51
|
Gentek R, Ghigo C, Hoeffel G, Jorquera A, Msallam R, Wienert S, Klauschen F, Ginhoux F, Bajénoff M. Epidermal γδ T cells originate from yolk sac hematopoiesis and clonally self-renew in the adult. J Exp Med 2018; 215:2994-3005. [PMID: 30409784 PMCID: PMC6279412 DOI: 10.1084/jem.20181206] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023] Open
Abstract
The adult turnover mechanisms and hematopoietic origin of dendritic epidermal γδ T cells (DETCs) are poorly characterized. Gentek et al. demonstrate that DETCs originate from yolk sac hematopoiesis and clonally self-renew in the adult, akin to epidermal Langerhans cells. The murine epidermis harbors two immune cell lineages, Langerhans cells (LCs) and γδ T cells known as dendritic epidermal T cells (DETCs). LCs develop from both early yolk sac (YS) progenitors and fetal liver monocytes before locally self-renewing in the adult. For DETCs, the mechanisms of homeostatic maintenance and their hematopoietic origin are largely unknown. Here, we exploited multicolor fate mapping systems to reveal that DETCs slowly turn over at steady state. Like for LCs, homeostatic maintenance of DETCs is achieved by clonal expansion of tissue-resident cells assembled in proliferative units. The same mechanism, albeit accelerated, facilitates DETC replenishment upon injury. Hematopoietic lineage tracing uncovered that DETCs are established independently of definitive hematopoietic stem cells and instead originate from YS hematopoiesis, again reminiscent of LCs. DETCs thus resemble LCs concerning their maintenance, replenishment mechanisms, and hematopoietic development, suggesting that the epidermal microenvironment exerts a lineage-independent influence on the initial seeding and homeostatic maintenance of its resident immune cells.
Collapse
Affiliation(s)
- Rebecca Gentek
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clément Ghigo
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Guillaume Hoeffel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Audrey Jorquera
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Rasha Msallam
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Stephan Wienert
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore.,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Marc Bajénoff
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
52
|
Hovav AH. Mucosal and Skin Langerhans Cells – Nurture Calls. Trends Immunol 2018; 39:788-800. [DOI: 10.1016/j.it.2018.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
|
53
|
RARα supports the development of Langerhans cells and langerin-expressing conventional dendritic cells. Nat Commun 2018; 9:3896. [PMID: 30254197 PMCID: PMC6156335 DOI: 10.1038/s41467-018-06341-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 08/29/2018] [Indexed: 01/11/2023] Open
Abstract
Langerhans cells (LC) are the prototype langerin-expressing dendritic cells (DC) that reside specifically in the epidermis, but langerin-expressing conventional DCs also reside in the dermis and other tissues, yet the factors that regulate their development are unclear. Because retinoic acid receptor alpha (RARα) is highly expressed by LCs, we investigate the functions of RARα and retinoic acid (RA) in regulating the langerin-expressing DCs. Here we show that the development of LCs from embryonic and bone marrow-derived progenitors and langerin+ conventional DCs is profoundly regulated by the RARα-RA axis. During LC differentiation, RARα is required for the expression of a LC-promoting transcription factor Runx3, but suppresses that of LC-inhibiting C/EBPβ. RARα promotes the development of LCs and langerin+ conventional DCs only in hypo-RA conditions, a function effectively suppressed at systemic RA levels. Our findings identify positive and negative regulatory mechanisms to tightly regulate the development of the specialized DC populations. Langerhans cells (LC) and langerin-expressing conventional dendritic cells are made from distinct progenitors and enriched in the distinct microenvironments of the skin. Here the authors show that these immune cells are regulated by retinoic acid receptor alpha (RARα) via simultaneous induction of LC-promoting Runx3 and repression of LC-inhibiting C/EBPβ.
Collapse
|
54
|
Yu Y, Wang L, Gu G. The correlation between Runx3 and bronchial asthma. Clin Chim Acta 2018; 487:75-79. [PMID: 30218658 DOI: 10.1016/j.cca.2018.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022]
Abstract
Runx3, a member of the Runt-related transcription factor family, has attracted extensive attention due to its important role in the development of immune systems, especially in the differentiation of T cells. Accumulated evidence indicated that altered expression of Runx3 regulates a variety of target genes in different tissues/cells. Studies in animal models suggested that Runx3 may regulate the development of T cell lineage including those of innate lymphoid cells, Treg cells and dendritic cells, which may contribute to the development of hypersensitivity and asthma. Specifically, Runx3 modulates Th1/Th2 balance and hence, the production of interleukins, which induce inflammatory responses. Understanding the roles and mechanisms of Runx3 in the regulation of immune function provides a basis for the design of novel preventive and treatment models for bronchial asthma. This article reviews published data from cell lines, animal models, and patients, concerning the relationship between Runx3 expression alteration and asthma. Epigenetic regulation of Runx3 by DNA hypermethylation and microRNA, and the implication of these pathways in asthma are also discussed.
Collapse
Affiliation(s)
- Yanyan Yu
- The children's hospital affiliated of Suzhou University, Suzhou 215000, Jiangsu Province, China.
| | - Leilei Wang
- Children Asthma Department, Lianyungang Maternal and Child Hospital Jiangsu Province, Lianyungang 222006, Jiangsu Province, China
| | - Guixiong Gu
- The children's hospital affiliated of Suzhou University, Suzhou 215000, Jiangsu Province, China.
| |
Collapse
|
55
|
Manandhar S, Lee YM. Emerging role of RUNX3 in the regulation of tumor microenvironment. BMB Rep 2018; 51:174-181. [PMID: 29429451 PMCID: PMC5933212 DOI: 10.5483/bmbrep.2018.51.4.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Indexed: 12/17/2022] Open
Abstract
A number of genes have been therapeutically targeted to relieve cancer, but cancer relapse is still a growing issue. The concept that the surrounding tumor environment is critical for the progression of cancer may foster an answer to the issue of cancer malignancy. Runt domain transcription factors (RUNX1, 2, and 3) are evolutionarily conserved and have been intensively studied for their roles in normal development and pathological conditions. During tumor growth, a hypoxic microenvironment and infiltration of the tumor by immune cells are common phenomena. In this review, we briefly introduce the consequences of hypoxia and immune cell infiltration into the tumor microenvironment with a focus on RUNX3 as a critical regulator. Furthermore, based on our current knowledge of the functional role of RUNX3 in hypoxia and immune cell maintenance, a probable therapeutic intervention is suggested for the effective management of tumor growth and malignancy. [BMB Reports 2018; 51(4): 174-181].
Collapse
Affiliation(s)
- Sarala Manandhar
- Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| | - You Mie Lee
- Laboratory of Vascular Homeostasis Regulation, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
56
|
T'Jonck W, Guilliams M, Bonnardel J. Niche signals and transcription factors involved in tissue-resident macrophage development. Cell Immunol 2018; 330:43-53. [PMID: 29463401 PMCID: PMC6108424 DOI: 10.1016/j.cellimm.2018.02.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 12/25/2022]
Abstract
Tissue-resident macrophages form an essential part of the first line of defense in all tissues of the body. Next to their immunological role, they play an important role in maintaining tissue homeostasis. Recently, it was shown that they are primarily of embryonic origin. During embryogenesis, precursors originating in the yolk sac and fetal liver colonize the embryonal tissues where they develop into mature tissue-resident macrophages. Their development is governed by two distinct sets of transcription factors. First, in the pre-macrophage stage, a core macrophage program is established by lineage-determining transcription factors. Under the influence of tissue-specific signals, this core program is refined by signal-dependent transcription factors. This nurturing by the niche allows the macrophages to perform tissue-specific functions. In the last 15 years, some of these niche signals and transcription factors have been identified. However, detailed insight in the exact mechanism of development is still lacking.
Collapse
Affiliation(s)
- Wouter T'Jonck
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052 Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium.
| | - Martin Guilliams
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052 Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium
| | - Johnny Bonnardel
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052 Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Gent, Belgium.
| |
Collapse
|
57
|
Otsuka M, Egawa G, Kabashima K. Uncovering the Mysteries of Langerhans Cells, Inflammatory Dendritic Epidermal Cells, and Monocyte-Derived Langerhans Cell-Like Cells in the Epidermis. Front Immunol 2018; 9:1768. [PMID: 30105033 PMCID: PMC6077183 DOI: 10.3389/fimmu.2018.01768] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/17/2018] [Indexed: 11/25/2022] Open
Abstract
The identity of Langerhans cells (LCs) has been called into question of late due to the increasing evidence that LCs originate from macrophage lineage instead of dendritic cell (DC) lineage as previously thought. For many years, LCs have been assumed to be DCs due to its migratory capabilities. However, recent studies have demonstrated that LCs are from macrophage lineage of the adult fetal liver (FL) progenitor. Bona fide LCs are now considered tissue-resident macrophages as they originate from the FL as shown by fate mapping models. In recent years, studies have shown that there are three types of antigen-presenting cells present in the epidermis, such as LCs, monocyte-derived LC-like cells, and inflammatory dendritic epidermal cells (IDECs). Of these, LC-like cells have been characterized in both human and mouse studies, while IDECs have only been described in human studies. This has shed a new light on the area of epidermal macrophages, suggesting that there might be a misidentification and misclassification of LCs. IDECs and LC-like cells have been shown to be present in both steady state and inflammatory state, but they are present in more significant amounts under inflammatory conditions such as atopic dermatitis, ultra violet injury, and psoriasis. In this review, we discuss what is already known and discuss the possible roles of LCs, LC-like cells, and IDECs during inflammation. Most intriguingly, we discuss the possibility of LCs having a dual identity as both a macrophage and a DC. This is shown as LCs are the only tissue-resident macrophage to have shown migratory property-like DCs.
