51
|
Vuillemot R, Harastani M, Hamitouche I, Jonic S. MDSPACE and MDTOMO Software for Extracting Continuous Conformational Landscapes from Datasets of Single Particle Images and Subtomograms Based on Molecular Dynamics Simulations: Latest Developments in ContinuousFlex Software Package. Int J Mol Sci 2023; 25:20. [PMID: 38203192 PMCID: PMC10779004 DOI: 10.3390/ijms25010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Cryo electron microscopy (cryo-EM) instrumentation allows obtaining 3D reconstruction of the structure of biomolecular complexes in vitro (purified complexes studied by single particle analysis) and in situ (complexes studied in cells by cryo electron tomography). Standard cryo-EM approaches allow high-resolution reconstruction of only a few conformational states of a molecular complex, as they rely on data classification into a given number of classes to increase the resolution of the reconstruction from the most populated classes while discarding all other classes. Such discrete classification approaches result in a partial picture of the full conformational variability of the complex, due to continuous conformational transitions with many, uncountable intermediate states. In this article, we present the software with a user-friendly graphical interface for running two recently introduced methods, namely, MDSPACE and MDTOMO, to obtain continuous conformational landscapes of biomolecules by analyzing in vitro and in situ cryo-EM data (single particle images and subtomograms) based on molecular dynamics simulations of an available atomic model of one of the conformations. The MDSPACE and MDTOMO software is part of the open-source ContinuousFlex software package (starting from version 3.4.2 of ContinuousFlex), which can be run as a plugin of the Scipion software package (version 3.1 and later), broadly used in the cryo-EM field.
Collapse
Affiliation(s)
| | | | | | - Slavica Jonic
- IMPMC-UMR 7590 CNRS, Sorbonne Université, MNHN, 75005 Paris, France
| |
Collapse
|
52
|
Chen M, Sahoo B, Mou Z, Song X, Tsai T, Dai X. Genome organization in double-stranded DNA viruses observed by cryoET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571939. [PMID: 38168199 PMCID: PMC10760162 DOI: 10.1101/2023.12.15.571939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Double-stranded DNA (dsDNA) viruses package their genetic material into protein cages with diameters usually a few hundred times smaller than the length of their genome. Compressing the relatively stiff and highly negatively charged dsDNA into a small volume is energetically costly and mechanistically enigmatic. Multiple models of dsDNA packaging have been proposed based on various experimental evidence and simulation methods, but direct observation of any viral genome organization is lacking. Here, using cryoET and an improved data processing scheme that utilizes information from the encaging protein shell, we present 3D views of dsDNA genome inside individual viral particles at resolution that densities of neighboring DNA duplexes are readily separable. These cryoET observations reveal a "rod-and-coil" fold of the dsDNA that is conserved among herpes simplex virus type 1 (HSV-1) with a spherical capsid, bacteriophage T4 with a prolate capsid, and bacteriophage T7 with a proteinaceous core inside the capsid. Finally, inspired by the genome arrangement in partially packaged T4 particles, we propose a mechanism for the genome packaging process in dsDNA viruses.
Collapse
Affiliation(s)
- Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Bibekananda Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiyong Song
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tiffany Tsai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
- Lead contact
| |
Collapse
|
53
|
Fung HKH, Hayashi Y, Salo VT, Babenko A, Zagoriy I, Brunner A, Ellenberg J, Müller CW, Cuylen-Haering S, Mahamid J. Genetically encoded multimeric tags for subcellular protein localization in cryo-EM. Nat Methods 2023; 20:1900-1908. [PMID: 37932397 PMCID: PMC10703698 DOI: 10.1038/s41592-023-02053-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
Cryo-electron tomography (cryo-ET) allows for label-free high-resolution imaging of macromolecular assemblies in their native cellular context. However, the localization of macromolecules of interest in tomographic volumes can be challenging. Here we present a ligand-inducible labeling strategy for intracellular proteins based on fluorescent, 25-nm-sized, genetically encoded multimeric particles (GEMs). The particles exhibit recognizable structural signatures, enabling their automated detection in cryo-ET data by convolutional neural networks. The coupling of GEMs to green fluorescent protein-tagged macromolecules of interest is triggered by addition of a small-molecule ligand, allowing for time-controlled labeling to minimize disturbance to native protein function. We demonstrate the applicability of GEMs for subcellular-level localization of endogenous and overexpressed proteins across different organelles in human cells using cryo-correlative fluorescence and cryo-ET imaging. We describe means for quantifying labeling specificity and efficiency, and for systematic optimization for rare and abundant protein targets, with emphasis on assessing the potential effects of labeling on protein function.
Collapse
Affiliation(s)
- Herman K H Fung
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yuki Hayashi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Veijo T Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Anastasiia Babenko
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- University of Heidelberg, Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas Brunner
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Sara Cuylen-Haering
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
54
|
Liu HF, Zhou Y, Huang Q, Piland J, Jin W, Mandel J, Du X, Martin J, Bartesaghi A. nextPYP: a comprehensive and scalable platform for characterizing protein variability in situ using single-particle cryo-electron tomography. Nat Methods 2023; 20:1909-1919. [PMID: 37884796 PMCID: PMC10703682 DOI: 10.1038/s41592-023-02045-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
Single-particle cryo-electron tomography is an emerging technique capable of determining the structure of proteins imaged within the native context of cells at molecular resolution. While high-throughput techniques for sample preparation and tilt-series acquisition are beginning to provide sufficient data to allow structural studies of proteins at physiological concentrations, the complex data analysis pipeline and the demanding storage and computational requirements pose major barriers for the development and broader adoption of this technology. Here, we present a scalable, end-to-end framework for single-particle cryo-electron tomography data analysis from on-the-fly pre-processing of tilt series to high-resolution refinement and classification, which allows efficient analysis and visualization of datasets with hundreds of tilt series and hundreds of thousands of particles. We validate our approach using in vitro and cellular datasets, demonstrating its effectiveness at achieving high-resolution and revealing conformational heterogeneity in situ. The framework is made available through an intuitive and easy-to-use computer application, nextPYP ( http://nextpyp.app ).
Collapse
Affiliation(s)
- Hsuan-Fu Liu
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Qinwen Huang
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Jonathan Piland
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Weisheng Jin
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Justin Mandel
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Xiaochen Du
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeffrey Martin
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University, Durham, NC, USA.
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
55
|
Pelz PM, Griffin SM, Stonemeyer S, Popple D, DeVyldere H, Ercius P, Zettl A, Scott MC, Ophus C. Solving complex nanostructures with ptychographic atomic electron tomography. Nat Commun 2023; 14:7906. [PMID: 38036516 PMCID: PMC10689721 DOI: 10.1038/s41467-023-43634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Transmission electron microscopy (TEM) is essential for determining atomic scale structures in structural biology and materials science. In structural biology, three-dimensional structures of proteins are routinely determined from thousands of identical particles using phase-contrast TEM. In materials science, three-dimensional atomic structures of complex nanomaterials have been determined using atomic electron tomography (AET). However, neither of these methods can determine the three-dimensional atomic structure of heterogeneous nanomaterials containing light elements. Here, we perform ptychographic electron tomography from 34.5 million diffraction patterns to reconstruct an atomic resolution tilt series of a double wall-carbon nanotube (DW-CNT) encapsulating a complex ZrTe sandwich structure. Class averaging the resulting tilt series images and subpixel localization of the atomic peaks reveals a Zr11Te50 structure containing a previously unobserved ZrTe2 phase in the core. The experimental realization of atomic resolution ptychographic electron tomography will allow for the structural determination of a wide range of beam-sensitive nanomaterials containing light elements.
Collapse
Affiliation(s)
- Philipp M Pelz
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich Alexander-Universität Erlangen-Nürnberg, IZNF, 91058, Erlangen, Germany.
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA.
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Sinéad M Griffin
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Scott Stonemeyer
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Derek Popple
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Hannah DeVyldere
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Peter Ercius
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alex Zettl
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA, 94720, USA
- Department of Physics, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Mary C Scott
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Colin Ophus
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
56
|
Gao J, Tong M, Lee C, Gaertig J, Legal T, Bui KH. DomainFit: Identification of Protein Domains in cryo-EM maps at Intermediate Resolution using AlphaFold2-predicted Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569001. [PMID: 38077012 PMCID: PMC10705406 DOI: 10.1101/2023.11.28.569001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Cryo-electron microscopy (cryo-EM) has revolutionized our understanding of macromolecular complexes, enabling high-resolution structure determination. With the paradigm shift to in situ structural biology recently driven by the ground-breaking development of cryo-focused ion beam milling and cryo-electron tomography, there are an increasing number of structures at sub-nanometer resolution of complexes solved directly within their cellular environment. These cellular complexes often contain unidentified proteins, related to different cellular states or processes. Identifying proteins at resolutions lower than 4 Å remains challenging because the side chains cannot be visualized reliably. Here, we present DomainFit, a program for automated domain-level protein identification from cryo-EM maps at resolutions lower than 4 Å. By fitting domains from artificial intelligence-predicted models such as AlphaFold2-predicted models into cryo-EM maps, the program performs statistical analyses and attempts to identify the proteins forming the density. Using DomainFit, we identified two microtubule inner proteins, one of them, a CCDC81 domain-containing protein, is exclusively localized in the proximal region of the doublet microtubule from the ciliate Tetrahymena thermophila. The flexibility and capability of DomainFit makes it a valuable tool for analyzing in situ structures.
