51
|
Wang Y, Adachi Y, Imsumran A, Yamamoto H, Piao W, Li H, Ii M, Arimura Y, Park MY, Kim D, Lee CT, Carbone DP, Imai K, Shinomura Y. Targeting for insulin-like growth factor-I receptor with short hairpin RNA for human digestive/gastrointestinal cancers. J Gastroenterol 2010; 45:159-170. [PMID: 19902140 DOI: 10.1007/s00535-009-0151-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 10/06/2009] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS Insulin-like growth factor (IGF)-I receptor (IGF-IR) signaling plays important parts in both the tumorigenicity and progression of digestive/gastrointestinal malignancies. In this study, we sought to test the effectiveness of a practical approach to blocking IGF-IR signaling using RNA interference delivered by recombinant adenoviruses. METHODS We constructed a recombinant adenovirus expressing short hairpin RNA targeting IGF-IR (shIGF-IR) and assessed its effect on signal transduction, proliferation, and survival in digestive/gastrointestinal cancer cell lines representing colorectal, gastric, and pancreatic adenocarcinoma, esophageal squamous cell carcinoma, and hepatoma. We analyzed the effects of shIGF-IR alone and with chemotherapy in vitro and in nude mouse xenografts, as well as on insulin signaling and hybrid receptor formation between IGF-IR and insulin receptor. RESULTS shIGF-IR blocked expression and autophosphorylation of IGF-IR and downstream signaling by the IGFs, but not by insulin. shIGF-IR suppressed proliferation and carcinogenicity in vitro and up-regulated apoptosis in a dose-dependent fashion. shIGF-IR augmented the effects of chemotherapy on in vitro growth and apoptosis induction. Moreover, the combination of shIGF-IR and chemotherapy was highly effective against tumors in mice. shIGF-IR reduced hybrid receptor formation without effect on expression of insulin receptor. CONCLUSIONS shIGF-IR may have therapeutic utility in human digestive/gastrointestinal cancers, both alone and in combination with chemotherapy.
Collapse
Affiliation(s)
- Yu Wang
- First Department of Internal Medicine, Sapporo Medical University, W-16 Chuo-ku, Sapporo 060-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Furukawa J, Wraight CJ, Freier SM, Peralta E, Atley LM, Monia BP, Gleave ME, Cox ME. Antisense oligonucleotide targeting of insulin-like growth factor-1 receptor (IGF-1R) in prostate cancer. Prostate 2010; 70:206-18. [PMID: 19790231 DOI: 10.1002/pros.21054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Altered expression of insulin-like growth factor receptor (IGF-1R) is associated with castrate-resistant prostate cancer (CRPC) progression. We hypothesize that increased expression and/or responsiveness of IGF-IR may promote disease progression. This study assesses ATL1101, a 2'-MOE-modified antisense oligonucleotide (ASO) targeting human IGF-IR, with regard to potency and anti-cancer activity in androgen-responsive (LNCaP) and -independent (PC3) prostate cancer cells in vitro and in vivo. METHODS IGF-IR mRNA and protein expression was assessed in ATL1101- and control oligonucleotides (ODN)-treated prostate cancer cells by QT-PCR and immunoblotting. The effect of IGF-1R ASO on cell growth and apoptosis in vitro was examined by crystal violet assay, flow cytometry, and expression and activation state of downstream signaling targets was examined by immunoblotting. In vivo growth of subcutaneous xenografts was performed in nude mice treated with intraperitoneally administered ATL1101 or control ODN by measuring tumor volume of PC3 xenografts in intact mice, and tumor volume and serum prostate-specific antigen levels in castrated mice harboring LNCaP xenografts. RESULTS We observed dose- and sequence-specific suppression of IGF-IR mRNA and protein expression in ATL1101-treated cells in vitro. Suppressed IGF-IR expression correlated with decreased proliferation and increased apoptosis of PC3 cells under standard culture conditions and of LNCaP cells under androgen-deprived culture conditions. ATL1101 suppressed PC3 tumor growth as a monotherapy and delayed CRPC progression of LNCaP xenografts. CONCLUSIONS This study reports the first preclinical proof-of-principle data that this novel IGF-IR ASO selectively suppresses IGF-1R expression, suppresses growth of CRPC tumors, and delays CRPC progression in vitro and in vivo.
Collapse
Affiliation(s)
- Junya Furukawa
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Houghton PJ, Morton CL, Gorlick R, Lock RB, Carol H, Reynolds CP, Kang MH, Maris JM, Keir ST, Kolb EA, Wu J, Wozniak AW, Billups CA, Rubinstein L, Smith MA. Stage 2 combination testing of rapamycin with cytotoxic agents by the Pediatric Preclinical Testing Program. Mol Cancer Ther 2010; 9:101-12. [PMID: 20053767 DOI: 10.1158/1535-7163.mct-09-0952] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rapamycin demonstrated broad-spectrum tumor growth inhibition activity against the in vivo panels of childhood tumors used in the Pediatric Preclinical Testing Program (PPTP). Here we have evaluated rapamycin combined with agents used frequently in the treatment of childhood malignancies. Rapamycin was tested in vitro against 23 cell lines alone or in combination with melphalan, cisplatin, vincristine, or dexamethasone (leukemic models only). In vivo, the impact of combining rapamycin with a cytotoxic agent was evaluated using two measures: 1) the therapeutic enhancement measure, and 2) a linear regression model for time-to-event to formally evaluate for sub- and supraadditivity for the combination compared to the agents used alone. Combining rapamycin with cytotoxic agents in vitro gave predominantly subadditive or additive effects, except for dexamethasone in leukemia models for which supra-additive activity was observed. In vivo testing demonstrated that therapeutic enhancement was common for rapamycin in combination with cyclophosphamide and occurred for 4 of 11 evaluable xenografts for the rapamycin and vincristine combination. The combinations of rapamycin with either cyclophosphamide or vincristine were significantly more effective than the respective standard agents used alone at their maximum tolerated doses (MTD) for most evaluable xenografts. The combination of rapamycin and cisplatin produced excessive toxicity requiring cisplatin dose reductions, and therapeutic enhancement was not observed for this combination. Addition of rapamycin to either cyclophosphamide or vincristine at their respective MTDs appears promising, as these combinations are relatively well tolerated and as many of the pediatric preclinical models evaluated demonstrated therapeutic enhancement for these combinations.
Collapse
Affiliation(s)
- Peter J Houghton
- Center for Children's Cancer, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Camidge DR, Dziadziuszko R, Hirsch FR. The rationale and development of therapeutic insulin-like growth factor axis inhibition for lung and other cancers. Clin Lung Cancer 2010; 10:262-72. [PMID: 19632946 DOI: 10.3816/clc.2009.n.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The insulin-like growth factor (IGF) axis involves elements of endocrine, paracrine, and autocrine control. It is centrally involved in normal development and growth. Core signaling is driven through the IGF-1 receptor (IGF-1R) in either homo-multimeric complexes or hetero-multimeric complexes with the insulin receptor (IR). Signaling is affected by a large number of upstream and downstream factors, including the differential expression of various intracellular IR substrates, a range of stimulatory ligands (insulin, IGF-1, and IGF-2), the expression of specific clearance receptors (eg, IGF-2R), and different IGF-binding proteins. Considerable evidence exists to implicate aspects of the IGF axis in the development and maintenance of many different nonneoplastic and neoplastic diseases, including both small-cell lung cancer and non-small-cell lung cancer (NSCLC). A large number of different anticancer strategies directed against the IGF axis are being developed. Monoclonal antibodies directed against the IGF-1R are the furthest advanced clinically. Hyperglycemia appears to be a class effect. To date, the major difference among the antibodies used in clinical trials seems to be their plasma half-lives, leading to a number of different administration regimens being taken forward. Early signals of monotherapy activity have been notably reported in patients with Ewing sarcoma and in several other cancers. Encouraging increases in the NSCLC response rate have already been reported after the addition of an anti-IGF-1R antibody to first-line carboplatin and paclitaxel. Explorations of aspects of ligands, binding proteins, receptors, and receptor substrates are all ongoing to identify potential biomarkers predictive of benefit from IGF axis intervention.