Collapse
Affiliation(s)
- Masayuki Otsuka
- Department of Dermatology, Graduate School of Medicine, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto, Japan.,Singapore Immunology Network (SIgN), Singapore, Singapore.,Institute of Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| |
Collapse
|
58
|
Franko J, McCall JL, Barnett JB. Evaluating Macrophages in Immunotoxicity Testing. Methods Mol Biol 2018; 1803:255-296. [PMID: 29882145 DOI: 10.1007/978-1-4939-8549-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Macrophages are a heterogeneous group of cells that have a multitude of functions depending on their differentiation state. While classically known for their phagocytic and antigen presentation abilities, it is now evident that these cells fulfill homeostatic functions beyond the elimination of invading pathogens. In addition, macrophages have also been implicated in the downregulation of inflammatory responses following pathogen removal, tissue remodeling, repair, and angiogenesis. Alterations in macrophage differentiation and/or activity due to xenobiotic exposure can have grave consequences on organismal homeostasis, potentially contributing to disease due to immunosuppression or chronic inflammatory responses, depending upon the pathways affected. In this chapter, we provide an overview of the macrophages subtypes, their origin and a general discussion of several different assays used to assess their functional status.
Collapse
Affiliation(s)
- Jennifer Franko
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jamie L McCall
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - John B Barnett
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
59
|
Su W, Du L, Liu S, Deng J, Cao Q, Yuan G, Kijlstra A, Yang P. ERAP1/ERAP2 and RUNX3 polymorphisms are not associated with ankylosing spondylitis susceptibility in Chinese Han. Clin Exp Immunol 2018; 193:95-102. [PMID: 29480940 PMCID: PMC6038008 DOI: 10.1111/cei.13121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 02/01/2023] Open
Abstract
Previous studies show that endoplasmic reticulum‐associated aminopeptidase (ERAP1/ERAP2) and runt‐related transcription factor 3 (RUNX3) gene polymorphisms are associated with AS (ankylosing spondylitis) in European Caucasians. However, contradictory results were reported in different Asian populations. The purpose of this study was to determine whether eleven candidate single nucleotide polymorphisms (SNPs) in ERAP1/ERAP2 and six in RUNX3 genes confer susceptibility to AS with or without acute anterior uveitis (AAU) [AS+AAU+ or AS+AAU–] in Chinese Han. Therefore, a case–control association study was performed in 882 AS+AAU–, 884 AS+AAU+ and 1727 healthy controls. Genotyping was performed using the iPLEXGold genotyping assay. A meta‐analysis was performed to assess the association of polymorphisms of ERAP1 with AS susceptibility in Asian populations. No association was found between SNPs of ERAP1/ERAP2/RUNX3 and susceptibility of AS with or without AAU. A case–control study between patients with human leucocyte antigen HLA‐B27‐positive and healthy controls also failed to demonstrate an association of the tested SNP with AS with or without AAU. Moreover, a meta‐analysis showed that there was no association of rs30187, rs27037, rs27980, rs27434 and rs27582 in ERAP1 with AS in Chinese Han. Taken together, 17 SNPs in ERAP1/ERAP2 and RUNX3 genes did not confer disease susceptibility to AS in Chinese Han.
Collapse
Affiliation(s)
- W Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - L Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - S Liu
- Rheumatology Department of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - J Deng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Q Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - G Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - A Kijlstra
- University Eye Clinic, Maastricht, Maastricht, the Netherlands
| | - P Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| |
Collapse
|
60
|
Strobl H, Krump C, Borek I. Micro-environmental signals directing human epidermal Langerhans cell differentiation. Semin Cell Dev Biol 2018; 86:36-43. [PMID: 29448069 DOI: 10.1016/j.semcdb.2018.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/12/2017] [Accepted: 02/10/2018] [Indexed: 01/11/2023]
Abstract
Human Langerhans cells (LC) can be generated ex vivo from hematopoietic precursor cells in response to cytokines and cell-membrane associated ligands. These in vitro differentiation models provided mechanistic insights into the molecular and cellular pathways underlying the development of this unique, epithelia-associated dendritic cell subset. Notably, the human epidermal microenvironment is fully sufficient to induce LC differentiation from hematopoietic progenitors. Hence, dissecting the molecular characteristics of the human epithelial/epidermal LC niche, and testing defined ligands for their capacity to induce LC differentiation, led to a refined molecular model of LC lineage commitment. During epidermal ontogeny, spatially and temporally regulated availability of TGF-β family members cooperate with other keratinocyte-derived signals, such as E-cadherin and Notch ligands, for instructing LC differentiation. In this review, we discuss the signals known to instruct human hematopoietic progenitor cells and myelomonocytic cells to undergo LC lineage commitment. Additionally, the current methods for generation of large numbers of human LC-like cells ex vivo in defined serum-free media are discussed.
Collapse
Affiliation(s)
- Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria.
| | - Corinna Krump
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Izabela Borek
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
61
|
Chen X, Deng Y, Shi Y, Zhu W, Cai Y, Xu C, Zhu K, Zheng X, Chen G, Xie Q, Weng G. Loss of expression rather than cytoplasmic mislocalization of RUNX3 predicts worse outcome in non-small cell lung cancer. Oncol Lett 2018; 15:5043-5055. [PMID: 29545901 PMCID: PMC5840764 DOI: 10.3892/ol.2018.7993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/24/2018] [Indexed: 12/16/2022] Open
Abstract
Functional inactivation of human runt-related transcription factor 3 (RUNX3) through mutation or epigenetic silencing has been well-documented in many cancerous entities. In addition to gene mutation and promoter hypermethylation, cytoplasmic mislocalization has emerged as another major manifestation of RUNX3 dysfunction in malignancies including breast, colorectal and gastric cancers. The aim of the present study was to investigate whether patients with non-small cell lung cancer (NSCLC) and different RUNX3 expression patterns would have different overall survival (OS), and the associations between different patterns of clinicopathological parameters and clinical outcome. Expressions of RUNX3 and Ki-67 were immunohistochemically detected in normal lung tissue (n=5) and surgically resected tissues from NSCLC patients (n=188). The optimal cutoff of RUNX3 was determined by X-tile software associated with their survival. Apoptotic index in cancerous tissue was evaluated using the terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labelling method. The prognostic significance of different expression patterns of RUNX3 was determined by means of Kaplan-Meier survival estimates and log-rank tests. It was revealed that loss of RUNX3 expression in NSCLC was correlated with a low cancerous apoptotic index (P<0.001), shorter OS and worse prognosis (P=0.0142), while no statistical difference of apoptotic index (P=0.73) or survival (P=0.3781) was determined between patient subgroups with different localization of RUNX3 expression, which was quite different from the situation demonstrated in other malignancies. In conclusion, loss of expression rather than cytoplasmic mislocalization of RUNX3 predicted worse outcome in NSCLC, which was quite different from what manifested in other cancer types, and thus, the underlying mechanism may deserve further investigation.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yujie Deng
- Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yi Shi
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Weifeng Zhu
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Yibin Cai
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Chunwei Xu
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Kunshou Zhu
- Department of Thoracic Surgery, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Xiongwei Zheng
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Gang Chen
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, P.R. China
| | - Qi Xie
- Department of Cardiac Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Guoxing Weng
- Department of Cardiac Surgery, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
62
|
Deckers J, Hammad H, Hoste E. Langerhans Cells: Sensing the Environment in Health and Disease. Front Immunol 2018; 9:93. [PMID: 29449841 PMCID: PMC5799717 DOI: 10.3389/fimmu.2018.00093] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/12/2018] [Indexed: 12/17/2022] Open
Abstract
In the last few decades, our understanding of Langerhans cells (LCs) has drastically changed based on novel findings regarding the developmental origin and biological functions of these epidermis-specific resident immune cells. It has become clear that LCs not only exert pivotal roles in immune surveillance and homeostasis but also impact on pathology by either inducing tolerance or mediating inflammation. Their unique capabilities to self-renew within the epidermis, while also being able to migrate to lymph nodes in order to present antigen, place LCs in a key position to sample the local environment and decide on the appropriate cutaneous immune response. Exciting new data distinguishing LCs from Langerin+ dermal dendritic cells (DCs) on a functional and ontogenic level reveal crucial roles for LCs in trauma and various skin pathologies, which will be thoroughly discussed here. However, despite rapid progress in the field, the exact role of LCs during immune responses has not been completely elucidated. This review focuses on what mouse models that have been developed in order to enable the study of murine LCs and other Langerin-expressing DCs have taught us about LC development and function.
Collapse
Affiliation(s)
- Julie Deckers
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
63
|
Capucha T, Koren N, Nassar M, Heyman O, Nir T, Levy M, Zilberman-Schapira G, Zelentova K, Eli-Berchoer L, Zenke M, Hieronymus T, Wilensky A, Bercovier H, Elinav E, Clausen BE, Hovav AH. Sequential BMP7/TGF-β1 signaling and microbiota instruct mucosal Langerhans cell differentiation. J Exp Med 2018; 215:481-500. [PMID: 29343501 PMCID: PMC5789418 DOI: 10.1084/jem.20171508] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/09/2017] [Accepted: 12/08/2017] [Indexed: 01/29/2023] Open
Abstract
Capucha et al. demonstrate that mucosal Langerhans cell (LC) differentiation from pre–dendritic cells and monocytes involves consecutive BMP7 and TGF-β1 signaling in separate anatomical locations. Moreover, mucosal microbiota regulates the development of LCs that in turn shape microbial and immunological homeostasis. Mucosal Langerhans cells (LCs) originate from pre–dendritic cells and monocytes. However, the mechanisms involved in their in situ development remain unclear. Here, we demonstrate that the differentiation of murine mucosal LCs is a two-step process. In the lamina propria, signaling via BMP7-ALK3 promotes translocation of LC precursors to the epithelium. Within the epithelium, TGF-β1 finalizes LC differentiation, and ALK5 is crucial to this process. Moreover, the local microbiota has a major impact on the development of mucosal LCs, whereas LCs in turn maintain mucosal homeostasis and prevent tissue destruction. These results reveal the differential and sequential role of TGF-β1 and BMP7 in LC differentiation and highlight the intimate interplay of LCs with the microbiota.