Collapse
Affiliation(s)
- Jerry Gao
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Max Tong
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Chinkyu Lee
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
57
|
Sun C, Kang YF, Fang XY, Liu YN, Bu GL, Wang AJ, Li Y, Zhu QY, Zhang H, Xie C, Kong XW, Peng YJ, Lin WJ, Zhou L, Chen XC, Lu ZZ, Xu HQ, Hong DC, Zhang X, Zhong L, Feng GK, Zeng YX, Xu M, Zhong Q, Liu Z, Zeng MS. A gB nanoparticle vaccine elicits a protective neutralizing antibody response against EBV. Cell Host Microbe 2023; 31:1882-1897.e10. [PMID: 37848029 DOI: 10.1016/j.chom.2023.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Epstein-Barr virus (EBV) is a global public health concern, as it is known to cause multiple diseases while also being etiologically associated with a wide range of epithelial and lymphoid malignancies. Currently, there is no available prophylactic vaccine against EBV. gB is the EBV fusion protein that mediates viral membrane fusion and participates in host recognition, making it critical for EBV infection in both B cells and epithelial cells. Here, we present a gB nanoparticle, gB-I53-50 NP, that displays multiple copies of gB. Compared with the gB trimer, gB-I53-50 NP shows improved structural integrity and stability, as well as enhanced immunogenicity in mice and non-human primate (NHP) preclinical models. Immunization and passive transfer demonstrate a robust and durable protective antibody response that protects humanized mice against lethal EBV challenge. This vaccine candidate demonstrates significant potential in preventing EBV infection, providing a possible platform for developing prophylactic vaccines for EBV.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xin-Yan Fang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yi-Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Ao-Jie Wang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Qian-Ying Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China; MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xiang-Wei Kong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yong-Jian Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Wen-Jie Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Ling Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xin-Chun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Zheng-Zhou Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Hui-Qin Xu
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Dong-Chun Hong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xiao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Ling Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China.
| | - Zheng Liu
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China.
| |
Collapse
|
58
|
Zhu D, Cao D, Zhang X. Virus structures revealed by advanced cryoelectron microscopy methods. Structure 2023; 31:1348-1359. [PMID: 37797619 DOI: 10.1016/j.str.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023]
Abstract
Before the resolution revolution, cryoelectron microscopy (cryo-EM) single-particle analysis (SPA) already achieved resolutions beyond 4 Å for certain icosahedral viruses, enabling ab initio atomic model building of these viruses. As the only samples that achieved such high resolution at that time, cryo-EM method development was closely intertwined with the improvement of reconstructions of symmetrical viruses. Viral morphology exhibits significant diversity, ranging from small to large, uniform to non-uniform, and from containing single symmetry to multiple symmetries. Furthermore, viruses undergo conformational changes during their life cycle. Several methods, such as asymmetric reconstruction, Ewald sphere correction, cryoelectron tomography (cryo-ET), and sub-tomogram averaging (STA), have been developed and applied to determine virus structures in vivo and in vitro. This review outlines current advanced cryo-EM methods for high-resolution structure determination of viruses and summarizes accomplishments obtained with these approaches. Moreover, persisting challenges in comprehending virus structures are discussed and we propose potential solutions.
Collapse
Affiliation(s)
- Dongjie Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
59
|
Cassidy CK, Qin Z, Frosio T, Gosink K, Yang Z, Sansom MSP, Stansfeld PJ, Parkinson JS, Zhang P. Structure of the native chemotaxis core signaling unit from phage E-protein lysed E. coli cells. mBio 2023; 14:e0079323. [PMID: 37772839 PMCID: PMC10653900 DOI: 10.1128/mbio.00793-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE Bacterial chemotaxis is a ubiquitous behavior that enables cell movement toward or away from specific chemicals. It serves as an important model for understanding cell sensory signal transduction and motility. Characterization of the molecular mechanisms underlying chemotaxis is of fundamental interest and requires a high-resolution structural picture of the sensing machinery, the chemosensory array. In this study, we combine cryo-electron tomography and molecular simulation to present the complete structure of the core signaling unit, the basic building block of chemosensory arrays, from Escherichia coli. Our results provide new insight into previously poorly-resolved regions of the complex and offer a structural basis for designing new experiments to test mechanistic hypotheses.
Collapse
Affiliation(s)
- C. Keith Cassidy
- Diamond Light Source, Didcot, United Kingdom
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Zhuan Qin
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Khoosheh Gosink
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Peijun Zhang
- Diamond Light Source, Didcot, United Kingdom
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
60
|
Ni T, Mendonça L, Zhu Y, Howe A, Radecke J, Shah PM, Sheng Y, Krebs AS, Duyvesteyn HM, Allen E, Lambe T, Bisset C, Spencer A, Morris S, Stuart DI, Gilbert S, Zhang P. ChAdOx1 COVID vaccines express RBD open prefusion SARS-CoV-2 spikes on the cell surface. iScience 2023; 26:107882. [PMID: 37766989 PMCID: PMC10520439 DOI: 10.1016/j.isci.2023.107882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been proven to be an effective means of decreasing COVID-19 mortality, hospitalization rates, and transmission. One of the vaccines deployed worldwide is ChAdOx1 nCoV-19, which uses an adenovirus vector to drive the expression of the original SARS-CoV-2 spike on the surface of transduced cells. Using cryo-electron tomography and subtomogram averaging, we determined the native structures of the vaccine product expressed on cell surfaces in situ. We show that ChAdOx1-vectored vaccines expressing the Beta SARS-CoV-2 variant produce abundant native prefusion spikes predominantly in one-RBD-up conformation. Furthermore, the ChAdOx1-vectored HexaPro-stabilized spike yields higher cell surface expression, enhanced RBD exposure, and reduced shedding of S1 compared to the wild type. We demonstrate in situ structure determination as a powerful means for studying antigen design options in future vaccine development against emerging novel SARS-CoV-2 variants and broadly against other infectious viruses.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Luiza Mendonça
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Yanan Zhu
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Andrew Howe
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Julika Radecke
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Pranav M. Shah
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Anna-Sophia Krebs
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Helen M.E. Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Elizabeth Allen
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 7BN, UK
| | - Cameron Bisset
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Alexandra Spencer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Susan Morris
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, OX3 7TY, UK
| | - David I. Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, OX3 7TY, UK
| | - Sarah Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- NIHR Oxford Biomedical Research Centre, Oxford OX3 7BN, UK
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, OX3 7TY, UK
| | - Peijun Zhang
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
61
|
Balyschew N, Yushkevich A, Mikirtumov V, Sanchez RM, Sprink T, Kudryashev M. Streamlined structure determination by cryo-electron tomography and subtomogram averaging using TomoBEAR. Nat Commun 2023; 14:6543. [PMID: 37848413 PMCID: PMC10582028 DOI: 10.1038/s41467-023-42085-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
Structures of macromolecules in their native state provide unique unambiguous insights into their functions. Cryo-electron tomography combined with subtomogram averaging demonstrated the power to solve such structures in situ at resolutions in the range of 3 Angstrom for some macromolecules. In order to be applicable to the structural determination of the majority of macromolecules observable in cells in limited amounts, processing of tomographic data has to be performed in a high-throughput manner. Here we present TomoBEAR-a modular configurable workflow engine for streamlined processing of cryo-electron tomographic data for subtomogram averaging. TomoBEAR combines commonly used cryo-EM packages with reasonable presets to provide a transparent ("white box") approach for data management and processing. We demonstrate applications of TomoBEAR to two data sets of purified macromolecular targets, to an ion channel RyR1 in a membrane, and the tomograms of plasma FIB-milled lamellae and demonstrate the ability to produce high-resolution structures. TomoBEAR speeds up data processing, minimizes human interventions, and will help accelerate the adoption of in situ structural biology by cryo-ET. The source code and the documentation are freely available.
Collapse
Affiliation(s)
- Nikita Balyschew
- Max Planck Institute of Biophysics, Frankfurt on Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt on Main, Frankfurt, Germany
| | - Artsemi Yushkevich
- In Situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Vasilii Mikirtumov
- Max Planck Institute of Biophysics, Frankfurt on Main, Germany
- In Situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ricardo M Sanchez
- Max Planck Institute of Biophysics, Frankfurt on Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt on Main, Frankfurt, Germany
- EMBL Heidelberg, Heidelberg, Germany
| | - Thiemo Sprink
- Core Facility for Cryo-Electron Microscopy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cryo-EM Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mikhail Kudryashev
- Max Planck Institute of Biophysics, Frankfurt on Main, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University of Frankfurt on Main, Frankfurt, Germany.
