51
|
Short neuropeptide F acts as a functional neuromodulator for olfactory memory in Kenyon cells of Drosophila mushroom bodies. J Neurosci 2013; 33:5340-5. [PMID: 23516298 DOI: 10.1523/jneurosci.2287-12.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In insects, many complex behaviors, including olfactory memory, are controlled by a paired brain structure, the so-called mushroom bodies (MB). In Drosophila, the development, neuroanatomy, and function of intrinsic neurons of the MB, the Kenyon cells, have been well characterized. Until now, several potential neurotransmitters or neuromodulators of Kenyon cells have been anatomically identified. However, whether these neuroactive substances of the Kenyon cells are functional has not been clarified yet. Here we show that a neuropeptide precursor gene encoding four types of short neuropeptide F (sNPF) is required in the Kenyon cells for appetitive olfactory memory. We found that activation of Kenyon cells by expressing a thermosensitive cation channel (dTrpA1) leads to a decrease in sNPF immunoreactivity in the MB lobes. Targeted expression of RNA interference against the sNPF precursor in Kenyon cells results in a highly significant knockdown of sNPF levels. This knockdown of sNPF in the Kenyon cells impairs sugar-rewarded olfactory memory. This impairment is not due to a defect in the reflexive sugar preference or odor response. Consistently, knockdown of sNPF receptors outside the MB causes deficits in appetitive memory. Altogether, these results suggest that sNPF is a functional neuromodulator released by Kenyon cells.
Collapse
|
52
|
Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau. Acta Neuropathol 2013; 125:711-25. [PMID: 23494099 PMCID: PMC3631315 DOI: 10.1007/s00401-013-1105-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 02/07/2013] [Accepted: 03/02/2013] [Indexed: 11/18/2022]
Abstract
While a number of genome-wide association studies have identified microtubule-associated protein tau as a strong risk factor for Parkinson’s disease (PD), little is known about the mechanism through which human tau can predispose an individual to this disease. Here, we demonstrate that expression of human wild-type tau is sufficient to disrupt the survival of dopaminergic neurons in a Drosophila model. Tau triggers a synaptic pathology visualized by vesicular monoamine transporter-pHGFP that precedes both the age-dependent formation of tau-containing neurofibrillary tangle-like pathology and the progressive loss of DA neurons, thereby recapitulating the pathological hallmarks of PD. Flies overexpressing tau also exhibit progressive impairments of both motor and learning behaviors. Surprisingly, contrary to common belief that hyperphosphorylated tau could aggravate toxicity, DA neuron degeneration is alleviated by expressing the modified, hyperphosphorylated tauE14. Together, these results show that impairment of VMAT-containing synaptic vesicle, released to synapses before overt tauopathy may be the underlying mechanism of tau-associated PD and suggest that correction or prevention of this deficit may be appropriate targets for early therapeutic intervention.
Collapse
|
53
|
Calcagno B, Eyles D, van Alphen B, van Swinderen B. Transient activation of dopaminergic neurons during development modulates visual responsiveness, locomotion and brain activity in a dopamine ontogeny model of schizophrenia. Transl Psychiatry 2013; 3:e206. [PMID: 23299394 PMCID: PMC3567203 DOI: 10.1038/tp.2012.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It has been observed that certain developmental environmental risk factors for schizophrenia when modeled in rodents alter the trajectory of dopaminergic development, leading to persistent behavioural changes in adults. This has recently been articulated as the "dopamine ontogeny hypothesis of schizophrenia". To test one aspect of this hypothesis, namely that transient dopaminergic effects during development modulate attention-like behavior and arousal in adults, we turned to a small-brain model, Drosophila melanogaster. By applying genetic tools allowing transient activation or silencing of dopaminergic neurons in the fly brain, we investigated whether a critical window exists during development when altered dopamine (DA) activity levels could lead to impairments in arousal states in adult animals. We found that increased activity in dopaminergic neurons in later stages of development significantly increased visual responsiveness and locomotion, especially in adult males. This misallocation of visual salience and hyperactivity mimicked the effect of acute methamphetamine feeding to adult flies, suggesting up-regulated DA signaling could result from developmental manipulations. Finally, brain recordings revealed significantly reduced gamma-band activity in adult animals exposed to the transient developmental insult. Together, these data support the idea that transient alterations in DA signaling during development can permanently alter behavior in adults, and that a reductionist model such as Drosophila can be used to investigate potential mechanisms underlying complex cognitive disorders such as schizophrenia.
Collapse
Affiliation(s)
- B Calcagno
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - D Eyles
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia,Queensland Centre for Mental Health Research, The University of Queensland, Wacol, QLD, Australia
| | - B van Alphen
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - B van Swinderen
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia,Queensland Brain Institute, The University of Queensland, Upland Road, St. Lucia, QLD, Australia. E-mail:
| |
Collapse
|
54
|
Dispensable, redundant, complementary, and cooperative roles of dopamine, octopamine, and serotonin in Drosophila melanogaster. Genetics 2012; 193:159-76. [PMID: 23086220 DOI: 10.1534/genetics.112.142042] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To investigate the regulation of Drosophila melanogaster behavior by biogenic amines, we have exploited the broad requirement of the vesicular monoamine transporter (VMAT) for the vesicular storage and exocytotic release of all monoamine neurotransmitters. We used the Drosophila VMAT (dVMAT) null mutant to globally ablate exocytotic amine release and then restored DVMAT activity in either individual or multiple aminergic systems, using transgenic rescue techniques. We find that larval survival, larval locomotion, and female fertility rely predominantly on octopaminergic circuits with little apparent input from the vesicular release of serotonin or dopamine. In contrast, male courtship and fertility can be rescued by expressing DVMAT in octopaminergic or dopaminergic neurons, suggesting potentially redundant circuits. Rescue of major aspects of adult locomotion and startle behavior required octopamine, but a complementary role was observed for serotonin. Interestingly, adult circadian behavior could not be rescued by expression of DVMAT in a single subtype of aminergic neurons, but required at least two systems, suggesting the possibility of unexpected cooperative interactions. Further experiments using this model will help determine how multiple aminergic systems may contribute to the regulation of other behaviors. Our data also highlight potential differences between behaviors regulated by standard exocytotic release and those regulated by other mechanisms.
Collapse
|
55
|
Kaun KR, Devineni AV, Heberlein U. Drosophila melanogaster as a model to study drug addiction. Hum Genet 2012; 131:959-75. [PMID: 22350798 PMCID: PMC3351628 DOI: 10.1007/s00439-012-1146-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/04/2012] [Indexed: 12/24/2022]
Abstract
Animal studies have been instrumental in providing knowledge about the molecular and neural mechanisms underlying drug addiction. Recently, the fruit fly Drosophilamelanogaster has become a valuable system to model not only the acute stimulating and sedating effects of drugs but also their more complex rewarding properties. In this review, we describe the advantages of using the fly to study drug-related behavior, provide a brief overview of the behavioral assays used, and review the molecular mechanisms and neural circuits underlying drug-induced behavior in flies. Many of these mechanisms have been validated in mammals, suggesting that the fly is a useful model to understand the mechanisms underlying addiction.
Collapse
Affiliation(s)
- Karla R Kaun
- Department of Anatomy, University of California-San Francisco, 1550 4th Street, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
56
|
Brooks ES, Greer CL, Romero-Calderón R, Serway CN, Grygoruk A, Haimovitz JM, Nguyen BT, Najibi R, Tabone CJ, de Belle JS, Krantz DE. A putative vesicular transporter expressed in Drosophila mushroom bodies that mediates sexual behavior may define a neurotransmitter system. Neuron 2011; 72:316-29. [PMID: 22017990 DOI: 10.1016/j.neuron.2011.08.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2011] [Indexed: 11/15/2022]
Abstract
Vesicular transporters are required for the storage of all classical and amino acid neurotransmitters in synaptic vesicles. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male's position during copulation that is rescued by expression in KCs. Because prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning.