Collapse
Affiliation(s)
- Tal Capucha
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Noam Koren
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Maria Nassar
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Oded Heyman
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Tsipora Nir
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Maayan Levy
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Katya Zelentova
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Luba Eli-Berchoer
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, Medical Faculty and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Thomas Hieronymus
- Institute for Biomedical Engineering, Department of Cell Biology, Medical Faculty and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Asaf Wilensky
- Department of Periodontology, Faculty of Dental Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Herve Bercovier
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Avi-Hai Hovav
- The Institute of Dental Sciences, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
64
|
Kurotaki D, Sasaki H, Tamura T. Transcriptional control of monocyte and macrophage development. Int Immunol 2018; 29:97-107. [PMID: 28379391 DOI: 10.1093/intimm/dxx016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022] Open
Abstract
Monocytes and macrophages play critical roles in immune responses, tissue homeostasis and disease progression. There are a number of functionally and phenotypically distinct subpopulations throughout the body. However, the mechanisms by which macrophage and monocyte heterogeneity is established remain unclear. Recent studies have suggested that most tissue-resident macrophages originate from fetal progenitors but not from hematopoietic stem cells, whereas some subpopulations are derived from adult monocytes. In addition, transcription factors specifically required for the development of each subpopulation have been identified. Interestingly, local environmental factors such as heme, retinoic acid and RANKL induce the expression and/or activation of tissue-specific transcription factors, thereby controlling transcriptional programs specific for the subpopulations. Thus, distinct differentiation pathways and local microenvironments appear to contribute to the determination of macrophage transcriptional identities. In this review, we highlight recent advances in our knowledge of the transcriptional control of macrophage and monocyte development.
Collapse
Affiliation(s)
- Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Haruka Sasaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
65
|
Kim TG, Kim SH, Lee MG. The Origin of Skin Dendritic Cell Network and Its Role in Psoriasis. Int J Mol Sci 2017; 19:ijms19010042. [PMID: 29295520 PMCID: PMC5795992 DOI: 10.3390/ijms19010042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/14/2017] [Accepted: 12/21/2017] [Indexed: 01/02/2023] Open
Abstract
Dendritic cells (DCs) are heterogeneous groups of innate immune cells, which orchestrate immune responses by presenting antigens to cognate T cells and stimulating other types of immune cells. Although the term ‘DCs’ generally represent highly mixed subsets with functional heterogeneity, the classical definition of DCs usually denotes conventional DCs (cDCs). Skin contains a unique DC network mainly composed of embryo precursor-derived epidermal Langerhans cells (LCs) and bone marrow-derived dermal cDCs, which can be further classified into type 1 (cDC1) and type 2 (cDC2) subsets. Psoriasis is a chronic inflammatory skin disease, which is principally mediated by IL-23/IL-17 cytokine axis. In the psoriatic skins, DCs are prominent cellular sources for TNF-α and IL-23, and the use of blocking antibodies against TNF-α and IL-23 leads to a significant clinical improvement in psoriatic patients. Recent elegant human and mouse studies have shown that inflammation-induced inflammatory DCs, LCs, dermal cDC2, and monocyte-derived DCs are pivotal DC subsets in psoriatic inflammation. Thus, targeting specific pathogenic DC subsets would be a potential strategy for alleviating and preventing DC-derived IL-23-dependent psoriatic inflammation and other inflammatory dermatoses in the future.
Collapse
Affiliation(s)
- Tae-Gyun Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722 Korea.
| | - Sung Hee Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722 Korea.
| | - Min-Geol Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722 Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
66
|
Frye RE, Nankova B, Bhattacharyya S, Rose S, Bennuri SC, MacFabe DF. Modulation of Immunological Pathways in Autistic and Neurotypical Lymphoblastoid Cell Lines by the Enteric Microbiome Metabolite Propionic Acid. Front Immunol 2017; 8:1670. [PMID: 29312285 PMCID: PMC5744079 DOI: 10.3389/fimmu.2017.01670] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
Propionic acid (PPA) is a ubiquitous short-chain fatty acid which is a fermentation product of the enteric microbiome and present or added to many foods. While PPA has beneficial effects, it is also associated with human disorders, including autism spectrum disorders (ASDs). We previously demonstrated that PPA modulates mitochondrial dysfunction differentially in subsets of lymphoblastoid cell lines (LCLs) derived from patients with ASD. Specifically, PPA significantly increases mitochondrial function in LCLs that have mitochondrial dysfunction at baseline [individuals with autistic disorder with atypical mitochondrial function (AD-A) LCLs] as compared to ASD LCLs with normal mitochondrial function [individuals with autistic disorder with normal mitochondrial function (AD-N) LCLs] and control (CNT) LCLs. PPA at 1 mM was found to have a minimal effect on expression of immune genes in CNT and AD-N LCLs. However, as hypothesized, Panther analysis demonstrated that 1 mM PPA exposure at 24 or 48 h resulted in significant activation of the immune system genes in AD-A LCLs. When the effect of PPA on ASD LCLs were compared to the CNT LCLs, both ASD groups demonstrated immune pathway activation, although the AD-A LCLs demonstrate a wider activation of immune genes. Ingenuity Pathway Analysis identified several immune-related pathways as key Canonical Pathways that were differentially regulated, specifically human leukocyte antigen expression and immunoglobulin production genes were upregulated. These data demonstrate that the enteric microbiome metabolite PPA can evoke atypical immune activation in LCLs with an underlying abnormal metabolic state. As PPA, as well as enteric bacteria which produce PPA, have been implicated in a wide variety of diseases which have components of immune dysfunction, including ASD, diabetes, obesity, and inflammatory diseases, insight into this metabolic modulator may have wide applications for both health and disease.
Collapse
Affiliation(s)
- Richard E Frye
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | | | - Sudeepa Bhattacharyya
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Sirish C Bennuri
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Autism Research Program, Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Derrick F MacFabe
- Kilee Patchell-Evans Autism Research Group, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
67
|
Bellissimo DC, Speck NA. RUNX1 Mutations in Inherited and Sporadic Leukemia. Front Cell Dev Biol 2017; 5:111. [PMID: 29326930 PMCID: PMC5742424 DOI: 10.3389/fcell.2017.00111] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
RUNX1 is a recurrently mutated gene in sporadic myelodysplastic syndrome and leukemia. Inherited mutations in RUNX1 cause familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML). In sporadic AML, mutations in RUNX1 are usually secondary events, whereas in FPD/AML they are initiating events. Here we will describe mutations in RUNX1 in sporadic AML and in FPD/AML, discuss the mechanisms by which inherited mutations in RUNX1 could elevate the risk of AML in FPD/AML individuals, and speculate on why mutations in RUNX1 are rarely, if ever, the first event in sporadic AML.
Collapse
Affiliation(s)
- Dana C Bellissimo
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy A Speck
- Department of Cell and Developmental Biology, Perelman School of Medicine, Abramson Family Cancer Research Institute, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
68
|
Clayton K, Vallejo AF, Davies J, Sirvent S, Polak ME. Langerhans Cells-Programmed by the Epidermis. Front Immunol 2017; 8:1676. [PMID: 29238347 PMCID: PMC5712534 DOI: 10.3389/fimmu.2017.01676] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LCs) reside in the epidermis as a dense network of immune system sentinels. These cells determine the appropriate adaptive immune response (inflammation or tolerance) by interpreting the microenvironmental context in which they encounter foreign substances. In a normal physiological, "non-dangerous" situation, LCs coordinate a continuous state of immune tolerance, preventing unnecessary and harmful immune activation. Conversely, when they sense a danger signal, for example during infection or when the physical integrity of skin has been compromised as a result of a trauma, they instruct T lymphocytes of the adaptive immune system to mount efficient effector responses. Recent advances investigating the molecular mechanisms underpinning the cross talk between LCs and the epidermal microenvironment reveal its importance for programming LC biology. This review summarizes the novel findings describing LC origin and function through the analysis of the transcriptomic programs and gene regulatory networks (GRNs). Review and meta-analysis of publicly available datasets clearly delineates LCs as distinct from both conventional dendritic cells (DCs) and macrophages, suggesting a primary role for the epidermal microenvironment in programming LC biology. This concept is further supported by the analysis of the effect of epidermal pro-inflammatory signals, regulating key GRNs in human and murine LCs. Applying whole transcriptome analyses and in silico analysis has advanced our understanding of how LCs receive, integrate, and process signals from the steady-state and diseased epidermis. Interestingly, in homeostasis and under immunological stress, the molecular network in LCs remains relatively stable, reflecting a key evolutionary need related to tissue localization. Importantly, to fulfill their key role in orchestrating antiviral adaptive immune responses, LC share specific transcriptomic modules with other DC types able to cross-present antigens to cytotoxic CD8+ T cells, pointing to a possible evolutionary convergence mechanism. With the development of more advanced technologies allowing delineation of the molecular networks at the level of chromatin organization, histone modifications, protein translation, and phosphorylation, future "omics" investigations will bring in-depth understanding of the complex molecular mechanisms underpinning human LC biology.
Collapse
Affiliation(s)
- Kalum Clayton
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andres F Vallejo
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - James Davies
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sofia Sirvent
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Marta E Polak
- Systems Immmunology Group, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
69
|
The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages. Immunity 2017; 47:903-912.e4. [PMID: 29126797 DOI: 10.1016/j.immuni.2017.10.007] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/25/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
Abstract
Alveolar macrophages (AMs) derive from fetal liver monocytes, which colonize the lung during embryonic development and give rise to fully mature AMs perinatally. AM differentiation requires granulocyte macrophage colony-stimulating factor (GM-CSF), but whether additional factors are involved in AM regulation is not known. Here we report that AMs, in contrast to most other tissue macrophages, were also dependent on transforming growth factor-β receptor (TGF-βR) signaling. Conditional deletion of TGF-βR in mice at different time points halted the development and differentiation of AMs. In adult mice, TGF-β was also critical for AM homeostasis. The source of TGF-β was AMs themselves, indicative of an autocrine loop that promotes AM self-maintenance. Mechanistically, TGF-βR signaling resulted in upregulation of PPAR-γ, a signature transcription factor essential for the development of AMs. These findings reveal an additional layer of complexity regarding the guidance cues, which govern the genesis, maturation, and survival of AMs.