- In Situ Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
62
|
Du S, Peng R, Xu W, Qu X, Wang Y, Wang J, Li L, Tian M, Guan Y, Wang J, Wang G, Li H, Deng L, Shi X, Ma Y, Liu F, Sun M, Wei Z, Jin N, Liu W, Qi J, Liu Q, Liao M, Li C. Cryo-EM structure of severe fever with thrombocytopenia syndrome virus. Nat Commun 2023; 14:6333. [PMID: 37816705 PMCID: PMC10564799 DOI: 10.1038/s41467-023-41804-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
The severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne human-infecting bunyavirus, which utilizes two envelope glycoproteins, Gn and Gc, to enter host cells. However, the structure and organization of these glycoproteins on virion surface are not yet known. Here we describe the structure of SFTSV determined by single particle reconstruction, which allows mechanistic insights into bunyavirus assembly at near-atomic resolution. The SFTSV Gn and Gc proteins exist as heterodimers and further assemble into pentameric and hexameric peplomers, shielding the Gc fusion loops by both intra- and inter-heterodimer interactions. Individual peplomers are associated mainly through the ectodomains, in which the highly conserved glycans on N914 of Gc play a crucial role. This elaborate assembly stabilizes Gc in the metastable prefusion conformation and creates some cryptic epitopes that are only accessible in the intermediate states during virus entry. These findings provide an important basis for developing vaccines and therapeutic drugs.
Collapse
Affiliation(s)
- Shouwen Du
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Ruchao Peng
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wang Xu
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaoyun Qu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yuhang Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Jiamin Wang
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Letian Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Mingyao Tian
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yudong Guan
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Jigang Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Guoqing Wang
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingcong Deng
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaoshuang Shi
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yidan Ma
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fengting Liu
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Minhua Sun
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhengkai Wei
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ningyi Jin
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| | - Quan Liu
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Foshan University, Foshan, China.
| | - Ming Liao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China.
| | - Chang Li
- Department of Infectious Diseases and Center for Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
63
|
Hou Z, Nightingale F, Zhu Y, MacGregor-Chatwin C, Zhang P. Structure of native chromatin fibres revealed by Cryo-ET in situ. Nat Commun 2023; 14:6324. [PMID: 37816746 PMCID: PMC10564948 DOI: 10.1038/s41467-023-42072-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
The structure of chromatin plays pivotal roles in regulating gene transcription, DNA replication and repair, and chromosome segregation. This structure, however, remains elusive. Here, using cryo-FIB and cryo-ET, we delineate the 3D architecture of native chromatin fibres in intact interphase human T-lymphoblasts and determine the in situ structures of nucleosomes in different conformations. These chromatin fibres are not structured as uniform 30 nm one-start or two-start filaments but are composed of relaxed, variable zigzag organizations of nucleosomes connected by straight linker DNA. Nucleosomes with little H1 and linker DNA density are distributed randomly without any spatial preference. This work will inspire future high-resolution investigations on native chromatin structures in situ at both a single-nucleosome level and a population level under many different cellular conditions in health and disease.
Collapse
Affiliation(s)
- Zhen Hou
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Frank Nightingale
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
64
|
Poger D, Yen L, Braet F. Big data in contemporary electron microscopy: challenges and opportunities in data transfer, compute and management. Histochem Cell Biol 2023; 160:169-192. [PMID: 37052655 PMCID: PMC10492738 DOI: 10.1007/s00418-023-02191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
The second decade of the twenty-first century witnessed a new challenge in the handling of microscopy data. Big data, data deluge, large data, data compliance, data analytics, data integrity, data interoperability, data retention and data lifecycle are terms that have introduced themselves to the electron microscopy sciences. This is largely attributed to the booming development of new microscopy hardware tools. As a result, large digital image files with an average size of one terabyte within one single acquisition session is not uncommon nowadays, especially in the field of cryogenic electron microscopy. This brings along numerous challenges in data transfer, compute and management. In this review, we will discuss in detail the current state of international knowledge on big data in contemporary electron microscopy and how big data can be transferred, computed and managed efficiently and sustainably. Workflows, solutions, approaches and suggestions will be provided, with the example of the latest experiences in Australia. Finally, important principles such as data integrity, data lifetime and the FAIR and CARE principles will be considered.
Collapse
Affiliation(s)
- David Poger
- Microscopy Australia, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Lisa Yen
- Microscopy Australia, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Filip Braet
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Medical Sciences (Molecular and Cellular Biomedicine), The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
65
|
Graham M, Zhang P. Cryo-electron tomography to study viral infection. Biochem Soc Trans 2023; 51:1701-1711. [PMID: 37560901 PMCID: PMC10578967 DOI: 10.1042/bst20230103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Developments in cryo-electron microscopy (cryo-EM) have been interwoven with the study of viruses ever since its first applications to biological systems. Following the success of single particle cryo-EM in the last decade, cryo-electron tomography (cryo-ET) is now rapidly maturing as a technology and catalysing great advancement in structural virology as its application broadens. In this review, we provide an overview of the use of cryo-ET to study viral infection biology, discussing the key workflows and strategies used in the field. We highlight the vast body of studies performed on purified viruses and virus-like particles (VLPs), as well as discussing how cryo-ET can characterise host-virus interactions and membrane fusion events. We further discuss the importance of in situ cellular imaging in revealing previously unattainable details of infection and highlight the need for validation of high-resolution findings from purified ex situ systems. We give perspectives for future developments to achieve the full potential of cryo-ET to characterise the molecular processes of viral infection.
Collapse
Affiliation(s)
- Miles Graham
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, U.K
| |
Collapse
|
66
|
Chaillet ML, van der Schot G, Gubins I, Roet S, Veltkamp RC, Förster F. Extensive Angular Sampling Enables the Sensitive Localization of Macromolecules in Electron Tomograms. Int J Mol Sci 2023; 24:13375. [PMID: 37686180 PMCID: PMC10487639 DOI: 10.3390/ijms241713375] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Cryo-electron tomography provides 3D images of macromolecules in their cellular context. To detect macromolecules in tomograms, template matching (TM) is often used, which uses 3D models that are often reliable for substantial parts of the macromolecules. However, the extent of rotational searches in particle detection has not been investigated due to computational limitations. Here, we provide a GPU implementation of TM as part of the PyTOM software package, which drastically speeds up the orientational search and allows for sampling beyond the Crowther criterion within a feasible timeframe. We quantify the improvements in sensitivity and false-discovery rate for the examples of ribosome identification and detection. Sampling at the Crowther criterion, which was effectively impossible with CPU implementations due to the extensive computation times, allows for automated extraction with high sensitivity. Consequently, we also show that an extensive angular sample renders 3D TM sensitive to the local alignment of tilt series and damage induced by focused ion beam milling. With this new release of PyTOM, we focused on integration with other software packages that support more refined subtomogram-averaging workflows. The automated classification of ribosomes by TM with appropriate angular sampling on locally corrected tomograms has a sufficiently low false-discovery rate, allowing for it to be directly used for high-resolution averaging and adequate sensitivity to reveal polysome organization.
Collapse
Affiliation(s)
- Marten L. Chaillet
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.L.C.); (G.v.d.S.); (S.R.)
| | - Gijs van der Schot
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.L.C.); (G.v.d.S.); (S.R.)
| | - Ilja Gubins
- Department of Information and Computing Sciences, Utrecht University, 3584 CC Utrecht, The Netherlands; (I.G.); (R.C.V.)
| | - Sander Roet
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.L.C.); (G.v.d.S.); (S.R.)
| | - Remco C. Veltkamp
- Department of Information and Computing Sciences, Utrecht University, 3584 CC Utrecht, The Netherlands; (I.G.); (R.C.V.)
| | - Friedrich Förster
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.L.C.); (G.v.d.S.); (S.R.)
| |
Collapse
|
67
|
Lucas BA. Visualizing everything, everywhere, all at once: Cryo-EM and the new field of structureomics. Curr Opin Struct Biol 2023; 81:102620. [PMID: 37279614 DOI: 10.1016/j.sbi.2023.102620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Twenty years ago, the release of the first draft of the human genome sequence instigated a paradigm shift in genomics and molecular biology. Arguably, structural biology is entering an analogous era, with availability of an experimentally determined or predicted molecular model for almost every protein-coding gene from many genomes-producing a reference "structureome". Structural predictions require experimental validation and not all proteins conform to a single structure, making any reference structureome necessarily incomplete. Despite these limitations, a reference structureome can be used to characterize cell state in more detail than by quantifying sequence or expression levels alone. Cryogenic electron microscopy (cryo-EM) is a method that can generate atomic resolution views of molecules and cells frozen in place. In this perspective I consider how emerging cryo-EM methods are contributing to the new field of structureomics.