Collapse
Affiliation(s)
- Elizabeth S Brooks
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology and Jane & Terry Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine at UCLA, 695 Charles Young Drive, Los Angeles, CA 90095-1761, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Wang Z, Ferdousy F, Lawal H, Huang Z, Daigle JG, Izevbaye I, Doherty O, Thomas J, Stathakis DG, O'Donnell JM. Catecholamines up integrates dopamine synthesis and synaptic trafficking. J Neurochem 2011; 119:1294-305. [PMID: 21985068 DOI: 10.1111/j.1471-4159.2011.07517.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The highly reactive nature of dopamine renders dopaminergic neurons vulnerable to oxidative damage. We recently demonstrated that loss-of-function mutations in the Drosophila gene Catecholamines up (Catsup) elevate dopamine pools but, paradoxically, also confer resistance to paraquat, an herbicide that induces oxidative stress-mediated toxicity in dopaminergic neurons. We now report a novel association of the membrane protein, Catsup, with GTP cyclohydrolase rate-limiting enzyme for tetrahydrobiopterin (BH(4)) biosynthesis and tyrosine hydroxylase, rate-limiting enzyme for dopamine biosynthesis, which requires BH(4) as a cofactor. Loss-of-function Catsup mutations cause dominant hyperactivation of both enzymes. Elevated dopamine levels in Catsup mutants coincide with several distinct characteristics, including hypermobility, minimal basal levels of 3,4-dihydroxy-phenylacetic acid, an oxidative metabolite of dopamine, and resistance to the vesicular monoamine transporter inhibitor, reserpine, suggesting that excess dopamine is synaptically active and that Catsup functions in the regulation of synaptic vesicle loading and release of dopamine. We conclude that Catsup regulates and links the dopamine synthesis and transport networks.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Tauber JM, Vanlandingham PA, Zhang B. Elevated levels of the vesicular monoamine transporter and a novel repetitive behavior in the Drosophila model of fragile X syndrome. PLoS One 2011; 6:e27100. [PMID: 22087250 PMCID: PMC3206932 DOI: 10.1371/journal.pone.0027100] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 10/10/2011] [Indexed: 01/05/2023] Open
Abstract
Fragile X Syndrome (FXS) is characterized by mental impairment and autism in humans, and it often features hyperactivity and repetitive behaviors. The mechanisms for the disease, however, remain poorly understood. Here we report that the dfmr1 mutant in the Drosophila model of FXS grooms excessively, which may be regulated differentially by two signaling pathways. Blocking metabotropic glutamate receptor signaling enhances grooming in dfmr1 mutant flies, whereas blocking the vesicular monoamine transporter (VMAT) suppresses excessive grooming. dfmr1 mutant flies also exhibit elevated levels of VMAT mRNA and protein. These results suggest that enhanced monoamine signaling correlates with repetitive behaviors and hyperactivity associated with FXS.
Collapse
Affiliation(s)
- John M. Tauber
- Department of Zoology, University of Oklahoma, Norman, Oklahoma, United States of America
| | | | - Bing Zhang
- Department of Zoology, University of Oklahoma, Norman, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
59
|
Murphy DL, Moya PR. Human serotonin transporter gene (SLC6A4) variants: their contributions to understanding pharmacogenomic and other functional G×G and G×E differences in health and disease. Curr Opin Pharmacol 2011; 11:3-10. [PMID: 21439906 PMCID: PMC3487694 DOI: 10.1016/j.coph.2011.02.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 02/06/2023]
Abstract
Recent major findings from studies of SLC6A4 and its corresponding protein, the serotonin (5-HT) transporter (SERT) in humans, rodents and non-human primates indicate that combinations of SLC6A4 non-coding 5', 3' UTRs and intronic regions plus coding variants acting together can change 5HT transport as much as 40-fold in vitro. In vivo, SLC6A4 variants in humans and other species lead to marked physiological changes, despite mitigating neurodevelopmental adaptations in 5-HT receptors plus compensatory alterations in 5-HT synthesis and metabolism. Polymorphisms in SLC6A4 are associated with differences in emotional, endocrine, and personality characteristics as well as many diseases. This gene, in combinations with gene×gene (G×G) and gene×environment (G×E) interactions nonetheless remains incompletely understood, with some association findings remaining controversial. Considering its primary importance in the regulation and function of the entire serotonergic system (as evidenced by the consequences of SERT-mediated reuptake inhibition by SRIs like fluoxetine in humans and of genetically engineered changes in mice and rats), it seems likely that SLC6A4 and SERT will remain areas of high interest in our field's attempts to better understand and treat 5-HT-related disorders.
Collapse
Affiliation(s)
- Dennis L Murphy
- Laboratory of Clinical Science, NIMH Intramural Research Program, Bethesda, MD 20892, USA.
| | | |
Collapse
|
60
|
Fei H, Chow DM, Chen A, Romero-Calderón R, Ong WS, Ackerson LC, Maidment NT, Simpson JH, Frye MA, Krantz DE. Mutation of the Drosophila vesicular GABA transporter disrupts visual figure detection. ACTA ACUST UNITED AC 2010; 213:1717-30. [PMID: 20435823 DOI: 10.1242/jeb.036053] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of gamma amino butyric acid (GABA) release and inhibitory neurotransmission in regulating most behaviors remains unclear. The vesicular GABA transporter (VGAT) is required for the storage of GABA in synaptic vesicles and provides a potentially useful probe for inhibitory circuits. However, specific pharmacologic agents for VGAT are not available, and VGAT knockout mice are embryonically lethal, thus precluding behavioral studies. We have identified the Drosophila ortholog of the vesicular GABA transporter gene (which we refer to as dVGAT), immunocytologically mapped dVGAT protein expression in the larva and adult and characterized a dVGAT(minos) mutant allele. dVGAT is embryonically lethal and we do not detect residual dVGAT expression, suggesting that it is either a strong hypomorph or a null. To investigate the function of VGAT and GABA signaling in adult visual flight behavior, we have selectively rescued the dVGAT mutant during development. We show that reduced GABA release does not compromise the active optomotor control of wide-field pattern motion. Conversely, reduced dVGAT expression disrupts normal object tracking and figure-ground discrimination. These results demonstrate that visual behaviors are segregated by the level of GABA signaling in flies, and more generally establish dVGAT as a model to study the contribution of GABA release to other complex behaviors.
Collapse
Affiliation(s)
- Hao Fei
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Daubert EA, Heffron DS, Mandell JW, Condron BG. Serotonergic dystrophy induced by excess serotonin. Mol Cell Neurosci 2010; 44:297-306. [PMID: 20394820 PMCID: PMC2878889 DOI: 10.1016/j.mcn.2010.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/18/2010] [Accepted: 04/02/2010] [Indexed: 01/15/2023] Open
Abstract
Administration of certain serotonin-releasing amphetamine derivatives (fenfluramine and/or 3,4-methylenedioxymethamphetamine, MDMA, 'ecstasy') results in dystrophic serotonergic morphology in the mammalian brain. In addition to drug administration, dystrophic serotonergic neurites are also associated with neurodegenerative disorders. We demonstrate here that endogenously elevated serotonin in the Drosophila CNS induces aberrant enlarged varicosities, or spheroids, that are morphologically similar to dystrophic mammalian serotonergic fibers. In Drosophila these spheroids are specific to serotonergic neurons, distinct from typical varicosities, and form only after prolonged increases in cytoplasmic serotonin. Our results also suggest that serotonin levels during early development determine later sensitivity of spheroid formation to manipulations of the serotonin transporter (SERT). Elevated serotonin also interacts with canonical protein aggregation and autophagic pathways to form spheroids. The data presented here support a model in which excess cytoplasmic neurotransmitter triggers a cell-specific pathway inducing aberrant morphology in fly serotonergic neurons that may be shared in certain mammalian pathologies.