Collapse
|
70
|
Tissue-specific differentiation of colonic macrophages requires TGFβ receptor-mediated signaling. Mucosal Immunol 2017; 10:1387-1399. [PMID: 28145440 PMCID: PMC5417360 DOI: 10.1038/mi.2016.142] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/22/2016] [Indexed: 02/04/2023]
Abstract
Intestinal macrophages (mφ) form one of the largest populations of mφ in the body and are vital for the maintenance of gut homeostasis. They have several unique properties and are derived from local differentiation of classical Ly6Chi monocytes, but the factors driving this tissue-specific process are not understood. Here we have used global transcriptomic analysis to identify a unique homeostatic signature of mature colonic mφ that is acquired as they differentiate in the mucosa. By comparing the analogous monocyte differentiation process found in the dermis, we identify TGFβ as an indispensable part of monocyte differentiation in the intestine and show that it enables mφ to adapt precisely to the requirements of their environment. Importantly, TGFβR signaling on mφ has a crucial role in regulating the accumulation of monocytes in the mucosa, via mechanisms that are distinct from those used by IL10.
Collapse
|
71
|
Langerhans Cells – The Macrophage in Dendritic Cell Clothing. Trends Immunol 2017; 38:817-828. [DOI: 10.1016/j.it.2017.06.008] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023]
|
72
|
Neupogen and mesenchymal stem cells are the novel therapeutic agents in regeneration of induced endometrial fibrosis in experimental rats. Biosci Rep 2017; 37:BSR20170794. [PMID: 28883083 PMCID: PMC5635209 DOI: 10.1042/bsr20170794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/04/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022] Open
Abstract
Endometrial fibrosis is the presence of intrauterine adhesions (IUAs) after any uterine surgery or curettage and it results in infertility and recurrent pregnancy loss. We evaluated the role of human mesenchymal stem cells (hMSCs) as a therapeutic agent of endometrial fibrosis. We also compared the effect of MSCs with the effect of estrogen and neupogen either each alone or as a combined therapy with MSCs. This experimental study was performed on 84 albino rats which were divided into seven groups (n=12 rats/group) as follows, group1: normal control rats, group 2: induced fibrosis, group 3: induced fibrosis that received oral estrogen, group 4: induced fibrosis that received hMSCs, group 5: induced fibrosis that received hMSCs and estrogen, group 6: induced fibrosis that received neupogen, and group 7: induced fibrosis that received hMSCs and neupogen. The extent of fibrosis, vascularization, and inflammation were evaluated by; qRT-PCR for interleukin 1 (IL-1), interleukin 6 (IL-6), TNF, vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and RUNX; ELISA for connective tissue growth factor (CTGF); Western blotting for collagen-I; immunohistochemistry examination for VEGF and RUNX-2; and histopathological assessment. In therapeutic groups either by hMSCs alone or combined with estrogen or neupogen; fibrosis and inflammation (IL-1, IL-6, TNF, TGF-β, RUNX, CTGF, and collagen-I) were significantly decreased but vascularization (VEGF) was significantly increased (P<0.05) compared with induced fibrosis group. The most significant result was obtained in fibrosis that received combined therapy of hMSCs and neupogen (P=0.000). Stem cells and neupogen are a highly effective alternative regenerative agents in endometrial fibrosis.
Collapse
|
73
|
Ontogeny and function of murine epidermal Langerhans cells. Nat Immunol 2017; 18:1068-1075. [PMID: 28926543 DOI: 10.1038/ni.3815] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Langerhans cells (LCs) are epidermis-resident antigen-presenting cells that share a common ontogeny with macrophages but function as dendritic cells (DCs). Their development, recruitment and retention in the epidermis is orchestrated by interactions with keratinocytes through multiple mechanisms. LC and dermal DC subsets often show functional redundancy, but LCs are required for specific types of adaptive immune responses when antigen is concentrated in the epidermis. This Review will focus on those developmental and functional properties that are unique to LCs.
Collapse
|
74
|
TGFβR signalling controls CD103 +CD11b + dendritic cell development in the intestine. Nat Commun 2017; 8:620. [PMID: 28931816 PMCID: PMC5607002 DOI: 10.1038/s41467-017-00658-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
CD103+CD11b+ dendritic cells (DCs) are unique to the intestine, but the factors governing their differentiation are unclear. Here we show that transforming growth factor receptor 1 (TGFβR1) has an indispensable, cell intrinsic role in the development of these cells. Deletion of Tgfbr1 results in markedly fewer intestinal CD103+CD11b+ DCs and a reciprocal increase in the CD103−CD11b+ dendritic cell subset. Transcriptional profiling identifies markers that define the CD103+CD11b+ DC lineage, including CD101, TREM1 and Siglec-F, and shows that the absence of CD103+CD11b+ DCs in CD11c-Cre.Tgfbr1fl/fl mice reflects defective differentiation from CD103−CD11b+ intermediaries, rather than an isolated loss of CD103 expression. The defect in CD103+CD11b+ DCs is accompanied by reduced generation of antigen-specific, inducible FoxP3+ regulatory T cells in vitro and in vivo, and by reduced numbers of endogenous Th17 cells in the intestinal mucosa. Thus, TGFβR1-mediated signalling may explain the tissue-specific development of these unique DCs. Developmental cues for the different dendritic cell (DC) subsets in the intestine are yet to be defined. Here the authors show that TGFβR1 signalling is needed for development of CD103+CD11b+ intestinal DCs from CD103−CD11b+ cells and that they contribute to the generation of Th17 and regulatory T cells
Collapse
|
75
|
Tenno M, Shiroguchi K, Muroi S, Kawakami E, Koseki K, Kryukov K, Imanishi T, Ginhoux F, Taniuchi I. Cbfβ2 deficiency preserves Langerhans cell precursors by lack of selective TGFβ receptor signaling. J Exp Med 2017; 214:2933-2946. [PMID: 28814567 PMCID: PMC5626404 DOI: 10.1084/jem.20170729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/18/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022] Open
Abstract
Tenno et al. show that loss of Cbfβ2, one of two RNA splice variants of the Cbfb gene, results in the persistence of embryonic Langerhans cell precursors in the adult epidermis by selective loss of BMP7-BMPR1A signaling with intact TGFβR1 signaling. The mouse Langerhans cell (LC) network is established through the differentiation of embryonic LC precursors. BMP7 and TGFβ1 initiate cellular signaling that is essential for inducing LC differentiation and preserving LCs in a quiescent state, respectively. Here we show that loss of Cbfβ2, one of two RNA splice variants of the Cbfb gene, results in long-term persistence of embryonic LC precursors after their developmental arrest at the transition into the EpCAM+ stage. This phenotype is caused by selective loss of BMP7-mediated signaling essential for LC differentiation, whereas TGFβR signaling is intact, maintaining cells in a quiescent state. Transgenic Cbfβ2 expression at the neonatal stage, but not at the adult stage, restored differentiation from Cbfβ2-deficient LC precursors. Loss of developmental potential in skin-residential precursor cells was accompanied by diminished BMP7–BMPR1A signaling. Collectively, our results reveal an essential requirement for the Cbfβ2 variant in LC differentiation and provide novel insight into how the establishment and homeostasis of the LC network is regulated.
Collapse
Affiliation(s)
- Mari Tenno
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory for Integrative Omics, RIKEN Quantitative Biology Center, Osaka, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eiryo Kawakami
- Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Japan
| | - Keita Koseki
- Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Japan
| | - Kirill Kryukov
- Biomedical Informatics Laboratory, Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Tadashi Imanishi
- Biomedical Informatics Laboratory, Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
76
|
Modena BD, Bleecker ER, Busse WW, Erzurum SC, Gaston BM, Jarjour NN, Meyers DA, Milosevic J, Tedrow JR, Wu W, Kaminski N, Wenzel SE. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease. Am J Respir Crit Care Med 2017; 195:1449-1463. [PMID: 27984699 DOI: 10.1164/rccm.201607-1407oc] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
RATIONALE Severe asthma (SA) is a heterogeneous disease with multiple molecular mechanisms. Gene expression studies of bronchial epithelial cells in individuals with asthma have provided biological insight and underscored possible mechanistic differences between individuals. OBJECTIVES Identify networks of genes reflective of underlying biological processes that define SA. METHODS Airway epithelial cell gene expression from 155 subjects with asthma and healthy control subjects in the Severe Asthma Research Program was analyzed by weighted gene coexpression network analysis to identify gene networks and profiles associated with SA and its specific characteristics (i.e., pulmonary function tests, quality of life scores, urgent healthcare use, and steroid use), which potentially identified underlying biological processes. A linear model analysis confirmed these findings while adjusting for potential confounders. MEASUREMENTS AND MAIN RESULTS Weighted gene coexpression network analysis constructed 64 gene network modules, including modules corresponding to T1 and T2 inflammation, neuronal function, cilia, epithelial growth, and repair mechanisms. Although no network selectively identified SA, genes in modules linked to epithelial growth and repair and neuronal function were markedly decreased in SA. Several hub genes of the epithelial growth and repair module were found located at the 17q12-21 locus, near a well-known asthma susceptibility locus. T2 genes increased with severity in those treated with corticosteroids but were also elevated in untreated, mild-to-moderate disease compared with healthy control subjects. T1 inflammation, especially when associated with increased T2 gene expression, was elevated in a subgroup of younger patients with SA. CONCLUSIONS In this hypothesis-generating analysis, gene expression networks in relation to asthma severity provided potentially new insight into biological mechanisms associated with the development of SA and its phenotypes.
