankaj Chaturvedi
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Department of Head and Neck Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Pratik Chandrani
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Medical oncology molecular laboratory, Tata Memorial Hospital, Mumbai, Maharashtra, India
- Centre for Computational Biology, Bioinformatics and Crosstalk Lab, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, Maharashtra, India
| | - Anuradha Choughule
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Vidya Veldore
- 4baseCare Oncosolutions Pvt ltd, Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Amit Dutt
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, Maharashtra, India
| |
Collapse
|
71
|
Sun C, Kang YF, Fang XY, Liu YN, Bu GL, Wang AJ, Li Y, Zhu QY, Zhang H, Xie C, Kong XW, Peng YJ, Lin WJ, Zhou L, Chen XC, Lu ZZ, Xu HQ, Hong DC, Zhang X, Zhong L, Feng GK, Zeng YX, Xu M, Zhong Q, Liu Z, Zeng MS. A gB nanoparticle vaccine elicits a protective neutralizing antibody response against EBV. Cell Host Microbe 2023; 31:1882-1897.e10. [PMID: 37848029 DOI: 10.1016/j.chom.2023.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Epstein-Barr virus (EBV) is a global public health concern, as it is known to cause multiple diseases while also being etiologically associated with a wide range of epithelial and lymphoid malignancies. Currently, there is no available prophylactic vaccine against EBV. gB is the EBV fusion protein that mediates viral membrane fusion and participates in host recognition, making it critical for EBV infection in both B cells and epithelial cells. Here, we present a gB nanoparticle, gB-I53-50 NP, that displays multiple copies of gB. Compared with the gB trimer, gB-I53-50 NP shows improved structural integrity and stability, as well as enhanced immunogenicity in mice and non-human primate (NHP) preclinical models. Immunization and passive transfer demonstrate a robust and durable protective antibody response that protects humanized mice against lethal EBV challenge. This vaccine candidate demonstrates significant potential in preventing EBV infection, providing a possible platform for developing prophylactic vaccines for EBV.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xin-Yan Fang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yi-Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Ao-Jie Wang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China; MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xiang-Wei Kong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yong-Jian Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Wen-Jie Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Ling Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xin-Chun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Zheng-Zhou Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Hui-Qin Xu
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dong-Chun Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Ling Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China.
| | - Zheng Liu
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China.
| |
Collapse
|
72
|
Zhang W, Jiang M, Liao X, Li Y, Xin S, Yang L, Xin Y, Umar A, Lu J. IFIT3 inhibits Epstein-Barr virus reactivation via upregulating innate immunity. J Med Virol 2023; 95:e29237. [PMID: 37994186 DOI: 10.1002/jmv.29237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Epstein-Barr virus (EBV), a member of the γ-herpesvirus family, can establish latent infection in B lymphocytes and certain epithelial cells after primary infection. Under certain circumstances, EBV can enter into lytic replication. However, the regulation of EBV latent-lytic infection remains largely unclear. The important immune molecule, interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), was upregulated in EBV latently infected cells. When the lytic replication of EBV was induced, the expression of IFIT3 was further increased. In turn, IFIT3 overexpression dramatically inhibited the lytic replication of EBV, while IFIT3 knockdown facilitated EBV lytic replication. Moreover, upon the lytic induction, the ectopic IFIT3 expression promoted the activation of the interferon (IFN) pathway, including the production of IFN-stimulated genes (ISGs), IFNB1, and the phosphorylation of IFN-regulatory factor 3 (IRF3). In contrast, the depletion of IFIT3 led to decreased ISGs and IFNB1 expression. Mechanically, IFIT3 inhibited EBV lytic replication through IFN signaling. This study revealed that the host innate immune-related factor IFIT3 played an important role in regulating EBV latent-lytic homeostasis. The results implied that EBV has evolved well to utilize host factors to maintain latent infection.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Mingjuan Jiang
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Xuefei Liao
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Yanling Li
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Shuyu Xin
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Li Yang
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Yujie Xin
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Abdulrahim Umar
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jianhong Lu
- Department of Nuclear Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
73
|
Minarovits J. Human tumor viruses: induction of three-dimensional alterations in the host genome structure. Front Microbiol 2023; 14:1280210. [PMID: 37928671 PMCID: PMC10620758 DOI: 10.3389/fmicb.2023.1280210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
Certain viruses called tumor viruses or oncoviruses are capable to change the gene expression pattern of distinct human or animal cell types in tissue culture, resulting in uncontrolled proliferation as well as a change in the social behavior of the infected cells: the oncovirus-transformed, immortalized cells are capable to form malignant neoplasms in suitable animal models. At present, seven human viruses are categorized as causative agents of distinct human malignancies. The genomes of human tumor viruses, typically encode viral oncoproteins and non- translated viral RNAs that affect the gene expression pattern of their target cells or induce genetic and epigenetic alterations contributing to oncogenesis. Recently, the application of chromatin conformation capture technologies and three-dimensional (3D) molecular imaging techniques revealed how the gene products or genomes of certain human tumor viruses interact with and induce alterations in the 3D host genome structure. This Mini Review aims to cover selected aspects of these developments. The papers, discussed briefly, describe how insertion of a novel viral binding site for the 3D genome organizer cellular protein CCCTC-binding factor (CTCF) into the DNA of T cells infected by human T-cell lymphotropic virus type 1 (HTLV-1) may contribute to lymphomagenesis, as well as how integration of high risk human papillomavirus genome into the host cell DNA may facilitate cervical carcinogenesis. Recent results regarding the interactions of cellular genomes with the episomal, chromatinized DNA genomes of oncogenic human herpesvirus, Epstein-Barr virus (EBV) will also be summarized, similarly to available data regarding contacts formed by episomal or integrated hepatitis B virus (HBV) DNA with host chromatin. Finally, a putative mechanism of hepatitis C virus (HCV) induced chromatin alterations will be presented, which may solve the riddle, how a cytoplasmic RNA virus without a viral oncogene could induce malingnant transfrormation of hepatocytes.
Collapse
Affiliation(s)
- Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
74
|
Yang L, Li S, Chen L, Zhang Y. Emerging roles of plasmacytoid dendritic cell crosstalk in tumor immunity. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0241. [PMID: 37817484 PMCID: PMC10618948 DOI: 10.20892/j.issn.2095-3941.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/22/2023] [Indexed: 10/12/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a pioneer cell type that produces type I interferon (IFN-I) and promotes antiviral immune responses. However, they are tolerogenic and, when recruited to the tumor microenvironment (TME), play complex roles that have long been a research focus. The interactions between pDCs and other components of the TME, whether direct or indirect, can either promote or hinder tumor development; consequently, pDCs are an intriguing target for therapeutic intervention. This review provides a comprehensive overview of pDC crosstalk in the TME, including crosstalk with various cell types, biochemical factors, and microorganisms. An in-depth understanding of pDC crosstalk in TME should facilitate the development of novel pDC-based therapeutic methods.
