51
|
Kuhn C. Emergence of sex differences in the development of substance use and abuse during adolescence. Pharmacol Ther 2015; 153:55-78. [PMID: 26049025 DOI: 10.1016/j.pharmthera.2015.06.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/24/2022]
Abstract
Substance use and abuse begin during adolescence. Male and female adolescent humans initiate use at comparable rates, but males increase use faster. In adulthood, more men than women use and abuse addictive drugs. However, some women progress more rapidly from initiation of use to entry into treatment. In animal models, adolescent males and females consume addictive drugs similarly. However, reproductively mature females acquire self-administration faster, and in some models, escalate use more. Sex/gender differences exist in neurobiologic factors mediating both reinforcement (dopamine, opioids) and aversiveness (CRF, dynorphin), as well as intrinsic factors (personality, psychiatric co-morbidities) and extrinsic factors (history of abuse, environment especially peers and family) which influence the progression from initial use to abuse. Many of these important differences emerge during adolescence, and are moderated by sexual differentiation of the brain. Estradiol effects which enhance both dopaminergic and CRF-mediated processes contribute to the female vulnerability to substance use and abuse. Testosterone enhances impulsivity and sensation seeking in both males and females. Several protective factors in females also influence initiation and progression of substance use including hormonal changes of pregnancy as well as greater capacity for self-regulation and lower peak levels of impulsivity/sensation seeking. Same sex peers represent a risk factor more for males than females during adolescence, while romantic partners increase risk for women during this developmental epoch. In summary, biologic factors, psychiatric co-morbidities as well as personality and environment present sex/gender-specific risks as adolescents begin to initiate substance use.
Collapse
Affiliation(s)
- Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
52
|
Early‐life stress increases the survival of midbrain neurons during postnatal development and enhances reward‐related and anxiolytic‐like behaviors in a sex‐dependent fashion. Int J Dev Neurosci 2015; 44:33-47. [DOI: 10.1016/j.ijdevneu.2015.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/30/2023] Open
|
53
|
McArthur S, Pienaar IS, Siddiqi SM, Gillies GE. Sex-specific disruption of murine midbrain astrocytic and dopaminergic developmental trajectories following antenatal GC treatment. Brain Struct Funct 2015; 221:2459-75. [PMID: 25944572 PMCID: PMC4884206 DOI: 10.1007/s00429-015-1049-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 04/20/2015] [Indexed: 11/29/2022]
Abstract
The mammalian midbrain dopaminergic systems arising in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) are critical for coping behaviours and are implicated in neuropsychiatric disorders where early life challenges comprise significant risk factors. Here, we aimed to advance our hypothesis that glucocorticoids (GCs), recognised key players in neurobiological programming, target development within these systems, with a novel focus on the astrocytic population. Mice received antenatal GC treatment (AGT) by including the synthetic GC, dexamethasone, in the mothers' drinking water on gestational days 16-19; controls received normal drinking water. Analyses of regional shapes and volumes of the adult SNc and VTA demonstrated that AGT induced long-term, dose-dependent, structural changes that were accompanied by profound effects on astrocytes (doubling/tripling of numbers and/or density). Additionally, AGT induced long-term changes in the population size and distribution of SNc/VTA dopaminergic neurons, confirming and extending our previous observations made in rats. Furthermore, glial/neuronal structural remodelling was sexually dimorphic and depended on the AGT dose and sub-region of the SNc/VTA. Investigations within the neonatal brain revealed that these long-term organisational effects of AGT depend, at least in part, on targeting perinatal processes that determine astrocyte density and programmed cell death in dopaminergic neurons. Collectively, our characterisation of enduring, AGT-induced, sex-specific cytoarchitectural disturbances suggests novel mechanistic links for the strong association between early environmental challenge (inappropriate exposure to excess GCs) and vulnerability to developing aberrant behaviours in later life, with translational implications for dopamine-associated disorders (such as schizophrenia, ADHD, autism, depression), which typically show a sex bias.
Collapse
Affiliation(s)
- Simon McArthur
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.,Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Ilse S Pienaar
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sindhu M Siddiqi
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Glenda E Gillies
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
54
|
Brown ECZ, Steadman CJ, Lee TM, Padmanabhan V, Lehman MN, Coolen LM. Sex differences and effects of prenatal exposure to excess testosterone on ventral tegmental area dopamine neurons in adult sheep. Eur J Neurosci 2015; 41:1157-66. [PMID: 25784297 DOI: 10.1111/ejn.12871] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/19/2015] [Accepted: 02/10/2015] [Indexed: 10/23/2022]
Abstract
Prenatal testosterone (T) excess in sheep results in a wide array of reproductive neuroendocrine deficits and alterations in motivated behavior. The ventral tegmental area (VTA) plays a critical role in reward and motivated behaviors and is hypothesised to be targeted by prenatal T. Here we report a sex difference in the number VTA dopamine cells in the adult sheep, with higher numbers of tyrosine hydroxylase (TH)-immunoreactive (-ir) cells in males than females. Moreover, prenatal exposure to excess T during either gestational days 30-90 or 60-90 resulted in increased numbers of VTA TH-ir cells in adult ewes compared to control females. Stereological analysis confirmed significantly greater numbers of neurons in the VTA of males and prenatal T-treated ewes, which was primarily accounted for by greater numbers of TH-ir cells. In addition, immunoreactivity for TH in the cells was denser in males and prenatal T-treated females, suggesting that sex differences and prenatal exposure to excess T affects both numbers of cells expressing TH and the protein levels within dopamine cells. Sex differences were also noted in numbers of TH-ir cells in the substantia nigra, with more cells in males than females. However, prenatal exposure to excess T did not affect numbers of TH-ir cells in the substantia nigra, suggesting that this sex difference is organised independently of prenatal actions of T. Together, these results demonstrate sex differences in the sheep VTA dopamine system which are mimicked by prenatal treatment with excess T.
Collapse
Affiliation(s)
- Erinna C Z Brown
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
55
|
Mendrek A. Existe-t-il des différences entre les hommes et les femmes en ce qui concerne les problèmes de toxicomanie ? SANTE MENTALE AU QUEBEC 2014. [DOI: 10.7202/1027832ar] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
La consommation et la dépendance aux drogues furent longtemps considérées comme un problème typiquement masculin. Néanmoins, bien que l’abus et la dépendance à l’alcool, au cannabis et à la nicotine soient encore plus répandus chez les hommes, les différences de genre en ce qui concerne les stimulants et les opiacés ont largement disparu. Il semblerait également que les motivations pour commencer à consommer, l’escalade vers la dépendance et les taux de cessation diffèrent chez les hommes et les femmes. Les raisons qui expliquent ces différences sont multiples et complexes. Nous allons examiner ici les données des études épidémiologiques et cliniques concernant la consommation de diverses drogues chez des hommes et chez des femmes en contexte des facteurs socioculturels, psychologiques et neurobiologiques.