Collapse
Affiliation(s)
- Brian D Modena
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Asthma Institute at UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,2 Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, California
| | - Eugene R Bleecker
- 3 Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - William W Busse
- 4 Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin
| | - Serpil C Erzurum
- 5 Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio
| | - Benjamin M Gaston
- 6 Division of Pediatric Pulmonary, Allergy and Immunology, Case Western Reserve University, Cleveland, Ohio.,7 Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Nizar N Jarjour
- 4 Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin
| | - Deborah A Meyers
- 3 Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jadranka Milosevic
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Asthma Institute at UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John R Tedrow
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Asthma Institute at UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wei Wu
- 8 Lane Center for Computational Biology School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania; and
| | - Naftali Kaminski
- 9 Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Sally E Wenzel
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Asthma Institute at UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
77
|
Zhou X, Zhu J, Bian T, Wang R, Gao F. Mislocalization of Runt-related transcription factor 3 results in airway inflammation and airway hyper-responsiveness in a murine asthma model. Exp Ther Med 2017; 14:2695-2701. [PMID: 28962214 DOI: 10.3892/etm.2017.4812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
The Runt-related transcription factor (RUNX) gene family consists of three members, RUNX1, -2 and -3, which heterodimerize with a common protein, core-binding factor β, and contain the highly conserved Runt-homology domain. RUNX1 and -2 have essential roles in hematopoiesis and osteogenesis. Runx3 protein regulates cell lineage decisions in neurogenesis and thymopoiesis. The aim of the present study was to determine the expression features of the Runx3 protein in a murine asthma model. In vivo, Runx3 protein and mRNA were found to be almost equivalently expressed in the murine lung tissue of the control, ovalbumin (OVA) and genistein groups; however, the nuclear Runx3 protein was abated in lung tissue in OVA-immunized and challenged mice. Following treatment with genistein, which is a flavonoid previously demonstrated to decrease airway inflammation in asthma, the allergic airway inflammation and airway hyper-responsiveness were attenuated and the Runx3 protein tended to augment in the nucleus. These results were further determined in vitro. These results indicated that the mislocalization of Runx3 protein is a molecular mechanism of allergic inflammation and airway hyper-responsiveness in a murine asthma model.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Respiratory Medicine, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Jinxiao Zhu
- Department of Stomatology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Ruiqian Wang
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Fei Gao
- Department of Respiratory Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
78
|
Steinel NC, Bolnick DI. Melanomacrophage Centers As a Histological Indicator of Immune Function in Fish and Other Poikilotherms. Front Immunol 2017; 8:827. [PMID: 28769932 PMCID: PMC5512340 DOI: 10.3389/fimmu.2017.00827] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022] Open
Abstract
Melanomacrophage centers (MMCs) are aggregates of highly pigmented phagocytes found primarily in the head kidney and spleen, and occasionally the liver of many vertebrates. Preliminary histological analyses suggested that MMCs are structurally similar to the mammalian germinal center (GC), leading to the hypothesis that the MMC plays a role in the humoral adaptive immune response. For this reason, MMCs are frequently described in the literature as “primitive GCs” or the “evolutionary precursors” to the mammalian GC. However, we argue that this designation may be premature, having been pieced together from mainly descriptive studies in numerous distinct species. This review provides a comprehensive overview of the MMC literature, including a phylogenetic analysis of MMC distribution across vertebrate species. Here, we discuss the current understanding of the MMCs function in immunity and lingering questions. We suggest additional experiments needed to confirm that MMCs serve a GC-like role in fish immunity. Finally, we address the utility of the MMC as a broadly applicable histological indicator of the fish (as well as amphibian and reptilian) immune response in both laboratory and wild populations of both model and non-model vertebrates. We highlight the factors (sex, pollution exposure, stress, stocking density, etc.) that should be considered when using MMCs to study immunity in non-model vertebrates in wild populations.
Collapse
Affiliation(s)
- Natalie C Steinel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States.,Department of Medical Education, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Daniel I Bolnick
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
79
|
Parr CL, Magnus MC, Karlstad Ø, Haugen M, Refsum H, Ueland PM, McCann A, Nafstad P, Håberg SE, Nystad W, London SJ. Maternal Folate Intake during Pregnancy and Childhood Asthma in a Population-based Cohort. Am J Respir Crit Care Med 2017; 195:221-228. [PMID: 27518161 DOI: 10.1164/rccm.201604-0788oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE A potential adverse effect of high folate intake during pregnancy on children's asthma development remains controversial. OBJECTIVES To prospectively investigate folate intake from both food and supplements during pregnancy and asthma at age 7 years when the diagnosis is more reliable than at preschool age. METHODS This study included eligible children born 2002-2006 from the Norwegian Mother and Child Cohort Study, a population-based pregnancy cohort, linked to the Norwegian Prescription Database. Current asthma at age 7 was defined by asthma medications dispensed at least twice in the year (1,901 cases; n = 39,846) or by maternal questionnaire report (1,624 cases; n = 28,872). Maternal folate intake was assessed with a food frequency questionnaire validated against plasma folate. We used log-binomial and multinomial regression to calculate adjusted relative risks with 95% confidence intervals. MEASUREMENTS AND MAIN RESULTS Risk of asthma was increased in the highest versus lowest quintile of total folate intake with an adjusted relative risk of 1.23 (95% confidence interval, 1.06-1.44) that was similar for maternally reported asthma. Mothers in the highest quintile had a relatively high intake of food folate (median, 308; interquartile range, 241-366 μg/d) and nearly all took at least 400 μg/d of supplemental folic acid (median, 500; interquartile range, 400-600 μg/d). CONCLUSIONS In this large prospective population-based cohort with essentially complete follow-up, pregnant women taking supplemental folic acid at or above the recommended dose, combined with a diet rich in folate, reach a total folate intake level associated with a slightly increased risk of asthma in children.
Collapse
Affiliation(s)
- Christine L Parr
- 1 Department of Mental and Physical Health and.,2 Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Maria C Magnus
- 1 Department of Mental and Physical Health and.,3 Medical Research Council Integrative Epidemiology Unit and.,4 School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Margaretha Haugen
- 5 Department of Exposure and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| | - Helga Refsum
- 6 Institute of Basic Medical Sciences, Department of Nutrition, and
| | - Per M Ueland
- 7 Department of Clinical Science, University of Bergen, Bergen, Norway.,8 Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway; and
| | | | - Per Nafstad
- 1 Department of Mental and Physical Health and.,10 Department of Community Medicine, University of Oslo, Oslo, Norway
| | | | | | - Stephanie J London
- 2 Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| |
Collapse
|
80
|
Emmett RA, Davidson KL, Gould NJ, Arasaradnam RP. DNA methylation patterns in ulcerative colitis-associated cancer: a systematic review. Epigenomics 2017; 9:1029-1042. [PMID: 28621161 DOI: 10.2217/epi-2017-0025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Evidence points to the role of DNA methylation in ulcerative colitis (UC)-associated cancer (UCC), the most serious complication of ulcerative colitis. A better understanding of the etiology of UCC may facilitate the development of new therapeutic targets and help to identify biomarkers of the disease risk. METHODS A search was performed in three databases following PRISMA protocol. DNA methylation in UCC was compared with sporadic colorectal cancer (SCRC), and individual genes differently methylated in UCC identified. RESULTS While there were some similarities in the methylation patterns of UCC compared with SCRC, generally lower levels of hypermethylation in promoter regions of individual genes was evident in UCC. Certain individual genes are, however, highly methylated in colitis-associated cancer: RUNX3, MINT1, MYOD and p16 exon1 and the promoter regions of EYA4 and ESR. CONCLUSION Patterns of DNA methylation differ between UCC and SCRC. Seven genes appear to be promising putative biomarkers.
Collapse
Affiliation(s)
- Ruth A Emmett
- Warwick Medical School, University of Warwick, Coventry, UK
| | | | | | | |
Collapse
|
81
|
Appel E, Weissmann S, Salzberg Y, Orlovsky K, Negreanu V, Tsoory M, Raanan C, Feldmesser E, Bernstein Y, Wolstein O, Levanon D, Groner Y. An ensemble of regulatory elements controls Runx3 spatiotemporal expression in subsets of dorsal root ganglia proprioceptive neurons. Genes Dev 2017; 30:2607-2622. [PMID: 28007784 PMCID: PMC5204353 DOI: 10.1101/gad.291484.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Appel et al. defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Then, using transgenic mice expressing BAC reporters spanning the Runx3 locus, they discovered three REs that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. The Runx3 transcription factor is essential for development and diversification of the dorsal root ganglia (DRGs) TrkC sensory neurons. In Runx3-deficient mice, developing TrkC neurons fail to extend central and peripheral afferents, leading to cell death and disruption of the stretch reflex circuit, resulting in severe limb ataxia. Despite its central role, the mechanisms underlying the spatiotemporal expression specificities of Runx3 in TrkC neurons were largely unknown. Here we first defined the genomic transcription unit encompassing regulatory elements (REs) that mediate the tissue-specific expression of Runx3. Using transgenic mice expressing BAC reporters spanning the Runx3 locus, we discovered three REs—dubbed R1, R2, and R3—that cross-talk with promoter-2 (P2) to drive TrkC neuron-specific Runx3 transcription. Deletion of single or multiple elements either in the BAC transgenics or by CRISPR/Cas9-mediated endogenous ablation established the REs’ ability to promote and/or repress Runx3 expression in developing sensory neurons. Our analysis reveals that an intricate combinatorial interplay among the three REs governs Runx3 expression in distinct subtypes of TrkC neurons while concomitantly extinguishing its expression in non-TrkC neurons. These findings provide insights into the mechanism regulating cell type-specific expression and subtype diversification of TrkC neurons in developing DRGs.
Collapse
Affiliation(s)
- Elena Appel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sarit Weissmann
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yehuda Salzberg
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel.,Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Kira Orlovsky
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Varda Negreanu
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Calanit Raanan
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ester Feldmesser
- Life Science Core Facilities, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yael Bernstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Orit Wolstein
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ditsa Levanon
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yoram Groner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
82
|
Cho SM, Jung SH, Chung YJ. A Variant in RUNX3 Is Associated with the Risk of Ankylosing Spondylitis in Koreans. Genomics Inform 2017. [PMID: 28638311 PMCID: PMC5478709 DOI: 10.5808/gi.2017.15.2.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ankylosing spondylitis (AS) is a chronic autoinflammatory disease that affects the spine and sacroiliac joints. Regarding its etiology, although HLA-B27 is known to be the strongest genetic factor of AS, much evidence suggests the potential contribution of non-MHC genes to the susceptibility to AS. Most of these non-MHC genes have been discovered in non-Asian populations; however, just some of them have been validated in Koreans. In this study, we aimed to identify additional AS-associated single-nucleotide polymorphism (SNP) candidates by replicating the candidate SNPs in Korean AS patients and healthy controls. For this, we selected three SNPs (rs11249215 in RUNX3, rs6556416 in IL12B, and rs8070463 in TBKBP1), which were previously reported as risk factors of AS but have not been studied in Koreans, and performed genotyping assays using a total of 1138 Korean samples (572 AS patients and 566 healthy controls). Of the three SNP candidates, one SNP in RUNX3 (rs11249215) was significantly associated with the risk of AS (odds ratio, 1.31; 95% confidence interval, 1.02 to 1.68, p = 0.03). These results will be helpful in elucidating the pathogenesis of AS and may be useful for developing AS risk prediction models in Koreans.