Collapse
Affiliation(s)
- Leilei Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Songya Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liuhui Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
75
|
Ren H, Chen X, Wang J, Chen Y, Hafiz A, Xiao Q, Fu S, Madireddy A, Li WV, Shi X, Cao J. Temporal and structural patterns of hepatitis B virus integrations in hepatocellular carcinoma. J Med Virol 2023; 95:e29187. [PMID: 37877809 PMCID: PMC11131385 DOI: 10.1002/jmv.29187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Chronic infection of hepatitis B virus (HBV) is the major cause of hepatocellular carcinoma (HCC). Notably, 90% of HBV-positive HCC cases exhibit detectable HBV integrations, hinting at the potential early entanglement of these viral integrations in tumorigenesis and their subsequent oncogenic implications. Nevertheless, the precise chronology of integration events during HCC tumorigenesis, alongside their sequential structural patterns, has remained elusive thus far. In this study, we applied whole-genome sequencing to multiple biopsies extracted from six HBV-positive HCC cases. Through this approach, we identified point mutations and viral integrations, offering a blueprint for the intricate tumor phylogeny of these samples. The emergent narrative paints a rich tapestry of diverse evolutionary trajectories characterizing the analyzed tumors. We uncovered oncogenic integration events in some samples that appear to happen before and during the initiation stage of tumor development based on their locations in reconstituted trajectories. Furthermore, we conducted additional long-read sequencing of selected samples and unveiled integration-bridged chromosome rearrangements and tandem repeats of the HBV sequence within integrations. In summary, this study revealed premalignant oncogenic and sequential complex integrations and highlighted the contributions of HBV integrations to HCC development and genome instability.
Collapse
Affiliation(s)
- Haozhen Ren
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Xun Chen
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Ying Chen
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Alex Hafiz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Qian Xiao
- Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Shiwei Fu
- Department of Statistics, University of California, Riverside, Riverside, CA
| | - Advaitha Madireddy
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Wei Vivian Li
- Department of Statistics, University of California, Riverside, Riverside, CA
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Hepatobiliary Institute, Nanjing University, Nanjing, China
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ
| |
Collapse
|
76
|
Pastorczak A, Szmyd B, Braun M, Madzio J, Wypyszczak K, Sztromwasser P, Fendler W, Wojtaszewska M, Chrzanowski J, Grajkowska W, Gregorek H, Wakulinska A, Kazanowska B, Krenova Z, Weijers DD, Kuiper RP, Mlynarski W. Clinical and laboratory diversity of diffuse large B-cell lymphomas in children with Nijmegen breakage syndrome. Haematologica 2023; 108:2808-2813. [PMID: 37021541 PMCID: PMC10543198 DOI: 10.3324/haematol.2022.282325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Bartosz Szmyd
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Kamila Wypyszczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Pawel Sztromwasser
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Marzena Wojtaszewska
- Department of Hematology, Frederic Chopin Provincial Specialist Hospital, Rzeszow, Poland
| | - Jedrzej Chrzanowski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Hanna Gregorek
- Department of Microbiology and Clinical Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Wakulinska
- Department of Oncology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Bernarda Kazanowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Wroclaw, Wroclaw, Poland
| | - Zdenka Krenova
- Department of Pediatric Oncology, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dilys D Weijers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Genetics, Utrecht University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
77
|
Kong X, Liu Z, Zhang R, Xie F, Liang R, Zhang Y, Yu L, Yang W, Li X, Chen Q, Li B, Hong Y, Li M, Xia X, Gu L, Fu L, Li X, Shen Y, Wu T, Yu C, Li W. JMJD2D stabilises and cooperates with HBx protein to promote HBV transcription and replication. JHEP Rep 2023; 5:100849. [PMID: 37701334 PMCID: PMC10494471 DOI: 10.1016/j.jhepr.2023.100849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 09/14/2023] Open
Abstract
Background & Aims HBV infection is a global health burden. Covalently closed circular DNA (cccDNA) transcriptional regulation is a major cause of poor cure rates of chronic hepatitis B (CHB) infection. Herein, we evaluated whether targeting host factors to achieve functional silencing of cccDNA may represent a novel strategy for the treatment of HBV infection. Methods To evaluate the effects of Jumonji C domain-containing (JMJD2) protein subfamily JMJD2A-2D proteins on HBV replication, we used lentivirus-based RNA interference to suppress the expression of isoforms JMJD2A-2D in HBV-infected cells. JMJD2D-knockout mice were generated to obtain an HBV-injected model for in vivo experiments. Co-immunoprecipitation and ubiquitylation assays were used to detect JMJD2D-HBx interactions and HBx stability modulated by JMJD2D. Chromatin immunoprecipitation assays were performed to investigate JMJD2D-cccDNA and HBx-cccDNA interactions. Results Among the JMJD2 family members, JMJD2D was significantly upregulated in mouse livers and human hepatoma cells. Downregulation of JMJD2D inhibited cccDNA transcription and HBV replication. Molecularly, JMJD2D sustained HBx stability by suppressing the TRIM14-mediated ubiquitin-proteasome degradation pathway and acted as a key co-activator of HBx to augment HBV replication. The JMJD2D-targeting inhibitor, 5C-8-HQ, suppressed cccDNA transcription and HBV replication. Conclusion Our study clarified the mechanism by which JMJD2D regulates HBV transcription and replication and identified JMJD2D as a potential diagnostic biomarker and promising drug target against CHB, and HBV-associated hepatocarcinoma. Impact and implications HBV cccDNA is central to persistent infection and is a major obstacle to healing CHB. In this study, using cellular and animal HBV models, JMJD2D was found to stabilise and cooperate with HBx to augment HBV transcription and replication. This study reveals a potential novel translational target for intervention in the treatment of chronic hepatitis B infection.