Collapse
Affiliation(s)
- D Ross Camidge
- Developmental Therapeutics Program, University of Colorado Cancer Center, Denver Thoracic Oncology Program, University of Colorado Cancer Center, Denver, Colorado 80045, USA.
| | | | | |
Collapse
|
55
|
Yavari K, Taghikhani M, Maragheh MG, Mesbah-Namin SA, Babaei MH, Arfaee AJ, Madani H, Mirzaei HR. SiRNA-mediated IGF-1R inhibition sensitizes human colon cancer SW480 cells to radiation. Acta Oncol 2009; 49:70-5. [PMID: 20001499 DOI: 10.3109/02841860903334429] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Insulin like growth factor receptor 1 (IGF-1R) is well-documented to play a key role in radiation response and tumor radiosensitivity, thus offering an attractive clinic drug target to enhance tumor sensitivity to anti-cancer radiotherapy. MATERIAL AND METHODS Human colon carcinoma SW480 cells were transfected with the specific small interference RNA (siRNA) expression vector (pkD-shRNA-IGF-1R-V2) designed to target IGF-1R mRNA. The expression of IGF-1R mRNA and its protein among the transfected and untransfected cells were detected by semi-quantitative RT-PCR and ELISA assay. The changes in cell radiosensitivity were examined by MTT assay. RESULTS Transfection of mammalian expression vector pkD containing IGF-1R siRNA was shown to reduce IGF-1R mRNA levels by up to 95%. ELISA assay detected a similar inhibition of IGF-1R protein levels in cells transfected with IGF-1R siRNA. SW480 cells transfected with the expression vector for siRNA significantly rendered cells more sensitive to radiation and the highest radiation enhancement ratio was 2.02 +/- 0.08. CONCLUSION These data provide the first evidence that specific siRNA fragment (pkD-shRNA-IGF-1R-V2) targeting human IGF-1R mRNA is able to enhance colon cancer radiosensitivity. Also results indicated that, combining IGF-1R siRNA and radiation significantly enhances antitumor efficacy compared with either modality alone.
Collapse
Affiliation(s)
- Kamal Yavari
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Zheng D, Kurenova E, Ucar D, Golubovskaya V, Magis A, Ostrov D, Cance WG, Hochwald SN. Targeting of the protein interaction site between FAK and IGF-1R. Biochem Biophys Res Commun 2009; 388:301-5. [PMID: 19664602 DOI: 10.1016/j.bbrc.2009.07.156] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
The interaction of focal adhesion kinase (FAK) and insulin-like growth factor-1 receptor (IGF-1R) plays an important role in cancer cell survival. Targeting this interaction with small molecule drugs could be a novel strategy in cancer therapy. By a series of pull-down assays using GST-tagged FAK fragments and His-tagged IGF-1R intracellular fragments, we showed that the FAK-NT2 (a.a. 127-243) domain directly interacts with the N-terminal part of the IGF-1R intracellular domain. Overexpressed FAK-NT2 domain was also shown to co-localize with IGF-1R in pancreatic cells. Computational modeling was used to predict the binding configuration of these two domains and to screen for small molecules binding to the interaction site. This strategy successfully identified a lead compound that disrupts FAK/IGF-1R interaction.
Collapse
Affiliation(s)
- Donghang Zheng
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Yuen JSP, Akkaya E, Wang Y, Takiguchi M, Peak S, Sullivan M, Protheroe AS, Macaulay VM. Validation of the type 1 insulin-like growth factor receptor as a therapeutic target in renal cancer. Mol Cancer Ther 2009; 8:1448-59. [PMID: 19509240 DOI: 10.1158/1535-7163.mct-09-0101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Expression of the type 1 insulin-like growth factor receptor (IGF1R) confers adverse prognosis in clear cell renal cell cancer (CC-RCC). We recently showed that IGF1R expression is inhibited by the von Hippel-Lindau (VHL) tumor suppressor, and the IGF1R is up-regulated in CC-RCC, in which VHL is frequently inactivated. We tested the hypothesis that IGF1R up-regulation mediates resistance to cancer therapeutics, evaluating the effects of IGF1R depletion on sensitivity to cytotoxic drugs, which are ineffective in RCC, and the mammalian target of rapamycin (mTOR) inhibitor rapamycin, analogues of which have clinical activity in this tumor. EXPERIMENTAL DESIGN This study used CC-RCC cells harboring mutant VHL, and isogenic cells expressing functional VHL. Cells were transfected with nonsilencing control small interfering RNA (siRNA), or with one of two different IGF1R siRNAs. The more potent siRNA was modified by 2'-O-methyl derivatization for in vivo administration. RESULTS CC-RCC cells expressing mutant VHL and higher IGF1R were more chemoresistant than cells expressing functional VHL. IGF1R depletion induced apoptosis, blocked cell survival, and sensitized to 5-fluorouracil and etoposide. These effects were significantly greater in CC-RCC cells expressing mutant VHL, supporting the hypothesis that IGF1R up-regulation makes a major contribution to the chemoresistance associated with VHL loss. IGF1R depletion also enhanced sensitivity to mTOR inhibition, at least in part due to suppression of rapamycin-induced Akt activation. Administration of stabilized IGF1R siRNA was shown to sensitize CC-RCC xenografts to rapamycin in vivo. CONCLUSION These data validate IGF1R as a therapeutic target in CC-RCC, and support the evaluation of IGF1R-inhibitory drugs in patients with renal cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Cisplatin/pharmacology
- Dose-Response Relationship, Drug
- Etoposide/pharmacology
- Female
- Fluorouracil/pharmacology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Immunoblotting
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- RNA, Small Interfering/genetics
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Sirolimus/pharmacology
- Transfection
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
- Von Hippel-Lindau Tumor Suppressor Protein/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- John S P Yuen
- Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Headington, Oxford, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Abstract
The insulin-like growth factor-I receptor (IGF-IR) mediates the biological actions of both IGF-I and IGF-II. The IGF-IR is expressed in most transformed cells, where it displays potent antiapoptotic, cell-survival, and transforming activities. IGF-IR expression is a fundamental prerequisite for the acquisition of a malignant phenotype, as suggested by the finding that IGF-IR-null cells (derived from IGF-IR knock-out embryos) are unable to undergo transformation when exposed to cellular or viral oncogenes. This review article will focus on the underlying molecular mechanisms that are responsible for the normal, physiological control of IGF-IR gene expression, as well as the cellular pathways that underlie its aberrant expression in cancer. Examples from the clinics will be presented, including a description of how the IGF system is involved in breast, prostate, pediatric, and gynecological cancers. Finally, current attempts to target the IGF-IR as a therapeutic approach will be described.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
59
|
Zeng X, Sachdev D, Zhang H, Gaillard-Kelly M, Yee D. Sequencing of type I insulin-like growth factor receptor inhibition affects chemotherapy response in vitro and in vivo. Clin Cancer Res 2009; 15:2840-9. [PMID: 19351773 DOI: 10.1158/1078-0432.ccr-08-1401] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The aim of this study was to determine the optimal sequence of combining anti-type I insulin-like growth factor receptor (IGF1R) antibodies with chemotherapeutic drugs in cancer cells in vitro and in vivo. EXPERIMENTAL DESIGN MCF-7 and LCC6 cells were treated with subcytotoxic concentrations of doxorubicin with or without anti-IGF1R antibodies (scFv-Fc or EM164 and its humanized version AVE1642). Treatments were given simultaneously, doxorubicin followed by anti-IGF1R antibody, or anti-IGF1R antibody followed by doxorubicin, with measurement of in vitro proliferation, apoptosis, and anchorage-independent growth. The effects of sequencing on LCC6 xenograft growth and metastasis were studied. RESULTS Doxorubicin followed by anti-IGF1R antibody (scFv-Fc or EM164) was the most effective combination strategy to inhibit cell monolayer growth and anchorage-independent growth. This sequential combination triggered increased poly (ADP-ribose) polymerase cleavage compared with other treatment sequences. The reverse sequence, antibody followed by doxorubicin treatment, protected cells from chemotherapy by decreasing apoptosis, arresting cells in S phase, and inhibiting the level and activity of topoisomerase IIalpha. Finally, our in vivo data show that recovery of IGF1R prior to doxorubicin therapy resulted in the best therapeutic responses. Low doses of AVE1642 that allowed IGF1R expression to recover at one week were more effective in combination with doxorubicin than higher antibody doses. CONCLUSION The timing of IGF1R inhibition affects responses to chemotherapy. The optimal sequence was doxorubicin followed by anti-IGF1R antibody, whereas the opposite sequence inhibited doxorubicin effects. Thus, the dose and sequencing of anti-IGF1R therapies should be considered in the design of future clinical trials.