Collapse
Affiliation(s)
- Bronwyn A Lucas
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
68
|
Tan ZY, Cai S, Noble AJ, Chen JK, Shi J, Gan L. Heterogeneous non-canonical nucleosomes predominate in yeast cells in situ. eLife 2023; 12:RP87672. [PMID: 37503920 PMCID: PMC10382156 DOI: 10.7554/elife.87672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Nuclear processes depend on the organization of chromatin, whose basic units are cylinder-shaped complexes called nucleosomes. A subset of mammalian nucleosomes in situ (inside cells) resembles the canonical structure determined in vitro 25 years ago. Nucleosome structure in situ is otherwise poorly understood. Using cryo-electron tomography (cryo-ET) and 3D classification analysis of budding yeast cells, here we find that canonical nucleosomes account for less than 10% of total nucleosomes expected in situ. In a strain in which H2A-GFP is the sole source of histone H2A, class averages that resemble canonical nucleosomes both with and without GFP densities are found ex vivo (in nuclear lysates), but not in situ. These data suggest that the budding yeast intranuclear environment favors multiple non-canonical nucleosome conformations. Using the structural observations here and the results of previous genomics and biochemical studies, we propose a model in which the average budding yeast nucleosome's DNA is partially detached in situ.
Collapse
Affiliation(s)
- Zhi Yang Tan
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Shujun Cai
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Alex J Noble
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology CenterNew YorkUnited States
| | - Jon K Chen
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Jian Shi
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| | - Lu Gan
- Department of Biological Sciences and Center for BioImaging Sciences, National University of SingaporeSingaporeSingapore
| |
Collapse
|
69
|
Waheed AA, Zhu Y, Agostino E, Naing L, Hikichi Y, Soheilian F, Yoo SW, Song Y, Zhang P, Slusher BS, Haughey NJ, Freed EO. Neutral sphingomyelinase 2 is required for HIV-1 maturation. Proc Natl Acad Sci U S A 2023; 120:e2219475120. [PMID: 37406093 PMCID: PMC10334776 DOI: 10.1073/pnas.2219475120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/11/2023] [Indexed: 07/07/2023] Open
Abstract
HIV-1 assembly occurs at the inner leaflet of the plasma membrane (PM) in highly ordered membrane microdomains. The size and stability of membrane microdomains is regulated by activity of the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) that is localized primarily to the inner leaflet of the PM. In this study, we demonstrate that pharmacological inhibition or depletion of nSMase2 in HIV-1-producer cells results in a block in the processing of the major viral structural polyprotein Gag and the production of morphologically aberrant, immature HIV-1 particles with severely impaired infectivity. We find that disruption of nSMase2 also severely inhibits the maturation and infectivity of other primate lentiviruses HIV-2 and simian immunodeficiency virus, has a modest or no effect on nonprimate lentiviruses equine infectious anemia virus and feline immunodeficiency virus, and has no effect on the gammaretrovirus murine leukemia virus. These studies demonstrate a key role for nSMase2 in HIV-1 particle morphogenesis and maturation.
Collapse
Affiliation(s)
- Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD21702
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - Eva Agostino
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD21702
| | - Lwar Naing
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD21702
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD21702
| | - Ferri Soheilian
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Seung-Wan Yoo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Yun Song
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, DidcotOX11 0DE, United Kingdom
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, OxfordOX3 7BN, United Kingdom
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, DidcotOX11 0DE, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, OxfordOX3 7BN, United Kingdom
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Norman J. Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD21702
| |
Collapse
|
70
|
Powell BM, Davis JH. Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.542975. [PMID: 37398315 PMCID: PMC10312494 DOI: 10.1101/2023.05.31.542975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cryo-electron tomography (cryo-ET) allows one to observe macromolecular complexes in their native, spatially contextualized environment. Tools to visualize such complexes at nanometer resolution via iterative alignment and averaging are well-developed but rely on assumptions of structural homogeneity among the complexes under consideration. Recently developed downstream analysis tools allow for some assessment of macromolecular diversity but have limited capacity to represent highly heterogeneous macromolecules, including those undergoing continuous conformational changes. Here, we extend the highly expressive cryoDRGN deep learning architecture, originally created for cryo-electron microscopy single particle analysis, to sub-tomograms. Our new tool, tomoDRGN, learns a continuous low-dimensional representation of structural heterogeneity in cryo-ET datasets while also learning to reconstruct a large, heterogeneous ensemble of structures supported by the underlying data. Using simulated and experimental data, we describe and benchmark architectural choices within tomoDRGN that are uniquely necessitated and enabled by cryo-ET data. We additionally illustrate tomoDRGN's efficacy in analyzing an exemplar dataset, using it to reveal extensive structural heterogeneity among ribosomes imaged in situ.
Collapse
Affiliation(s)
- Barrett M. Powell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joseph H. Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
71
|
Kleinpeter AB, Zhu Y, Mallery DL, Ablan SD, Chen L, Hardenbrook N, Saiardi A, James LC, Zhang P, Freed EO. The Effect of Inositol Hexakisphosphate on HIV-1 Particle Production and Infectivity can be Modulated by Mutations that Affect the Stability of the Immature Gag Lattice. J Mol Biol 2023; 435:168037. [PMID: 37330292 PMCID: PMC10544863 DOI: 10.1016/j.jmb.2023.168037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/19/2023]
Abstract
The assembly of an HIV-1 particle begins with the construction of a spherical lattice composed of hexamer subunits of the Gag polyprotein. The cellular metabolite inositol hexakisphosphate (IP6) binds and stabilizes the immature Gag lattice via an interaction with the six-helix bundle (6HB), a crucial structural feature of Gag hexamers that modulates both virus assembly and infectivity. The 6HB must be stable enough to promote immature Gag lattice formation, but also flexible enough to be accessible to the viral protease, which cleaves the 6HB during particle maturation. 6HB cleavage liberates the capsid (CA) domain of Gag from the adjacent spacer peptide 1 (SP1) and IP6 from its binding site. This pool of IP6 molecules then promotes the assembly of CA into the mature conical capsid that is required for infection. Depletion of IP6 in virus-producer cells results in severe defects in assembly and infectivity of wild-type (WT) virions. Here we show that in an SP1 double mutant (M4L/T8I) with a hyperstable 6HB, IP6 can block virion infectivity by preventing CA-SP1 processing. Thus, depletion of IP6 in virus-producer cells markedly increases M4L/T8I CA-SP1 processing and infectivity. We also show that the introduction of the M4L/T8I mutations partially rescues the assembly and infectivity defects induced by IP6 depletion on WT virions, likely by increasing the affinity of the immature lattice for limiting IP6. These findings reinforce the importance of the 6HB in virus assembly, maturation, and infection and highlight the ability of IP6 to modulate 6HB stability.
Collapse
Affiliation(s)
- Alex B Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA. https://twitter.com/AlexKleinpeter
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sherimay D Ablan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Long Chen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London, UK. https://twitter.com/SaiardiLab
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. https://twitter.com/JamesLab9
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
72
|
Abstract
Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure-function relationships in their native environment and becoming a tool for discovering new biology.
Collapse
Affiliation(s)
- Lindsey N Young
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
73
|
Kim HHS, Uddin MR, Xu M, Chang YW. Computational Methods Toward Unbiased Pattern Mining and Structure Determination in Cryo-Electron Tomography Data. J Mol Biol 2023; 435:168068. [PMID: 37003470 PMCID: PMC10164694 DOI: 10.1016/j.jmb.2023.168068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/19/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Cryo-electron tomography can uniquely probe the native cellular environment for macromolecular structures. Tomograms feature complex data with densities of diverse, densely crowded macromolecular complexes, low signal-to-noise, and artifacts such as the missing wedge effect. Post-processing of this data generally involves isolating regions or particles of interest from tomograms, organizing them into related groups, and rendering final structures through subtomogram averaging. Template-matching and reference-based structure determination are popular analysis methods but are vulnerable to biases and can often require significant user input. Most importantly, these approaches cannot identify novel complexes that reside within the imaged cellular environment. To reliably extract and resolve structures of interest, efficient and unbiased approaches are therefore of great value. This review highlights notable computational software and discusses how they contribute to making automated structural pattern discovery a possibility. Perspectives emphasizing the importance of features for user-friendliness and accessibility are also presented.
Collapse
Affiliation(s)
- Hannah Hyun-Sook Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. https://twitter.com/hannahinthelab
| | - Mostofa Rafid Uddin
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. https://twitter.com/duran_rafid
| | - Min Xu
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
74
|
Zeng X, Kahng A, Xue L, Mahamid J, Chang YW, Xu M. High-throughput cryo-ET structural pattern mining by unsupervised deep iterative subtomogram clustering. Proc Natl Acad Sci U S A 2023; 120:e2213149120. [PMID: 37027429 PMCID: PMC10104553 DOI: 10.1073/pnas.2213149120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/24/2023] [Indexed: 04/08/2023] Open
Abstract
Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning approach, Deep Iterative Subtomogram Clustering Approach (DISCA), that automatically detects subsets of homogeneous structures by learning and modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET datasets shows that an unsupervised deep learning based method can detect diverse structures with a wide range of molecular sizes. This unsupervised detection paves the way for systematic unbiased recognition of macromolecular complexes in situ.