Collapse
Affiliation(s)
- Sung-Min Cho
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seung-Hyun Jung
- Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yeun-Jun Chung
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
83
|
Sanjabi S, Oh SA, Li MO. Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022236. [PMID: 28108486 DOI: 10.1101/cshperspect.a022236] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine involved in both suppressive and inflammatory immune responses. After 30 years of intense study, we have only begun to elucidate how TGF-β alters immunity under various conditions. Under steady-state conditions, TGF-β regulates thymic T-cell selection and maintains homeostasis of the naïve T-cell pool. TGF-β inhibits cytotoxic T lymphocyte (CTL), Th1-, and Th2-cell differentiation while promoting peripheral (p)Treg-, Th17-, Th9-, and Tfh-cell generation, and T-cell tissue residence in response to immune challenges. Similarly, TGF-β controls the proliferation, survival, activation, and differentiation of B cells, as well as the development and functions of innate cells, including natural killer (NK) cells, macrophages, dendritic cells, and granulocytes. Collectively, TGF-β plays a pivotal role in maintaining peripheral tolerance against self- and innocuous antigens, such as food, commensal bacteria, and fetal alloantigens, and in controlling immune responses to pathogens.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California 94158.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Soyoung A Oh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
84
|
Jurkin J, Krump C, Köffel R, Fieber C, Schuster C, Brunner PM, Borek I, Eisenwort G, Lim C, Mages J, Lang R, Bauer W, Mechtcheriakova D, Meshcheryakova A, Elbe-Bürger A, Stingl G, Strobl H. Human skin dendritic cell fate is differentially regulated by the monocyte identity factor Kruppel-like factor 4 during steady state and inflammation. J Allergy Clin Immunol 2017; 139:1873-1884.e10. [PMID: 27742396 PMCID: PMC5538449 DOI: 10.1016/j.jaci.2016.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 09/09/2016] [Indexed: 11/01/2022]
Abstract
BACKGROUND Langerhans cell (LC) networks play key roles in immunity and tolerance at body surfaces. LCs are established prenatally and can be replenished from blood monocytes. Unlike skin-resident dermal DCs (dDCs)/interstitial-type DCs and inflammatory dendritic epidermal cells appearing in dermatitis/eczema lesions, LCs lack key monocyte-affiliated markers. Inversely, LCs express various epithelial genes critical for their long-term peripheral tissue residency. OBJECTIVE Dendritic cells (DCs) are functionally involved in inflammatory diseases; however, the mechanisms remained poorly understood. METHODS In vitro differentiation models of human DCs, gene profiling, gene transduction, and immunohistology were used to identify molecules involved in DC subset specification. RESULTS Here we identified the monocyte/macrophage lineage identity transcription factor Kruppel-like factor 4 (KLF4) to be inhibited during LC differentiation from human blood monocytes. Conversely, KLF4 is maintained or induced during dermal DC and monocyte-derived dendritic cell/inflammatory dendritic epidermal cell differentiation. We showed that in monocytic cells KLF4 has to be repressed to allow their differentiation into LCs. Moreover, respective KLF4 levels in DC subsets positively correlate with proinflammatory characteristics. We identified epithelial Notch signaling to repress KLF4 in monocytes undergoing LC commitment. Loss of KLF4 in monocytes transcriptionally derepresses Runt-related transcription factor 3 in response to TGF-β1, thereby allowing LC differentiation marked by a low cytokine expression profile. CONCLUSION Monocyte differentiation into LCs depends on activation of Notch signaling and the concomitant loss of KLF4.
Collapse
Affiliation(s)
- Jennifer Jurkin
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Corinna Krump
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - René Köffel
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Christina Fieber
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Christopher Schuster
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Izabela Borek
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Gregor Eisenwort
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Clarice Lim
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria; Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Jörg Mages
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Lang
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Departments of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Anastasia Meshcheryakova
- Departments of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Adelheid Elbe-Bürger
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Georg Stingl
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria; Institute of Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
85
|
Modena BD, Bleecker ER, Busse WW, Erzurum SC, Gaston BM, Jarjour NN, Meyers DA, Milosevic J, Tedrow JR, Wu W, Kaminski N, Wenzel SE. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease. Am J Respir Crit Care Med 2017. [PMID: 27984699 DOI: 10.1164/rccm.201607-1407oc 10.1164/rccm.201607-1407oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Severe asthma (SA) is a heterogeneous disease with multiple molecular mechanisms. Gene expression studies of bronchial epithelial cells in individuals with asthma have provided biological insight and underscored possible mechanistic differences between individuals. OBJECTIVES Identify networks of genes reflective of underlying biological processes that define SA. METHODS Airway epithelial cell gene expression from 155 subjects with asthma and healthy control subjects in the Severe Asthma Research Program was analyzed by weighted gene coexpression network analysis to identify gene networks and profiles associated with SA and its specific characteristics (i.e., pulmonary function tests, quality of life scores, urgent healthcare use, and steroid use), which potentially identified underlying biological processes. A linear model analysis confirmed these findings while adjusting for potential confounders. MEASUREMENTS AND MAIN RESULTS Weighted gene coexpression network analysis constructed 64 gene network modules, including modules corresponding to T1 and T2 inflammation, neuronal function, cilia, epithelial growth, and repair mechanisms. Although no network selectively identified SA, genes in modules linked to epithelial growth and repair and neuronal function were markedly decreased in SA. Several hub genes of the epithelial growth and repair module were found located at the 17q12-21 locus, near a well-known asthma susceptibility locus. T2 genes increased with severity in those treated with corticosteroids but were also elevated in untreated, mild-to-moderate disease compared with healthy control subjects. T1 inflammation, especially when associated with increased T2 gene expression, was elevated in a subgroup of younger patients with SA. CONCLUSIONS In this hypothesis-generating analysis, gene expression networks in relation to asthma severity provided potentially new insight into biological mechanisms associated with the development of SA and its phenotypes.
Collapse
Affiliation(s)
- Brian D Modena
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Asthma Institute at UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,2 Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, California
| | - Eugene R Bleecker
- 3 Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - William W Busse
- 4 Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin
| | - Serpil C Erzurum
- 5 Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio
| | - Benjamin M Gaston
- 6 Division of Pediatric Pulmonary, Allergy and Immunology, Case Western Reserve University, Cleveland, Ohio.,7 Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - Nizar N Jarjour
- 4 Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin
| | - Deborah A Meyers
- 3 Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jadranka Milosevic
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Asthma Institute at UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John R Tedrow
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Asthma Institute at UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wei Wu
- 8 Lane Center for Computational Biology School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania; and
| | - Naftali Kaminski
- 9 Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Sally E Wenzel
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Asthma Institute at UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
86
|
Affiliation(s)
- Sakeen W. Kashem
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Daniel H. Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
87
|
Paschos K, Bazot Q, Ho G, Parker GA, Lees J, Barton G, Allday MJ. Core binding factor (CBF) is required for Epstein-Barr virus EBNA3 proteins to regulate target gene expression. Nucleic Acids Res 2017; 45:2368-2383. [PMID: 27903901 PMCID: PMC5389572 DOI: 10.1093/nar/gkw1167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
ChIP-seq performed on lymphoblastoid cell lines (LCLs), expressing epitope-tagged EBNA3A, EBNA3B or EBNA3C from EBV-recombinants, revealed important principles of EBNA3 binding to chromatin. When combined with global chromatin looping data, EBNA3-bound loci were found to have a singular character, each directly associating with either EBNA3-repressed or EBNA3-activated genes, but not with both. EBNA3A and EBNA3C showed significant association with repressed and activated genes. Significant direct association for EBNA3B loci could only be shown with EBNA3B-repressed genes. A comparison of EBNA3 binding sites with known transcription factor binding sites in LCL GM12878 revealed substantial co-localization of EBNA3s with RUNX3-a protein induced by EBV during B cell transformation. The beta-subunit of core binding factor (CBFβ), that heterodimerizes with RUNX3, could co-immunoprecipitate robustly EBNA3B and EBNA3C, but only weakly EBNA3A. Depletion of either RUNX3 or CBFβ with lentivirus-delivered shRNA impaired epitope-tagged EBNA3B and EBNA3C binding at multiple regulated gene loci, indicating a requirement for CBF heterodimers in EBNA3 recruitment during target-gene regulation. ShRNA-mediated depletion of CBFβ in an EBNA3C-conditional LCL confirmed the role of CBF in the regulation of EBNA3C-induced and -repressed genes. These results reveal an important role for RUNX3/CBF during B cell transformation and EBV latency that was hitherto unexplored.