Collapse
Affiliation(s)
- Xu Kong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Hepatobiliary Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zuofeng Liu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Hepatology, Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Ruyi Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Hepatobiliary Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fu’an Xie
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Hepatobiliary Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rubing Liang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Hepatobiliary Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lingling Yu
- Department of Cardiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, China
| | - Wensheng Yang
- Department of Pathology, Chenggong Hospital of Xiamen University, Xiamen, China
| | - Xi Li
- College of Arts and Sciences, Boston University, Boston, MA, USA
| | - Qiang Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Bei Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yilin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ming Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Hepatobiliary Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Natural Medicine Research and Developing, Xiamen Medicine Research Institute, Xiamen, China
| | - Xiaogang Xia
- Department of Hepatobiliary Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingwei Gu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Management, Jiang Xia Blood Technology Co., Ltd., Shanghai, China
| | - Lijuan Fu
- Department of Infectious Diseases, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaohua Li
- Department of Surgery, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Ye Shen
- Department of Management, Jiang Xia Blood Technology Co., Ltd., Shanghai, China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wengang Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Hepatobiliary Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
78
|
Letafati A, Sakhavarz T, Khosravinia MM, Ardekani OS, Sadeghifar S, Norouzi M, Naseri M, Ghaziasadi A, Jazayeri SM. Exploring the correlation between progression of human papillomavirus infection towards carcinogenesis and nutrition. Microb Pathog 2023; 183:106302. [PMID: 37567326 DOI: 10.1016/j.micpath.2023.106302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Human papillomavirus (HPV) is a common sexually transmitted virus that can lead to the development of various types of cancer. While there are vaccines available to prevent HPV infection, there is also growing interest in the role of nutrition in reducing the risk of HPV-related cancers in HPV positive patients. Diet and nutrition play a critical role in maintaining overall health and preventing various diseases. A healthy diet can strengthen the immune system, which is essential for fighting off infections, including HPV infections, and preventing the growth and spread of cancer cells. Therefore, following a healthy diet and maintaining a healthy weight are important components of HPV and cancer prevention. This article explores the current scientific evidence on the relationship between nutrition and HPV, including the impact of specific nutrients, dietary patterns, and supplements on HPV infection toward cancer progression.
Collapse
Affiliation(s)
- Arash Letafati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Tannaz Sakhavarz
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Mohammad Mahdi Khosravinia
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Samira Sadeghifar
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Mehdi Norouzi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Mona Naseri
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Azam Ghaziasadi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Seyed Mohammad Jazayeri
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
79
|
Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer 2023; 23:710-724. [PMID: 37488363 DOI: 10.1038/s41568-023-00602-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cancer has been a leading cause of death for decades. This dismal statistic has increased efforts to prevent the disease or to detect it early, when treatment is less invasive, relatively inexpensive and more likely to cure. But precisely how tissues are transformed continues to provoke controversy and debate, hindering cancer prevention and early intervention strategies. Various theories of cancer origins have emerged, including the suggestion that it is 'bad luck': the inevitable consequence of random mutations in proliferating stem cells. In this Review, we discuss the principal theories of cancer origins and the relative importance of the factors that underpin them. The body of available evidence suggests that developing and ageing tissues 'walk a tightrope', retaining adequate levels of cell plasticity to generate and maintain tissues while avoiding overstepping into transformation. Rather than viewing cancer as 'bad luck', understanding the complex choreography of cell intrinsic and extrinsic factors that characterize transformation holds promise to discover effective new ways to prevent, detect and stop cancer before it becomes incurable.
Collapse
Affiliation(s)
- Amir Jassim
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric P Rahrmann
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ben D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
80
|
Monod A, Koch C, Jindra C, Haspeslagh M, Howald D, Wenker C, Gerber V, Rottenberg S, Hahn K. CRISPR/Cas9-Mediated Targeting of BPV-1-Transformed Primary Equine Sarcoid Fibroblasts. Viruses 2023; 15:1942. [PMID: 37766348 PMCID: PMC10536948 DOI: 10.3390/v15091942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Equine sarcoids (EqS) are fibroblast-derived skin tumors associated with bovine papillomavirus 1 and 2 (BPV-1 and -2). Based on Southern blotting, the BPV-1 genome was not found to be integrated in the host cell genome, suggesting that EqS pathogenesis does not result from insertional mutagenesis. Hence, CRISPR/Cas9 implies an interesting tool for selectively targeting BPV-1 episomes or genetically anchored suspected host factors. To address this in a proof-of-concept study, we confirmed the exclusive episomal persistence of BPV-1 in EqS using targeted locus amplification (TLA). To investigate the CRISPR/Cas9-mediated editing of BPV-1 episomes, primary equine fibroblast cultures were established and characterized. In the EqS fibroblast cultures, CRISPR-mediated targeting of the episomal E5 and E6 oncogenes as well as the BPV-1 long control region was successful and resulted in a pronounced reduction of the BPV-1 load. Moreover, the deletion of the equine Vimentin (VIM), which is highly expressed in EqS, considerably decreased the number of BPV-1 episomes. Our results suggest CRISPR/Cas9-based gene targeting may serve as a tool to help further unravel the biology of EqS pathogenesis.
Collapse
Affiliation(s)
- Anne Monod
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.M.)
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland (S.R.)
| | - Christoph Koch
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.M.)
| | - Christoph Jindra
- Research Group Oncology, University Equine Clinic, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Maarten Haspeslagh
- Department of Large Animal Surgery, Anesthesiology and Orthopaedics, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Denise Howald
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland (S.R.)
| | | | - Vinzenz Gerber
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (A.M.)
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland (S.R.)
| | - Kerstin Hahn
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland (S.R.)
| |
Collapse
|
81
|
Karttunen K, Patel D, Xia J, Fei L, Palin K, Aaltonen L, Sahu B. Transposable elements as tissue-specific enhancers in cancers of endodermal lineage. Nat Commun 2023; 14:5313. [PMID: 37658059 PMCID: PMC10474299 DOI: 10.1038/s41467-023-41081-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Transposable elements (TE) are repetitive genomic elements that harbor binding sites for human transcription factors (TF). A regulatory role for TEs has been suggested in embryonal development and diseases such as cancer but systematic investigation of their functions has been limited by their widespread silencing in the genome. Here, we utilize unbiased massively parallel reporter assay data using a whole human genome library to identify TEs with functional enhancer activity in two human cancer types of endodermal lineage, colorectal and liver cancers. We show that the identified TE enhancers are characterized by genomic features associated with active enhancers, such as epigenetic marks and TF binding. Importantly, we identify distinct TE subfamilies that function as tissue-specific enhancers, namely MER11- and LTR12-elements in colon and liver cancers, respectively. These elements are bound by distinct TFs in each cell type, and they have predicted associations to differentially expressed genes. In conclusion, these data demonstrate how different cancer types can utilize distinct TEs as tissue-specific enhancers, paving the way for comprehensive understanding of the role of TEs as bona fide enhancers in the cancer genomes.