Collapse
Affiliation(s)
- Elizabeth A. Daubert
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Daniel S. Heffron
- Department of Pathology, University of Virginia Health System, Charlottesville VA, 22908
| | - James W. Mandell
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908
- Department of Pathology, University of Virginia Health System, Charlottesville VA, 22908
| | - Barry G. Condron
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
62
|
Abstract
Almost 20 years ago, the gene underlying fatal familial insomnia was discovered, and first suggested the concept that a single gene can regulate sleep. In the two decades since, there have been many advances in the field of behavioral genetics, but it is only in the past 10 years that the genetic analysis of sleep has emerged as an important discipline. Major findings include the discovery of a single gene underlying the sleep disorder narcolepsy, and identification of loci that make quantitative contributions to sleep characteristics. The sleep field has also expanded its focus from mammalian model organisms to Drosophila, zebrafish, and worms, which is allowing the application of novel genetic approaches. Researchers have undertaken large-scale screens to identify new genes that regulate sleep, and are also probing questions of sleep circuitry and sleep function on a molecular level. As genetic tools continue to be refined in each model organism, the genes that support a specific function in sleep will become more apparent. Thus, while our understanding of sleep still remains rudimentary, rapid progress is expected from these recently initiated studies.
Collapse
Affiliation(s)
- Amanda Crocker
- Howard Hughes Medical institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
63
|
The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons. Neurobiol Dis 2010; 40:102-12. [PMID: 20472063 DOI: 10.1016/j.nbd.2010.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 12/21/2022] Open
Abstract
Dopamine is cytotoxic and may play a role in the development of Parkinson's disease. However, its interaction with environmental risk factors such as pesticides remains poorly understood. The vesicular monoamine transporter (VMAT) regulates intracellular dopamine content, and we have tested the neuroprotective effects of VMAT in vivo using the model organism Drosophila melanogaster. We find that Drosophila VMAT (dVMAT) mutants contain fewer dopaminergic neurons than wild type, consistent with a developmental effect, and that dopaminergic cell loss in the mutant is exacerbated by the pesticides rotenone and paraquat. Overexpression of DVMAT protein does not increase the survival of animals exposed to rotenone, but blocks the loss of dopaminergic neurons caused by this pesticide. These results are the first to demonstrate an interaction between a VMAT and pesticides in vivo, and provide an important model to investigate the mechanisms by which pesticides and cellular DA may interact to kill dopaminergic cells.
Collapse
|
64
|
Alekseyenko OV, Lee C, Kravitz EA. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One 2010; 5:e10806. [PMID: 20520823 PMCID: PMC2875409 DOI: 10.1371/journal.pone.0010806] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/02/2010] [Indexed: 11/23/2022] Open
Abstract
Dopamine (DA) and serotonin (5HT) are reported to serve important roles in aggression in a wide variety of animals. Previous investigations of 5HT function in adult Drosophila behavior have relied on pharmacological manipulations, or on combinations of genetic tools that simultaneously target both DA and 5HT neurons. Here, we generated a transgenic line that allows selective, direct manipulation of serotonergic neurons and asked whether DA and 5HT have separable effects on aggression. Quantitative morphological examination demonstrated that our newly generated tryptophan hydroxylase (TRH)-Gal4 driver line was highly selective for 5HT-containing neurons. This line was used in conjunction with already available Gal4 driver lines that target DA or both DA and 5HT neurons to acutely alter the function of aminergic systems. First, we showed that acute impairment of DA and 5HT neurotransmission using expression of a temperature sensitive form of dynamin completely abolished mid- and high-level aggression. These flies did not escalate fights beyond brief low-intensity interactions and therefore did not yield dominance relationships. We showed next that manipulation of either 5HT or DA neurotransmission failed to duplicate this phenotype. Selective disruption of 5HT neurotransmission yielded flies that fought, but with reduced ability to escalate fights, leading to fewer dominance relationships. Acute activation of 5HT neurons using temperature sensitive dTrpA1 channel expression, in contrast, resulted in flies that escalated fights faster and that fought at higher intensities. Finally, acute disruption of DA neurotransmission produced hyperactive flies that moved faster than controls, and rarely engaged in any social interactions. By separately manipulating 5HT- and DA- neuron systems, we collected evidence demonstrating a direct role for 5HT in the escalation of aggression in Drosophila.
Collapse
Affiliation(s)
- Olga V Alekseyenko
- Neurobiology Department, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
65
|
Mustard JA, Pham PM, Smith BH. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:422-30. [PMID: 19945462 PMCID: PMC2834802 DOI: 10.1016/j.jinsphys.2009.11.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/21/2009] [Accepted: 11/23/2009] [Indexed: 05/25/2023]
Abstract
Determining the specific molecular pathways through which dopamine affects behavior has been complicated by the presence of multiple dopamine receptor subtypes that couple to different second messenger pathways. The observation of freely moving adult bees in an arena was used to investigate the role of dopamine signaling in regulating the behavior of the honey bee. Dopamine or the dopamine receptor antagonist flupenthixol was injected into the hemolymph of worker honey bees. Significant differences between treated and control bees were seen for all behaviors (walking, stopped, upside down, grooming, flying and fanning), and behavioral shifts were dependent on drug dosage and time after injection. To examine the role of dopamine signaling through a specific dopamine receptor in the brain, RNA interference was used to reduce expression levels of a D1-like receptor, AmDOP2. Injection of Amdop2 dsRNA into the mushroom bodies reduced the levels of Amdop2 mRNA and produced significant changes in the amount of time honey bees spent performing specific behaviors with reductions in time spent walking offset by increases in grooming or time spent stopped. Taken together these results establish that dopamine plays an important role in regulating motor behavior of the honey bee.
Collapse
Affiliation(s)
- Julie A Mustard
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States.
| | | | | |
Collapse
|
66
|
Kong EC, Woo K, Li H, Lebestky T, Mayer N, Sniffen MR, Heberlein U, Bainton RJ, Hirsh J, Wolf FW. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila. PLoS One 2010; 5:e9954. [PMID: 20376353 PMCID: PMC2848596 DOI: 10.1371/journal.pone.0009954] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/11/2010] [Indexed: 02/06/2023] Open
Abstract
Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.
Collapse
Affiliation(s)
- Eric C. Kong
- Ernest Gallo Clinic and Research Center, Emeryville, California, United States of America
| | - Katherine Woo
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Haiyan Li
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Tim Lebestky
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Nasima Mayer
- Department of Anesthesia, University of California San Francisco, San Francisco, California, United States of America
| | - Melissa R. Sniffen
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Ulrike Heberlein
- Ernest Gallo Clinic and Research Center, Emeryville, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Roland J. Bainton
- Department of Anesthesia, University of California San Francisco, San Francisco, California, United States of America
| | - Jay Hirsh
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Fred W. Wolf
- Ernest Gallo Clinic and Research Center, Emeryville, California, United States of America
- * E-mail:
| |
Collapse
|
67
|
Phelan PJ, Murphy RKJ, Farrell M, O'Toole O, Heffernan J, O'Brien D, Breathnach O, Conlon PJ. EBV-positive B cell cerebral lymphoma 12 years after sex-mismatched kidney transplantation: post-transplant lymphoproliferative disorder or donor-derived lymphoma? Nephrol Dial Transplant 2010; 25:2032-5. [PMID: 20348150 DOI: 10.1093/ndt/gfq170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We present a follow-up case report of possible transmission of lymphoma 12 years after deceased-donor renal transplantation from a male donor who was found at autopsy to have had an occult lymphoma. The female recipient underwent prompt transplant nephrectomy. However, 12 years later, she presented with cerebral B cell lymphoma. A donor origin for the cerebral lymphoma was supported by in situ hybridization demonstration of a Y chromosome in the lymphoma. There was a dramatic resolution of the cerebral lesions with tapering of immunosuppression and introduction of rituximab treatment. The finding of a Y chromosome in the cerebral lymphoma does not exclude a host contribution to lymphoma development.