Collapse
Affiliation(s)
- Xianke Zeng
- Department of Pharmacology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
60
|
Chitnis MM, Yuen JSP, Protheroe AS, Pollak M, Macaulay VM. The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res 2008; 14:6364-70. [PMID: 18927274 DOI: 10.1158/1078-0432.ccr-07-4879] [Citation(s) in RCA: 343] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Research conducted over the past two decades has shown the importance of the type 1 insulin-like growth factor receptor (IGF1R) in tumorigenesis, metastasis, and resistance to existing forms of cancer therapy. The IGF1R itself has only recently been accepted as a credible treatment target, however, perhaps reflecting the potential problems for drug design posed by normal tissue IGF1R expression, and close homology with the insulin receptor. Currently approximately 12 anti-IGF1R therapeutics are undergoing clinical evaluation, including blocking antibodies and tyrosine kinase inhibitors. This review will summarize the principal signaling pathways activated by IGF1R and the preclinical data that validated this receptor as a treatment target. We will review clinical progress in the testing of IGF1R inhibitory drug candidates, the relative benefits and potential toxicities of coinhibition of the insulin receptor, and the rationale for combining IGF1R blockade with other cancer treatments. An understanding of IGF1R signaling is important because it will guide the incorporation of appropriate molecular markers into clinical trial design. This will be key to the identification of patients most likely to benefit, and so will influence the ability of IGF1R inhibition to make the transition from experimental intervention to clinical therapy.
Collapse
|
61
|
Kojima S, Inahara M, Suzuki H, Ichikawa T, Furuya Y. Implications of insulin-like growth factor-I for prostate cancer therapies. Int J Urol 2008; 16:161-7. [PMID: 19183230 DOI: 10.1111/j.1442-2042.2008.02224.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the last decade, abundant evidence has suggested that the insulin-like growth factor (IGF) family comprises a multi-component network of molecules involved in the regulation of both physiological and pathological growth processes in the prostate. The IGF axis plays an important role in the tumorigenesis and neoplastic growth of prostate cancer. Epidemiological observations indicate that circulating IGF-I levels are positively associated with increased risk of prostate cancer. Activation of IGF-I receptor (IGF-IR) by IGF-I has mitogenic and anti-apoptotic effects on normal and malignant prostate cells. Therapeutic alternatives in men with progressive prostate cancer after androgen ablation are very limited and more effective therapies are needed for such patients. Inactivation of the IGF-I axis represents a potential target to treat androgen-independent prostate cancer. This review addresses epidemiological studies of IGF-I and therapeutic strategies including reduction of IGF-I levels, inhibition of IGF-IR and the signaling mechanisms involved.
Collapse
Affiliation(s)
- Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Chiba, Japan.
| | | | | | | | | |
Collapse
|
62
|
Rodon J, DeSantos V, Ferry RJ, Kurzrock R. Early drug development of inhibitors of the insulin-like growth factor-I receptor pathway: lessons from the first clinical trials. Mol Cancer Ther 2008; 7:2575-88. [PMID: 18790742 DOI: 10.1158/1535-7163.mct-08-0265] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The insulin-like growth factor-I receptor (IGF-IR) was first cloned in 1986. Since then, intense work has defined classic phosphorelays activated via the IGF-IR, which regulate cell proliferation, apoptosis, motility, and fate. The understanding of the roles of hormones in cancer and the growth hormone-IGF-IGF-binding protein axis specifically has yield to a second wave of development: the design of specific inhibitors that interrupt the signaling associated with this axis. The ability to manipulate these pathways holds not only significant therapeutic implications but also increase the chance of deeper insight about the role of the axis in carcinogenesis and metastasis. Nowadays, >25 molecules with the same goal are at different stages of development. Here, we review the clinical and preclinical experience with the two most-investigated strategies, tyrosine kinase inhibitors and monoclonal antibodies, and the advantages and disadvantages of each strategy, as well as other alternatives and possible drug combinations. We also review the biomarkers explored in the first clinical trials, the strategies that have been explored thus far, and the clinical trials that are going to explore their role in cancer treatment.
Collapse
Affiliation(s)
- Jordi Rodon
- Investigational Cancer Therapeutics, University of Texas M. D. Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
63
|
Cao W, Yacoub S, Shiverick KT, Namiki K, Sakai Y, Porvasnik S, Urbanek C, Rosser CJ. Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation. Prostate 2008; 68:1223-31. [PMID: 18465755 DOI: 10.1002/pros.20788] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bcl-2 protects cells from apoptosis and provides a survival advantage to cells over-expressing this oncogene. In addition, over expression of Bcl-2 renders cell resistant to radiation therapy. Recently, dichloroacetate (DCA) was proven to potentiate the apoptotic machinery by interacting with Bcl-2. In this study, we investigated whether treating human prostate cancer cells with DCA could modulate Bcl-2 expression and if the modulation in Bcl-2 expression could render the Bcl-2 over expressing cells more susceptible to cytotoxicity effects of radiation. METHODS PC-3-Bcl-2 and PC-3-Neo human prostate cancer cells treated with DCA in addition to irradiation were analyzed in vitro for changes in proliferation, clonogenic survival, apoptosis, cell cycle phase distribution, mitochondrial membrane potential, and expression of Bcl-2, Bcl-xL, Bax, or Bak proteins. RESULTS DCA alone produced significant cytotoxic effects and was associated with G1 cell cycle arrest. Furthermore, DCA was associated with an increased rate of apoptosis. The combination of DCA with irradiation sensitized both cell lines to radiation's killing effects. Treatment of PC-3-Bcl-2 or PC-3-Neo with DCA and irradiation resulted in marked changes in various members of the Bcl-2 family. In addition, DCA therapy resulted in a significant change in mitochondria membrane potential, thus supporting the notion that DCAs effect is on the mitochondria. CONCLUSIONS This is the first study to demonstrate DCA can effectively sensitize wild-type and over expressing Bcl-2 human prostate cancer cells to radiation by modulating the expression of key members of the Bcl-2 family. Together, these findings warrant further evaluation of the combination of DCA and irradiation.