Collapse
Affiliation(s)
- Adrianna Mendrek
- Département de psychologie, Bishop’s University
- Centre de recherche de l’Institut universitaire en santé mentale de Montréal
- Département de psychiatrie, Université de Montréal
| |
Collapse
|
56
|
Gillies G, Virdee K, McArthur S, Dalley J. Sex-dependent diversity in ventral tegmental dopaminergic neurons and developmental programing: A molecular, cellular and behavioral analysis. Neuroscience 2014; 282:69-85. [PMID: 24943715 PMCID: PMC4245713 DOI: 10.1016/j.neuroscience.2014.05.033] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/12/2014] [Accepted: 05/18/2014] [Indexed: 02/02/2023]
Abstract
The knowledge that diverse populations of dopaminergic neurons within the ventral tegmental area (VTA) can be distinguished in terms of their molecular, electrophysiological and functional properties, as well as their differential projections to cortical and subcortical regions has significance for key brain functions, such as the regulation of motivation, working memory and sensorimotor control. Almost without exception, this understanding has evolved from landmark studies performed in the male sex. However, converging evidence from both clinical and pre-clinical studies illustrates that the structure and functioning of the VTA dopaminergic systems are intrinsically different in males and females. This may be driven by sex differences in the hormonal environment during adulthood ('activational' effects) and development (perinatal and/or pubertal 'organizational' effects), as well as genetic factors, especially the SRY gene on the Y chromosome in males, which is expressed in a sub-population of adult midbrain dopaminergic neurons. Stress and stress hormones, especially glucocorticoids, are important factors which interact with the VTA dopaminergic systems in order to achieve behavioral adaptation and enable the individual to cope with environmental change. Here, also, there is male/female diversity not only during adulthood, but also in early life when neurobiological programing by stress or glucocorticoid exposure differentially impacts dopaminergic developmental trajectories in male and female brains. This may have enduring consequences for individual resilience or susceptibility to pathophysiological change induced by stressors in later life, with potential translational significance for sex bias commonly found in disorders involving dysfunction of the mesocorticolimbic dopaminergic systems. These findings highlight the urgent need for a better understanding of the sexual dimorphism in the VTA if we are to improve strategies for the prevention and treatment of debilitating conditions which differentially affect men and women in their prevalence and nature, including schizophrenia, attention/deficit hyperactivity disorder, autism spectrum disorders, anxiety, depression and addiction.
Collapse
Affiliation(s)
- G.E. Gillies
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK,Corresponding author. Address: Division of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK. Tel: +44-(0)-20-7594-7050.
| | - K. Virdee
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - S. McArthur
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1 6BQ, UK
| | - J.W. Dalley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK,Department of Psychiatry, University of Cambridge, Addenbrooke’s Hospital, Hill’s Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
57
|
Abstract
Parkinson's disease (PD) displays a greater prevalence and earlier age at onset in men. This review addresses the concept that sex differences in PD are determined, largely, by biological sex differences in the NSDA system which, in turn, arise from hormonal, genetic and environmental influences. Current therapies for PD rely on dopamine replacement strategies to treat symptoms, and there is an urgent, unmet need for disease modifying agents. As a significant degree of neuroprotection against the early stages of clinical or experimental PD is seen, respectively, in human and rodent females compared with males, a better understanding of brain sex dimorphisms in the intact and injured NSDA system will shed light on mechanisms which have the potential to delay, or even halt, the progression of PD. Available evidence suggests that sex-specific, hormone-based therapeutic agents hold particular promise for developing treatments with optimal efficacy in men and women.
Collapse
|
58
|
Baier CJ, Pallarés ME, Adrover E, Katunar MR, Raisman-Vozari R, Antonelli MC. Intrastriatal 6-OHDA Lesion Differentially Affects Dopaminergic Neurons in the Ventral Tegmental Area of Prenatally Stressed Rats. Neurotox Res 2014; 26:274-84. [DOI: 10.1007/s12640-014-9479-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 05/09/2014] [Accepted: 05/27/2014] [Indexed: 01/07/2023]
|
59
|
Oswald LM, Wand GS, Kuwabara H, Wong DF, Zhu S, Brasic JR. History of childhood adversity is positively associated with ventral striatal dopamine responses to amphetamine. Psychopharmacology (Berl) 2014; 231:2417-33. [PMID: 24448898 PMCID: PMC4040334 DOI: 10.1007/s00213-013-3407-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/11/2013] [Indexed: 12/17/2022]
Abstract
RATIONALE Childhood exposure to severe or chronic trauma is an important risk factor for the later development of adult mental health problems, such as substance abuse. Even in nonclinical samples of healthy adults, persons with a history of significant childhood adversity seem to experience greater psychological distress than those without this history. Evidence from rodent studies suggests that early life stress may impair dopamine function in ways that increase risks for drug abuse. However, the degree to which these findings translate to other species remains unclear. OBJECTIVES This study was conducted to examine associations between childhood adversity and dopamine and subjective responses to amphetamine in humans. METHODS Following intake assessment, 28 healthy male and female adults, aged 18-29 years, underwent two consecutive 90-min positron emission tomography studies with high specific activity [(11)C]raclopride. The first scan was preceded by intravenous saline; the second by amphetamine (AMPH 0.3 mg/kg). RESULTS Consistent with prior literature, findings showed positive associations between childhood trauma and current levels of perceived stress. Moreover, greater number of traumatic events and higher levels of perceived stress were each associated with higher ventral striatal dopamine responses to AMPH. Findings of mediation analyses further showed that a portion of the relationship between childhood trauma and dopamine release may be mediated by perceived stress. CONCLUSIONS Overall, results are consistent with preclinical findings suggesting that early trauma may lead to enhanced sensitivity to psychostimulants and that this mechanism may underlie increased vulnerability for drug abuse.
Collapse
Affiliation(s)
- Lynn M. Oswald
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA,Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gary S. Wand
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hiroto Kuwabara
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dean F. Wong
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA,Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shijun Zhu
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA
| | - James R. Brasic
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
60
|
Nuber S, Tadros D, Fields J, Overk CR, Ettle B, Kosberg K, Mante M, Rockenstein E, Trejo M, Masliah E. Environmental neurotoxic challenge of conditional alpha-synuclein transgenic mice predicts a dopaminergic olfactory-striatal interplay in early PD. Acta Neuropathol 2014; 127:477-94. [PMID: 24509835 DOI: 10.1007/s00401-014-1255-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 12/17/2022]
Abstract
The olfactory bulb (OB) is one of the first brain regions in Parkinson's disease (PD) to contain alpha-synuclein (α-syn) inclusions, possibly associated with nonmotor symptoms. Mechanisms underlying olfactory synucleinopathy, its contribution to progressive aggregation pathology and nigrostriatal dopaminergic loss observed at later stages, remain unclear. A second hit, such as environmental toxins, is suggestive for α-syn aggregation in olfactory neurons, potentially triggering disease progression. To address the possible pathogenic role of olfactory α-syn accumulation in early PD, we exposed mice with site-specific and inducible overexpression of familial PD-linked mutant α-syn in OB neurons to a low dose of the herbicide paraquat. Here, we found that olfactory α-syn per se elicited structural and behavioral abnormalities, characteristic of an early time point in models with widespread α-syn expression, including hyperactivity and increased striatal dopaminergic marker. Suppression of α-syn reversed the dopaminergic phenotype. In contrast, paraquat treatment synergistically induced degeneration of olfactory dopaminergic cells and opposed the higher reactive phenotype. Neither neurodegeneration nor behavioral abnormalities were detected in paraquat-treated mice with suppressed α-syn expression. By increasing calpain activity, paraquat induced a pathological cascade leading to inhibition of autophagy clearance and accumulation of calpain-cleaved truncated and insoluble α-syn, recapitulating biochemical and structural changes in human PD. Thus our results underscore the primary role of proteolytic failure in aggregation pathology. In addition, we provide novel evidence that olfactory dopaminergic neurons display an increased vulnerability toward neurotoxins in dependence to presence of human α-syn, possibly mediating an olfactory-striatal dopaminergic network dysfunction in mouse models and early PD.