Collapse
Affiliation(s)
- Konsta Karttunen
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Divyesh Patel
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Jihan Xia
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Liangru Fei
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lauri Aaltonen
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Applied Tumor Genomics Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway.
| |
Collapse
|
82
|
Todorova VK, Byrum SD, Mackintosh SG, Jamshidi-Parsian A, Gies AJ, Washam CL, Jenkins SV, Spiva T, Bowman E, Reyna NS, Griffin RJ, Makhoul I. Exosomal MicroRNA and Protein Profiles of Hepatitis B Virus-Related Hepatocellular Carcinoma Cells. Int J Mol Sci 2023; 24:13098. [PMID: 37685904 PMCID: PMC10487651 DOI: 10.3390/ijms241713098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Infection with hepatitis B virus (HBV) is a main risk factor for hepatocellular carcinoma (HCC). Extracellular vesicles, such as exosomes, play an important role in tumor development and metastasis, including regulation of HBV-related HCC. In this study, we have characterized exosome microRNA and proteins released in vitro from hepatitis B virus (HBV)-related HCC cell lines SNU-423 and SNU-182 and immortalized normal hepatocyte cell lines (THLE2 and THLE3) using microRNA sequencing and mass spectrometry. Bioinformatics, including functional enrichment and network analysis, combined with survival analysis using data related to HCC in The Cancer Genome Atlas (TCGA) database, were applied to examine the prognostic significance of the results. More than 40 microRNAs and 200 proteins were significantly dysregulated (p < 0.05) in the exosomes released from HCC cells in comparison with the normal liver cells. The functional analysis of the differentially expressed exosomal miRNAs (i.e., mir-483, mir-133a, mir-34a, mir-155, mir-183, mir-182), their predicted targets, and exosomal differentially expressed proteins (i.e., POSTN, STAM, EXOC8, SNX9, COL1A2, IDH1, FN1) showed correlation with pathways associated with HBV, virus activity and invasion, exosome formation and adhesion, and exogenous protein binding. The results from this study may help in our understanding of the role of HBV infection in the development of HCC and in the development of new targets for treatment or non-invasive predictive biomarkers of HCC.
Collapse
Affiliation(s)
- Valentina K. Todorova
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samuel G. Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Allen J. Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.D.B.); (S.G.M.); (A.J.G.); (C.L.W.)
| | - Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Timothy Spiva
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Emily Bowman
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Nathan S. Reyna
- Biology Department, Ouachita Baptist University, Arkadelphia, AR 71998, USA; (T.S.); (E.B.); (N.S.R.)
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.J.-P.); (S.V.J.); (R.J.G.)
| | - Issam Makhoul
- Department of Internal Medicine/Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
83
|
Mueller S. Recombination between coronaviruses and synthetic RNAs and biorisk implications motivated by a SARS-CoV-2 FCS origin controversy. Front Bioeng Biotechnol 2023; 11:1209054. [PMID: 37600318 PMCID: PMC10436746 DOI: 10.3389/fbioe.2023.1209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The urgent need for improved policy, regulation, and oversight of research with potential pandemic pathogens (PPPs) has been widely acknowledged. A 2022 article in Frontiers in Virology raises questions, reporting on a 100% sequence homology between the SARS-CoV-2 furin cleavage site (FCS) and the negative strand of a 2017 patented sequence. Even though Ambati and collaborators suspect a possible inadvertent or intentional cause leading to the FCS insert, the related underpinnings have not been studied from the perspective of potential biorisk policy gaps. A commentary on their article contests the low coincidence likelihood that was calculated by Ambati et al., arguing that the sequence match could have been a chance occurrence alone. Additionally, it has been suggested that the odds of the recombination event may be low. These considerations seem to have put many speculations related to any implied viral beginnings, notably from a research setting likely outside the Wuhan Institute of Virology, to rest. However, potential implications for future disasters in terms of biosafety and biosecurity have not been addressed. To demonstrate the feasibility of the Ambati et al. postulate, a theoretical framework is developed that substantially extends the research orientations implicated by these authors and the related patent. It is argued that specific experimental conditions, in combination, could significantly increase the implied recombination profile between coronaviruses and synthetic RNAs. Consequently, this article scrutinizes these largely unrecognized vulnerabilities to discuss implications across the spectrum of the biological risk landscape, with special attention to a potential "crime harvest." Focusing on insufficiently understood features of interaction between the natural and man-made world, vulnerabilities related to contaminants, camouflaging, and various misuse potentials fostered by the digitization and computerization of synthetic biology, it highlights novel biorisk gaps not covered by existing PPP policy. Even though this work does not aim to provide proof of the viral origin, it will make the point that, in theory, a convergence of under-appreciated lab experiments and technologies could have led to the SARS-CoV-2 FCS insert, which analogously could be exploited by various threat actors for the clandestine genesis of similar or even worse pathogens.
Collapse
Affiliation(s)
- Siguna Mueller
- Independent Transdisciplinary Researcher, Kaernten, Austria
| |
Collapse
|
84
|
de Sousa GR, Salomão KB, Nagano LFP, Riemondy KA, Chagas PS, Veronez LC, Saggioro FP, Marie SKN, Yunes JA, Cardinalli IA, Brandalise SR, de Paula Queiroz RG, Scrideli CA, Donson AM, Foreman NK, Tone LG, Valera ET. Identification of HDAC4 as a potential therapeutic target and prognostic biomarker for ZFTA-fused ependymomas. Cancer Gene Ther 2023; 30:1105-1113. [PMID: 37041276 DOI: 10.1038/s41417-023-00616-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Members of the HDAC family are predictive biomarkers and regulate the tumorigenesis in several cancers. However, the role of these genes in the biology of intracranial ependymomas (EPNs) remains unexplored. Here, an analysis of eighteen HDACs genes in an EPN transcriptomic dataset, revealed significantly higher levels of HDAC4 in supratentorial ZFTA fusion (ST-ZFTA) compared with ST-YAP1 fusion and posterior fossa EPNs, while HDAC7 and SIRT2 were downregulated in ST-ZFTA. HDAC4 was also overexpressed in ST-ZFTA as measured by single-cell RNA-Seq, quantitative real time-polymerase chain reaction, and immunohistochemistry. Survival analyses showed a significantly worse outcome for EPNs with higher HDAC4 and SIRT1 mRNA levels. Ontology enrichment analysis showed an HDAC4-high signature consistent with viral processes while collagen-containing extracellular matrix and cell-cell junction were enriched in those with an HDAC4-low signature. Immune gene analysis demonstrated a correlation between HDAC4 expression and low levels of NK resting cells. Several small molecules compounds targeting HDAC4 and ABCG2, were predicted by in silico analysis to be effective against HDAC4-high ZFTA. Our results provide novel insights into the biology of the HDAC family in intracranial ependymomas and reveal HDAC4 as a prognostic marker and potential therapeutic target in ST-ZFTA.