Collapse
Affiliation(s)
- Paul J Phelan
- Department of Nephrology, Beaumont Hospital, Dublin, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Makos MA, Han KA, Heien ML, Ewing AG. Using In Vivo Electrochemistry to Study the Physiological Effects of Cocaine and Other Stimulants on the Drosophila melanogaster Dopamine Transporter. ACS Chem Neurosci 2010; 1:74-83. [PMID: 20352129 PMCID: PMC2843917 DOI: 10.1021/cn900017w] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/15/2009] [Indexed: 11/28/2022] Open
Abstract
Dopamine neurotransmission is thought to play a critical role in addiction reinforcing mechanisms of drugs of abuse. Electrochemical techniques have been employed extensively for monitoring in vivo dopamine changes in the brains of model organisms including rats, mice, and primates. Here, we investigated the effects of several stimulants on dopamine clearance using recently developed microanalytical tools for in vivo electrochemical measurements of dopamine in the central nervous system of Drosophila melanogaster. A cylindrical carbon-fiber microelectrode was placed in the protocerebral anterior medial region of the Drosophila brain (an area dense with dopamine neurons) while a micropipette injector was positioned to exogenously apply dopamine. Background-subtracted fast-scan cyclic voltammetry was carried out to quantify changes in dopamine concentration in the adult fly brain. Clearance of exogenously applied dopamine was significantly decreased in the protocerebral anterior medial area of the wild-type fly following treatment with cocaine, amphetamine, methamphetamine, or methylphenidate. In contrast, dopamine uptake remained unchanged when identical treatments were employed in fumin mutant flies that lack functional dopamine transporters. Our in vivo results support in vitro binding affinity studies that predict these four stimulants effectively block normal Drosophila dopamine transporter function. Furthermore, we found 10 muM to be a sufficient physiological cocaine concentration to significantly alter dopamine transporter uptake in the Drosophila central nervous system. Taken together, these data indicate dopamine uptake in the Drosophila brain is decreased by psychostimulants as observed in mammals. This validates the use of Drosophila as a model system for future studies into the cellular and molecular mechanisms underlying drug addiction in humans.
Collapse
Affiliation(s)
- Monique A. Makos
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kyung-An Han
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968
| | - Michael L. Heien
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Andrew G. Ewing
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, University of Gothenburg, SE-41296, Göteborg, Sweden
| |
Collapse
|
69
|
Grygoruk A, Fei H, Daniels RW, Miller BR, Diantonio A, Krantz DE. A tyrosine-based motif localizes a Drosophila vesicular transporter to synaptic vesicles in vivo. J Biol Chem 2010; 285:6867-78. [PMID: 20053989 DOI: 10.1074/jbc.m109.073064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vesicular neurotransmitter transporters must localize to synaptic vesicles (SVs) to allow regulated neurotransmitter release at the synapse. However, the signals required to localize vesicular proteins to SVs in vivo remain unclear. To address this question we have tested the effects of mutating proposed trafficking domains in Drosophila orthologs of the vesicular monoamine and glutamate transporters, DVMAT-A and DVGLUT. We show that a tyrosine-based motif (YXXY) is important both for DVMAT-A internalization from the cell surface in vitro, and localization to SVs in vivo. In contrast, DVGLUT deletion mutants that lack a putative C-terminal trafficking domain show more modest defects in both internalization in vitro and trafficking to SVs in vivo. Our data show for the first time that mutation of a specific trafficking motif can disrupt localization to SVs in vivo and suggest possible differences in the sorting of VMATs versus VGLUTs to SVs at the synapse.
Collapse
Affiliation(s)
- Anna Grygoruk
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Hatos Center for Neuropharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095-1761, USA
| | | | | | | | | | | |
Collapse
|
70
|
Lebestky T, Chang JSC, Dankert H, Zelnik L, Kim YC, Han KA, Wolf FW, Perona P, Anderson DJ. Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 2009; 64:522-36. [PMID: 19945394 PMCID: PMC2908595 DOI: 10.1016/j.neuron.2009.09.031] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2009] [Indexed: 01/12/2023]
Abstract
Arousal is fundamental to many behaviors, but whether it is unitary or whether there are different types of behavior-specific arousal has not been clear. In Drosophila, dopamine promotes sleep-wake arousal. However, there is conflicting evidence regarding its influence on environmentally stimulated arousal. Here we show that loss-of-function mutations in the D1 dopamine receptor DopR enhance repetitive startle-induced arousal while decreasing sleep-wake arousal (i.e., increasing sleep). These two types of arousal are also inversely influenced by cocaine, whose effects in each case are opposite to, and abrogated by, the DopR mutation. Selective restoration of DopR function in the central complex rescues the enhanced stimulated arousal but not the increased sleep phenotype of DopR mutants. These data provide evidence for at least two different forms of arousal, which are independently regulated by dopamine in opposite directions, via distinct neural circuits.
Collapse
Affiliation(s)
- Tim Lebestky
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Vickrey TL, Condron B, Venton BJ. Detection of endogenous dopamine changes in Drosophila melanogaster using fast-scan cyclic voltammetry. Anal Chem 2009; 81:9306-13. [PMID: 19842636 PMCID: PMC2876717 DOI: 10.1021/ac901638z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Drosophila melanogaster, the fruit fly, is a commonly used model organism because of its homology to mammals and facile genetic manipulations. However, the size of the nervous system is very small. We report a method to evoke and detect rapid changes in extracellular dopamine in a single nerve cord isolated from a Drosophila larva. Flies were genetically modified to express Channelrhodopsin-2, a blue-light activated cation channel, in only dopaminergic neurons. Extracellular dopamine changes were measured with fast-scan cyclic voltammetry at an implanted carbon-fiber microelectrode. Stimulations of 7 s with blue light result in an average peak dopamine concentration of 810 +/- 60 nM, similar to electrically-stimulated release in mammals. Stimulations repeated at 15 min intervals are stable for 65 min, allowing pharmacological experiments in the same sample. Peak duration is extended after cocaine or nisoxetine, inhibitors of the dopamine transporter (DAT). Release was reduced upon exposure to reserpine, which inhibits vesicular packaging. Chronic administration of NSD-1015, a dopamine synthesis inhibitor, decreased dopamine release and inhibited pupation, showing a link between neurotransmission and physiology. This is the first method to measure endogenous dopamine in an intact larval Drosophila nervous system and will allow studies of genetic and pharmacological manipulations of dopamine release and uptake.
Collapse
Affiliation(s)
- Trisha L. Vickrey
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22904
| | - Barry Condron
- Dept. of Biology, University of Virginia, Charlottesville, VA 22904
| | - B. Jill Venton
- Dept. of Chemistry, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
72
|
Malkesman O, Austin DR, Chen G, Manji HK. Reverse translational strategies for developing animal models of bipolar disorder. Dis Model Mech 2009; 2:238-45. [PMID: 19407332 DOI: 10.1242/dmm.001628] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bipolar disorder (BD) affects a significant portion of the population of the world, yet there has been limited success in developing novel treatments for the disorder. One of the major reasons for this dearth is the absence of suitable animal models for BD. Traditionally, animal models of human phenomena have been evaluated based on similarity to the human syndrome, response to appropriately corresponding medications, and the degree to which a model supports a common mechanistic theory between the human disorder and the model itself. The following review emphasizes the use of 'reverse translation', drawing on patient-based findings to develop suitable animal models for BD. We highlight some examples of this strategy, emphasizing their construct validity as a starting point. These studies have produced informative models that have altered the expression of genes/pathways implicated in BD, including the point mutation D181A of mouse mitochondrial DNA polymerase (POLG), glutamate receptor 6 (GluR6), Clock, extracellular regulated kinase 1 (ERK1), glycogen synthase kinase-3beta (GSK-3beta), B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated athanogene (BAG-1). These studies demonstrate that this method is useful, viable and deserves attention in new efforts to generate animal models of BD.