Collapse
Affiliation(s)
- Wengang Cao
- Department of Urology, University of Florida, Gainesville, Florida 3210, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Dong A, Kong M, Ma Z, Qian J, Cheng H, Xu X. Knockdown of insulin-like growth factor 1 receptor enhances chemosensitivity to cisplatin in human lung adenocarcinoma A549 cells. Acta Biochim Biophys Sin (Shanghai) 2008; 40:497-504. [PMID: 18535748 DOI: 10.1111/j.1745-7270.2008.00429.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The effects of RNA interference-mediated insulin-like growth factor 1 receptor (IGF1R) gene silencing in response to cisplatin (DDP) in the lung cancer cell line A549 in vivo and in vitro were investigated using two plasmids expressing short hairpin RNA (shRNA) to IGF1R. A549 cells were transfected with plasmids expressing each shRNA and then treated with DDP. Semi-quantitative reverse transcription-PCR and Western blot analysis were used to detect the expression of IGF1R. MTT assay, flow cytometry and tumor growth assay in athymic nude mice were used to assess the chemosensitivity to DDP following IGF1R knockdown. Our data showed that the transfection of A549 cells with shRNA resulted in specific silencing of IGF1R by 78.9% at the mRNA level and by 89.8% at the protein level. Down-regulation of IGF1R significantly enhanced cell sensitivity to DDP, decreased the IC50 of DDP in A549 cells at 24 h, 48 h and 72 h, and retained 77.5% of A549 cells in the G0/G1 phase. Furthermore, shRNA-mediated silencing of IGF1R in combination with DDP treatment enhanced the suppression of tumor growth in both size and weight by more than 60% and increased apoptosis by more than 75% when compared with the controls in vivo. Suppression of IGF1R gene expression by shRNA enhances the chemosensitivity of A549 cells to DDP both in vitro and in vivo, indicating the therapeutic potential of RNA interference as a method for gene therapy in treating lung cancer.
Collapse
Affiliation(s)
- Aiqiang Dong
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | | | | | | | | | | |
Collapse
|
65
|
|
66
|
Yuen JSP, Macaulay VM. Targeting the type 1 insulin-like growth factor receptor as a treatment for cancer. Expert Opin Ther Targets 2008; 12:589-603. [PMID: 18410242 DOI: 10.1517/14728222.12.5.589] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND The type 1 insulin-like growth factor receptor (IGF1R) plays a critical role in transformation, invasion and apoptosis protection, and is an attractive cancer treatment target. OBJECTIVE To review IGF1R antibodies and kinase inhibitors that are in preclinical and clinical development, and to discuss questions that will influence the success of this approach in clinical practice. METHODS This review is drawn from published literature, meeting abstracts and online resources. RESULTS/CONCLUSION IGF1R blockade is generally well tolerated although it can induce hyperglycaemia. Single-agent activity has been documented in Ewing's sarcoma but not thus far in common solid tumours. Key issues include identification of factors that influence sensitivity to IGF1R blockade, and how most effectively to combine IGF1R inhibitors with other treatments.
Collapse
Affiliation(s)
- John S P Yuen
- Weatherall Institute of Molecular Medicine, University of Oxford, IGF Group, Molecular Oncology Laboratories, Headley Way, Headington, Oxford OX3 9DS, UK
| | | |
Collapse
|
67
|
Sroka IC, McDaniel K, Nagle RB, Bowden GT. Differential localization of MT1-MMP in human prostate cancer tissue: role of IGF-1R in MT1-MMP expression. Prostate 2008; 68:463-76. [PMID: 18196535 DOI: 10.1002/pros.20718] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND MT1-MMP is a metalloproteinase involved in prostate cancer metastasis. The IGF-1R is a tyrosine kinase receptor involved with tumor progression and metastasis. The purpose of this investigation was to examine MT1-MMP and IGF-1R expression and localization in prostate cancer tissues and explore the role of IGF-1R in regulating MT1-MMP in prostate cancer cell lines. METHODS Immunohistochemistry was utilized to study MT1-MMP and IGF-1R expression in human prostate tissues. IGF-1R regulation of MT1-MMP expression was determined by gene promoter analysis, quantitative RT-PCR and Western blot analysis following pharmacological inhibition of the receptor in PC-3N cells and treatment of LNCaP cells with androgen and IGF-1. RESULTS MT1-MMP expression was high in the apical regions of the luminal cells in PIN and prostate cancer and less intense in the basalateral regions of benign tissues. IGF-1R was expressed primarily in the basal cells of normal glands and highly expressed in prostate cancer. Inhibition of IGF-1R in PC-3N cells decreased MT1-MMP expression and treatment of LNCaP cells with a synthetic androgen and IGF-1 increased MT1-MMP expression. CONCLUSIONS These data demonstrate that MT1-MMP is highly expressed in the apical cytoplasmic regions of the luminal cells in PIN and prostate cancer when compared to basalateral cytoplasmic membrane staining in benign glands. Additionally, we demonstrate that IGF-1R is highly expressed in human prostate carcinoma. These findings suggest that MT1-MMP localization and IGF-1R expression in prostate carcinoma could be predictive biomarkers for aggressive disease and support IGF-1R as a promising therapeutic target to decrease processes of prostate cancer metastasis.
Collapse
Affiliation(s)
- Isis C Sroka
- Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
68
|
Kern MA, Breuhahn K, Schuchmann M, Schirmacher P. [Molecular pathogenesis of hepatocellular carcinoma: new therapeutic approaches and predictive pathology]. DER PATHOLOGE 2008; 28:261-8. [PMID: 17605064 DOI: 10.1007/s00292-007-0890-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma is one of the most prevalent malignancies worldwide and its incidence is increasing. Multimodal strategies directed towards this carcinoma include primary (e.g. immunisation) and secondary (e.g. antiviral therapy) prevention, surgical approaches, novel specific systemic therapies (targeted therapy), and the treatment of comorbidity (cirrhosis). New molecular approaches are currently under development. These tackle several specific targets, with pathology being challenged in many aspects: experimental evaluation, the development of valid tumor-relevant diagnostic tests as well as morphological evaluation in the context of clinical studies, and finally in routine diagnosis.
Collapse
Affiliation(s)
- M A Kern
- Pathologisches Institut, Universität Heidelberg, Im Neuenheimer Feld 220/221, 69120, Heidelberg, Deutschland.
| | | | | | | |
Collapse
|
69
|
Antonini I, Santoni G, Lucciarini R, Amantini C, Dal Ben D, Volpini R, Cristalli G. Synthesis and Antitumor Evaluation of Bis Aza-anthracene-9,10-diones and Bis Aza-anthrapyrazole-6-ones. J Med Chem 2008; 51:997-1006. [DOI: 10.1021/jm7013937] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ippolito Antonini
- Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy, and Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032 Camerino, Italy
| | - Giorgio Santoni
- Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy, and Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032 Camerino, Italy
| | - Roberta Lucciarini
- Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy, and Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032 Camerino, Italy
| | - Consuelo Amantini
- Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy, and Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032 Camerino, Italy
| | - Diego Dal Ben
- Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy, and Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032 Camerino, Italy
| | - Rosaria Volpini
- Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy, and Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032 Camerino, Italy
| | - Gloria Cristalli
- Department of Chemical Sciences, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy, and Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032 Camerino, Italy
| |
Collapse
|
70
|
Kim MS, Chang X, Yamashita K, Nagpal JK, Baek JH, Wu G, Trink B, Ratovitski EA, Mori M, Sidransky D. Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene 2008; 27:3624-34. [PMID: 18223688 DOI: 10.1038/sj.onc.1211021] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To identify novel methylated gene promoters, we compared differential RNA expression profiles of colorectal cancer (CRC) cell lines with or without treatment of 5-aza-2'-deoxycytidine (5-aza-dC). Out of 1776 genes that were initially 'absent (that is, silenced)' by gene expression array analysis, we selected 163 genes that were increased after 5-aza-dC treatment in at least two of three CRC cell lines. The microarray results were confirmed by Reverse Transcription-PCR, and CpG island of the gene promoters were amplified and sequenced for examination of cancer-specific methylation. Among the genes identified, the deafness, autosomal dominant 5 gene, DFNA5, promoter was found to be methylated in primary tumor tissues with high frequency (65%, 65/100). Quantitative methylation-specific PCR of DFNA5 clearly discriminated primary CRC tissues from normal colon tissues (3%, 3/100). The mRNA expression of DFNA5 in four of five colon cancer tissues was significantly downregulated as compared to normal tissues. Moreover, forced expression of full-length DFNA5 in CRC cell lines markedly decreased the cell growth and colony-forming ability whereas knockdown of DFNA5 increased cell growth in culture. Our data implicate DFNA5 as a novel tumor suppressor gene in CRC and a valuable molecular marker for human cancer.