Collapse
Affiliation(s)
- Xiangrui Zeng
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA15213
| | - Anson Kahng
- Computer Science Department, University of Rochester, Rochester, NY14620
| | - Liang Xue
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
- Faculty of Biosciences, Collaboration for joint PhD degree between European Molecular Biology Laboratory and Heidelberg University, Heidelberg69117, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg69117, Germany
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Min Xu
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA15213
| |
Collapse
|
75
|
Barad BA, Medina M, Fuentes D, Wiseman RL, Grotjahn DA. Quantifying organellar ultrastructure in cryo-electron tomography using a surface morphometrics pipeline. J Cell Biol 2023; 222:e202204093. [PMID: 36786771 PMCID: PMC9960335 DOI: 10.1083/jcb.202204093] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/22/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Cellular cryo-electron tomography (cryo-ET) enables three-dimensional reconstructions of organelles in their native cellular environment at subnanometer resolution. However, quantifying ultrastructural features of pleomorphic organelles in three dimensions is challenging, as is defining the significance of observed changes induced by specific cellular perturbations. To address this challenge, we established a semiautomated workflow to segment organellar membranes and reconstruct their underlying surface geometry in cryo-ET. To complement this workflow, we developed an open-source suite of ultrastructural quantifications, integrated into a single pipeline called the surface morphometrics pipeline. This pipeline enables rapid modeling of complex membrane structures and allows detailed mapping of inter- and intramembrane spacing, curvedness, and orientation onto reconstructed membrane meshes, highlighting subtle organellar features that are challenging to detect in three dimensions and allowing for statistical comparison across many organelles. To demonstrate the advantages of this approach, we combine cryo-ET with cryo-fluorescence microscopy to correlate bulk mitochondrial network morphology (i.e., elongated versus fragmented) with membrane ultrastructure of individual mitochondria in the presence and absence of endoplasmic reticulum (ER) stress. Using our pipeline, we demonstrate ER stress promotes adaptive remodeling of ultrastructural features of mitochondria including spacing between the inner and outer membranes, local curvedness of the inner membrane, and spacing between mitochondrial cristae. We show that differences in membrane ultrastructure correlate to mitochondrial network morphologies, suggesting that these two remodeling events are coupled. Our pipeline offers opportunities for quantifying changes in membrane ultrastructure on a single-cell level using cryo-ET, opening new opportunities to define changes in ultrastructural features induced by diverse types of cellular perturbations.
Collapse
Affiliation(s)
- Benjamin A. Barad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michaela Medina
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Daniel Fuentes
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
76
|
You X, Zhang X, Cheng J, Xiao Y, Ma J, Sun S, Zhang X, Wang HW, Sui SF. In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex. Nature 2023; 616:199-206. [PMID: 36922595 DOI: 10.1038/s41586-023-05831-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023]
Abstract
In oxygenic photosynthetic organisms, light energy is captured by antenna systems and transferred to photosystem II (PSII) and photosystem I (PSI) to drive photosynthesis1,2. The antenna systems of red algae consist of soluble phycobilisomes (PBSs) and transmembrane light-harvesting complexes (LHCs)3. Excitation energy transfer pathways from PBS to photosystems remain unclear owing to the lack of structural information. Here we present in situ structures of PBS-PSII-PSI-LHC megacomplexes from the red alga Porphyridium purpureum at near-atomic resolution using cryogenic electron tomography and in situ single-particle analysis4, providing interaction details between PBS, PSII and PSI. The structures reveal several unidentified and incomplete proteins and their roles in the assembly of the megacomplex, as well as a huge and sophisticated pigment network. This work provides a solid structural basis for unravelling the mechanisms of PBS-PSII-PSI-LHC megacomplex assembly, efficient energy transfer from PBS to the two photosystems, and regulation of energy distribution between PSII and PSI.
Collapse
Affiliation(s)
- Xin You
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanan Xiao
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Jianfei Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
77
|
Riechmann C, Zhang P. Recent structural advances in bacterial chemotaxis signalling. Curr Opin Struct Biol 2023; 79:102565. [PMID: 36868078 PMCID: PMC10460253 DOI: 10.1016/j.sbi.2023.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 03/05/2023]
Abstract
Bacterial chemosensory arrays have served as a model system for in-situ structure determination, clearly cataloguing the improvement of cryo-electron tomography (cryoET) over the past decade. In recent years, this has culminated in an accurately fitted atomistic model for the full-length core signalling unit (CSU) and numerous insights into the function of the transmembrane receptors responsible for signal transduction. Here, we review the achievements of the latest structural advances in bacterial chemosensory arrays and the developments which have made such advances possible.
Collapse
Affiliation(s)
- Carlos Riechmann
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK.
| |
Collapse
|
78
|
Berger C, Premaraj N, Ravelli RBG, Knoops K, López-Iglesias C, Peters PJ. Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology. Nat Methods 2023; 20:499-511. [PMID: 36914814 DOI: 10.1038/s41592-023-01783-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/20/2023] [Indexed: 03/16/2023]
Abstract
Cryogenic electron microscopy and data processing enable the determination of structures of isolated macromolecules to near-atomic resolution. However, these data do not provide structural information in the cellular environment where macromolecules perform their native functions, and vital molecular interactions can be lost during the isolation process. Cryogenic focused ion beam (FIB) fabrication generates thin lamellae of cellular samples and tissues, enabling structural studies on the near-native cellular interior and its surroundings by cryogenic electron tomography (cryo-ET). Cellular cryo-ET benefits from the technological developments in electron microscopes, detectors and data processing, and more in situ structures are being obtained and at increasingly higher resolution. In this Review, we discuss recent studies employing cryo-ET on FIB-generated lamellae and the technological developments in ultrarapid sample freezing, FIB fabrication of lamellae, tomography, data processing and correlative light and electron microscopy that have enabled these studies. Finally, we explore the future of cryo-ET in terms of both methods development and biological application.
Collapse
Affiliation(s)
- Casper Berger
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
| | - Navya Premaraj
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Kèvin Knoops
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
79
|
Cheng J, Liu T, You X, Zhang F, Sui SF, Wan X, Zhang X. Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA. Nat Commun 2023; 14:1282. [PMID: 36922493 PMCID: PMC10017804 DOI: 10.1038/s41467-023-36175-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/18/2023] [Indexed: 03/17/2023] Open
Abstract
Cryo-electron tomography is a major tool used to study the structure of protein complexes in situ. However, the throughput of tilt-series image data collection is still quite low. Here, we show that GisSPA, a GPU accelerated program, can translationally and rotationally localize the target protein complex in cellular lamellae, as prepared with a focused ion beam, using single cryo-electron microscopy images without tilt-series, and reconstruct the protein complex at near-atomic resolution. GisSPA allows high-throughput data collection without the acquisition of tilt-series images and reconstruction of the tomogram, which is essential for high-resolution reconstruction of asymmetric or low-symmetry protein complexes. We demonstrate the power of GisSPA with 3.4-Å and 3.9-Å resolutions of resolving phycobilisome and tetrameric photosystem II complex structures in cellular lamellae, respectively. In this work, we present GisSPA as a practical tool that facilitates high-resolution in situ protein structure determination.
Collapse
Affiliation(s)
- Jing Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tong Liu
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fa Zhang
- Beijing Institute of Technology, Beijing, 100081, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaohua Wan
- Beijing Institute of Technology, Beijing, 100081, China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
80
|
Are extraordinary nucleosome structures more ordinary than we thought? Chromosoma 2023:10.1007/s00412-023-00791-w. [PMID: 36917245 DOI: 10.1007/s00412-023-00791-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
The nucleosome is a DNA-protein assembly that is the basic unit of chromatin. A nucleosome can adopt various structures. In the canonical nucleosome structure, 145-147 bp of DNA is wrapped around a histone heterooctamer. The strong histone-DNA interactions cause the DNA to be inaccessible for nuclear processes such as transcription. Therefore, the canonical nucleosome structure has to be altered into different, non-canonical structures to increase DNA accessibility. While it is recognised that non-canonical structures do exist, these structures are not well understood. In this review, we discuss both the evidence for various non-canonical nucleosome structures in the nucleus and the factors that are believed to induce these structures. The wide range of non-canonical structures is likely to regulate the amount of accessible DNA, and thus have important nuclear functions.
Collapse
|
81
|
Khavnekar S, Wan W, Majumder P, Wietrzynski W, Erdmann PS, Plitzko JM. Multishot tomography for high-resolution in situ subtomogram averaging. J Struct Biol 2023; 215:107911. [PMID: 36343843 DOI: 10.1016/j.jsb.2022.107911] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) can resolve protein complexes at near atomic resolution, and when combined with focused ion beam (FIB) milling, macromolecules can be observed within their native context. Unlike single particle acquisition (SPA), cryo-ET can be slow, which may reduce overall project throughput. We here propose a fast, multi-position tomographic acquisition scheme based on beam-tilt corrected beam-shift imaging along the tilt axis, which yields sub-nanometer in situ STA averages.