Collapse
Affiliation(s)
- Graziella R de Sousa
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Karina B Salomão
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luis F P Nagano
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Kent A Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pablo S Chagas
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciana C Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Fabiano P Saggioro
- Department of Pathology, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, 01246-903, SP, Brazil
| | | | | | | | - Rosane G de Paula Queiroz
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Carlos A Scrideli
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Luiz G Tone
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Elvis T Valera
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
85
|
Gihawi A, Cooper CS, Brewer DS. Caution regarding the specificities of pan-cancer microbial structure. Microb Genom 2023; 9:mgen001088. [PMID: 37555750 PMCID: PMC10483429 DOI: 10.1099/mgen.0.001088] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Results published in an article by Poore et al. (Nature. 2020;579:567-574) suggested that machine learning models can almost perfectly distinguish between tumour types based on their microbial composition using machine learning models. Whilst we believe that there is the potential for microbial composition to be used in this manner, we have concerns with the paper that make us question the certainty of the conclusions drawn. We believe there are issues in the areas of the contribution of contamination, handling of batch effects, false positive classifications and limitations in the machine learning approaches used. This makes it difficult to identify whether the authors have identified true biological signal and how robust these models would be in use as clinical biomarkers. We commend Poore et al. on their approach to open data and reproducibility that has enabled this analysis. We hope that this discourse assists the future development of machine learning models and hypothesis generation in microbiome research.
Collapse
Affiliation(s)
- Abraham Gihawi
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Colin S. Cooper
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Daniel S. Brewer
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UG, UK
| |
Collapse
|
86
|
Buonaguro L, Cavalluzzo B, Mauriello A, Ragone C, Tornesello AL, Buonaguro FM, Tornesello ML, Tagliamonte M. Microorganisms-derived antigens for preventive anti-cancer vaccines. Mol Aspects Med 2023; 92:101192. [PMID: 37295175 DOI: 10.1016/j.mam.2023.101192] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Cancer prevention is one of the aim with the highest priority in order to reduce the burden of cancer diagnosis and treatment on individuals as well as on healthcare systems. To this aim, vaccines represent the most efficient primary cancer prevention strategy. Indeed, anti-cancer immunological memory elicited by preventive vaccines might promptly expand and prevent tumor from progressing. Antigens derived from microorganisms (MoAs), represent the obvious target for developing highly effective preventive vaccines for virus-induced cancers. In this respect, the drastic reduction in cancer incidence following HBV and HPV preventive vaccines are the paradigmatic example of such evidence. More recently, experimental evidences suggest that MoAs may represent a "natural" anti-cancer preventive vaccination or can be exploited for developing vaccines to prevent cancers presenting highly homologous tumor-associated antigens (TAAs) (e.g. molecular mimicry). The present review describes the different preventive anti-cancer vaccines based on antigens derived from pathogens at the different stages of development.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Angela Mauriello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Concetta Ragone
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy
| | - Maria Tagliamonte
- Innovative Immunological Models Unit, Istituto Nazionale Tumori - IRCCS - "Fond G. Pascale", Naples, Italy.
| |
Collapse
|
87
|
Napoletani G, Soldan SS, Kannan T, Preston-Alp S, Vogel P, Maestri D, Caruso LB, Kossenkov A, Sobotka A, Lieberman PM, Tempera I. PARP1 Inhibition Halts EBV+ Lymphoma Progression by Disrupting the EBNA2/MYC Axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547847. [PMID: 37461649 PMCID: PMC10350008 DOI: 10.1101/2023.07.05.547847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
PARP1 has been shown to regulate EBV latency. However, the therapeutic effect of PARP1 inhibitors on EBV+ lymphomagenesis has not yet been explored. Here, we show that PARPi BMN-673 has a potent anti-tumor effect on EBV-driven LCL in a mouse xenograft model. We found that PARP1 inhibition induces a dramatic transcriptional reprogramming of LCLs driven largely by the reduction of the MYC oncogene expression and dysregulation of MYC targets, both in vivo and in vitro. PARP1 inhibition also reduced the expression of viral oncoprotein EBNA2, which we previously demonstrated depends on PARP1 for activation of MYC. Further, we show that PARP1 inhibition blocks the chromatin association of MYC, EBNA2, and tumor suppressor p53. Overall, our study strengthens the central role of PARP1 in EBV malignant transformation and identifies the EBNA2/MYC pathway as a target of PARP1 inhibitors and its utility for the treatment of EBNA2-driven EBV-associated cancers.
Collapse
Affiliation(s)
| | | | | | | | - Peter Vogel
- Department of Comparative Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Giosa D, Lombardo D, Musolino C, Chines V, Raffa G, Casuscelli di Tocco F, D'Aliberti D, Caminiti G, Saitta C, Alibrandi A, Aiese Cigliano R, Romeo O, Navarra G, Raimondo G, Pollicino T. Mitochondrial DNA is a target of HBV integration. Commun Biol 2023; 6:684. [PMID: 37400627 DOI: 10.1038/s42003-023-05017-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/05/2023] [Indexed: 07/05/2023] Open
Abstract
Hepatitis B virus (HBV) may integrate into the genome of infected cells and contribute to hepatocarcinogenesis. However, the role of HBV integration in hepatocellular carcinoma (HCC) development remains unclear. In this study, we apply a high-throughput HBV integration sequencing approach that allows sensitive identification of HBV integration sites and enumeration of integration clones. We identify 3339 HBV integration sites in paired tumour and non-tumour tissue samples from 7 patients with HCC. We detect 2107 clonally expanded integrations (1817 in tumour and 290 in non-tumour tissues), and a significant enrichment of clonal HBV integrations in mitochondrial DNA (mtDNA) preferentially occurring in the oxidative phosphorylation genes (OXPHOS) and D-loop region. We also find that HBV RNA sequences are imported into the mitochondria of hepatoma cells with the involvement of polynucleotide phosphorylase (PNPASE), and that HBV RNA might have a role in the process of HBV integration into mtDNA. Our results suggest a potential mechanism by which HBV integration may contribute to HCC development.
Collapse
Affiliation(s)
- Domenico Giosa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Daniele Lombardo
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Cristina Musolino
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Valeria Chines
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Giuseppina Raffa
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Francesca Casuscelli di Tocco
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Deborah D'Aliberti
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Giuseppe Caminiti
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Carlo Saitta
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | | | | | - Orazio Romeo
- Department of ChiBioFarAm, University of Messina, Messina, Italy
| | - Giuseppe Navarra
- Department of Human Pathology, University Hospital of Messina, Messina, Italy
| | - Giovanni Raimondo
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Teresa Pollicino
- Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy.