Collapse
Affiliation(s)
- Kostas Paschos
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Quentin Bazot
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Guiyi Ho
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Gillian A. Parker
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Jonathan Lees
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Geraint Barton
- Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ, UK
| | - Martin J. Allday
- Molecular Virology, Department of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
88
|
Evans JM, Noorai RE, Tsai KL, Starr-Moss AN, Hill CM, Anderson KJ, Famula TR, Clark LA. Beyond the MHC: A canine model of dermatomyositis shows a complex pattern of genetic risk involving novel loci. PLoS Genet 2017; 13:e1006604. [PMID: 28158183 PMCID: PMC5315411 DOI: 10.1371/journal.pgen.1006604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/17/2017] [Accepted: 01/24/2017] [Indexed: 01/04/2023] Open
Abstract
Juvenile dermatomyositis (JDM) is a chronic inflammatory myopathy and vasculopathy driven by genetic and environmental influences. Here, we investigated the genetic underpinnings of an analogous, spontaneous disease of dogs also termed dermatomyositis (DMS). As in JDM, we observed a significant association with a haplotype of the major histocompatibility complex (MHC) (DLA-DRB1*002:01/-DQA1*009:01/-DQB1*001:01), particularly in homozygosity (P-val = 0.0001). However, the high incidence of the haplotype among healthy dogs indicated that additional genetic risk factors are likely involved in disease progression. We conducted genome-wide association studies in two modern breeds having common ancestry and detected strong associations with novel loci on canine chromosomes 10 (P-val = 2.3X10-12) and 31 (P-val = 3.95X10-8). Through whole genome resequencing, we identified primary candidate polymorphisms in conserved regions of PAN2 (encoding p.Arg492Cys) and MAP3K7CL (c.383_392ACTCCACAAA>GACT) on chromosomes 10 and 31, respectively. Analyses of these polymorphisms and the MHC haplotypes revealed that nine of 27 genotypic combinations confer high or moderate probability of disease and explain 93% of cases studied. The pattern of disease risk across PAN2 and MAP3K7CL genotypes provided clear evidence for a significant epistatic foundation for this disease, a risk further impacted by MHC haplotypes. We also observed a genotype-phenotype correlation wherein an earlier age of onset is correlated with an increased number of risk alleles at PAN2 and MAP3K7CL. High frequencies of multiple genetic risk factors are unique to affected breeds and likely arose coincident with artificial selection for desirable phenotypes. Described herein is the first three-locus association with a complex canine disease and two novel loci that provide targets for exploration in JDM and related immunological dysfunction.
Collapse
Affiliation(s)
- Jacquelyn M. Evans
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Rooksana E. Noorai
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- Genomics and Computational Laboratory, Clemson University, Clemson, South Carolina, United States of America
| | - Kate L. Tsai
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Alison N. Starr-Moss
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Cody M. Hill
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Kendall J. Anderson
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Thomas R. Famula
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Leigh Anne Clark
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
89
|
Runx3 and Cell Fate Decisions in Pancreas Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:333-352. [PMID: 28299667 DOI: 10.1007/978-981-10-3233-2_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The RUNX family transcription factors are critical regulators of development and frequently dysregulated in cancer. RUNX3, the least well characterized of the three family members, has been variously described as a tumor promoter or suppressor, sometimes with conflicting results and opinions in the same cancer and likely reflecting a complex role in oncogenesis. We recently identified RUNX3 expression as a crucial determinant of the predilection for pancreatic ductal adenocarcinoma (PDA) cells to proliferate locally or promulgate throughout the body. High RUNX3 expression induces the production and secretion of soluble factors that support metastatic niche construction and stimulates PDA cells to migrate and invade, while simultaneously suppressing proliferation through increased expression of cell cycle regulators such as CDKN1A/p21 WAF1/CIP1 . RUNX3 expression and function are coordinated by numerous transcriptional and post-translational inputs, and interactions with diverse cofactors influence whether the resulting RUNX3 complexes enact tumor suppressive or tumor promoting programs. Understanding these exquisitely context-dependent tumor cell behaviors has the potential to inform clinical decision-making including the most appropriate timing and sequencing of local vs. systemic therapies.
Collapse
|
90
|
West MJ, Farrell PJ. Roles of RUNX in B Cell Immortalisation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:283-298. [PMID: 28299664 DOI: 10.1007/978-981-10-3233-2_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RUNX1 and RUNX3 are the main RUNX genes expressed in B lymphocytes. Both are expressed throughout B-cell development and play key roles at certain key developmental transitions. The tumour-associated Epstein-Barr virus (EBV) has potent B-cell transforming ability and manipulates RUNX3 and RUNX1 transcription through novel mechanisms to control B cell growth. In contrast to resting mature B cells where RUNX1 expression is high, in EBV-infected cells RUNX1 levels are low and RUNX3 levels are high. Downregulation of RUNX1 in these cells results from cross-regulation by RUNX3 and serves to relieve RUNX1-mediated growth repression. RUNX3 is upregulated by the EBV transcription factor (TF) EBNA2 and represses RUNX1 transcription through RUNX sites in the RUNX1 P1 promoter. Recent analysis revealed that EBNA2 activates RUNX3 transcription through an 18 kb upstream super-enhancer in a manner dependent on the EBNA2 and Notch DNA-binding partner RBP-J. This super-enhancer also directs RUNX3 activation by two further RBP-J-associated EBV TFs, EBNA3B and 3C. Counter-intuitively, EBNA2 also hijacks RBP-J to target a super-enhancer region upstream of RUNX1 to maintain some RUNX1 expression in certain cell backgrounds, although the dual functioning EBNA3B and 3C proteins limit this activation. Interestingly, the B-cell genome binding sites of EBV TFs overlap extensively with RUNX3 binding sites and show enrichment for RUNX motifs. Therefore in addition to B-cell growth manipulation through the long-range control of RUNX transcription, EBV may also use RUNX proteins as co-factors to deregulate the transcription of many B cell genes during immortalisation.
Collapse
Affiliation(s)
- Michelle J West
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK.
| | - Paul J Farrell
- Section of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
91
|
Abstract
In this chapter we summarize the pros and cons of the notion that Runx3 is a major tumor suppressor gene (TSG). Inactivation of TSGs in normal cells provides a viability/growth advantage that contributes cell-autonomously to cancer. More than a decade ago it was suggested that RUNX3 is involved in gastric cancer development, a postulate extended later to other epithelial cancers portraying RUNX3 as a major TSG. However, evidence that Runx3 is not expressed in normal gastric and other epithelia has challenged the RUNX3-TSG paradigm. In contrast, RUNX3 is overexpressed in a significant fraction of tumor cells in various human epithelial cancers and its overexpression in pancreatic cancer cells promotes their migration, anchorage-independent growth and metastatic potential. Moreover, recent high-throughput quantitative genome-wide studies on thousands of human samples of various tumors and new investigations of the role of Runx3 in mouse cancer models have unequivocally demonstrated that RUNX3 is not a bona fide cell-autonomous TSG. Importantly, accumulating data demonstrated that RUNX3 functions in control of immunity and inflammation, thereby indirectly influencing epithelial tumor development.
Collapse
|
92
|
Heidkamp GF, Sander J, Lehmann CHK, Heger L, Eissing N, Baranska A, Lu hr JJ, Hoffmann A, Reimer KC, Lux A, So der S, Hartmann A, Zenk J, Ulas T, McGovern N, Alexiou C, Spriewald B, Mackensen A, Schuler G, Schauf B, Forster A, Repp R, Fasching PA, Purbojo A, Cesnjevar R, Ullrich E, Ginhoux F, Schlitzer A, Nimmerjahn F, Schultze JL, Dudziak D. Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Sci Immunol 2016; 1:1/6/eaai7677. [DOI: 10.1126/sciimmunol.aai7677] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/14/2016] [Indexed: 11/02/2022]
|
93
|
Devi KSP, Anandasabapathy N. The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues. Semin Immunopathol 2016; 39:137-152. [PMID: 27888331 DOI: 10.1007/s00281-016-0602-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are specialized immune sentinels that play key role in maintaining immune homeostasis by efficiently regulating the delicate balance between protective immunity and tolerance to self. Although DCs respond to maturation signals present in the surrounding milieu, multiple layers of suppression also co-exist that reduce the infringement of tolerance against self-antigens. These tolerance inducing properties of DCs are governed by their origin and a range of other factors including distribution, cytokines, growth factors, and transcriptional programing, that collectively impart suppressive functions to these cells. DCs directing tolerance secrete anti-inflammatory cytokines and induce naïve T cells or B cells to differentiate into regulatory T cells (Tregs) or B cells. In this review, we provide a detailed outlook on the molecular mechanisms that induce functional specialization to govern central or peripheral tolerance. The tolerance-inducing nature of DCs can be exploited to overcome autoimmunity and rejection in graft transplantation.
Collapse
Affiliation(s)
- K Sanjana P Devi
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
94
|
Takacs E, Boto P, Simo E, Csuth TI, Toth BM, Raveh-Amit H, Pap A, Kovács EG, Kobolak J, Benkö S, Dinnyes A, Szatmari I. Immunogenic Dendritic Cell Generation from Pluripotent Stem Cells by Ectopic Expression of Runx3. THE JOURNAL OF IMMUNOLOGY 2016; 198:239-248. [DOI: 10.4049/jimmunol.1600034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022]
|
95
|
Mass E, Ballesteros I, Farlik M, Halbritter F, Günther P, Crozet L, Jacome-Galarza CE, Händler K, Klughammer J, Kobayashi Y, Gomez-Perdiguero E, Schultze JL, Beyer M, Bock C, Geissmann F. Specification of tissue-resident macrophages during organogenesis. Science 2016; 353:aaf4238. [PMID: 27492475 PMCID: PMC5066309 DOI: 10.1126/science.aaf4238] [Citation(s) in RCA: 615] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/20/2016] [Indexed: 12/28/2022]
Abstract
Tissue-resident macrophages support embryonic development and tissue homeostasis and repair. The mechanisms that control their differentiation remain unclear. We report here that erythro-myeloid progenitors in mice generate premacrophages (pMacs) that simultaneously colonize the whole embryo from embryonic day 9.5 in a chemokine-receptor-dependent manner. The core macrophage program initiated in pMacs is rapidly diversified as expression of transcriptional regulators becomes tissue-specific in early macrophages. This process appears essential for macrophage specification and maintenance, as inactivation of Id3 impairs the development of liver macrophages and results in selective Kupffer cell deficiency in adults. We propose that macrophage differentiation is an integral part of organogenesis, as colonization of organ anlagen by pMacs is followed by their specification into tissue macrophages, hereby generating the macrophage diversity observed in postnatal tissues.