Collapse
Affiliation(s)
- M S Kim
- Department of Otolaryngology, Head and Neck Cancer Research Division, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
UVB-induced activation of NF-kappaB is regulated by the IGF-1R and dependent on p38 MAPK. J Invest Dermatol 2007; 128:1022-9. [PMID: 18059487 DOI: 10.1038/sj.jid.5701127] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To manage the frequent exposure to carcinogenic UVB wavelengths found in sunlight, keratinocytes have extensive protective measures to handle UVB-induced DNA damage. Recent in vitro evidence and epidemiological data suggest that one possible protective mechanism is dependent on the functional status of the IGF-1R signaling network. A second important signaling pathway regulating the response of keratinocytes to UVB involves the activation of the NF-kappaB transcription factor. Although it is clear that proper functioning of both the IGF-1R and NF-kappaB signaling networks are critical for the appropriate response of keratinocytes to UVB irradiation, it is currently uncertain if these two pathways interact. We now demonstrate that the activation of the NF-kappaB transcription factor by UVB is altered by the functional status of the IGF-1R. In the absence of ligand-activated IGF-1R, UVB-induced NF-kappaB consisted primarily of p50:p50 homodimers. Furthermore, the p38 kinase MAPK directs the subunit composition of NF-kappaB following UVB irradiation, most likely in an IGF-1R-dependent manner. We hypothesize that UVB irradiation leads to an activated p38 MAPK that is regulated in an IGF-1R-dependent manner, leading to NF-kappaB p50:RelA/p65 activation and a survival phenotype. In the absence of ligand-activated IGF-1R, UVB irradiation leads to the induction of NF-kappaB p50:p50 homodimers and a p38-dependent increased susceptibility to apoptosis.
Collapse
|
72
|
An Antibody Targeting the Type I Insulin-like Growth Factor Receptor Enhances the Castration-Induced Response in Androgen-Dependent Prostate Cancer. Clin Cancer Res 2007; 13:6429-39. [DOI: 10.1158/1078-0432.ccr-07-0648] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
73
|
Chen CS, Wang YC, Yang HC, Huang PH, Kulp SK, Yang CC, Lu YS, Matsuyama S, Chen CY, Chen CS. Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res 2007; 67:5318-27. [PMID: 17545612 DOI: 10.1158/0008-5472.can-06-3996] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study reports a histone deacetylation-independent mechanism whereby histone deacetylase (HDAC) inhibitors sensitize prostate cancer cells to DNA-damaging agents by targeting Ku70 acetylation. Ku70 represents a crucial component of the nonhomologous end joining repair machinery for DNA double-strand breaks (DSB). Our data indicate that pretreatment of prostate cancer cells with HDAC inhibitors (trichostatin A, suberoylanilide hydroxamic acid, MS-275, and OSU-HDAC42) led to increased Ku70 acetylation accompanied by reduced DNA-binding affinity without disrupting the Ku70/Ku80 heterodimer formation. As evidenced by increased Ser(139)-phosphorylated histone H2AX (gammaH2AX), impaired Ku70 function diminished cellular capability to repair DNA DSBs induced by bleomycin, doxorubicin, and etoposide, thereby enhancing their cell-killing effect. This sensitizing effect was most prominent when cells were treated with HDAC inhibitors and DNA-damaging agents sequentially. Mimicking acetylation was done by replacing K282, K317, K331, K338, K539, or K542 with glutamine via site-directed mutagenesis, which combined with computer docking analysis was used to analyze the role of these lysine residues in the interactions of Ku70 with DNA broken ends. Mutagenesis of K282, K338, K539, or K542 suppressed the activity of Ku70 to bind DNA, whereas mutagenesis of K317 or K331 with glutamine had no significant effect. Moreover, overexpression of K282Q or K338Q rendered DU-145 cells more susceptible to the effect of DNA-damaging agents on gammaH2AX formation and cell killing. Overall, the ability of HDAC inhibitors to regulate cellular ability to repair DNA damage by targeting Ku70 acetylation underlies the viability of their combination with DNA-damaging agents as a therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Chang-Shi Chen
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Bristow RG, Ozcelik H, Jalali F, Chan N, Vesprini D. Homologous recombination and prostate cancer: a model for novel DNA repair targets and therapies. Radiother Oncol 2007; 83:220-30. [PMID: 17531338 DOI: 10.1016/j.radonc.2007.04.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 04/17/2007] [Indexed: 01/30/2023]
Abstract
Using elegant targeting techniques such as IMRT, radiation oncology has improved the therapeutic ratio of prostate cancer radiotherapy through increased physical precision (e.g. increased local control through dose-escalation without increased normal tissue toxicity). The therapeutic ratio might be further improved by the addition of "biologic precision and escalation" pertaining to the use of molecular inhibitors of DNA damage sensing and repair. Indeed, proteins involved in the ATM-p53 damage signaling axis and the homologous (HR) and non-homologous end-joining (NHEJ) pathways of DNA double-strand break (DNA-dsb) rejoining pathways may be attractive candidates to elucidate cancer risk, prognosis, prediction of response and to develop sensitizers towards oxic and hypoxic prostate tumor cells. This review highlights DNA-dsb in prostate cancer research in terms of novel molecular inhibitors, the role of the microenvironment in DNA-dsb repair and potential DNA-dsb biomarkers for clinical trials.
Collapse
Affiliation(s)
- Robert G Bristow
- Department of Medical Biophysics, University of Toronto and Princess Margaret Hospital (University Health Network), Toronto, Canada.
| | | | | | | | | |
Collapse
|
75
|
Yuen JSP, Cockman ME, Sullivan M, Protheroe A, Turner GDH, Roberts IS, Pugh CW, Werner H, Macaulay VM. The VHL tumor suppressor inhibits expression of the IGF1R and its loss induces IGF1R upregulation in human clear cell renal carcinoma. Oncogene 2007; 26:6499-508. [PMID: 17486080 DOI: 10.1038/sj.onc.1210474] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell cancer (CC-RCC) is a highly chemoresistant tumor characterized by frequent inactivation of the von Hippel-Lindau (VHL) gene. The prognosis is reportedly worse in patients whose tumors express immunoreactive type I insulin-like growth factor receptor (IGF1R), a key mediator of tumor cell survival. We aimed to investigate how IGF1R expression is regulated, and found that IGF1R protein levels were unaffected by hypoxia, but were higher in CC-RCC cells harboring mutant inactive VHL than in isogenic cells expressing wild-type (WT) VHL. IGF1R mRNA and promoter activities were significantly lower in CC-RCC cells expressing WT VHL, consistent with a transcriptional effect. In Sp1-null Drosophila Schneider cells, IGF1R promoter activity was dependent on exogenous Sp1, and was suppressed by full-length VHL protein (pVHL) but only partially by truncated VHL lacking the Sp1-binding motif. pVHL also reduced the stability of IGF1R mRNA via sequestration of HuR protein. Finally, IGF1R mRNA levels were significantly higher in CC-RCC biopsies than benign kidney, confirming the clinical relevance of these findings. Thus, we have identified a new hypoxia-independent role for VHL in suppressing IGF1R transcription and mRNA stability. VHL inactivation leads to IGF1R upregulation, contributing to renal tumorigenesis and potentially also to chemoresistance.