- Laboratory of Molecular Hepatology, University Hospital of Messina, Messina, Italy.
| |
Collapse
|
89
|
Miranda-Galvis M, Carneiro Soares C, Moretto Carnielli C, Ramalho Buttura J, Sales de Sá R, Kaminagakura E, Marchi FA, Paes Leme AF, Lópes Pinto CA, Santos-Silva AR, Moraes Castilho R, Kowalski LP, Squarize CH. New Insights into the Impact of Human Papillomavirus on Oral Cancer in Young Patients: Proteomic Approach Reveals a Novel Role for S100A8. Cells 2023; 12:cells12091323. [PMID: 37174723 PMCID: PMC10177374 DOI: 10.3390/cells12091323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Human papillomavirus (HPV) infection has recently been linked to a subset of cancers affecting the oral cavity. However, the molecular mechanisms underlying HPV-driven oral squamous cell carcinoma (OSCC) onset and progression are poorly understood. METHODS We performed MS-based proteomics profiling based on HPV status in OSCC in young patients, following biological characterization and cell assays to explore the proteome functional landscape. RESULTS Thirty-nine proteins are differentially abundant between HPV (+) and HPV (-) OSCC. Among them, COPS3, DYHC1, and S100A8 are unfavorable for tumor recurrence and survival, in contrast to A2M and Serpine1, low levels of which show an association with better DFS. Remarkably, S100A8 is considered an independent prognostic factor for lower survival rates, and at high levels, it alters tumor-associated immune profiling, showing a lower proportion of M1 macrophages and dendritic cells. HPV (+) OSCC also displayed the pathogen-associated patterns receptor that, when activated, triggered the S100A8 and NFκB inflammatory responses. CONCLUSION HPV (+) OSCC has a peculiar microenvironment pattern distinctive from HPV (-), involving the expression of pathogen-associated pattern receptors, S100A8 overexpression, and NFκB activation and responses, which has important consequences in prognosis and may guide therapeutic decisions.
Collapse
Affiliation(s)
- Marisol Miranda-Galvis
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
| | - Carolina Carneiro Soares
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
- Department of Microbiology, Immune Biology, and Genetics, Center for Molecular Biology, University of Vienna, 1030 Vienna, Austria
| | - Carolina Moretto Carnielli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Jaqueline Ramalho Buttura
- Laboratory of Bioinformatics and Computational Biology, A.C.Camargo Cancer Center (CIPE), São Paulo 01508-010, SP, Brazil
| | - Raisa Sales de Sá
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
| | - Estela Kaminagakura
- Department of Bioscience and Oral Diagnosis, Science and Technology Institute, University of São Paulo State (UNESP), São José dos Campos 01049-010, SP, Brazil
| | - Fabio Albuquerque Marchi
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), São Paulo 01246-000, SP, Brazil
- Comprehensive Center for Precision Oncology, University of São Paulo, São Paulo 05508-900, SP, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Clóvis A Lópes Pinto
- Department of Anatomic Pathology, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil
| | - Alan Roger Santos-Silva
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luiz Paulo Kowalski
- Head and Neck Surgery Department, Medical School, University of São Paulo, São Paulo 05508-900, SP, Brazil
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
90
|
Xu Q, Dong H, Wang Z, Zhang P, Albers AE, Kaufmann AM, Zheng ZM, Qian X. Integration and viral oncogene expression of human papillomavirus type 16 in oropharyngeal squamous cell carcinoma and gastric cancer. J Med Virol 2023; 95:e28761. [PMID: 37212316 DOI: 10.1002/jmv.28761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/23/2023]
Abstract
Persistent high-risk human papillomavirus (HR-HPV) infections cause cervical cancer and a fraction of head and neck cancer. To investigate whether HR-HPV infection might be also involved in the development of gastric cancer (GC), we developed a platform utilizing a rolling circle amplification (RCA)-based nested L1 polymerase chain reaction with Sanger sequencing to genotype the HPV DNA in cancer tissues of 361 GC and 89 oropharyngeal squamous cell carcinomas (OPSCC). HPV transcriptional activity was determined by E6/E7 mRNA expression and a 3' rapid amplification of cDNA ends was performed to identify HPV integration and expression of virus-host fusion transcripts. Ten of 361 GC, 2 of 89 OPSCC, and 1 of 22 normal adjacent tissues were HPV L1 DNA-positive. Five of the 10 HPV-positive GC were genotyped as HPV16 by sequencing and 1 of 2 GC with RCA/nested HPV16 E6/E7 DNA detection exhibited HPV16 E6/E7 mRNA. Two OPSCC displayed HPV16 L1 DNA and E6/E7 mRNA, of which 1 OPSCC tissue showed virus-host RNA fusion transcripts from an intron region of KIAA0825 gene. Together, our data reveal viral oncogene expression and/or integration in GC and OPSCC and a possible etiology role of HPV infections in gastric carcinogenesis.
Collapse
Affiliation(s)
- Qiang Xu
- Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Haoru Dong
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Education Base, Wenzhou Medical University, Wenzhou, China
| | - Zhiyu Wang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Education Base, Wenzhou Medical University, Wenzhou, China
| | - Pei Zhang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Andreas E Albers
- Department of Clinical Medicine, Oto-Rhino-Laryngology, Medical School Berlin, Berlin, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Xu Qian
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Education Base, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
91
|
Dudley JP. APOBECs: Our fickle friends? PLoS Pathog 2023; 19:e1011364. [PMID: 37200235 DOI: 10.1371/journal.ppat.1011364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Affiliation(s)
- Jaquelin P Dudley
- Department of Molecular Biosciences and LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
92
|
Roelofs PA, Martens JW, Harris RS, Span PN. Clinical Implications of APOBEC3-Mediated Mutagenesis in Breast Cancer. Clin Cancer Res 2023; 29:1658-1669. [PMID: 36478188 PMCID: PMC10159886 DOI: 10.1158/1078-0432.ccr-22-2861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Over recent years, members of the APOBEC3 family of cytosine deaminases have been implicated in increased cancer genome mutagenesis, thereby contributing to intratumor and intertumor genomic heterogeneity and therapy resistance in, among others, breast cancer. Understanding the available methods for clinical detection of these enzymes, the conditions required for their (dysregulated) expression, the clinical impact they have, and the clinical implications they may offer is crucial in understanding the current impact of APOBEC3-mediated mutagenesis in breast cancer. Here, we provide a comprehensive review of recent developments in the detection of APOBEC3-mediated mutagenesis and responsible APOBEC3 enzymes, summarize the pathways that control their expression, and explore the clinical ramifications and opportunities they pose. We propose that APOBEC3-mediated mutagenesis can function as a helpful predictive biomarker in several standard-of-care breast cancer treatment plans and may be a novel target for treatment.