Collapse
Affiliation(s)
| | - W Wan
- Vanderbilt University, United States
| | | | | | - P S Erdmann
- MPI for Biochemistry, Germany; Human Technopole, Italy.
| | | |
Collapse
|
82
|
Du DX, Fitzpatrick AW. Design of an ultrafast pulsed ponderomotive phase plate for cryo-electron tomography. CELL REPORTS METHODS 2023; 3:100387. [PMID: 36814846 PMCID: PMC9939428 DOI: 10.1016/j.crmeth.2022.100387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Ponderomotive phase plates have shown that temporally consistent phase contrast is possible within electron microscopes via high-fluence static laser modes resonating in Fabry-Perot cavities. Here, we explore using pulsed laser beams as an alternative method of generating high fluences. We find through forward-stepping finite element models that picosecond or shorter interactions are required for meaningful fluences and phase shifts, with higher pulse energies and smaller beam waists leading to predicted higher fluences. An additional model based on quasi-classical assumptions is used to discover the shape of the phase plate by incorporating the oscillatory nature of the electric field. From these results, we find the transient nature of the laser pulses removes the influence of Kapitza-Dirac diffraction patterns that appear in the static resonator cases. We conclude by predicting that a total laser pulse energy of 8.7 μJ is enough to induce the required π/2 phase shift for Zernike-like phase microscopy.
Collapse
Affiliation(s)
- Daniel X. Du
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Anthony W.P. Fitzpatrick
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
83
|
Iudin A, Korir PK, Somasundharam S, Weyand S, Cattavitello C, Fonseca N, Salih O, Kleywegt GJ, Patwardhan A. EMPIAR: the Electron Microscopy Public Image Archive. Nucleic Acids Res 2023; 51:D1503-D1511. [PMID: 36440762 PMCID: PMC9825465 DOI: 10.1093/nar/gkac1062] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022] Open
Abstract
Public archiving in structural biology is well established with the Protein Data Bank (PDB; wwPDB.org) catering for atomic models and the Electron Microscopy Data Bank (EMDB; emdb-empiar.org) for 3D reconstructions from cryo-EM experiments. Even before the recent rapid growth in cryo-EM, there was an expressed community need for a public archive of image data from cryo-EM experiments for validation, software development, testing and training. Concomitantly, the proliferation of 3D imaging techniques for cells, tissues and organisms using volume EM (vEM) and X-ray tomography (XT) led to calls from these communities to publicly archive such data as well. EMPIAR (empiar.org) was developed as a public archive for raw cryo-EM image data and for 3D reconstructions from vEM and XT experiments and now comprises over a thousand entries totalling over 2 petabytes of data. EMPIAR resources include a deposition system, entry pages, facilities to search, visualize and download datasets, and a REST API for programmatic access to entry metadata. The success of EMPIAR also poses significant challenges for the future in dealing with the very fast growth in the volume of data and in enhancing its reusability.
Collapse
Affiliation(s)
- Andrii Iudin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Paul K Korir
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Sriram Somasundharam
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Simone Weyand
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Cesare Cattavitello
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Neli Fonseca
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Osman Salih
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Gerard J Kleywegt
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Ardan Patwardhan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| |
Collapse
|
84
|
Lai L, Cheung YW, Martinez M, Kixmoeller K, Palao L, Steimle S, Ho MC, Black BE, Lai EM, Chang YW. In Situ Structure Determination of Bacterial Surface Nanomachines Using Cryo-Electron Tomography. Methods Mol Biol 2023; 2646:211-248. [PMID: 36842118 DOI: 10.1007/978-1-0716-3060-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Bacterial surface nanomachines are often refractory to structural determination in their intact form due to their extensive association with the cell envelope preventing them from being properly purified for traditional structural biology methods. Cryo-electron tomography (cryo-ET) is an emerging branch of cryo-electron microscopy that can visualize supramolecular complexes directly inside frozen-hydrated cells in 3D at nanometer resolution, therefore posing a unique capability to study the intact structures of bacterial surface nanomachines in situ and reveal their molecular association with other cellular components. Furthermore, the resolution of cryo-ET is continually improving alongside methodological advancement. Here, using the type IV pilus machine in Myxococcus xanthus as an example, we describe a step-by-step workflow for in situ structure determination including sample preparation and screening, microscope and camera tuning, tilt series acquisition, data processing and tomogram reconstruction, subtomogram averaging, and structural analysis.
Collapse
Affiliation(s)
- Longsheng Lai
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yee-Wai Cheung
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Matthew Martinez
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stefan Steimle
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
85
|
Golmohammadzadeh M, Sexton DL, Parmar S, Tocheva EI. Advanced imaging techniques: Microscopy. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:1-25. [PMID: 37085191 DOI: 10.1016/bs.aambs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
For decades, bacteria were thought of as "bags" of enzymes, lacking organelles and significant subcellular structures. This stood in sharp contrast with eukaryotes, where intracellular compartmentalization and the role of large-scale order had been known for a long time. However, the emerging field of Bacterial Cell Biology has established that bacteria are in fact highly organized, with most macromolecular components having specific subcellular locations that can change depending on the cell's physiological state (Barry & Gitai, 2011; Lenz & Søgaard-Andersen, 2011; Thanbichler & Shapiro, 2008). For example, we now know that many processes in bacteria are orchestrated by cytoskeletal proteins, which polymerize into surprisingly diverse superstructures, such as rings, sheets, and tread-milling rods (Pilhofer & Jensen, 2013). These superstructures connect individual proteins, macromolecular assemblies, and even two neighboring cells, to affect essential higher-order processes including cell division, DNA segregation, and motility. Understanding these processes requires resolving the in vivo dynamics and ultrastructure at different functional stages of the cell, at macromolecular resolution and in 3-dimensions (3D). Fluorescence light microscopy (fLM) of tagged proteins is highly valuable for investigating protein localization and dynamics, and the resolution power of transmission electron microscopy (TEM) is required to elucidate the structure of macromolecular complexes in vivo and in vitro. This chapter summarizes the most recent advances in LM and TEM approaches that have revolutionized our knowledge and understanding of the microbial world.
Collapse
Affiliation(s)
- Mona Golmohammadzadeh
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle L Sexton
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shweta Parmar
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
86
|
Wang C, Wojtynek M, Medalia O. Structural investigation of eukaryotic cells: From the periphery to the interior by cryo-electron tomography. Adv Biol Regul 2023; 87:100923. [PMID: 36280452 DOI: 10.1016/j.jbior.2022.100923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Cryo-electron tomography (cryo-ET) combines a close-to-life preservation of the cell with high-resolution three-dimensional (3D) imaging. This allows to study the molecular architecture of the cellular landscape and provides unprecedented views on biological processes and structures. In this review we mainly focus on the application of cryo-ET to visualize and structurally characterize eukaryotic cells - from the periphery to the cellular interior. We discuss strategies that can be employed to investigate the structure of challenging targets in their cellular environment as well as the application of complimentary approaches in conjunction with cryo-ET.
Collapse
Affiliation(s)
- Chunyang Wang
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Wojtynek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
87
|
Zabeo D, Davies KM. Studying membrane modulation mechanisms by electron cryo-tomography. Curr Opin Struct Biol 2022; 77:102464. [PMID: 36174286 DOI: 10.1016/j.sbi.2022.102464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022]
Abstract
Membrane modulation is a key part of cellular life. Critical to processes like energy production, cell division, trafficking, migration and even pathogen entry, defects in membrane modulation are often associated with diseases. Studying the molecular mechanisms of membrane modulation is challenging due to the highly dynamic nature of the oligomeric assemblies involved, which adopt multiple conformations depending on the precise event they are participating in. With the development of electron cryo-tomography and subtomogram averaging, many of these challenges are being resolved as it is now possible to observe complex macromolecular assemblies inside a cell at nanometre to sub-nanometre resolutions. Here, we review the different ways electron cryo-tomography is being used to help uncover the molecular mechanisms used by cells to shape their membranes.
Collapse
Affiliation(s)
- Davide Zabeo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Karen M Davies
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
88
|
Ermel UH, Arghittu SM, Frangakis AS. ArtiaX: An electron tomography toolbox for the interactive handling of sub-tomograms in UCSF ChimeraX. Protein Sci 2022; 31:e4472. [PMID: 36251681 PMCID: PMC9667824 DOI: 10.1002/pro.4472] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Cryo-electron tomography analysis involves the selection of macromolecular complexes to be used for subsequent sub-tomogram averaging and structure determination. Here, we describe a plugin developed for UCSF ChimeraX that allows for the display, selection, and editing of particles within tomograms. Positions and orientations of selected particles can be manually set, modified and inspected in real time, both on screen and in virtual reality, and exported to various file formats. The plugin allows for the parallel visualization of particles stored in several meta data lists, in the context of any three-dimensional image that can be opened with UCSF ChimeraX. The particles are rendered in user-defined colors or using colormaps, such that individual classes or groups of particles, cross-correlation coefficients, or other types of information can be highlighted to the user. The implemented functions are fast, reliable, and intuitive, exploring the broad range of features in UCSF ChimeraX. They allow for a fluent human-machine interaction, which enables an effective understanding of the sub-tomogram processing pipeline, even for non-specialist users.