Collapse
Affiliation(s)
- Oz Malkesman
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
73
|
Simon AF, Daniels R, Romero-Calderón R, Grygoruk A, Chang HY, Najibi R, Shamouelian D, Salazar E, Solomon M, Ackerson LC, Maidment NT, Diantonio A, Krantz DE. Drosophila vesicular monoamine transporter mutants can adapt to reduced or eliminated vesicular stores of dopamine and serotonin. Genetics 2009; 181:525-41. [PMID: 19033154 PMCID: PMC2644945 DOI: 10.1534/genetics.108.094110] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 11/20/2008] [Indexed: 11/18/2022] Open
Abstract
Physiologic and pathogenic changes in amine release induce dramatic behavioral changes, but the underlying cellular mechanisms remain unclear. To investigate these adaptive processes, we have characterized mutations in the Drosophila vesicular monoamine transporter (dVMAT), which is required for the vesicular storage of dopamine, serotonin, and octopamine. dVMAT mutant larvae show reduced locomotion and decreased electrical activity in motoneurons innervating the neuromuscular junction (NMJ) implicating central amines in the regulation of these activities. A parallel increase in evoked glutamate release by the motoneuron is consistent with a homeostatic adaptation at the NMJ. Despite the importance of aminergic signaling for regulating locomotion and other behaviors, adult dVMAT homozygous null mutants survive under conditions of low population density, thus allowing a phenotypic characterization of adult behavior. Homozygous mutant females are sterile and show defects in both egg retention and development; males also show reduced fertility. Homozygotes show an increased attraction to light but are mildly impaired in geotaxis and escape behaviors. In contrast, heterozygous mutants show an exaggerated escape response. Both hetero- and homozygous mutants demonstrate an altered behavioral response to cocaine. dVMAT mutants define potentially adaptive responses to reduced or eliminated aminergic signaling and will be useful to identify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Anne F Simon
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
A Drosophila systems model of pentylenetetrazole induced locomotor plasticity responsive to antiepileptic drugs. BMC SYSTEMS BIOLOGY 2009; 3:11. [PMID: 19154620 PMCID: PMC2657775 DOI: 10.1186/1752-0509-3-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/21/2009] [Indexed: 11/21/2022]
Abstract
Background Rodent kindling induced by PTZ is a widely used model of epileptogenesis and AED testing. Overlapping pathophysiological mechanisms may underlie epileptogenesis and other neuropsychiatric conditions. Besides epilepsy, AEDs are widely used in treating various neuropsychiatric disorders. Mechanisms of AEDs' long term action in these disorders are poorly understood. We describe here a Drosophila systems model of PTZ induced locomotor plasticity that is responsive to AEDs. Results We empirically determined a regime in which seven days of PTZ treatment and seven days of subsequent PTZ discontinuation respectively cause a decrease and an increase in climbing speed of Drosophila adults. Concomitant treatment with NaVP and LEV, not ETH, GBP and VGB, suppressed the development of locomotor deficit at the end of chronic PTZ phase. Concomitant LEV also ameliorated locomotor alteration that develops after PTZ withdrawal. Time series of microarray expression profiles of heads of flies treated with PTZ for 12 hrs (beginning phase), two days (latent phase) and seven days (behaviorally expressive phase) showed only down-, not up-, regulation of genes; expression of 23, 2439 and 265 genes were downregulated, in that order. GO biological process enrichment analysis showed downregulation of transcription, neuron morphogenesis during differentiation, synaptic transmission, regulation of neurotransmitter levels, neurogenesis, axonogenesis, protein modification, axon guidance, actin filament organization etc. in the latent phase and of glutamate metabolism, cell communication etc. in the expressive phase. Proteomic interactome based analysis provided further directionality to these events. Pathway overrepresentation analysis showed enrichment of Wnt signaling and other associated pathways in genes downregulated by PTZ. Mining of available transcriptomic and proteomic data pertaining to established rodent models of epilepsy and human epileptic patients showed overrepresentation of epilepsy associated genes in our PTZ regulated set. Conclusion Systems biology ultimately aims at delineating and comprehending the functioning of complex biological systems in such details that predictive models of human diseases could be developed. Due to immense complexity of higher organisms, systems biology approaches are however currently focused on simpler organisms. Amenable to modeling, our model offers a unique opportunity to further dissect epileptogenesis-like plasticity and to unravel mechanisms of long-term action of AEDs relevant in neuropsychiatric disorders.
Collapse
|
75
|
Romero-Calderón R, Uhlenbrock G, Borycz J, Simon AF, Grygoruk A, Yee SK, Shyer A, Ackerson LC, Maidment NT, Meinertzhagen IA, Hovemann BT, Krantz DE. A glial variant of the vesicular monoamine transporter is required to store histamine in the Drosophila visual system. PLoS Genet 2008; 4:e1000245. [PMID: 18989452 PMCID: PMC2570955 DOI: 10.1371/journal.pgen.1000245] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 09/30/2008] [Indexed: 01/02/2023] Open
Abstract
Unlike other monoamine neurotransmitters, the mechanism by which the brain's histamine content is regulated remains unclear. In mammals, vesicular monoamine transporters (VMATs) are expressed exclusively in neurons and mediate the storage of histamine and other monoamines. We have studied the visual system of Drosophila melanogaster in which histamine is the primary neurotransmitter released from photoreceptor cells. We report here that a novel mRNA splice variant of Drosophila VMAT (DVMAT-B) is expressed not in neurons but rather in a small subset of glia in the lamina of the fly's optic lobe. Histamine contents are reduced by mutation of dVMAT, but can be partially restored by specifically expressing DVMAT-B in glia. Our results suggest a novel role for a monoamine transporter in glia that may be relevant to histamine homeostasis in other systems.
Collapse
Affiliation(s)
- Rafael Romero-Calderón
- Gonda (Goldschmied) Center for Neuroscience and Genetics Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Guido Uhlenbrock
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Jolanta Borycz
- Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Anne F. Simon
- Gonda (Goldschmied) Center for Neuroscience and Genetics Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Anna Grygoruk
- Gonda (Goldschmied) Center for Neuroscience and Genetics Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Susan K. Yee
- Gonda (Goldschmied) Center for Neuroscience and Genetics Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Amy Shyer
- Gonda (Goldschmied) Center for Neuroscience and Genetics Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Larry C. Ackerson
- Hatos Center for Neuropharmacology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Nigel T. Maidment
- Hatos Center for Neuropharmacology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | | | | | - David E. Krantz
- Gonda (Goldschmied) Center for Neuroscience and Genetics Research, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
76
|
Abstract
Vesicular neurotransmitter transporters are required for the storage of all classical and amino acid neurotransmitters in secretory vesicles. Transporter expression can influence neurotransmitter storage and release, and trafficking targets the transporters to different types of secretory vesicles. Vesicular transporters traffic to synaptic vesicles (SVs) as well as large dense core vesicles and are recycled to SVs at the nerve terminal. Some of the intrinsic signals for these trafficking events have been defined and include a dileucine motif present in multiple transporter subtypes, an acidic cluster in the neural isoform of the vesicular monoamine transporter (VMAT) 2 and a polyproline motif in the vesicular glutamate transporter (VGLUT) 1. The sorting of VMAT2 and the vesicular acetylcholine transporter to secretory vesicles is regulated by phosphorylation. In addition, VGLUT1 uses alternative endocytic pathways for recycling back to SVs following exocytosis. Regulation of these sorting events has the potential to influence synaptic transmission and behavior.
Collapse
Affiliation(s)
- Hao Fei
- Departments of Psychiatry and Neurobiology, Gonda Goldschmied Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1761, USA
| | | | | | | | | |
Collapse
|
77
|
Foltenyi K, Andretic R, Newport JW, Greenspan RJ. Neurohormonal and neuromodulatory control of sleep in Drosophila. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:565-71. [PMID: 18419316 DOI: 10.1101/sqb.2007.72.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The fruit fly Drosophila melanogaster has emerged in recent years as a tractable system for studying sleep. The sleep-wake dichotomy represents one of the principal transitions in global brain state, and neurohormones and neuromodulators are well known for their ability to change global brain states. Here, we describe studies of two brain systems that regulate sleep in Drosophila, the neurohormonal epidermal growth factor receptor system and the neuromodulatory dopaminergic system, each of which acts through a discrete anatomical locus in the dorsal brain. Both control systems display considerable mechanistic similarity to those in mammals, suggesting possible functional homologies.