Collapse
Affiliation(s)
- Pieter A. Roelofs
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - John W.M. Martens
- Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul N. Span
- Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
93
|
Oreper D, Klaeger S, Jhunjhunwala S, Delamarre L. The peptide woods are lovely, dark and deep: Hunting for novel cancer antigens. Semin Immunol 2023; 67:101758. [PMID: 37027981 DOI: 10.1016/j.smim.2023.101758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
Harnessing the patient's immune system to control a tumor is a proven avenue for cancer therapy. T cell therapies as well as therapeutic vaccines, which target specific antigens of interest, are being explored as treatments in conjunction with immune checkpoint blockade. For these therapies, selecting the best suited antigens is crucial. Most of the focus has thus far been on neoantigens that arise from tumor-specific somatic mutations. Although there is clear evidence that T-cell responses against mutated neoantigens are protective, the large majority of these mutations are not immunogenic. In addition, most somatic mutations are unique to each individual patient and their targeting requires the development of individualized approaches. Therefore, novel antigen types are needed to broaden the scope of such treatments. We review high throughput approaches for discovering novel tumor antigens and some of the key challenges associated with their detection, and discuss considerations when selecting tumor antigens to target in the clinic.
Collapse
Affiliation(s)
- Daniel Oreper
- Genentech, 1 DNA way, South San Francisco, 94080 CA, USA.
| | - Susan Klaeger
- Genentech, 1 DNA way, South San Francisco, 94080 CA, USA.
| | | | | |
Collapse
|
94
|
Shome M, Gao W, Engelbrektson A, Song L, Williams S, Murugan V, Park JG, Chung Y, LaBaer J, Qiu J. Comparative Microbiomics Analysis of Antimicrobial Antibody Response between Patients with Lung Cancer and Control Subjects with Benign Pulmonary Nodules. Cancer Epidemiol Biomarkers Prev 2023; 32:496-504. [PMID: 36066883 PMCID: PMC10494706 DOI: 10.1158/1055-9965.epi-22-0384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND CT screening can detect lung cancer early but suffers a high false-positive rate. There is a need for molecular biomarkers that can distinguish malignant and benign indeterminate pulmonary nodules (IPN) detected by CT scan. METHODS We profiled antibodies against 901 individual microbial antigens from 27 bacteria and 29 viruses in sera from 127 lung adenocarcinoma (ADC), 123 smoker controls (SMC), 170 benign nodule controls (BNC) individuals using protein microarrays to identify ADC and BNC specific antimicrobial antibodies. RESULTS Analyzing fourth quartile ORs, we found more antibodies with higher prevalence in the three BNC subgroups than in ADC or SMC. We demonstrated that significantly more anti-Helicobacter pylori antibodies showed higher prevalence in ADC relative to SMC. We performed subgroup analysis and found that more antibodies with higher prevalence in light smokers (≤20 pack-years) compared with heavy smokers (>20 pack-years), in BNC with nodule size >1 cm than in those with ≤1 cm nodules, and in stage I ADC than in stage II and III ADC. We performed multivariate analysis and constructed antibody panels that can distinguish ADC versus SMC and ADC versus BNC with area under the ROC curve (AUC) of 0.88 and 0.80, respectively. CONCLUSIONS Antimicrobial antibodies have the potential to reduce the false positive rate of CT screening and provide interesting insight in lung cancer development. IMPACT Microbial infection plays an important role in lung cancer development and the formation of benign pulmonary nodules.
Collapse
Affiliation(s)
- Mahasish Shome
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Weimin Gao
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | | | - Lusheng Song
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stacy Williams
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Vel Murugan
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jin G. Park
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Yunro Chung
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Ji Qiu
- Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
95
|
Li JSZ, Abbasi A, Kim DH, Lippman SM, Alexandrov LB, Cleveland DW. Chromosomal fragile site breakage by EBV-encoded EBNA1 at clustered repeats. Nature 2023; 616:504-509. [PMID: 37046091 PMCID: PMC10328181 DOI: 10.1038/s41586-023-05923-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 03/07/2023] [Indexed: 04/14/2023]
Abstract
Epstein-Barr virus (EBV) is an oncogenic herpesvirus associated with several cancers of lymphocytic and epithelial origin1-3. EBV encodes EBNA1, which binds to a cluster of 20 copies of an 18-base-pair palindromic sequence in the EBV genome4-6. EBNA1 also associates with host chromosomes at non-sequence-specific sites7, thereby enabling viral persistence. Here we show that the sequence-specific DNA-binding domain of EBNA1 binds to a cluster of tandemly repeated copies of an EBV-like, 18-base-pair imperfect palindromic sequence encompassing a region of about 21 kilobases at human chromosome 11q23. In situ visualization of the repetitive EBNA1-binding site reveals aberrant structures on mitotic chromosomes characteristic of inherently fragile DNA. We demonstrate that increasing levels of EBNA1 binding trigger dose-dependent breakage at 11q23, producing a fusogenic centromere-containing fragment and an acentric distal fragment, with both mis-segregated into micronuclei in the next cell cycles. In cells latently infected with EBV, elevating EBNA1 abundance by as little as twofold was sufficient to trigger breakage at 11q23. Examination of whole-genome sequencing of EBV-associated nasopharyngeal carcinomas revealed that structural variants are highly enriched on chromosome 11. Presence of EBV is also shown to be associated with an enrichment of chromosome 11 rearrangements across 2,439 tumours from 38 cancer types. Our results identify a previously unappreciated link between EBV and genomic instability, wherein EBNA1-induced breakage at 11q23 triggers acquisition of structural variations in chromosome 11.
Collapse
MESH Headings
- Humans
- Binding Sites
- DNA/chemistry
- DNA/metabolism
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Herpesvirus 4, Human/pathogenicity
- Viral Proteins/genetics
- Viral Proteins/metabolism
- DNA Breaks, Double-Stranded
- Chromosomes, Human, Pair 11/chemistry
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/metabolism
- Genomic Instability
- Mitosis
- Chromosome Breakage
Collapse
Affiliation(s)
- Julia Su Zhou Li
- Ludwig Cancer Research, UC San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
| | - Dong Hyun Kim
- Ludwig Cancer Research, UC San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Oncology Research Unit, Pfizer Inc., San Diego, CA, USA
| | | | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Ludwig Cancer Research, UC San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA.
| |
Collapse
|
96
|
Starrett GJ, Yu K, Golubeva Y, Lenz P, Piaskowski ML, Petersen D, Dean M, Israni A, Hernandez BY, Tucker TC, Cheng I, Gonsalves L, Morris CR, Hussain SK, Lynch CF, Harris RS, Prokunina-Olsson L, Meltzer PS, Buck CB, Engels EA. Evidence for virus-mediated oncogenesis in bladder cancers arising in solid organ transplant recipients. eLife 2023; 12:e82690. [PMID: 36961501 PMCID: PMC10446826 DOI: 10.7554/elife.82690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
A small percentage of bladder cancers in the general population have been found to harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are at an increased risk of developing bladder cancer and have an overall poorer outcomes, harbor BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of the tumors from this patient population contained viral sequences. The most common were from BKPyV (N=9, 21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the host chromosome consistent with microhomology-mediated end joining and coincided with focal amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in host gene expression consistent with the functions of BKPyV Large T antigen were also observed in these tumors. Lastly, we identified four mutation signatures in our cases, with those attributable to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with an antiviral drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, were also observed. The results suggest multiple pathways to carcinogenesis in solid organ transplant recipients with a large fraction being virus-associated.