Collapse
Affiliation(s)
- J S P Yuen
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, and Department of Urology, Churchill Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Lin RX, Wang ZY, Zhang N, Tuo CW, Liang QD, Sun YN, Wang SQ. Inhibition of hepatocellular carcinoma growth by antisense oligonucleotides to type I insulin-like growth factor receptor in vitro and in an orthotopic model. Hepatol Res 2007; 37:366-75. [PMID: 17441810 DOI: 10.1111/j.1872-034x.2007.00055.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM The type I insulin-like growth factor receptor (IGF-IR) is overexpressed in many tumors including human hepatocellular carcinoma (HCC). It is a critical signaling molecule for tumor cell proliferation and survival. In the present study, IGF-IR expression was down-regulated by phosphorothioate antisense oligonucleotides (AS[S]ODN) to evaluate their specific effects on growth of hepatoma cells in vitro and in vivo. METHODS HepG2 cells were transfected with different doses of AS[S]ODN, sense [S]ODN, mismatch [S]ODN, or Lipofectin for 72 h, and cell proliferation was analyzed by MTS assay. In vivo, an orthotopic transplant model of HCC was established in nude mice, which were then injected with AS[S]ODN, sense [S]ODN, 5-fluorouracil or saline. At the endpoint of treatment, the tumors were excised and evaluated. RESULTS Compared to sense and mismatched oligonucleotides, AS[S]ODN targeting to IGF-IR mRNA significantly inhibited hepatoma cell lines HepG2 proliferation and IGF-IR expression at both mRNA and protein levels. The in vivo results showed that systemic treatment also resulted in significant inhibition in tumor growth. Tumor growth in mice treated with AS[S]ODN (50 and 75 mg/kg per day) was significantly inhibited (71.81% and 61.74%, respectively) compared to the saline-treated group (P < 0.01) in a dose-dependent manner. The antitumor effect of IGF-IR AS[S]ODN was associated with down-regulation of IGF-IR in tumor xenografts. Furthermore, IGF-IR AS[S]ODN prevented liver recurrence tumor growth and metastasis in the lung, showing a dose-dependent response. The level of serum alpha-fetoprotein in AS[S]ODN-treated groups was also decreased in a dose-dependent manner, and a good correlation was observed between tumor volume and serum alpha-fetoprotein concentration. CONCLUSIONS These data suggest that IGF-IR AS[S]ODN can effectively and specifically inhibit HCC growth in vitro and in vivo. Blockage of IGF-IR expression could be a promising therapeutic approach for the management of patients with HCC.
Collapse
Affiliation(s)
- Ru-Xian Lin
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
77
|
Riedemann J, Sohail M, Macaulay VM. Dual silencing of the EGF and type 1 IGF receptors suggests dominance of IGF signaling in human breast cancer cells. Biochem Biophys Res Commun 2007; 355:700-6. [PMID: 17320820 DOI: 10.1016/j.bbrc.2007.02.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 02/03/2007] [Indexed: 10/23/2022]
Abstract
Signaling via the type 1 insulin-like growth factor receptor (IGF1R) confers resistance to EGF receptor (EGFR) inhibitors. It is plausible that reciprocal EGFR compensation could mediate resistance to IGF1R inhibition, prompting us to investigate effects of IGF1R depletion on EGFR signaling in breast cancer cells expressing relatively high (MDA-MB-468) or low (MCF7) EGFR. Transient IGF1R knockdown induced enhanced phosphorylation of the EGFR and its effectors JNK, ERKs and STAT5, but this did not prevent apoptosis induction and inhibition of clonogenic survival following IGF1R knockdown. We used IGF1R shRNA to induce chronic IGF1R depletion, and achieved stable gene silencing in MCF-7 cells; here, EGFR overexpression led to EGFR hyperphosphorylation, again without abrogating survival inhibition after IGF1R knockdown. In both cell lines, dual receptor knockdown prevented EGFR hyperphosphorylation, but induced no greater inhibition of clonogenic survival than IGF1R knockdown alone. These results suggest that the EGFR cannot compensate for IGF1R depletion, and are encouraging for the strategy of IGF1R targeting.
Collapse
Affiliation(s)
- Johann Riedemann
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | | |
Collapse
|
78
|
Allen GW, Saba C, Armstrong EA, Huang SM, Benavente S, Ludwig DL, Hicklin DJ, Harari PM. Insulin-like growth factor-I receptor signaling blockade combined with radiation. Cancer Res 2007; 67:1155-62. [PMID: 17283150 DOI: 10.1158/0008-5472.can-06-2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signaling through the insulin-like growth factor-I receptor (IGF-IR) is implicated in cellular proliferation, apoptosis, carcinogenesis, metastasis, and resistance to cytotoxic cancer therapies. Targeted disruption of IGF-IR signaling combined with cytotoxic therapy may therefore yield improved anticancer efficacy over conventional treatments alone. In this study, a fully human anti-IGF-IR monoclonal antibody A12 (ImClone Systems, Inc., New York, NY) is examined as an adjunct to radiation therapy. IGF-IR expression is shown for a diverse cohort of cell lines, whereas targeted IGF-IR blockade by A12 inhibits IGF-IR phosphorylation and activation of the downstream effectors Akt and mitogen-activated protein kinase. Anchorage-dependent proliferation and xenograft growth is inhibited by A12 in a dose-dependent manner, particularly for non-small cell lung cancer lines. Clonogenic radiation survival of H226 and H460 cells grown under anchorage-dependent conditions is impaired by A12, demonstrating a radiation dose-enhancing effect for IGF-IR blockade. Postradiation anchorage-independent colony formation is inhibited by A12 in A549 and H460 cells. In the H460 xenograft model, combining A12 and radiation significantly enhances antitumor efficacy compared with either modality alone. These effects may be mediated by promotion of radiation-induced, double-stranded DNA damage and apoptosis as observed in cell culture. In summary, these results validate IGF-IR signal transduction blockade as a promising strategy to improve radiation therapy efficacy in human tumors, forming a basis for future clinical trials.
Collapse
Affiliation(s)
- Gregory W Allen
- Department of Human Oncology, School of Medicine and Comprehensive Cancer Center, University of Wisconsin Hospital and Clinics, 600 Highland Avenue, Madison, WI 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Riedemann J, Takiguchi M, Sohail M, Macaulay VM. The EGF receptor interacts with the type 1 IGF receptor and regulates its stability. Biochem Biophys Res Commun 2007; 355:707-14. [PMID: 17307140 DOI: 10.1016/j.bbrc.2007.02.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 02/05/2007] [Indexed: 12/22/2022]
Abstract
Both the epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGF1R) require homo- and hetero-dimerisation with their own family members to acquire full function. We recently showed that IGF1R gene silencing led to EGFR hyper-phosphorylation in human breast cancer cells, and hypothesised that this crosstalk might be associated with direct IGF1R:EGFR interaction. Indeed we could detect reciprocal co-precipitation between the IGF1R and EGFR when overexpressed in SKUT-1 cells, and between endogenous IGF1R and EGFR in MDA-MB-468 breast carcinoma cells, two squamous cancer cell lines, and clinical samples of breast cancer. Interaction was abolished by knockdown of either receptor, and we noted that EGFR knockdown also suppressed IGF1R protein levels. Further investigation revealed that EGFR depletion induced enhancement of IGF1R ubiquitylation and degradation. These results indicate novel evidence of crosstalk between two key cancer treatment targets, capable of modifying the stability of IGF1R protein.
Collapse
Affiliation(s)
- Johann Riedemann
- Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | | | | |
Collapse
|
80
|
Qian J, Dong A, Kong M, Ma Z, Fan J, Jiang G. Suppression of type 1 Insulin-like growth factor receptor expression by small interfering RNA inhibits A549 human lung cancer cell invasion in vitro and metastasis in xenograft nude mice. Acta Biochim Biophys Sin (Shanghai) 2007; 39:137-47. [PMID: 17277889 DOI: 10.1111/j.1745-7270.2007.00257.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cancer invasion and metastasis, involving a variety of pathological processes and cytophysiological changes, contribute to the high mortality of lung cancer. The type 1 insulin-like growth factor receptor (IGF-1R), associated with cancer progression and invasion, is a potential anti-invasion and anti-metastasis target in lung cancer. To inhibit the invasive properties of lung cancer cells, we successfully down-regulated IGF-1R gene expression in A549 human lung cancer cells by small interfering RNA (siRNA) technology, and evaluated its effects on invasion-related gene expression, tumor cell in vitro invasion, and metastasis in xenograft nude mice. A549 cells transfected with a plasmid expressing hairpin siRNA for IGF-1R showed a significantly decreased IGF-1R expression at the mRNA level as well as the protein level. In biological assays, transfected A549 cells showed a significant reduction of cell-matrix adhesion, migration and invasion. Consistent with these results, we found that down-regulation of IGR-1R concomitantly accompanied by a large reduction in invasion-related gene expressions, including MMP-2, MMP-9, u-PA, and IGF-1R specific downstream p-Akt. Direct tail vein injections of plasmid expressing hairpin siRNA for IGF-1R significantly inhibited the formation of lung metastases in nude mice. Our results showed the therapeutic potential of siRNA as a method for gene therapy in inhibiting lung cancer invasion and metastasis.