Collapse
Affiliation(s)
- Silke Nuber
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., MTF 344, La Jolla, CA, 92093-0624, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Zucchi FCR, Yao Y, Ilnytskyy Y, Robbins JC, Soltanpour N, Kovalchuk I, Kovalchuk O, Metz GAS. Lifetime stress cumulatively programs brain transcriptome and impedes stroke recovery: benefit of sensory stimulation. PLoS One 2014; 9:e92130. [PMID: 24651125 PMCID: PMC3961295 DOI: 10.1371/journal.pone.0092130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/18/2014] [Indexed: 12/24/2022] Open
Abstract
Prenatal stress (PS) represents a critical variable affecting lifetime health trajectories, metabolic and vascular functions. Beneficial experiences may attenuate the effects of PS and its programming of health outcomes in later life. Here we investigated in a rat model (1) if PS modulates recovery following cortical ischemia in adulthood; (2) if a second hit by adult stress (AS) exaggerates stress responses and ischemic damage; and (3) if tactile stimulation (TS) attenuates the cumulative effects of PS and AS. Prenatally stressed and non-stressed adult male rats underwent focal ischemic motor cortex lesion and were tested in skilled reaching and skilled walking tasks. Two groups of rats experienced recurrent restraint stress in adulthood and one of these groups also underwent daily TS therapy. Animals that experienced both PS and AS displayed the most severe motor disabilities after lesion. By contrast, TS promoted recovery from ischemic lesion and reduced hypothalamic-pituitary-adrenal axis activity. The data also showed that cumulative effects of adverse and beneficial lifespan experiences interact with disease outcomes and brain plasticity through the modulation of gene expression. Microarray analysis of the lesion motor cortex revealed that cumulative PS and AS interact with genes related to growth factors and transcription factors, which were not affected by PS or lesion alone. TS in PS+AS animals reverted these changes, suggesting a critical role for these factors in activity-dependent motor cortical reorganization after ischemic lesion. These findings suggest that beneficial experience later in life can moderate adverse consequences of early programming to improve cerebrovascular health.
Collapse
Affiliation(s)
- Fabíola C. R. Zucchi
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Departments of Medicine and Biological Sciences, University of Mato Grosso State, Cáceres, MT, Brazil
| | - Youli Yao
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jerrah C. Robbins
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Nasrin Soltanpour
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gerlinde A. S. Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
62
|
Virdee K, McArthur S, Brischoux F, Caprioli D, Ungless MA, Robbins TW, Dalley JW, Gillies GE. Antenatal glucocorticoid treatment induces adaptations in adult midbrain dopamine neurons, which underpin sexually dimorphic behavioral resilience. Neuropsychopharmacology 2014; 39:339-50. [PMID: 23929547 PMCID: PMC3870772 DOI: 10.1038/npp.2013.196] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/11/2013] [Accepted: 08/01/2013] [Indexed: 01/22/2023]
Abstract
We demonstrated previously that antenatal glucocorticoid treatment (AGT, gestational days 16-19) altered the size and organization of the adult rat midbrain dopaminergic (DA) populations. Here we investigated the consequences of these AGT-induced cytoarchitectural disturbances on indices of DA function in adult rats. We show that in adulthood, enrichment of striatal DA fiber density paralleled AGT-induced increases in the numbers of midbrain DA neurons, which retained normal basal electrophysiological properties. This was co-incident with changes in (i) striatal D2-type receptor levels (increased, both sexes); (ii) D1-type receptor levels (males decreased; females increased); (iii) DA transporter levels (males increased; females decreased) in striatal regions; and (iv) amphetamine-induced mesolimbic DA release (males increased; females decreased). However, despite these profound, sexually dimorphic changes in markers of DA neurotransmission, in-utero glucocorticoid overexposure had a modest or no effect on a range of conditioned and unconditioned appetitive behaviors known to depend on mesolimbic DA activity. These findings provide empirical evidence for enduring AGT-induced adaptive mechanisms within the midbrain DA circuitry, which preserve some, but not all, functions, thereby casting further light on the vulnerability of these systems to environmental perturbations. Furthermore, they demonstrate these effects are achieved by different, often opponent, adaptive mechanisms in males and females, with translational implications for sex biases commonly found in midbrain DA-associated disorders.
Collapse
Affiliation(s)
- Kanwar Virdee
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Simon McArthur
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Frédéric Brischoux
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Daniele Caprioli
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Mark A Ungless
- MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK
| | - Trevor W Robbins
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Psychology, University of Cambridge, Cambridge, UK
| | - Jeffrey W Dalley
- Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK,Department of Psychology, University of Cambridge, Cambridge, UK,Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Glenda E Gillies
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK,Division of Brain Sciences, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK, Tel: +44 (0) 20 8383 8037, Fax: +44 (0) 20 8383 8032, E-mail:
| |
Collapse
|
63
|
The Potential Role of SRY in Epigenetic Gene Regulation During Brain Sexual Differentiation in Mammals. EPIGENETIC SHAPING OF SOCIOSEXUAL INTERACTIONS - FROM PLANTS TO HUMANS 2014; 86:135-65. [DOI: 10.1016/b978-0-12-800222-3.00007-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
64
|
Campi KL, Jameson CE, Trainor BC. Sexual Dimorphism in the Brain of the Monogamous California Mouse (Peromyscus californicus). BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:236-49. [PMID: 23881046 PMCID: PMC3915401 DOI: 10.1159/000353260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/04/2013] [Indexed: 11/19/2022]
Abstract
Sex differences in behavior and morphology are usually assumed to be stronger in polygynous species compared to monogamous species. A few brain structures have been identified as sexually dimorphic in polygynous rodent species, but it is less clear whether these differences persist in monogamous species. California mice are among the 5% or less of mammals that are considered to be monogamous and as such provide an ideal model to examine sexual dimorphism in neuroanatomy. In the present study we compared the volume of hypothalamic- and limbic-associated regions in female and male California mice for sexual dimorphism. We also used tyrosine hydroxylase (TH) immunohistochemistry to compare the number of dopamine neurons in the ventral tegmental area (VTA) in female and male California mice. Additionally, tract tracing was used to accurately delineate the boundaries of the VTA. The total volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA), the principal nucleus of the bed nucleus of the stria terminalis (BNST), and the posterodorsal medial amygdala (MEA) was larger in males compared to females. In the SDN-POA we found that the magnitude of sex differences in the California mouse were intermediate between the large differences observed in promiscuous meadow voles and rats and the absence of significant differences in monogamous prairie voles. However, the magnitude of sex differences in MEA and the BNST were comparable to polygynous species. No sex differences were observed in the volume of the whole brain, the VTA, the nucleus accumbens or the number of TH-ir neurons in the VTA. These data show that despite a monogamous social organization, sexual dimorphisms that have been reported in polygynous rodents extend to California mice. Our data suggest that sex differences in brain structures such as the SDN-POA persist across species with different social organizations and may be an evolutionarily conserved characteristic of mammalian brains.