Collapse
Affiliation(s)
- K Foltenyi
- Department of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
78
|
Heberlein U, Tsai LTY, Kapfhamer D, Lasek AW. Drosophila, a genetic model system to study cocaine-related behaviors: a review with focus on LIM-only proteins. Neuropharmacology 2008; 56 Suppl 1:97-106. [PMID: 18694769 PMCID: PMC2819469 DOI: 10.1016/j.neuropharm.2008.07.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/11/2008] [Accepted: 07/17/2008] [Indexed: 01/21/2023]
Abstract
In the last decade, the fruit fly Drosophila melanogaster, highly accessible to genetic, behavioral and molecular analyses, has been introduced as a novel model organism to help decipher the complex genetic, neurochemical, and neuroanatomical underpinnings of behaviors induced by drugs of abuse. Here we review these data, focusing specifically on cocaine-related behaviors. Several of cocaine's most characteristic properties have been recapitulated in Drosophila. First, cocaine induces motor behaviors in flies that are remarkably similar to those observed in mammals. Second, repeated cocaine administration induces behavioral sensitization a form of behavioral plasticity believed to underlie certain aspects of addiction. Third, a key role for dopaminergic systems in mediating cocaine's effects has been demonstrated through both pharmacological and genetic methods. Finally, and most importantly, unbiased genetic screens, feasible because of the simplicity and scale with which flies can be manipulated in the laboratory, have identified several novel genes and pathways whose role in cocaine behaviors had not been anticipated. Many of these genes and pathways have been validated in mammalian models of drug addiction. We focus in this review on the role of LIM-only proteins in cocaine-induced behaviors.
Collapse
Affiliation(s)
- Ulrike Heberlein
- Department of Anatomy, and Program in Neuroscience, University of California at San Francisco, 1550 4th Street, Rock Hall, Room RH 448F Mission Bay Campus, San Francisco, CA 94143-2324, USA.
| | | | | | | |
Collapse
|
79
|
Haydon PG, Blendy J, Moss SJ, Rob Jackson F. Astrocytic control of synaptic transmission and plasticity: a target for drugs of abuse? Neuropharmacology 2008; 56 Suppl 1:83-90. [PMID: 18647612 PMCID: PMC2636575 DOI: 10.1016/j.neuropharm.2008.06.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 02/03/2023]
Abstract
It is well recognized that drugs of abuse lead to plastic changes in synapses and that these long-term modifications have the potential to underlie adaptive changes of the brain that lead to substance abuse. However the variety of molecular mechanisms involved in these responses are not completely defined. We are just beginning to understand some of the roles of glial cells that are associated with synapses. At many synapses an astrocyte process is associated with pre- and postsynaptic neuron processes leading to the naming of this synaptic structure as the Tripartite Synapse. Therefore, these glial cells are positioned so that they influence synaptic transmission and thus could potentially regulate the actions of some drugs of abuse. In mammalian systems there are correlations between long-term structural changes in astrocytes and responses to drugs of abuse. However, whether such changes in glia impact brain function and subsequent behaviors associated with addiction is poorly understood. Studies using Drosophila show important roles of fly glia in mediating responses to cocaine pointing to the potential for the involvement of mammalian glia in the brain's responses to this as well as other drugs. In agreement with this possibility three receptor systems known to be important in substance abuse, mGluR5, GABA(B) and CB-1 receptors, are all expressed by astrocytes and the activation of these glial receptors is now known to impact neuronal excitability and synaptic transmission. Given our new knowledge about the presence of reciprocal signaling between astrocytes and synapses we are now at a time when it becomes appropriate to determine how glial cells respond to drugs of abuse and whether they contribute to the changes in brain function underlying substance abuse.
Collapse
Affiliation(s)
- Philip G Haydon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
80
|
Neuroarchitecture of aminergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS One 2008; 3:e1848. [PMID: 18365004 PMCID: PMC2268740 DOI: 10.1371/journal.pone.0001848] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 02/12/2008] [Indexed: 12/24/2022] Open
Abstract
Biogenic amines are important signaling molecules in the central nervous system of both vertebrates and invertebrates. In the fruit fly Drosophila melanogaster, biogenic amines take part in the regulation of various vital physiological processes such as feeding, learning/memory, locomotion, sexual behavior, and sleep/arousal. Consequently, several morphological studies have analyzed the distribution of aminergic neurons in the CNS. Previous descriptions, however, did not determine the exact spatial location of aminergic neurite arborizations within the neuropil. The release sites and pre-/postsynaptic compartments of aminergic neurons also remained largely unidentified. We here used gal4-driven marker gene expression and immunocytochemistry to map presumed serotonergic (5-HT), dopaminergic, and tyraminergic/octopaminergic neurons in the thoracic and abdominal neuromeres of the Drosophila larval ventral ganglion relying on Fasciclin2-immunoreactive tracts as three-dimensional landmarks. With tyrosine hydroxylase- (TH) or tyrosine decarboxylase 2 (TDC2)-specific gal4-drivers, we also analyzed the distribution of ectopically expressed neuronal compartment markers in presumptive dopaminergic TH and tyraminergic/octopaminergic TDC2 neurons, respectively. Our results suggest that thoracic and abdominal 5-HT and TH neurons are exclusively interneurons whereas most TDC2 neurons are efferent. 5-HT and TH neurons are ideally positioned to integrate sensory information and to modulate neuronal transmission within the ventral ganglion, while most TDC2 neurons appear to act peripherally. In contrast to 5-HT neurons, TH and TDC2 neurons each comprise morphologically different neuron subsets with separated in- and output compartments in specific neuropil regions. The three-dimensional mapping of aminergic neurons now facilitates the identification of neuronal network contacts and co-localized signaling molecules, as exemplified for DOPA decarboxylase-synthesizing neurons that co-express crustacean cardioactive peptide and myoinhibiting peptides.
Collapse
|
81
|
Lee HG, Kim YC, Dunning JS, Han KA. Recurring ethanol exposure induces disinhibited courtship in Drosophila. PLoS One 2008; 3:e1391. [PMID: 18167550 PMCID: PMC2148075 DOI: 10.1371/journal.pone.0001391] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/07/2007] [Indexed: 12/02/2022] Open
Abstract
Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a male's sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity.
Collapse
Affiliation(s)
- Hyun-Gwan Lee
- Department of Biology, Huck Institute Genetics Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Young-Cho Kim
- Department of Biology, Huck Institute Neuroscience Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jennifer S. Dunning
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kyung-An Han
- Department of Biology, Huck Institute Genetics Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Huck Institute Neuroscience Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
82
|
Harbell JW, Dunn TB, Fauda M, John DG, Goldenberg AS, Teperman LW. Transmission of anaplastic large cell lymphoma via organ donation after cardiac death. Am J Transplant 2008; 8:238-44. [PMID: 18021286 DOI: 10.1111/j.1600-6143.2007.02033.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recently, donation after cardiac death (DCD) has been encouraged in order to expand the donor pool. We present a case of anaplastic T-cell lymphoma transmitted to four recipients of solid organ transplants from a DCD donor suspected of having bacterial meningitis. On brain biopsy, the donor was found to have anaplastic central nervous system T-cell lymphoma, and the recipient of the donor's pancreas, liver and kidneys were found to have involvement of T-cell lymphoma. The transplanted kidneys and pancreas were excised from the respective recipients, and the kidney and pancreas recipients responded well to chemotherapy. The liver recipient underwent three cycles of chemotherapy, but later died due to complications of severe tumor burden. We recommend transplanting organs from donors with suspected bacterial meningitis only after identification of the infectious organism. In cases of lymphoma transmission, excision of the graft may be the only chance at long-term survival.