Collapse
Affiliation(s)
- Jianfang Qian
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
The type I insulin-like growth factor receptor (IGF-IR) plays multiple roles in several cancers and increased circulating levels of insulin-like growth factor-I (IGF-I) are associated with increased risk of breast, colon, and prostate cancers. Because IGF-II and insulin signal via the insulin receptor (IR) to stimulate the growth of cancer cells, inhibition of IR might be necessary to totally disrupt the action of IGFs and their receptors. This review describes the well-recognized roles of IGF-IR in driving the malignant phenotype, examines the evidence that perhaps IR should also be targeted to inhibit the effects of the IGF ligands and insulin in cancer, describes the strategies to disrupt IGF signaling in cancer, and highlights some key issues that need to be considered as clinical trials targeting IGF-IR proceed.
Collapse
Affiliation(s)
- Deepali Sachdev
- University of Minnesota Cancer Center, MMC 806, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
82
|
Ayllón V, O'connor R. PBK/TOPK promotes tumour cell proliferation through p38 MAPK activity and regulation of the DNA damage response. Oncogene 2006; 26:3451-61. [PMID: 17160018 DOI: 10.1038/sj.onc.1210142] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The contribution of the insulin-like growth-factor-I receptor (IGF-IR) to tumour progression is well documented. To identify new mediators of IGF-IR function in cancer, we recently isolated genes differentially expressed in cells overexpressing the IGF-IR. Among these was the serine/threonine kinase PBK/TOPK (PDZ-binding kinase/T-LAK cell-originated protein kinase), previously associated with highly proliferative cells and tissues. Here, we show that PBK is expressed at high levels in tumour cell lines compared with non-transformed cells. IGF-I could induce PBK expression only in transformed cells, whereas epidermal growth factor could induce PBK in non-transformed MCF-10A breast epithelial cells. Suppression of PBK expression using small interfering RNA did not prevent progression through the cell cycle, but caused decreased proliferation over time in culture, and reduced clonogenic growth in soft agarose. PBK knockdown impaired p38 activation after long-term stimulation with different growth factors and reduced DU145 cells motility. Suppressed PBK expression also resulted in an impaired response to DNA damage that was evident by the decreased generation of gamma-H2AX, increased DNA damage and decreased cell survival. Taken together, the data indicate that PBK is necessary for appropriate activation and function of the p38 pathway by growth factors. Thus, enhanced expression of PBK may facilitate tumour growth by mediating p38 activation and by helping cells to overcome DNA damage.
Collapse
Affiliation(s)
- V Ayllón
- Cell Biology Laboratory, Department of Biochemistry, Biosciences Institute, National University of Ireland, Cork, Ireland
| | | |
Collapse
|
83
|
de Amicis F, Lanzino M, Kisslinger A, Calì G, Chieffi P, Andò S, Mancini FP, Tramontano D. Loss of proline-rich tyrosine kinase 2 function induces spreading and motility of epithelial prostate cells. J Cell Physiol 2006; 209:74-80. [PMID: 16783820 DOI: 10.1002/jcp.20709] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although prostate carcinoma is an aggressive cancer preferentially metastasizing to the bones, many prostate tumors remain localized and confined to the prostate indefinitely. Prediction of the behavior of anatomically localized and moderately differentiated prostate tumors remains difficult because of lack of prognostic markers. Cell motility is an important step in the progression of epithelial tumor toward invasive metastatic carcinomas and changes in the expression and function of adhesion molecules contribute to the acquisition of a more malignant phenotype. Proline-rich tyrosine kinase 2 (Pyk2) is implicated in regulating the organization of actin cytoskeleton, a process critical for cell migration, mitosis, and tumor metastasis. In this report, we investigated whether Pyk2 played a role in the acquisition of an aggressive phenotype in prostate cell. Data reported here demonstrate that loss of Pyk2 kinase function results in induction of cell motility and migration in EPN cells, a line of non-transformed epithelial cells derived from human normal prostate tissue. Changes in motility and migration of prostate cells were associated with changes in the expression of several proteins involved in cell adhesion and reorganization of actin cytoskeleton. Ablation of Pyk2 kinase activity caused a dramatic decrease of the expression of E-cadherin and IRS1 and an increase of the expression of alpha5-integrin. In addition, a massive reorganization of actin cytoskeleton was observed. Our data indicate that Pyk2 plays a central role in the mechanism that regulate cell-cell and cell-substrate interaction and lack of its kinase activity induces prostate cells to acquire a malignant, migrating phenotype.
Collapse
Affiliation(s)
- Francesca de Amicis
- Dipartimento Farmaco-Biologico, Università della Calabria Arcavacata, Cosenza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Sharrard RM, Maitland NJ. Regulation of protein kinase B activity by PTEN and SHIP2 in human prostate-derived cell lines. Cell Signal 2006; 19:129-38. [PMID: 16842970 DOI: 10.1016/j.cellsig.2006.05.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Protein Kinase B (PKB/Akt) is a key regulator of cell proliferation, motility and survival. The activation status of PKB is regulated by phosphatidylinositol 3-kinase (PI3K) via the synthesis of phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3, PIP3). PTEN antagonises PI3K by degrading PIP3 to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). Deregulation of PKB through loss of functional PTEN has frequently been implicated in the progression of tumours, including prostate cancer, and the PTEN-negative prostate cancer cell lines LNCaP and PC3 have been widely used as models for this mechanism of constitutive PKB activation. However, other enzymes in addition to PTEN can antagonise PI3K, including SHIP2, which degrades PIP3 to phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2). We investigated the role of PTEN and SHIP2 in the regulation of PKB phosphorylation in a panel of human prostate-derived epithelial cell lines. In the PTEN-positive prostate-derived cell lines PNT2, PNT1a and P4E6, PI3K inhibition by LY294002 caused rapid dephosphorylation of PKB at ser473 (T(1/2)<2 min), leading to its inactivation. In the PTEN-null line LNCaP, LY294002-induced PKB dephosphorylation was much slower (T(1/2)>20 min), but in PC3 cells (also PTEN-null) it was only slightly slower than in PTEN-positive cells (T(1/2)=3 min). PKB dephosphorylation paralleled loss of plasma membrane PIP3. PNT1a, P4E6 and PC3, but not PNT2 or LNCaP, expressed SHIP2. SiRNA-mediated knockdown of SHIP2 expression markedly slowed PKB inactivation in response to LY294002 in PC3 but not in other SHIP2-positive cells, whereas knockdown of PTEN expression in PNT2, PNT1a and P4E6 resulted in higher steady-state levels of PKB phosphorylation and slowed, but did not prevent, LY294002-induced PKB inactivation. Thus SHIP2 substitutes for PTEN in the acute regulation of PKB in PC3 cells but not other prostate cell lines, where PTEN may share this role with further PIP3-degrading mechanisms.