Collapse
Affiliation(s)
- Katharine L Campi
- Department of Psychology and Center for Neuroscience, University of California Davis, Davis, CA 95616, USA.
| | | | | |
Collapse
|
65
|
Hoekstra PJ, Dietrich A, Edwards MJ, Elamin I, Martino D. Environmental factors in Tourette syndrome. Neurosci Biobehav Rev 2013; 37:1040-9. [PMID: 23092654 DOI: 10.1016/j.neubiorev.2012.10.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/08/2012] [Accepted: 10/15/2012] [Indexed: 01/29/2023]
|
66
|
ter Wolbeek M, de Sonneville LMJ, de Vries WB, Kavelaars A, Veen S, Kornelisse RF, van Weissenbruch M, Baerts W, Liem KD, van Bel F, Heijnen CJ. Early life intervention with glucocorticoids has negative effects on motor development and neuropsychological function in 14-17 year-old adolescents. Psychoneuroendocrinology 2013; 38:975-86. [PMID: 23107421 DOI: 10.1016/j.psyneuen.2012.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/30/2012] [Accepted: 10/01/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To reduce the risk of bronchopulmonary dysplasia, preterm infants receive neonatal treatment with glucocorticoids, mostly dexamethasone (DEX). Compared to current protocols, treatment regimens of the late 1980s - early 1990s prescribed high doses of DEX for an extensive period up to 6 weeks. Worldwide at least one million children have been treated with this dose regimen. Previous studies have shown adverse effects of neonatal treatment with the glucocorticoid dexamethasone (DEX) on outcome in children aged 7-10 years. On the other hand, treatment with another glucocorticoid, hydrocortisone (HC), was not related to adverse effects in childhood. In the current study we determined the consequences of early life intervention with DEX or HC in adolescents (age 14-17 years). Besides motor function and intellectual capacities, we also examined fundamental neuropsychological functions which have so far received little attention. METHODS In an observational cohort study we compared 14-17 year-old adolescents who received DEX (.5 mg/kg/day tapering off to .1 mg/kg/day over 21 days, n=63), or HC (5 mg/kg/day tapering off to 1 mg/kg/day over 22 days, n=67), or did not receive neonatal glucocorticoids (untreated, n=71) after premature birth (gestational age<32 weeks). Because gestational age was shorter and duration of ventilation was longer in the DEX-treated group, all analyses were corrected for these potential confounders. Motor function, IQ, and neuropsychological functions were assessed. RESULTS DEX-treated group participants scored lower on gross motor skill tasks than their HC-treated and untreated counterparts. A higher proportion of DEX-treated girls needed special education compared to the other groups. DEX-treated adolescents performed poorer on neuropsychological tasks measuring alertness, visuomotor coordination, and emotion recognition. The HC-treated group did not differ from the untreated group. CONCLUSIONS Even after 14-17 years, neonatal treatment with .5 mg/kg/day DEX was associated with adverse effects on motor function, school level, and neuropsychological functions, whereas treatment with the clinically equally effective dose of 5 mg/kg/day HC was not. Potential physiological mechanisms underlying the differences in dexamethasone and hydrocortisone effects are discussed. Based on the current findings, we recommend early identification of neuropsychological deficits after DEX treatment in order to specify extra educational needs.
Collapse
Affiliation(s)
- Maike ter Wolbeek
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Martino D, Macerollo A, Leckman JF. Neuroendocrine aspects of Tourette syndrome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 112:239-79. [PMID: 24295624 DOI: 10.1016/b978-0-12-411546-0.00009-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is sparse evidence suggesting the participation of neuroendocrine mechanisms, mainly involving sex and stress steroid hormones, to the pathophysiology of neurodevelopmental disorders such as Tourette syndrome (TS) and obsessive-compulsive disorder (OCD). Patients with TS exhibit a sex-specific variability in gender distribution (male/female ratio=3-4/1) and in its natural history, with a severity peak in the period around puberty. The administration of exogenous androgens may worsen tics in males with TS, whereas drugs counteracting the action of testosterone might show some antitic efficacy. This suggests a higher susceptibility of patients with TS to androgen steroids. There are insufficient data on the regulation of the hypothalamic-pituitary-gonadal (HPG) axis in TS. However, preliminary evidence suggests that a subgroup of women with TS might be more sensitive to the premenstrual trough of estrogen levels. Patients with TS exhibit differences in a number of behavioral, cognitive, and anatomical traits that appear to be sex related. There is a body of evidence supporting, albeit indirectly, the hypothesis of an increased exposure to androgenic steroids during the very early phases of neural development. Animal models in rodents suggest a complex role of gonadal hormones upon the modulation of anxiety-related and stereotyped behaviors during adult life. Patients with TS exhibit an enhanced reactivity of the hypothalamic-pituitary-adrenal axis to external stressors, despite a preserved diurnal cortisol rhythm and a normal restoration of the baseline activity of the axis following the acute stress response. Preliminary evidence suggests the possible implication of oxytocin (OT) in disorders related to the TS spectrum, especially non-tic-related OCD. The injection of OT in the amygdala of rodents was shown to be able to induce hypergrooming, suggesting the possible involvement of this neuropeptide in the pathophysiology of complex, stereotyped behaviors. In contrast, there is anecdotal clinical evidence that tics improve following periods of affectionate touch and sexual intercourse.
Collapse
Affiliation(s)
- Davide Martino
- Queen Elizabeth Hospital, Woolwich, London, United Kingdom; Centre for Neuroscience and Trauma, Queen Mary University of London, London, United Kingdom; King's College Hospital, London, United Kingdom.
| | | | | |
Collapse
|
68
|
Czech DP, Lee J, Sim H, Parish CL, Vilain E, Harley VR. The human testis-determining factor SRY localizes in midbrain dopamine neurons and regulates multiple components of catecholamine synthesis and metabolism. J Neurochem 2012; 122:260-71. [PMID: 22568433 DOI: 10.1111/j.1471-4159.2012.07782.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The male gender is determined by the sex-determining region on the Y chromosome (SRY) transcription factor. The unexpected action of SRY in the control of voluntary movement in male rodents suggests a role in the regulation of dopamine transmission and dopamine-related disorders with gender bias, such as Parkinson's disease. We investigated SRY expression in the human brain and function in vitro. SRY immunoreactivity was detected in the human male, but not female substantia nigra pars compacta, within a sub-population of tyrosine hydroxylase (TH) positive neurons. SRY protein also co-localized with TH positive neurons in the ventral tegmental area, and with GAD-positive neurons in the substantia nigra pars reticulata. Retinoic acid-induced differentiation of human precursor NT2 cells into dopaminergic cells increased expression of TH, NURR1, D2 R and SRY. In the human neuroblastoma cell line, M17, SRY knockdown resulted in a reduction in TH, DDC, DBH and MAO-A expression; enzymes which control dopamine synthesis and metabolism. Conversely, SRY over-expression increased TH, DDC, DBH, D2 R and MAO-A levels, accompanied by increased extracellular dopamine levels. A luciferase assay demonstrated that SRY activated a 4.6 kb 5' upstream regulatory region of the human TH promoter/nigral enhancer. Combined, these results suggest that SRY plays a role as a positive regulator of catecholamine synthesis and metabolism in the human male midbrain. This ancillary genetic mechanism might contribute to gender bias in fight-flight behaviours in men or their increased susceptibility to dopamine disorders, such as Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- Daniel P Czech
- Molecular Genetics & Development Division, Prince Henry's Institute of Medical Research, Monash Medical Centre, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
69
|
Zucchi FCR, Yao Y, Metz GA. The secret language of destiny: stress imprinting and transgenerational origins of disease. Front Genet 2012; 3:96. [PMID: 22675331 PMCID: PMC3366387 DOI: 10.3389/fgene.2012.00096] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/10/2012] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulation modulates gene expression without altering the DNA sequence to facilitate rapid adjustments to dynamically changing environmental conditions. The formation of an epigenetic memory allows passing on this information to subsequent generations. Here we propose that epigenetic memories formed by adverse environmental conditions and stress represent a critical determinant of health and disease in the F3 generation and beyond. Transgenerational programming of epigenetic regulation may represent a key to understand adult-onset complex disease pathogenesis and cumulative effects of life span and familial disease etiology. Ultimately, the mechanisms of generating an epigenetic memory may become of potentially promising diagnostic and therapeutic relevance due to their reversible nature. Exploring the role of environmental factors, such as stress, in causing variations in epigenetic profiles may lead to new avenues of personalized, preventive medicine based on epigenetic signatures and interventions.