Collapse
Affiliation(s)
- Utz H. Ermel
- Buchmann Institute for Molecular Life Sciences and Institute for BiophysicsGoethe University FrankfurtFrankfurtGermany
| | - Serena M. Arghittu
- Buchmann Institute for Molecular Life Sciences and Institute for BiophysicsGoethe University FrankfurtFrankfurtGermany
- Buchmann Institute for Molecular Life SciencesFrankfurt Institute for Advanced StudiesFrankfurtGermany
| | - Achilleas S. Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute for BiophysicsGoethe University FrankfurtFrankfurtGermany
| |
Collapse
|
89
|
Harastani M, Vuillemot R, Hamitouche I, Moghadam NB, Jonic S. ContinuousFlex: Software package for analyzing continuous conformational variability of macromolecules in cryo electron microscopy and tomography data. J Struct Biol 2022; 214:107906. [PMID: 36244611 DOI: 10.1016/j.jsb.2022.107906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/02/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
ContinuousFlex is a user-friendly open-source software package for analyzing continuous conformational variability of macromolecules in cryo electron microscopy (cryo-EM) and cryo electron tomography (cryo-ET) data. In 2019, ContinuousFlex became available as a plugin for Scipion, an image processing software package extensively used in the cryo-EM field. Currently, ContinuousFlex contains software for running (1) recently published methods HEMNMA-3D, TomoFlow, and NMMD; (2) earlier published methods HEMNMA and StructMap; and (3) methods for simulating cryo-EM and cryo-ET data with conformational variability and methods for data preprocessing. It also includes external software for molecular dynamics simulation (GENESIS) and normal mode analysis (ElNemo), used in some of the mentioned methods. The HEMNMA software has been presented in the past, but not the software of other methods. Besides, ContinuousFlex currently also offers a deep learning extension of HEMNMA, named DeepHEMNMA. In this article, we review these methods in the context of the ContinuousFlex package, developed to facilitate their use by the community.
Collapse
Affiliation(s)
- Mohamad Harastani
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Rémi Vuillemot
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Ilyes Hamitouche
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Nima Barati Moghadam
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Slavica Jonic
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
90
|
Burley SK, Berman HM, Chiu W, Dai W, Flatt JW, Hudson BP, Kaelber JT, Khare SD, Kulczyk AW, Lawson CL, Pintilie GD, Sali A, Vallat B, Westbrook JD, Young JY, Zardecki C. Electron microscopy holdings of the Protein Data Bank: the impact of the resolution revolution, new validation tools, and implications for the future. Biophys Rev 2022; 14:1281-1301. [PMID: 36474933 PMCID: PMC9715422 DOI: 10.1007/s12551-022-01013-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/06/2022] [Indexed: 12/04/2022] Open
Abstract
As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) "Resolution Revolution" made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps. After describing the history of the PDB and the Worldwide Protein Data Bank (wwPDB) partnership, which jointly manages both the PDB and EMDB archives, this review examines the origins of the resolution revolution and analyzes its impact on structural biology viewed through the lens of PDB holdings. Six areas of focus exemplifying the impact of 3DEM across the biosciences are discussed in detail (icosahedral viruses, ribosomes, integral membrane proteins, SARS-CoV-2 spike proteins, cryogenic electron tomography, and integrative structure determination combining 3DEM with complementary biophysical measurement techniques), followed by a review of 3DEM structure validation by the wwPDB that underscores the importance of community engagement.
Collapse
Affiliation(s)
- Stephen K. Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093 USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Helen M. Berman
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA USA
| | - Wei Dai
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Justin W. Flatt
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Brian P. Hudson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Jason T. Kaelber
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Sagar D. Khare
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 174 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08901 USA
| | - Catherine L. Lawson
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | | | - Andrej Sali
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158 USA
| | - Brinda Vallat
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - John D. Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 USA
| | - Jasmine Y. Young
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Christine Zardecki
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| |
Collapse
|
91
|
Yu X, Ni T, Munson G, Zhang P, Gilbert RJC. Cryo-EM structures of perforin-2 in isolation and assembled on a membrane suggest a mechanism for pore formation. EMBO J 2022; 41:e111857. [PMID: 36245269 PMCID: PMC9713709 DOI: 10.15252/embj.2022111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 01/15/2023] Open
Abstract
Perforin-2 (PFN2, MPEG1) is a key pore-forming protein in mammalian innate immunity restricting intracellular bacteria proliferation. It forms a membrane-bound pre-pore complex that converts to a pore-forming structure upon acidification; but its mechanism of conformational transition has been debated. Here we used cryo-electron microscopy, tomography and subtomogram averaging to determine structures of PFN2 in pre-pore and pore conformations in isolation and bound to liposomes. In isolation and upon acidification, the pre-assembled complete pre-pore rings convert to pores in both flat ring and twisted conformations. On membranes, in situ assembled PFN2 pre-pores display various degrees of completeness; whereas PFN2 pores are mainly incomplete arc structures that follow the same subunit packing arrangements as found in isolation. Both assemblies on membranes use their P2 β-hairpin for binding to the lipid membrane surface. Overall, these structural snapshots suggest a molecular mechanism for PFN2 pre-pore to pore transition on a targeted membrane, potentially using the twisted pore as an intermediate or alternative state to the flat conformation, with the capacity to cause bilayer distortion during membrane insertion.
Collapse
Affiliation(s)
- Xiulian Yu
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen CollegeUniversity of OxfordOxfordUK
| | - Tao Ni
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Present address:
School of Biomedical Sciences, LKS Faculty of MedicineThe University of Hong KongPokfulamHong Kong SARChina
| | - George Munson
- Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotUK
- Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen CollegeUniversity of OxfordOxfordUK
| |
Collapse
|
92
|
Sheng Y, Harrison PJ, Vogirala V, Yang Z, Strain-Damerell C, Frosio T, Himes BA, Siebert CA, Zhang P, Clare DK. Application of super-resolution and correlative double sampling in cryo-electron microscopy. Faraday Discuss 2022; 240:261-276. [PMID: 35938521 PMCID: PMC9642007 DOI: 10.1039/d2fd00049k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 01/09/2023]
Abstract
Developments in cryo-EM have allowed atomic or near-atomic resolution structure determination to become routine in single particle analysis (SPA). However, near-atomic resolution structures determined using cryo-electron tomography and sub-tomogram averaging (cryo-ET STA) are much less routine. In this paper, we show that collecting cryo-ET STA data using the same conditions as SPA, with both correlated double sampling (CDS) and the super-resolution mode, allowed apoferritin to be reconstructed out to the physical Nyquist frequency of the images. Even with just two tilt series, STA yields an apoferritin map at 2.9 Å resolution. These results highlight the exciting potential of cryo-ET STA in the future of protein structure determination. While processing SPA data recorded in super-resolution mode may yield structures surpassing the physical Nyquist limit, processing cryo-ET STA data in the super-resolution mode gave no additional resolution benefit. We further show that collecting SPA data in the super-resolution mode, with CDS activated, reduces the estimated B-factor, leading to a reduction in the number of particles required to reach a target resolution without compromising the data size on disk and the area imaged in SerialEM. However, collecting SPA data in CDS does reduce throughput, given that a similar resolution structure, with a slightly larger B-factor, is achievable with optimised parameters for speed in EPU (without CDS).
Collapse
Affiliation(s)
- Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Peter J Harrison
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Vinod Vogirala
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Zhengyi Yang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Claire Strain-Damerell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- RCaH, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Thomas Frosio
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Benjamin A Himes
- Howard Hughes Medical Institute, RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - C Alistair Siebert
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| | - Peijun Zhang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
- RCaH, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Daniel K Clare
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK.
| |
Collapse
|
93
|
Metskas LA, Wilfong R, Jensen GJ. Subtomogram averaging for biophysical analysis and supramolecular context. J Struct Biol X 2022; 6:100076. [PMID: 36311290 PMCID: PMC9596874 DOI: 10.1016/j.yjsbx.2022.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022] Open
Abstract
Recent advances in hardware, software and computing power have led to increasingly ambitious applications of cryo-electron tomography and subtomogram averaging. It is now possible to reveal both structures and biophysical relationships like protein binding partners and small molecule occupancy in these experiments. However, some data processing choices require the user to prioritize structure or biophysical context. Here, we present a modified subtomogram averaging approach that preserves both capabilities. By increasing the accuracy of particle-picking, performing alignment and averaging on all subtomograms, and decreasing reliance on symmetry and tight masks, the usability of tomography and subtomogram averaging data for biophysical analyses is greatly increased without negatively impacting structural refinements.
Collapse
Affiliation(s)
- Lauren Ann Metskas
- Department of Biological Sciences, Purdue University, United States
- Department of Chemistry, Purdue University, United States
| | - Rosalie Wilfong
- Department of Biological Sciences, Purdue University, United States
| | - Grant J. Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, United States
- Department of Chemistry and Biochemistry, Brigham Young University, United States
| |
Collapse
|
94
|
Zhou K, Si Z, Ge P, Tsao J, Luo M, Zhou ZH. Atomic model of vesicular stomatitis virus and mechanism of assembly. Nat Commun 2022; 13:5980. [PMID: 36216930 PMCID: PMC9549855 DOI: 10.1038/s41467-022-33664-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components.