Collapse
Affiliation(s)
| | - Kelly Yu
- DCEG, NCI, NIHRockvilleUnited States
| | | | - Petra Lenz
- Leidos Biomedical Research IncFrederickUnited States
| | | | | | | | - Ajay Israni
- Department of Medicine, Nephrology Division, Hennepin Healthcare System, University of MinnesotaMinneapolisUnited States
| | | | - Thomas C Tucker
- The Kentucky Cancer Registry, University of KentuckyLexingtonUnited States
| | - Iona Cheng
- Department of Epidemiology and Biostatistics,and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoFremontUnited States
| | - Lou Gonsalves
- Connecticut Tumor Registry, Connecticut Department of Public HealthHartfordUnited States
| | - Cyllene R Morris
- California Cancer Reporting and Epidemiologic Surveillance Program, University of California, DavisDavisUnited States
| | - Shehnaz K Hussain
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Charles F Lynch
- The Iowa Cancer Registry, University of IowaIowa CityUnited States
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of MinnesotaMinneapolisUnited States
| | | | | | | | | |
Collapse
|
97
|
Sillo TO, Beggs AD, Middleton G, Akingboye A. The Gut Microbiome, Microsatellite Status and the Response to Immunotherapy in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065767. [PMID: 36982838 PMCID: PMC10054450 DOI: 10.3390/ijms24065767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
There is increasing evidence in a range of cancer types that the microbiome plays a direct role in modulating the anti-cancer immune response both at the gut level and systemically. Differences in the gut microbiota have been shown to correlate with differences in immunotherapy responses in a range of non-gastrointestinal tract cancers. DNA mismatch repair-deficient (dMMR) colorectal cancer (CRC) is radically different to DNA mismatch repair-proficient (pMMR) CRC in clinical phenotype and in its very good responses to immunotherapy. While this has usually been thought to be due to the high mutational burden in dMMR CRC, the gut microbiome is radically different in dMMR and pMMR CRC in terms of both composition and diversity. It is probable that differences in the gut microbiota contribute to the varied responses to immunotherapy in dMMR versus pMMR CRC. Targeting the microbiome offers a way to boost the response and increase the selection of patients who might benefit from this therapy. This paper reviews the available literature on the role of the microbiome in the response to immunotherapy in dMMR and pMMR CRC, explores the potential causal relationship and discusses future directions for study in this exciting and rapidly changing field.
Collapse
Affiliation(s)
- Toritseju O Sillo
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
98
|
Yu L, Jiang L, Wu M, Dou W, Ji K, Zhou J, Kim J, Xu Y. RNA helicase MTR4 drives tumorigenesis of nasopharyngeal carcinoma by regulating the expression of key cell cycle genes. Protein Cell 2023; 14:149-152. [PMID: 36929008 PMCID: PMC10019564 DOI: 10.1093/procel/pwac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Meng Wu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wenlong Dou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kaiyuan Ji
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianlong Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinchul Kim
- Ageing Research Center, Korea Research Institute of Bioscience and Biotechnology, Deajeon 34141, Korea
| | | |
Collapse
|
99
|
Host-microbiota interactions and oncogenesis: Crosstalk and its implications in etiology. Microb Pathog 2023; 178:106063. [PMID: 36893903 DOI: 10.1016/j.micpath.2023.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/03/2022] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
A number of articles have discussed the potential of microbiota in oncogenesis. Several of these have evaluated the modulation of microbiota and its influence on cancer development. Even in recent past, a plethora of studies have gathered in order to understand the difference in microbiota population among different cancer and normal individuals. Although in majority of studies, microbiota mediated oncogenesis has been primarily attributed to the inflammatory mechanisms, there are several other ways through which microbiota can influence oncogenesis. These relatively less discussed aspects including the hormonal modulation through estrobolome and endobolome, production of cyclomodulins, and lateral gene transfer need more attention of scientific community. We prepared this article to discuss the role of microbiota in oncogenesis in order to provide concise information on these relatively less discussed microbiota mediated oncogenesis mechanisms.
Collapse
|
100
|
Xian S, Dosset M, Castro A, Carter H, Zanetti M. Transcriptional analysis links B cells and TERT expression to favorable prognosis in head and neck cancer. PNAS NEXUS 2023; 2:pgad046. [PMID: 36909826 PMCID: PMC10003760 DOI: 10.1093/pnasnexus/pgad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Telomerase reverse transcriptase (TERT) is a conserved self-tumor antigen overexpressed in ∼85% of tumor cells and is immunogenic in cancer patients. The effect of TERT expression on the regulation of intratumor adaptive immunity has not yet been investigated. We used RNA sequencing data from The Cancer Genome Atlas (TCGA) in 11 solid tumor types to investigate potential interactions between TERT expression, and B and T cell infiltrate in the tumor microenvironment. We found a positive correlation between TERT expression, B and T cells in four cancer types with the strongest association in head and neck squamous cell carcinoma (HSNCC). In HNSCC a Bhigh/TERThigh signature was associated with improved progression-free survival (PFS) (P = 0.0048). This effect was independent of HPV status and not shared in comparable analysis by other conserved tumor antigens (NYESO1, MUC1, MAGE, and CEA). Bhigh/TERThigh HNSCC tumors also harbored evidence of tertiary lymphoid structure (TLS) such as signatures for germinal center (GC) and switched memory B cells, central memory CD4 and effector memory CD8 T cells. Bhigh/TERThigh HNSCC tumors also showed an up-regulation of genes and pathways related to B and T cell activation, proliferation, migration, and cytotoxicity, while factors associated with immunosuppression and cancer cell invasiveness were down-regulated. In summary, our study uncovers a new association between high TERT expression and high B cell infiltrate in HNSCC, suggesting a potential benefit from therapeutic strategies that invigorate intratumor TERT-mediated T-B cooperation.
Collapse
Affiliation(s)
- Su Xian
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrea Castro
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|