Collapse
Affiliation(s)
- Fabiola C R Zucchi
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | | | | |
Collapse
|
70
|
Zuloaga DG, Carbone DL, Handa RJ. Prenatal dexamethasone selectively decreases calretinin expression in the adult female lateral amygdala. Neurosci Lett 2012; 521:109-14. [PMID: 22668856 DOI: 10.1016/j.neulet.2012.05.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/06/2012] [Accepted: 05/18/2012] [Indexed: 01/07/2023]
Abstract
Exposure to high levels of glucocorticoids (GCs) during early development results in lasting disturbances in emotional behavior in rodents. Inhibitory GABAergic neurons, classified by their expression of calcium binding proteins (CBPs), also contribute to stress-related behaviors and may be GC sensitive during development. Therefore, in the present study we investigated the effects of prenatal treatment with the glucocorticoid receptor agonist dexamethasone (DEX) on expression of calbindin and calretinin in brain areas critical to emotional regulation (basolateral/lateral amygdala and hippocampal CA1 and CA3 regions). Late gestational treatment with DEX (gestational days 18-22) significantly decreased the density of calretinin immunoreactive cells in the lateral amygdala of adult female offspring with no differences in the basolateral amygdala, hippocampal CA1, or CA3 regions. Moreover, there were no effects of gestational DEX treatment on calretinin expression in males. Calbindin expression in adulthood was unaltered within either amygdala or hippocampal subregion of either sex following prenatal DEX treatment. Together these findings indicate that late gestational DEX treatment causes a targeted reduction of calretinin within the lateral amygdala of females and this may be one mechanism through which developmental glucocorticoid exposure contributes to lasting alterations in emotional behavior.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | | | | |
Collapse
|
71
|
Baier CJ, Katunar MR, Adrover E, Pallarés ME, Antonelli MC. Gestational restraint stress and the developing dopaminergic system: an overview. Neurotox Res 2012; 22:16-32. [PMID: 22215534 DOI: 10.1007/s12640-011-9305-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022]
Abstract
Prenatal stress exerts a strong impact on fetal brain development in rats impairing adaptation to stressful conditions, subsequent vulnerability to anxiety, altered sexual function, and enhanced propensity to self-administer drugs. Most of these alterations have been attributed to changes in the neurotransmitter dopamine (DA). In humans; dysfunction of dopaminergic system is associated with development of several neurological disorders, such as Parkinson disease, schizophrenia, attention-deficit hyperactivity disorder, and depression. Evidences provided by animal research, as well as retrospective studies in humans, pointed out that exposure to adverse events in early life can alter adult behaviors and neurochemical indicators of midbrain DA activity, suggesting that the development of the DA system is sensitive to disruption by exposure to early stressors. The purpose of this article is to provide a general overview of published studies and our own study related to the effect of prenatal insults on the development of DA metabolism and biology, focusing mainly in articles involving prenatal-restraint stress protocols in rats. We will also attempt to make a correlation between theses alterations and DA-related pathological processes in humans.
Collapse
Affiliation(s)
- Carlos J Baier
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
72
|
Elia J, Laracy S, Allen J, Nissley-Tsiopinis J, Borgmann-Winter K. Epigenetics: genetics versus life experiences. Curr Top Behav Neurosci 2012; 9:317-340. [PMID: 21728139 DOI: 10.1007/7854_2011_144] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Epigenetics is the field of research that examines alterations in gene expression caused by mechanisms other than changes in DNA sequence. ADHD is highly heritable; however, epigenetics are considered relevant in potentially explaining the variance not accounted for by genetic influence. In this chapter, some of the well-known processes of epigenetics, such as chromosome organization, DNA methylation, and effects of transcriptional factors are reviewed along with studies examining the role of these processes in the pathophysiology of ADHD. Potential epigenetic factors conferring risk for ADHD at various developmental stages, such as alcohol, tobacco, toxins, medications, and psychosocial stressor are discussed. Animal studies investigating ADHD medications and changes in CNS Gene/Protein Expression are also explored since they provide insight into the neuronal pathways involved in ADHD pathophysiology. The current limited data suggest that identification of the epigenetic processes involved in ADHD is extremely important and may lead to potential interventions that may be applied to modify the expression of deleterious, as well as protective, genes.
Collapse
Affiliation(s)
- Josephine Elia
- The Children's Hospital of Philadelphia, Science Center, 3440 Market St, Philadelphia, PA, 19104, USA,
| | | | | | | | | |
Collapse
|
73
|
Wyrwoll CS, Holmes MC. Prenatal excess glucocorticoid exposure and adult affective disorders: a role for serotonergic and catecholamine pathways. Neuroendocrinology 2012; 95:47-55. [PMID: 22042385 PMCID: PMC3388616 DOI: 10.1159/000331345] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/29/2011] [Indexed: 01/13/2023]
Abstract
Fetal glucocorticoid exposure is a key mechanism proposed to underlie prenatal 'programming' of adult affective behaviours such as depression and anxiety. Indeed, the glucocorticoid metabolising enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which is highly expressed in the placenta and the developing fetus, acts as a protective barrier from the high maternal glucocorticoids which may alter developmental trajectories. The programmed changes resulting from maternal stress or bypass or from the inhibition of 11β-HSD2 are frequently associated with alterations in the hypothalamic-pituitary-adrenal (HPA) axis. Hence, circulating glucocorticoid levels are increased either basally or in response to stress accompanied by CNS region-specific modulations in the expression of both corticosteroid receptors (mineralocorticoid and glucocorticoid receptors). Furthermore, early-life glucocorticoid exposure also affects serotonergic and catecholamine pathways within the brain, with changes in both associated neurotransmitters and receptors. Indeed, global removal of 11β-HSD2, an enzyme that inactivates glucocorticoids, increases anxiety- and depressive-like behaviour in mice; however, in this case the phenotype is not accompanied by overt perturbation in the HPA axis but, intriguingly, alterations in serotonergic and catecholamine pathways are maintained in this programming model. This review addresses one of the potential adverse effects of glucocorticoid overexposure in utero, i.e. increased incidence of affective behaviours, and the mechanisms underlying these behaviours including alteration of the HPA axis and serotonergic and catecholamine pathways.