Collapse
Affiliation(s)
- Elvira Mass
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ivan Ballesteros
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Florian Halbritter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Patrick Günther
- Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Lucile Crozet
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | | | - Kristian Händler
- Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Johanna Klughammer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Hiro-Oka Gobara Shiojiri, Nagano, 390-0781 Japan
| | - Elisa Gomez-Perdiguero
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King's College London, London SE1 1UL, UK
| | - Joachim L. Schultze
- Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- Single Cell Genomics and Epigenomics Unit at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Marc Beyer
- Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- Single Cell Genomics and Epigenomics Unit at the German Center for Neurodegenerative Diseases and the University of Bonn, Bonn, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
| | - Frederic Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King's College London, London SE1 1UL, UK
| |
Collapse
|
96
|
Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, Janss T, Starkl P, Ramery E, Henket M, Schleich FN, Radermecker M, Thielemans K, Gillet L, Thiry M, Belvisi MG, Louis R, Desmet C, Marichal T, Bureau F. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest 2016; 126:3279-95. [PMID: 27548519 DOI: 10.1172/jci85664] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Increases in eosinophil numbers are associated with infection and allergic diseases, including asthma, but there is also evidence that eosinophils contribute to homeostatic immune processes. In mice, the normal lung contains resident eosinophils (rEos), but their function has not been characterized. Here, we have reported that steady-state pulmonary rEos are IL-5-independent parenchymal Siglec-FintCD62L+CD101lo cells with a ring-shaped nucleus. During house dust mite-induced airway allergy, rEos features remained unchanged, and rEos were accompanied by recruited inflammatory eosinophils (iEos), which were defined as IL-5-dependent peribronchial Siglec-FhiCD62L-CD101hi cells with a segmented nucleus. Gene expression analyses revealed a more regulatory profile for rEos than for iEos, and correspondingly, mice lacking lung rEos showed an increase in Th2 cell responses to inhaled allergens. Such elevation of Th2 responses was linked to the ability of rEos, but not iEos, to inhibit the maturation, and therefore the pro-Th2 function, of allergen-loaded DCs. Finally, we determined that the parenchymal rEos found in nonasthmatic human lungs (Siglec-8+CD62L+IL-3Rlo cells) were phenotypically distinct from the iEos isolated from the sputa of eosinophilic asthmatic patients (Siglec-8+CD62LloIL-3Rhi cells), suggesting that our findings in mice are relevant to humans. In conclusion, our data define lung rEos as a distinct eosinophil subset with key homeostatic functions.
Collapse
|
97
|
Vecellio M, Roberts AR, Cohen CJ, Cortes A, Knight JC, Bowness P, Wordsworth BP. The genetic association of RUNX3 with ankylosing spondylitis can be explained by allele-specific effects on IRF4 recruitment that alter gene expression. Ann Rheum Dis 2016; 75:1534-40. [PMID: 26452539 PMCID: PMC4975853 DOI: 10.1136/annrheumdis-2015-207490] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/19/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To identify the functional basis for the genetic association of single nucleotide polymorphisms (SNP), upstream of the RUNX3 promoter, with ankylosing spondylitis (AS). METHODS We performed conditional analysis of genetic association data and used ENCODE data on chromatin remodelling and transcription factor (TF) binding sites to identify the primary AS-associated regulatory SNP in the RUNX3 region. The functional effects of this SNP were tested in luciferase reporter assays. Its effects on TF binding were investigated by electrophoretic mobility gel shift assays and chromatin immunoprecipitation. RUNX3 mRNA levels were compared in primary CD8+ T cells of AS risk and protective genotypes by real-time PCR. RESULTS The association of the RUNX3 SNP rs4648889 with AS (p<7.6×10(-14)) was robust to conditioning on all other SNPs in this region. We identified a 2 kb putative regulatory element, upstream of RUNX3, containing rs4648889. In reporter gene constructs, the protective rs4648889 'G' allele increased luciferase activity ninefold but significantly less activity (4.3-fold) was seen with the AS risk 'A' allele (p≤0.01). The binding of Jurkat or CD8+ T-cell nuclear extracts to the risk allele was decreased and IRF4 recruitment was reduced. The AS-risk allele also affected H3K4Me1 histone methylation and associated with an allele-specific reduction in RUNX3 mRNA (p<0.05). CONCLUSION We identified a regulatory region upstream of RUNX3 that is modulated by rs4648889. The risk allele decreases TF binding (including IRF4) and reduces reporter activity and RUNX3 expression. These findings may have important implications for understanding the role of T cells and other immune cells in AS.
Collapse
Affiliation(s)
- Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Musculoskeletal Biomedical Research Unit, Oxford, UK
- National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, UK
| | - Amity R Roberts
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Musculoskeletal Biomedical Research Unit, Oxford, UK
- National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, UK
| | - Carla J Cohen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Musculoskeletal Biomedical Research Unit, Oxford, UK
- National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, UK
| | - Adrian Cortes
- Division of Clinical Neurology, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Musculoskeletal Biomedical Research Unit, Oxford, UK
- National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, UK
| | - B Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Musculoskeletal Biomedical Research Unit, Oxford, UK
- National Institute for Health Research Oxford Comprehensive Biomedical Research Centre, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, UK
| |
Collapse
|
98
|
Zhang X, Gu J, Yu FS, Zhou L, Mi QS. TGF-β1-induced transcription factor networks in Langerhans cell development and maintenance. Allergy 2016; 71:758-64. [PMID: 26948524 DOI: 10.1111/all.12871] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2016] [Indexed: 01/09/2023]
Abstract
Langerhans cells (LC) represent a specialized subset of evolutionarily conserved dendritic cells (DC) that populate stratified epithelial tissues, which are essential for the induction of skin and mucosal immunity and tolerance, including allergy. Transforming growth factor-β1 (TGF-β1) has been confirmed to be a predominant factor involved in LC development. Despite great advances in the understanding of LC ontogeny and diverse replenishment patterns, the underlying molecular mechanisms remain elusive. This review focuses on the recent discoveries in TGF-β1-mediated LC development and maintenance, with special attention to the involved transcription factors and related regulators.
Collapse
Affiliation(s)
- X. Zhang
- Henry Ford Immunology Program; Henry Ford Health System; Detroit MI USA
- Department of Dermatology; Henry Ford Health System; Detroit MI USA
- Department of Dermatology; Second Military Medical University Changhai Hospital; Shanghai China
| | - J. Gu
- Department of Dermatology; Second Military Medical University Changhai Hospital; Shanghai China
| | - F.-S. Yu
- Department of Ophthalmology; Wayne State University School of Medicine; Detroit MI USA
- Department of Anatomy and Cell Biology; Wayne State University School of Medicine; Detroit MI USA
| | - L. Zhou
- Henry Ford Immunology Program; Henry Ford Health System; Detroit MI USA
- Department of Dermatology; Henry Ford Health System; Detroit MI USA
- Department of Internal Medicine; Henry Ford Health System; Detroit MI USA
- Department of Immunology and Microbiology; Wayne State University School of Medicine; Detroit MI USA
| | - Q.-S. Mi
- Henry Ford Immunology Program; Henry Ford Health System; Detroit MI USA
- Department of Dermatology; Henry Ford Health System; Detroit MI USA
- Department of Internal Medicine; Henry Ford Health System; Detroit MI USA
- Department of Immunology and Microbiology; Wayne State University School of Medicine; Detroit MI USA
| |
Collapse
|
99
|
Fu D, Song X, Hu H, Sun M, Li Z, Tian Z. Downregulation of RUNX3 moderates the frequency of Th17 and Th22 cells in patients with psoriasis. Mol Med Rep 2016; 13:4606-12. [PMID: 27082311 PMCID: PMC4878538 DOI: 10.3892/mmr.2016.5108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a common chronic inflammatory and T cell-meditated skin disease. Runt-related transcription factor 3 (RUNX3), one of the runt-domain family of transcription factors, has been reported to be a susceptibility gene for psoriasis. The present study was designed to delineate the role and underlying mechanism of RUNX3 involved in the differentiation of T helper (Th) 17 and Th22 cells in psoriasis. The results of the present study demonstrated that the expression of RUNX3 increased significantly in CD4-positive (CD4+) T cells from patients with psoriasis, compared with healthy controls. In addition, increased levels of interleukin (IL)-6, IL-20 and IL-22, and increased frequencies of Th17 and Th22 cells were found in the patients with psoriasis patients, compared with the healthy controls. It was also found that the overexpression of RUNX3 increased the levels of Th17- and Th22-associated cytokines in the CD4+ T cells from the healthy controls. However, the inhibition of RUNX3 reduced the levels of the associated cytokines and decreased the frequency of Th17 and Th22 cells in the CD4+ T cells from the patients with psoriasis. Taken together, the present study suggested that RUNX3 regulated the differentiation of Th17 and Th22 cells in psoriasis, providing a promising therapeutic strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Dandan Fu
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiangfeng Song
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Hua Hu
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Min Sun
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Zhanguo Li
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Zhongwei Tian
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
100
|
Desch AN, Gibbings SL, Goyal R, Kolde R, Bednarek J, Bruno T, Slansky JE, Jacobelli J, Mason R, Ito Y, Messier E, Randolph GJ, Prabagar M, Atif SM, Segura E, Xavier RJ, Bratton DL, Janssen WJ, Henson PM, Jakubzick CV. Flow Cytometric Analysis of Mononuclear Phagocytes in Nondiseased Human Lung and Lung-Draining Lymph Nodes. Am J Respir Crit Care Med 2016; 193:614-26. [PMID: 26551758 PMCID: PMC4824940 DOI: 10.1164/rccm.201507-1376oc] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022] Open
Abstract
RATIONALE The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors. OBJECTIVES Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs. METHODS We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. MEASUREMENTS AND MAIN RESULTS We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood. CONCLUSIONS Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.
Collapse
Affiliation(s)
- A. Nicole Desch
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Campus, Denver, Colorado
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | | | - Rajni Goyal
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Raivo Kolde
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Joe Bednarek
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Tullia Bruno
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Jill E. Slansky
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Robert Mason
- Department of Medicine, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Yoko Ito
- Department of Medicine, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Elise Messier
- Department of Medicine, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, Missouri
| | - Miglena Prabagar
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Shaikh M. Atif
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Elodie Segura
- INSERM U932, Paris, France; and
- Institut Curie, Paris, France
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Donna L. Bratton
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - William J. Janssen
- Department of Medicine, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Peter M. Henson
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Campus, Denver, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Claudia V. Jakubzick
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Campus, Denver, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| |
Collapse
|