Collapse
Affiliation(s)
- J W Harbell
- Department of Surgery, New York University Medical Center, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
83
|
Park SS, Schulz EM, Lee D. Disruption of dopamine homeostasis underlies selective neurodegeneration mediated by alpha-synuclein. Eur J Neurosci 2007; 26:3104-12. [PMID: 18005066 DOI: 10.1111/j.1460-9568.2007.05929.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A key challenge in Parkinson's disease research is to understand mechanisms underlying selective degeneration of dopaminergic neurons mediated by genetic factors such as alpha-synuclein (alpha-Syn). The present study examined whether dopamine (DA)-dependent oxidative stress underlies alpha-Syn-mediated neurodegeneration using Drosophila primary neuronal cultures. Green fluorescent protein (GFP) was used to identify live dopaminergic neurons in primary cultures prepared on a marked photoetched coverslip, which allowed us to repeatedly access preidentified dopaminergic neurons at different time points in a non-invasive manner. This live tracking of GFP-marked dopaminergic neurons revealed age-dependent neurodegeneration mediated by a mutant human alpha-Syn (A30P). Degeneration was rescued when alpha-Syn neuronal cultures were incubated with 1 mm glutathione from Day 3 after culturing. Furthermore, depletion of cytoplasmic DA by 100 microm alpha-methyl-p-tyrosine completely rescued the early stage of alpha-Syn-mediated dopaminergic cell loss, demonstrating that DA plays a major role in oxidative stress-dependent neurodegeneration mediated by alpha-Syn. In contrast, overexpression of a Drosophila tyrosine hydroxylase gene (dTH1) alone caused DA neurodegeneration by enhanced DA synthesis in the cytoplasm. Age-dependent dopaminergic cell loss was comparable in alpha-Syn vs dTH1-overexpressed neuronal cultures, indicating that increased DA levels in the cytoplasm is a critical change downstream of mutant alpha-Syn function. Finally, overexpression of a Drosophila vesicular monoamine transporter rescued alpha-Syn-mediated neurodegeneration through enhanced sequestration of cytoplasmic DA into synaptic vesicles, further indicating that a main cause of selective neurodegeneration is alpha-Syn-induced disruption of DA homeostasis. All of these results demonstrate that elevated cytoplasmic DA is a main factor underlying the early stage of alpha-Syn-mediated neurodegeneration.
Collapse
Affiliation(s)
- Soon S Park
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | | | | |
Collapse
|
84
|
Romero-Calderón R, Shome RM, Simon AF, Daniels RW, DiAntonio A, Krantz DE. A screen for neurotransmitter transporters expressed in the visual system of Drosophila melanogaster identifies three novel genes. Dev Neurobiol 2007; 67:550-69. [PMID: 17443808 DOI: 10.1002/dneu.20342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The fly eye provides an attractive substrate for genetic studies, and critical transport activities for synaptic transmission and pigment biogenesis in the insect visual system remain unknown. We therefore screened for transporters in Drosophila melanogaster that are down-regulated by genetically ablating the eye. Using a large panel of transporter specific probes on Northern blots, we identified three transcripts that are down-regulated in flies lacking eye tissue. Two of these, CG13794 and CG13795, are part of a previously unknown subfamily of putative solute carriers within the neurotransmitter transporter family. The third, CG4476, is a member of a related subfamily that includes characterized nutrient transporters expressed in the insect gut. Using imprecise excision of a nearby transposable P element, we have generated a series of deletions in the CG4476 gene. In fast phototaxis assays, CG4476 mutants show a decreased behavioral response to light, and the most severe mutant behaves as if it were blind. These data suggest an unforeseen role for the "nutrient amino acid transporter" subfamily in the nervous system, and suggest new models to study transport function using the fly eye.
Collapse
Affiliation(s)
- Rafael Romero-Calderón
- Interdepartmental Ph.D. Program in Neuroscience, University of California, Los Angeles, California 90095-1761, USA
| | | | | | | | | | | |
Collapse
|
85
|
Draper I, Kurshan PT, McBride E, Jackson FR, Kopin AS. Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol 2007; 67:378-93. [PMID: 17443795 DOI: 10.1002/dneu.20355] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, dopamine 2-like receptors are expressed in distinct pathways within the central nervous system, as well as in peripheral tissues. Selected neuronal D2-like receptors play a critical role in modulating locomotor activity and, as such, represent an important therapeutic target (e.g. in Parkinson's disease). Previous studies have established that proteins required for dopamine (DA) neurotransmission are highly conserved between mammals and the fruit fly Drosophila melanogaster. These include a fly dopamine 2-like receptor (DD2R; Hearn et al. PNAS 2002 99(22):14554) that has structural and pharmacologic similarity to the human D2-like (D2R). In the current study, we define the spatial expression pattern of DD2R, and functionally characterize flies with reduced DD2 receptor levels. We show that DD2R is expressed in the larval and adult nervous systems, in cell groups that include the Ap-let cohort of peptidergic neurons, as well as in peripheral tissues including the gut and Malpighian tubules. To examine DD2R function in vivo, we generated RNA-interference (RNAi) flies with reduced DD2R expression. Behavioral analysis revealed that these flies show significantly decreased locomotor activity, similar to the phenotype observed in mammals with reduced D2R expression. The fly RNAi phenotype can be rescued by administration of the DD2R synthetic agonist bromocriptine, indicating specificity for the RNAi effect. These results suggest Drosophila as a useful system for future studies aimed at identifying modifiers of dopaminergic signaling/locomotor function.
Collapse
Affiliation(s)
- Isabelle Draper
- Molecular Cardiology Research Institute, Tufts-New England Medical Center, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
86
|
Sang TK, Chang HY, Lawless GM, Ratnaparkhi A, Mee L, Ackerson LC, Maidment NT, Krantz DE, Jackson GR. A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. J Neurosci 2007; 27:981-92. [PMID: 17267552 PMCID: PMC6673194 DOI: 10.1523/jneurosci.4810-06.2007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in human parkin have been identified in familial Parkinson's disease and in some sporadic cases. Here, we report that expression of mutant but not wild-type human parkin in Drosophila causes age-dependent, selective degeneration of dopaminergic (DA) neurons accompanied by a progressive motor impairment. Overexpression or knockdown of the Drosophila vesicular monoamine transporter, which regulates cytosolic DA homeostasis, partially rescues or exacerbates, respectively, the degenerative phenotypes caused by mutant human parkin. These results support a model in which the vulnerability of DA neurons to parkin-induced neurotoxicity results from the interaction of mutant parkin with cytoplasmic dopamine.
Collapse
Affiliation(s)
- Tzu-Kang Sang
- Neurogenetics and Movement Disorders Programs, Department of Neurology, and
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Taiwan, Republic of China, and
| | | | - George M. Lawless
- Neurogenetics and Movement Disorders Programs, Department of Neurology, and
| | | | - Lisa Mee
- Neurogenetics and Movement Disorders Programs, Department of Neurology, and
| | | | - Nigel T. Maidment
- Department of Psychiatry and Biobehavioral Sciences
- Brain Research Institute
- Hatos Center for Neuropharmacology, and
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095
| | - David E. Krantz
- Department of Psychiatry and Biobehavioral Sciences
- Brain Research Institute
- Hatos Center for Neuropharmacology, and
| | - George R. Jackson
- Neurogenetics and Movement Disorders Programs, Department of Neurology, and
- Brain Research Institute
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095
| |
Collapse
|
87
|
Thimgan MS, Berg JS, Stuart AE. Comparative sequence analysis and tissue localization of members of the SLC6 family of transporters in adult Drosophila melanogaster. ACTA ACUST UNITED AC 2006; 209:3383-404. [PMID: 16916974 DOI: 10.1242/jeb.02328] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The SLC6 family comprises proteins that move extracellular neurotransmitters, amino acids and osmolytes across the plasma membrane into the cytosol. In mammals, deletion of SLC6 family members has dramatic physiologic consequences, but in the model organism Drosophila melanogaster, little is known about this family of proteins. Therefore, in this study we carried out an initial analysis of 21 known or putative SLC6 family members from the Drosophila genome. Protein sequences from these genes segregated into either well-defined subfamilies, including the novel insect amino acid transporter subfamily, or into a group of weakly related sequences not affiliated with a recognized subfamily. Reverse transcription-polymerase chain reaction analysis and in situ hybridization showed that seven of these genes are expressed in the CNS. In situ hybridization revealed that two previously cloned SLC6 members, the serotonin and dopamine transporters, were localized to presumptive presynaptic neurons that previously immunolabelled for these transmitters. RNA for CG1732 (the putative GABA transporter) and CG15088 (a member of the novel insect amino acid transporter family) was localized in cells likely to be subtypes of glia, while RNA for CG5226, CG10804 (both members of the orphan neurotransmitter transporter subfamily) and CG5549 (a putative glycine transporter) were expressed broadly throughout the cellular cortex of the CNS. Eight of the 21 sequences were localized outside the CNS in the alimentary canal, Malpighian tubules and reproductive organs. Localization for six sequences was not found or not attempted in the adult fly. We used the Drosophila ortholog of the mammalian vesicular monoamine transporter 2, CG33528, to independently identify monoaminergic neurons in the adult fly. RNA for CG33528 was detected in a limited number of cells in the central brain and in a beaded stripe at the base of the photoreceptors in the position of glia, but not in the photoreceptors themselves. The SLC6 localization observations in conjunction with likely substrates based on phylogenetic inferences are a first step in defining the role of Na/Cl-dependent transporters in Drosophila physiology.