Collapse
Affiliation(s)
- Caitlin S. Wyrwoll
- *C.S. Wyrwoll, Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ (UK), Tel. +44 131 242 6746, E-Mail
| | | |
Collapse
|
74
|
The effects of allostatic load on neural systems subserving motivation, mood regulation, and social affiliation. Dev Psychopathol 2011; 23:975-99. [PMID: 22018077 DOI: 10.1017/s0954579411000459] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractThe term allostasis, which is defined as stability through change, has been invoked repeatedly by developmental psychopathologists to describe long-lasting and in some cases permanent functional alterations in limbic–hypothalamic–pituitary–adrenal axis responding following recurrent and/or prolonged exposure to stress. Increasingly, allostatic load models have also been invoked to describe psychological sequelae of abuse, neglect, and other forms of maltreatment. In contrast, neural adaptations to stress, including those incurred by monoamine systems implicated in (a) mood and emotion regulation, (b) behavioral approach, and (c) social affiliation and attachment, are usually not included in models of allostasis. Rather, structural and functional alterations in these systems, which are exquisitely sensitive to prolonged stress exposure, are usually explained as stress mediators, neural plasticity, and/or programming effects. Considering these mechanisms as distinct from allostasis is somewhat artificial given overlapping functions and intricate coregulation of monoamines and the limbic–hypothalamic–pituitary–adrenal axis. It also fractionates literatures that should be mutually informative. In this article, we describe structural and functional alterations in serotonergic, dopaminergic, and noradrenergic neural systems following both acute and prolonged exposure to stress. Through increases in behavioral impulsivity, trait anxiety, mood and emotion dysregulation, and asociality, alterations in monoamine functioning have profound effects on personality, attachment relationships, and the emergence of psychopathology.
Collapse
|
75
|
Douglas AJ. Mother-offspring dialogue in early pregnancy: impact of adverse environment on pregnancy maintenance and neurobiology. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1167-77. [PMID: 20688125 DOI: 10.1016/j.pnpbp.2010.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/21/2010] [Accepted: 07/25/2010] [Indexed: 12/11/2022]
Abstract
The mother-offspring dialogue begins even before implantation and is essential to signal pregnancy, establish robust contact, and maintain embryo growth and development. Any circumstance that disrupts the dialogue risks pregnancy problems. A new look at how stress impacts on pregnancy involves its adverse effects on the key pregnancy hormones of progesterone and prolactin. These effects have far-reaching consequences on pregnancy maintenance, maternal anxiety and embryo programming. This review focuses on early pregnancy and how stress might compromise the multi-layer, two-way communication between mother and embryo.
Collapse
Affiliation(s)
- Alison J Douglas
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, University of Edinburgh, United Kingdom.
| |
Collapse
|
76
|
Chocyk A, Przyborowska A, Dudys D, Majcher I, Maćkowiak M, Wędzony K. The impact of maternal separation on the number of tyrosine hydroxylase-expressing midbrain neurons during different stages of ontogenesis. Neuroscience 2011; 182:43-61. [PMID: 21396433 DOI: 10.1016/j.neuroscience.2011.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 12/19/2022]
Abstract
Early life stressors have life-long functional and anatomical consequences. Though many neurotransmitters are involved in the functional impact of early life stress, dopamine seems to be important because of its roles in motor control, adaptation to stressful conditions, mood, cognition, attention and reward. Thus, in the present study, we investigated the way that early life stress, in the form of maternal separation (MS), affects the populations of tyrosine hydroxylase-immunoreactive (TH-IR) dopaminergic neurons in rat midbrain structures during ontogenesis. We included in the study the sub-regions of the substantia nigra (SN) and the ventral tegmental area (VTA). In both the control and MS rats, we found that the estimated total number of TH-expressing neurons fluctuated during ontogenesis. Moreover, MS influenced the number of TH-IR cells, especially in the SN pars reticulata (SNr) and VTA. Shortly after the termination of MS, on postnatal day (PND) 15, a decrease in the estimated total number of TH-IR neurons was observed in the SNr and VTA (in both males and females). On PND 35, MS caused a transient increase in the number of TH-IR cells only in the SNr of female rats. On PND 70, MS affected the number of TH-IR neurons in the VTA of females; specifically, an increase in the number of these cells was observed. Additionally, MS did not alter TH-IR cell sizes or the total levels of TH (measured by Western blot analysis) in the SN and VTA for all stages of ontogenesis in both males and females. The results from the study herein indicate that early life stress has enduring effects on the populations of midbrain TH-expressing dopaminergic neurons (especially in female rats), which are critically important for dopamine-regulated brain function throughout ontogenesis.
Collapse
Affiliation(s)
- A Chocyk
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
77
|
McArthur S, Robinson IC, Gillies GE. Novel ontogenetic patterns of sexual differentiation in arcuate nucleus GHRH neurons revealed in GHRH-enhanced green fluorescent protein transgenic mice. Endocrinology 2011; 152:607-17. [PMID: 21159856 DOI: 10.1210/en.2010-0798] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
GH secretion and growth rates are developmentally regulated and sexually dimorphic, but the neuroregulatory mechanisms between birth and puberty are unclear. Using the GHRH-enhanced green fluorescent protein (eGFP) transgenic mouse, in which eGFP provides a strong surrogate signal for identifying GHRH neurons, we showed that numbers in the male arcuate nucleus were double those seen in females at x postnatal day (P)1 and P10, during which time numbers increased 2- to 3-fold. Thereafter (P20, P30, P60, P365) there was a significant trend for numbers to decrease in males and increase in females, such that sex differences were, surprisingly, absent in young and late adulthood. Conversely, we identified the emergence of male-dominant sex differences in the number of processes extended per GHRH perikarya across puberty. Intriguingly, prepubertal gonadectomy (P28), unlike adult gonadectomy, caused a dramatic 40% loss of GHRH cells in both sexes in adulthood and a significant (30%) increase in processes emanating from cell bodies only in females. These findings establish a novel ontogenetic profile for GHRH neurons and suggest previously undiscovered roles for peripubertal gonadal factors in establishing population size in both sexes. They also provide the first demonstration of emergent sex-specific GHRH architecture, which may signal the onset of sex-dependent regulation of activity reported for adult GHRH-eGFP neurons, and its differential regulation by gonadal factors in males and females. This information adds to our knowledge of processes that underpin the emergence of sex-specific GH secretory dynamics and hence biological activity of this pleiotropic hormone.