Collapse
Affiliation(s)
- Kang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhu Si
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Peng Ge
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Departments of Chemistry and Biochemistry and Biological Chemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Jun Tsao
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Al, 35294, USA
| | - Ming Luo
- The Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
95
|
Tail proteins of phage SU10 reorganize into the nozzle for genome delivery. Nat Commun 2022; 13:5622. [PMID: 36153309 PMCID: PMC9509320 DOI: 10.1038/s41467-022-33305-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli phage SU10 belongs to the genus Kuravirus from the class Caudoviricetes of phages with short non-contractile tails. In contrast to other short-tailed phages, the tails of Kuraviruses elongate upon cell attachment. Here we show that the virion of SU10 has a prolate head, containing genome and ejection proteins, and a tail, which is formed of portal, adaptor, nozzle, and tail needle proteins and decorated with long and short fibers. The binding of the long tail fibers to the receptors in the outer bacterial membrane induces the straightening of nozzle proteins and rotation of short tail fibers. After the re-arrangement, the nozzle proteins and short tail fibers alternate to form a nozzle that extends the tail by 28 nm. Subsequently, the tail needle detaches from the nozzle proteins and five types of ejection proteins are released from the SU10 head. The nozzle with the putative extension formed by the ejection proteins enables the delivery of the SU10 genome into the bacterial cytoplasm. It is likely that this mechanism of genome delivery, involving the formation of the tail nozzle, is employed by all Kuraviruses. E. coli phage SU10 has a short non-contractile tail. Here, the authors show that after cell binding, nozzle proteins and tail fibers of SU10 change conformation to form a nozzle that enables the delivery of the phage DNA into the bacterial cytoplasm.
Collapse
|
96
|
Danita C, Chiu W, Galaz-Montoya JG. Efficient manual annotation of cryogenic electron tomograms using IMOD. STAR Protoc 2022; 3:101658. [PMID: 36097385 PMCID: PMC9463458 DOI: 10.1016/j.xpro.2022.101658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/28/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Annotation highlights and segmentation isolates features in cryogenic electron tomograms to improve visualization and quantification of features (for example, their size and abundance, and spatial relationships with other features), facilitating phenotypic structural analyses of cellular tomograms. Here, we present a manual annotation protocol using the open-source software IMOD and describe segmentation of three types of common cellular features: membranes, large globules, and filaments. IMOD's interpolation function can improve the speed of manual annotation up to an order of magnitude.
Collapse
Affiliation(s)
- Cristina Danita
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jesús G. Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
97
|
Zhu Y, Koo CW, Cassidy CK, Spink MC, Ni T, Zanetti-Domingues LC, Bateman B, Martin-Fernandez ML, Shen J, Sheng Y, Song Y, Yang Z, Rosenzweig AC, Zhang P. Structure and activity of particulate methane monooxygenase arrays in methanotrophs. Nat Commun 2022; 13:5221. [PMID: 36064719 PMCID: PMC9445010 DOI: 10.1038/s41467-022-32752-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/16/2022] [Indexed: 01/29/2023] Open
Abstract
Methane-oxidizing bacteria play a central role in greenhouse gas mitigation and have potential applications in biomanufacturing. Their primary metabolic enzyme, particulate methane monooxygenase (pMMO), is housed in copper-induced intracytoplasmic membranes (ICMs), of which the function and biogenesis are not known. We show by serial cryo-focused ion beam (cryoFIB) milling/scanning electron microscope (SEM) volume imaging and lamellae-based cellular cryo-electron tomography (cryoET) that these ICMs are derived from the inner cell membrane. The pMMO trimer, resolved by cryoET and subtomogram averaging to 4.8 Å in the ICM, forms higher-order hexagonal arrays in intact cells. Array formation correlates with increased enzymatic activity, highlighting the importance of studying the enzyme in its native environment. These findings also demonstrate the power of cryoET to structurally characterize native membrane enzymes in the cellular context.
Collapse
Affiliation(s)
- Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christopher W Koo
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, USA
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Matthew C Spink
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Laura C Zanetti-Domingues
- Central Laser Facility, Science and Technology Facility Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Benji Bateman
- Central Laser Facility, Science and Technology Facility Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Science and Technology Facility Council, Rutherford Appleton Laboratory, Didcot, Oxfordshire, UK
| | - Juan Shen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yuewen Sheng
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Yun Song
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Zhengyi Yang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Imaging Centre, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
98
|
Lucas BA, Zhang K, Loerch S, Grigorieff N. In situ single particle classification reveals distinct 60S maturation intermediates in cells. eLife 2022; 11:e79272. [PMID: 36005291 PMCID: PMC9444246 DOI: 10.7554/elife.79272] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Previously, we showed that high-resolution template matching can localize ribosomes in two-dimensional electron cryo-microscopy (cryo-EM) images of untilted Mycoplasma pneumoniae cells with high precision (Lucas et al., 2021). Here, we show that comparing the signal-to-noise ratio (SNR) observed with 2DTM using different templates relative to the same cellular target can correct for local variation in noise and differentiate related complexes in focused ion beam (FIB)-milled cell sections. We use a maximum likelihood approach to define the probability of each particle belonging to each class, thereby establishing a statistic to describe the confidence of our classification. We apply this method in two contexts to locate and classify related intermediate states of 60S ribosome biogenesis in the Saccharomyces cerevisiae cell nucleus. In the first, we separate the nuclear pre-60S population from the cytoplasmic mature 60S population, using the subcellular localization to validate assignment. In the second, we show that relative 2DTM SNRs can be used to separate mixed populations of nuclear pre-60S that are not visually separable. 2DTM can distinguish related molecular populations without the need to generate 3D reconstructions from the data to be classified, permitting classification even when only a few target particles exist in a cell.
Collapse
Affiliation(s)
- Bronwyn A Lucas
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Kexin Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Sarah Loerch
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | - Nikolaus Grigorieff
- RNA Therapeutics Institute, University of Massachusetts Chan Medical SchoolWorcesterUnited States
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| |
Collapse
|
99
|
Seifer S, Elbaum M. ClusterAlign: A fiducial tracking and tilt series alignment tool for thick sample tomography. BIOLOGICAL IMAGING 2022; 2:e7. [PMID: 38486831 PMCID: PMC10936405 DOI: 10.1017/s2633903x22000071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 03/17/2024]
Abstract
Thick specimens, as encountered in cryo-scanning transmission electron tomography, offer special challenges to conventional reconstruction workflows. The visibility of features, including gold nanoparticles introduced as fiducial markers, varies strongly through the tilt series. As a result, tedious manual refinement may be required in order to produce a successful alignment. Information from highly tilted views must often be excluded to the detriment of axial resolution in the reconstruction. We introduce here an approach to tilt series alignment based on identification of fiducial particle clusters that transform coherently in rotation, essentially those that lie at similar depth. Clusters are identified by comparison of tilted views with a single untilted reference, rather than with adjacent tilts. The software, called ClusterAlign, proves robust to poor signal to noise ratio and varying visibility of the individual fiducials and is successful in carrying the alignment to the ends of the tilt series where other methods tend to fail. ClusterAlign may be used to generate a list of tracked fiducials, to align a tilt series, or to perform a complete 3D reconstruction. Tools to evaluate alignment error by projection matching are included. Execution involves no manual intervention, and adherence to standard file formats facilitates an interface with other software, particularly IMOD/etomo, tomo3d, and tomoalign.
Collapse
Affiliation(s)
- Shahar Seifer
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elbaum
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
100
|
Ni T, Sun Y, Burn W, Al-Hazeem MMJ, Zhu Y, Yu X, Liu LN, Zhang P. Structure and assembly of cargo Rubisco in two native α-carboxysomes. Nat Commun 2022; 13:4299. [PMID: 35879301 PMCID: PMC9314367 DOI: 10.1038/s41467-022-32004-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 01/13/2023] Open
Abstract
Carboxysomes are a family of bacterial microcompartments in cyanobacteria and chemoautotrophs. They encapsulate Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase catalyzing carbon fixation inside a proteinaceous shell. How Rubisco complexes pack within the carboxysomes is unknown. Using cryo-electron tomography, we determine the distinct 3D organization of Rubisco inside two distant α-carboxysomes from a marine α-cyanobacterium Cyanobium sp. PCC 7001 where Rubiscos are organized in three concentric layers, and from a chemoautotrophic bacterium Halothiobacillus neapolitanus where they form intertwining spirals. We further resolve the structures of native Rubisco as well as its higher-order assembly at near-atomic resolutions by subtomogram averaging. The structures surprisingly reveal that the authentic intrinsically disordered linker protein CsoS2 interacts with Rubiscos in native carboxysomes but functions distinctively in the two α-carboxysomes. In contrast to the uniform Rubisco-CsoS2 association in the Cyanobium α-carboxysome, CsoS2 binds only to the Rubiscos close to the shell in the Halo α-carboxysome. Our findings provide critical knowledge of the assembly principles of α-carboxysomes, which may aid in the rational design and repurposing of carboxysome structures for new functions.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Will Burn
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Monsour M J Al-Hazeem
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Xiulian Yu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|