Collapse
Affiliation(s)
- Matthew S Thimgan
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, 27599, USA.
| | | | | |
Collapse
|
88
|
Abstract
General anesthetics abolish behavioral responsiveness in all animals, and in humans this is accompanied by loss of consciousness. Whether similar target mechanisms and behavioral endpoints exist across species remains controversial, although model organisms have been successfully used to study mechanisms of anesthesia. In Drosophila, a number of key mutants have been characterized as hypersensitive or resistant to general anesthetics by behavioral assays. In order to investigate general anesthesia in the Drosophila brain, local field potential (LFP) recordings were made during incremental exposures to isoflurane in wild-type and mutant flies. As in higher animals, general anesthesia in flies was found to involve a succession of distinct endpoints. At low doses, isoflurane uncoupled brain activity from ongoing movement, followed by a sudden attenuation in neural correlates of perception. Average LFP activity in the brain was more gradually attenuated with higher doses, followed by loss of movement behavior. Among mutants, a strong correspondence was found between behavioral and LFP sensitivities, thereby suggesting that LFP phenotypes are proximal to the anesthetic's mechanism of action. Finally, genetic and pharmacological analysis revealed that anesthetic sensitivities in the fly brain are, like other arousal states, influenced by dopaminergic activity. These results suggest that volatile anesthetics such as isoflurane may target the same processes that sustain wakefulness and attention in the brain. LFP correlates of general anesthesia in Drosophila provide a powerful new approach to uncovering the nature of these processes.
Collapse
|
89
|
Abstract
Post-transplant lymphoproliferative disorder (PTLD) after solid organ or hematopoietic stem cell transplantation in children is a serious complication that has been responsible for high mortality rates over recent years. PTLDs are part of a clinically and histologically heterogeneous group of B-lymphocyte proliferations mostly induced by Epstein-Barr virus (EBV) in a context of immunosuppression. Major risk factors for PTLDs in solid organ transplantation are the EBV serostatus mismatch and the intensity, duration, and type of immunosuppression. T-cell depletion and the HLA-mismatched donor and recipient are the main risk factors following hematopoietic stem cell transplantation. For a long time, the only safe and effective therapeutic approach to PTLD was reduction of immunosuppression, with a risk of graft rejection. Based on a better knowledge of the pathophysiology and risk factors for PTLD, preventive and pre-emptive strategies have been recently proposed to control PTLD. New treatment modalities, such as anti-B-cell antibodies, cytokine inhibitor therapy, or anti-EBV cytotoxic T lymphocytes are promising and may improve the outcome of PTLD. These therapeutic approaches need to be further evaluated, especially in the context of pre-emptive strategies adapted to predictive markers of EBV-induced PTLD.
Collapse
Affiliation(s)
- Albert Faye
- Service d'Hémato-immunologie, Hôpital Robert Debré, Paris, France.
| | | |
Collapse
|
90
|
Petit B, Le Meur Y, Jaccard A, Paraf F, Robert CL, Bordessoule D, Labrousse F, Drouet M. Influence of host-recipient origin on clinical aspects of posttransplantation lymphoproliferative disorders in kidney transplantation. Transplantation 2002; 73:265-71. [PMID: 11821742 DOI: 10.1097/00007890-200201270-00020] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Posttransplantation lymphoproliferative disorder (PTLD) is a well-known complication of immunosuppression associated with solid organ transplantation. The donor or host origin of PTLD may influence the outcome of the disease as it has been reported that a donor origin may be associated with a better prognosis. The aim of the study was to determine the origin (recipient or donor) of 12 PTLD occurring in kidney transplant recipients and to correlate the results with clinical findings. METHODS Origin of PTLD was determined using HLA DRB1 molecular typing, analysis of multiple short-tandem repeat microsatellite loci, and HLA class I antigen expression by immunohistochemistry. RESULTS Combining the three techniques, we found that eight cases originated from the recipient and four cases originated from the donor. The results of the three techniques were concordant and altogether assigned the origin of the tumors. All the donor-origin PTLD were strictly localized to the kidney graft, developed after a mean time of 5 months after transplantation, and regressed after reduction of immunosuppression. In contrast, seven of the eight recipient-origin PTLD presented as multisystemic disease, occurred a mean time of 75.7 months after the transplantation, and had a worse outcome (mortality, five deaths of eight patients, 62.5%). CONCLUSIONS These results suggest that PTLD originating from the donor arise in the first year after transplantation into the graft, and that recipient-origin PTLD develop later as an invasive disease. Because it permits simultaneously the analysis of cell morphology and tumor origin, immunohistochemistry is a more reliable technique in the case of graft tumors associated with allograft rejection. The determination of the origin of the tumors seems to be of value in the management of PTLD to predict the outcome and to adapt therapy.
Collapse
Affiliation(s)
- Barbara Petit
- Department of Pathology, Dupuytren Hospital, Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Ng IO, Shek TW, Thung SN, Ye MM, Lo CM, Fan ST, Lee JM, Chan KW, Cheung AN. Microsatellite analysis in post-transplantation lymphoproliferative disorder to determine donor/recipient origin. Mod Pathol 2000; 13:1180-5. [PMID: 11106074 DOI: 10.1038/modpathol.3880218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Post-transplantation lymphoproliferative disorders (PTLD) are a group of heterogeneous diseases that occur after organ transplantation. Determination of the origin of the tumor cells not only provides clues to its possible pathogenetic mechanism, but also gives prognostic guidance in the clinical management of patients. We reviewed the clinicopathological features of four cases of PTLD that developed after solid organ transplantation. Using microsatellite analysis performed on paraffin-embedded tissue and using multiple, highly polymorphic markers, we have successfully determined the recipient/donor origin of the tumor cells in all of them. The time of onset of the PTLD ranged from 5 to 11 mo. All cases were diffuse large cell lymphomas of B-cell lineage, and the two cases that have been tested for EBV by in situ hybridization were positive. Three of the 4 PTLD were of donor origin and these three patients died of diseases unrelated to PTLD. The single patient with PTLD of recipient origin died of disseminated PTLD. The mean survival length of the three patients with donor origin was 26.3 mo, whereas that of the patient with recipient origin was 12 mo. Our results indicate a relatively high incidence of PTLD of donor origin among our patients with solid organ transplantation, as compared to other reported series. Moreover, the finding of the relatively indolent nature of PTLD of donor origin supports that determination of the donor/recipient origin of PTLD is of prognostic significance.
Collapse
Affiliation(s)
- I O Ng
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam.
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Nalesnik MA. Clinical and pathological features of post-transplant lymphoproliferative disorders (PTLD). SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1998; 20:325-42. [PMID: 9870249 DOI: 10.1007/bf00838047] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M A Nalesnik
- Department of Pathology, University of Pittsburgh Medical Center, PA 15213, USA
| |
Collapse
|