Collapse
Affiliation(s)
- Simon McArthur
- Division of Experimental Medicine, Imperial College, London W12 0NN, United Kingdom
| | | | | |
Collapse
|
78
|
Vucetic Z, Reyes TM. Central dopaminergic circuitry controlling food intake and reward: implications for the regulation of obesity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:577-593. [PMID: 20836049 DOI: 10.1002/wsbm.77] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prevalence of obesity in the general population has increased in the past 15 years from 15% to 35%. With increasing obesity, the coincident medical and social consequences are becoming more alarming. Control over food intake is crucial for the maintenance of body weight and represents an important target for the treatment of obesity. Central nervous system mechanisms responsible for control of food intake have evolved to sense the nutrient and energy levels in the organism and to coordinate appropriate responses to adjust energy intake and expenditure. This homeostatic system is crucial for maintenance of stable body weight over long periods of time of uneven energy availability. However, not only the caloric and nutritional value of food but also hedonic and emotional aspects of feeding affect food intake. In modern society, the increased availability of highly palatable and rewarding (fat, sweet) food can significantly affect homeostatic balance, resulting in dysregulated food intake. This review will focus on the role of hypothalamic and mesolimbic/mesocortical dopaminergic (DA) circuitry in coding homeostatic and hedonic signals for the regulation of food intake and maintenance of caloric balance. The interaction of dopamine with peripheral and central indices of nutritional status (e.g., leptin, ghrelin, neuropeptide Y), and the susceptibility of the dopamine system to prenatal insults will be discussed. Additionally, the importance of alterations in dopamine signaling that occur coincidently with obesity will be addressed.
Collapse
Affiliation(s)
- Zivjena Vucetic
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Teresa M Reyes
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.,Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
79
|
Bourque M, Dluzen DE, Di Paolo T. Male/Female differences in neuroprotection and neuromodulation of brain dopamine. Front Endocrinol (Lausanne) 2011; 2:35. [PMID: 22654803 PMCID: PMC3356083 DOI: 10.3389/fendo.2011.00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/02/2011] [Indexed: 12/26/2022] Open
Abstract
The existence of a sex difference in Parkinson's disease (PD) is observed as related to several variables, including susceptibility of the disease, age at onset, and symptoms. These differences between men and women represent a significant characteristic of PD, which suggest that estrogens may exert beneficial effects against the development and the progression of the disease. This paper reviews the neuroprotective and neuromodulator effects of 17β-estradiol and progesterone as compared to androgens in the nigrostriatal dopaminergic (NSDA) system of both female and male rodents. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice model of PD and methamphetamine toxicity faithfully reproduce the sex differences of PD in that endogenous estrogen levels appear to influence the vulnerability to toxins targeting the NSDA system. Exogenous 17β-estradiol and/or progesterone treatments show neuroprotective properties against NSDA toxins while androgens fail to induce any beneficial effect. Sex steroid treatments show male and female differences in their neuroprotective action against methamphetamine toxicity. NSDA structure and function, as well as the distribution of estrogen receptors, show sex differences and may influence the susceptibility to the toxins and the response to sex steroids. Genomic and non-genomic actions of 17β-estradiol converge to promote survival factors and the presence of both estrogen receptors α and β are critical to 17β-estradiol neuroprotective action against MPTP toxicity.
Collapse
Affiliation(s)
- Mélanie Bourque
- Molecular Endocrinology and Genomic Research Center, Centre de recherche du CHUQ (CHUL)Quebec City, QC, Canada
- Faculty of Pharmacy, Laval University, Quebec CityQC, Canada
| | - Dean E. Dluzen
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine and PharmacyRootstown, OH, USA
| | - Thérèse Di Paolo
- Molecular Endocrinology and Genomic Research Center, Centre de recherche du CHUQ (CHUL)Quebec City, QC, Canada
- Faculty of Pharmacy, Laval University, Quebec CityQC, Canada
- *Correspondence: Thérèse Di Paolo, Molecular Endocrinology and Genomic Research Center, Centre de recherche du CHUQ (CHUL), 2705 Laurier Boulevard, Quebec City, QC, Canada G1V 4G2. e-mail:
| |
Collapse
|
80
|
The canary in the coalmine: the sensitivity of mesolimbic dopamine to environmental adversity during development. Neurosci Biobehav Rev 2010; 35:794-803. [PMID: 20888857 DOI: 10.1016/j.neubiorev.2010.09.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 07/19/2010] [Accepted: 09/26/2010] [Indexed: 11/23/2022]
Abstract
The hypothalamic-pituitary-adrenal axis has been the focus of extensive research with regard to the phenotypic plasticity this system shows in response to environmental influences on mammalian development. This review proposes that the mesolimbic dopamine system is similarly reactive to indicators of environmental adversity during development. Physical, physiological, and toxicological stressors encountered during perinatal development have been routinely demonstrated to affect dopamine neurophysiology, most likely through consequent exposure to maternal glucocorticoids or a reduction in oxygen supply. However, findings remain inconsistent with regard to the nature of impact these events have on the dopamine system. Both hyper- and hypo-dopaminergic changes have been noted. This review argues that the directionality of change is a function of chronicity and severity of the insult, and that both resultant phenotypes are adaptive developmental responses, despite their potential for conferring vulnerability for psychopathology in humans.
Collapse
|
81
|
Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders. CNS Neurosci Ther 2010; 16:e92-123. [PMID: 20557568 DOI: 10.1111/j.1755-5949.2010.00154.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dopamine is an important neuromodulator that exerts widespread effects on the central nervous system (CNS) function. Disruption in dopaminergic neurotransmission can have profound effects on mood and behavior and as such is known to be implicated in various neuropsychiatric behavioral disorders including autism and depression. The subsequent effects on other neurocircuitries due to dysregulated dopamine function have yet to be fully explored. Due to the marked social deficits observed in psychiatric patients, the neuropeptide, oxytocin is emerging as one particular neural substrate that may be influenced by the altered dopamine levels subserving neuropathologic-related behavioral diseases. Oxytocin has a substantial role in social attachment, affiliation and sexual behavior. More recently, it has emerged that disturbances in peripheral and central oxytocin levels have been detected in some patients with dopamine-dependent disorders. Thus, oxytocin is proposed to be a key neural substrate that interacts with central dopamine systems. In addition to psychosocial improvement, oxytocin has recently been implicated in mediating mesolimbic dopamine pathways during drug addiction and withdrawal. This bi-directional role of dopamine has also been implicated during some components of sexual behavior. This review will discuss evidence for the existence dopamine/oxytocin positive interaction in social behavioral paradigms and associated disorders such as sexual dysfunction, autism, addiction, anorexia/bulimia, and depression. Preliminary findings suggest that whilst further rigorous testing has to be conducted to establish a dopamine/oxytocin link in human disorders, animal models seem to indicate the existence of broad and integrated brain circuits where dopamine and oxytocin interactions at least in part mediate socio-affiliative behaviors. A profound disruption to these pathways is likely to underpin associated behavioral disorders. Central oxytocin pathways may serve as a potential therapeutic target to improve mood and socio-affiliative behaviors in patients with profound social deficits and/or drug addiction.