Collapse
Affiliation(s)
- R Michael Sharrard
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | | |
Collapse
|
85
|
Yeh AH, Bohula EA, Macaulay VM. Human melanoma cells expressing V600E B-RAF are susceptible to IGF1R targeting by small interfering RNAs. Oncogene 2006; 25:6574-81. [PMID: 16715137 DOI: 10.1038/sj.onc.1209674] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The type 1 insulin-like growth factor receptor (IGF1R) is overexpressed by malignant melanomas compared with benign naevi, and mediates proliferation, motility and protection from apoptosis. However, the utility of IGF1R targeting as anti-cancer therapy may be limited by activating mutations in downstream signaling intermediates. We previously showed that IGF1R knockdown blocked survival of prostate cancer cells in which Akt activation was deregulated by PTEN loss. The current study investigated effects of IGF1R targeting in cells harboring activating RAS-RAF mutations, found in 70-80% of human melanomas. We assembled a panel of eight human melanoma cell lines: two expressing wild-type (WT) B-RAF and N-RAS, two with activating N-RAS mutations and four harboring V600E B-RAF. We also generated isogenic cell populations overexpressing WT or V600E B-RAF. Cells expressing V600E B-RAF were relatively resistant to apoptosis. However, IGF1R gene silencing was capable of inducing significant inhibition of survival, enhancement of apoptosis, and approximately two-fold sensitization to cisplatin and temozolomide. These effects were independent of mutation status and were associated with reduced activation of Akt and also, unexpectedly, of ERKs. These results support development of IGF1R targeting as therapy for melanoma, regardless of the presence of activating mutations in the RAS-RAF pathway.
Collapse
Affiliation(s)
- A H Yeh
- IGF Group, Cancer Research UK Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
86
|
Gennigens C, Menetrier-Caux C, Droz JP. Insulin-Like Growth Factor (IGF) family and prostate cancer. Crit Rev Oncol Hematol 2006; 58:124-45. [PMID: 16387509 DOI: 10.1016/j.critrevonc.2005.10.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/30/2005] [Accepted: 10/07/2005] [Indexed: 11/28/2022] Open
Abstract
There is abundant in vitro, animal and epidemiologic evidence to suggest that the Insulin-Like Growth Factor (IGF) family is a multi-component network of molecules which is involved in the regulation of both physiological and pathological growth processes in prostate. The IGF family plays a key role in cellular metabolism, differentiation, proliferation, transformation and apoptosis, during normal development and malignant growth. This family also seem essential in prostate cancer bone metastases, angiogenesis and androgen-independent progression. Therapeutic alternatives in men with progressive prostate cancer after androgen ablation are very limited. More effective therapies are needed for these patients. Pharmacologic interventions targeting the IGF family are being devised. Such strategies include reduction of IGF-I levels (growth hormone-releasing hormone antagonists, somatostatin analogs), reduction of functional IGF-I receptor levels (antisense oligonucleotides, small interfering RNA), inhibition of IGF-IR and its signalling (monoclonal antibodies, small-molecule tyrosine kinase inhibitors) and Insulin-Like Growth Factor Binding Proteins.
Collapse
Affiliation(s)
- C Gennigens
- Department of Medecine, Division of Hematology/Oncology, University Hospital of Liege, Belgium.
| | | | | |
Collapse
|
87
|
Jones HE, Gee JM, Hutcheson IR, Nicholson RI. Insulin-like growth factor-I receptor signaling and resistance in breast cancer. Expert Rev Endocrinol Metab 2006; 1:33-46. [PMID: 30743767 DOI: 10.1586/17446651.1.1.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insulin-like growth factor-I receptor (IGF-IR) signaling is involved in many fundamental adverse aspects of cancer cell biology, such as proliferation, cell survival and migration. Its anti-apoptotic properties have implicated the receptor in mediating decreased sensitivity to chemotherapeutic drugs and radiation treatment; however, data are emerging that also indicates a role for IGF-IR signaling in resistance, not only to antihormones but also to antigrowth factor strategies such as agents that target the erb family of receptors. As such, IGF-IR is clearly an attractive therapeutic target for the treatment of cancer, including breast cancer, where there is evidence of clinical prominence of the IGF-IR pathway and, as such, numerous strategies are currently in development to inhibit IGF-IR signaling. This review focuses on the ability of the IGF-IR to contribute to resistance mechanisms that support breast cancer cell growth in the presence of antihormones and antigrowth factors and discusses methods to maximize antitumor effects by combination regimens cotargeting the IGF-IR that may delay, or even prevent, progression to the resistant phenotype.
Collapse
Affiliation(s)
- Helen E Jones
- a Cardiff University, Tenovus Centre for Cancer Research, King Edward VII Avenue, Cardiff CF10 3XF, UK.
| | - Julia Mw Gee
- a Cardiff University, Tenovus Centre for Cancer Research, King Edward VII Avenue, Cardiff CF10 3XF, UK.
| | - Iain R Hutcheson
- a Cardiff University, Tenovus Centre for Cancer Research, King Edward VII Avenue, Cardiff CF10 3XF, UK.
| | - Robert I Nicholson
- a Cardiff University, Tenovus Centre for Cancer Research, King Edward VII Avenue, Cardiff CF10 3XF, UK.
| |
Collapse
|
88
|
Mimeault M, Batra SK. Recent advances on multiple tumorigenic cascades involved in prostatic cancer progression and targeting therapies. Carcinogenesis 2005; 27:1-22. [PMID: 16195239 DOI: 10.1093/carcin/bgi229] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent advances on differently-expressed gene products and their functions during the progression from localized androgen-dependent states into androgen-independent and metastatic forms of prostate cancer are reported. The expression levels of numerous oncogenes and tumor suppressor genes in distinct prostatic cancer epithelial cell lines and tissues relative to normal prostate cells are described. This is carried out to identify the signaling elements that are altered during the initiation, progression and metastatic process of prostate cancer. Additional information on the interactions between certain deregulated signaling pathways such as androgen receptor (AR), estrogen receptors, epidermal growth factor receptor (EGFR), hedgehog and Wnt/beta-catenin cascades in controlling the proliferation, survival and invasion of tumor prostate epithelial cells during the disease progression is described. The emphasis is on the critical functions of the AR and EGF-EGFR systems at all stages during prostate carcinogenesis. Of therapeutic interest, new strategies for the diagnosis and treatment of localized and metastatic forms of prostate cancer by targeting multiple tumorigenic signaling elements are also reported.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | |
Collapse
|
89
|
Salem ML. Systemic treatment with n-6 polyunsaturated fatty acids attenuates EL4 thymoma growth and metastasis through enhancing specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines. Int Immunopharmacol 2005; 5:947-960. [PMID: 15829411 DOI: 10.1016/j.intimp.2004.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 12/27/2004] [Accepted: 12/27/2004] [Indexed: 02/07/2023]
Abstract
Recently, there has been a great interest in the effects of different types of n-6 polyunsaturated acids (n-6 PUFAs) upon the immune system and cancer development. However, the effects of n-6 PUFAs are still controversial and as yet undefined. The present study aimed to investigate the anti-tumor effects of n-6 PUFAs against EL4 thymoma and the associated immune mechanisms. To this, sesame oil, a vegetable oil enriched with n-6 PUFAs, or free linoleic acid (LA) were administered intraperitoneally into C57BL/6 mice before and after challenge with EL4 lymphoma cells. Treatment with either sesame oil or LA attenuated the growth and metastasis of EL4 lymphoma. The anti-tumor effect of LA was superior to that of sesame oil, and associated with an increase in the survival rate of the tumor-bearing mice. In addition, both sesame oil and LA showed dose-dependent anti-lymphoma growth in vitro. Treatment with LA generated significant increases in the anti-lymphoma cytolytic and cytostatic activities of T cells and macrophages, respectively, and enhanced production of IL-2 and IFN-gamma while decreased production of IL-4, IL-6 and IL-10. In summation, the results suggest that n-6 PUFAs, represented by LA, can attenuate EL4 lymphoma growth and metastasis through enhancing the specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines. These findings might be of great importance for a proper design of systemic nourishment with PUFAs emulsions for cancer patients.
Collapse
Affiliation(s)
- Mohamed Labib Salem
- Department of Surgery, Section of Surgical Oncology, Holling Cancer Center R313, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|