Collapse
|
82
|
Vucetic Z, Totoki K, Schoch H, Whitaker KW, Hill-Smith T, Lucki I, Reyes TM. Early life protein restriction alters dopamine circuitry. Neuroscience 2010; 168:359-70. [PMID: 20394806 PMCID: PMC2873068 DOI: 10.1016/j.neuroscience.2010.04.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/23/2010] [Accepted: 04/05/2010] [Indexed: 11/22/2022]
Abstract
Adverse prenatal environment, such as intrauterine growth retardation (IUGR), increases the risk for negative neurobehavioral outcomes. IUGR, affecting approximately 10% of all US infants, is a known risk factor for attention deficit hyperactivity disorder (ADHD), schizophrenia spectrum disorders and addiction. Mouse dams were fed a protein deficient (8.5% protein) or isocaloric control (18% protein) diet through pregnancy and lactation (a well validated rodent model of IUGR). Dopamine-related gene expression, dopamine content and behavior were examined in adult offspring. IUGR offspring have six to eightfold over-expression of dopamine (DA)-related genes (tyrosine hydroxylase (TH) and dopamine transporter) in brain regions related to reward processing (ventral tegmental area (VTA), nucleus accumbens, prefrontal cortex (PFC)) and homeostatic control (hypothalamus), as well as increased number of TH-ir neurons in the VTA and increased dopamine in the PFC. Cyclin-dependent kinase inhibitor 1C (Cdkn1c) is critical for dopaminergic neuron development. Methylation of the promoter region of Cdkn1c was decreased by half and there was a resultant two to sevenfold increase in Cdkn1c mRNA expression across brain regions. IUGR animals demonstrated alterations in dopamine-dependent behaviors, including altered reward-processing, hyperactivity and exaggerated locomotor response to cocaine. These data describe significant dopamine-related molecular and behavioral abnormalities in a mouse model of IUGR. This animal model, with both face validity (behavior) and construct validity (link to IUGR and dopamine dysfunction) may prove useful in identifying underlying mechanisms linking IUGR and adverse neurobehavioral outcomes such as ADHD.
Collapse
Affiliation(s)
- Zivjena Vucetic
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kathy Totoki
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Hannah Schoch
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | - Tiffany Hill-Smith
- Department of Psychiatry, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Irwin Lucki
- Department of Psychiatry, Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Teresa M. Reyes
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
83
|
Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev 2010; 62:155-98. [PMID: 20392807 PMCID: PMC2879914 DOI: 10.1124/pr.109.002071] [Citation(s) in RCA: 502] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The classic view of estrogen actions in the brain was confined to regulation of ovulation and reproductive behavior in the female of all mammalian species studied, including humans. Burgeoning evidence now documents profound effects of estrogens on learning, memory, and mood as well as neurodevelopmental and neurodegenerative processes. Most data derive from studies in females, but there is mounting recognition that estrogens play important roles in the male brain, where they can be generated from circulating testosterone by local aromatase enzymes or synthesized de novo by neurons and glia. Estrogen-based therapy therefore holds considerable promise for brain disorders that affect both men and women. However, as investigations are beginning to consider the role of estrogens in the male brain more carefully, it emerges that they have different, even opposite, effects as well as similar effects in male and female brains. This review focuses on these differences, including sex dimorphisms in the ability of estradiol to influence synaptic plasticity, neurotransmission, neurodegeneration, and cognition, which, we argue, are due in a large part to sex differences in the organization of the underlying circuitry. There are notable sex differences in the incidence and manifestations of virtually all central nervous system disorders, including neurodegenerative disease (Parkinson's and Alzheimer's), drug abuse, anxiety, and depression. Understanding the cellular and molecular basis of sex differences in brain physiology and responses to estrogen and estrogen mimics is, therefore, vitally important for understanding the nature and origins of sex-specific pathological conditions and for designing novel hormone-based therapeutic agents that will have optimal effectiveness in men or women.
Collapse
Affiliation(s)
- Glenda E Gillies
- Centre for Neuroscience, Department of Medicine, Hammersmith Hospital, Imperial College Faculty of Medicine, DuCane Road, London W12ONN, UK.
| | | |
Collapse
|
84
|
Kuhn C, Johnson M, Thomae A, Luo B, Simon SA, Zhou G, Walker QD. The emergence of gonadal hormone influences on dopaminergic function during puberty. Horm Behav 2010; 58:122-37. [PMID: 19900453 PMCID: PMC2883625 DOI: 10.1016/j.yhbeh.2009.10.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/22/2009] [Accepted: 10/27/2009] [Indexed: 01/04/2023]
Abstract
Adolescence is the developmental epoch during which children become adults-intellectually, physically, hormonally and socially. Brain development in critical areas is ongoing. Adolescents are risk-taking and novelty-seeking and they weigh positive experiences more heavily and negative experiences less than adults. This inherent behavioral bias can lead to risky behaviors like drug taking. Most drug addictions start during adolescence and early drug-taking is associated with an increased rate of drug abuse and dependence. The hormonal changes of puberty contribute to physical, emotional, intellectual and social changes during adolescence. These hormonal events do not just cause maturation of reproductive function and the emergence of secondary sex characteristics. They contribute to the appearance of sex differences in non-reproductive behaviors as well. Sex differences in drug use behaviors are among the latter. The male predominance in overall drug use appears by the end of adolescence, while girls develop the rapid progression from first use to dependence (telescoping) that represent a female-biased vulnerability. Sex differences in many behaviors including drug use have been attributed to social and cultural factors. A narrowing gap in drug use between adolescent boys and girls supports this thesis. However, some sex differences in addiction vulnerability reflect biologic differences in brain circuits involved in addiction. The purpose of this review is to summarize the contribution of sex differences in the function of ascending dopamine systems that are critical to reinforcement, to briefly summarize the behavioral, neurochemical and anatomical changes in brain dopaminergic functions related to addiction that occur during adolescence and to present new findings about the emergence of sex differences in dopaminergic function during adolescence.
Collapse
Affiliation(s)
- Cynthia Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
85
|
Johnson ML, Ho CC, Day AE, Walker QD, Francis R, Kuhn CM. Oestrogen receptors enhance dopamine neurone survival in rat midbrain. J Neuroendocrinol 2010; 22:226-37. [PMID: 20136693 PMCID: PMC3019761 DOI: 10.1111/j.1365-2826.2010.01964.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous findings in our laboratory and elsewhere have shown that ovariectomy of rats in adulthood attenuates cocaine-stimulated locomotor behaviour. Ovarian hormones enhance both cocaine-stimulated behaviour and increase dopamine overflow after psychomotor stimulants. The present study aimed to determine whether ovarian hormones have these effects in part by maintaining dopamine neurone number in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) and to investigate the roles of specific oestrogen receptors (ERs) in the maintenance of mesencephalic dopamine neurones. To accomplish this goal, we used unbiased stereological techniques to estimate the number of tyrosine hydroxylase-immunoreactive (TH-IR) cell bodies in midbrain regions of intact, ovariectomised and hormone-replaced female rats and mice. Animals received active or sham gonadectomy on postnatal day 60 and received vehicle, 17beta-oestradiol (E(2)) or selective ER agonists propyl-pyrazole-triol (PPT, ERalpha) or diarylpropionitrile (DPN, ERbeta) for 1 month post-surgery. In both rats and mice, ovariectomy reduced the number of TH-IR cells in the SNpc and VTA. Replacement with E(2), PPT or DPN prevented or attenuated the loss observed with ovariectomy in both rats and mice. An additional study using ER knockout mice revealed that adult female mice lacking ERalpha had fewer TH-IR cells in midbrain regions than wild-type mice, whereas mice lacking ERbeta had TH-IR cell counts comparable to wild-type. These findings suggest that, although both ER subtypes play a role in the maintenance of TH-IR cell number in the SNpc and VTA, ERalpha may play a more significant role.
Collapse
Affiliation(s)
- M L Johnson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
Developmental adaptations to violent environments involve a multitude of cascading effects spanning many levels of analysis from genes to behavior. In this review, we (a) examine the potentiating effects of violence on genetic vulnerabilities and the functioning of neurotransmitter systems in producing both internalizing and externalizing psychopathology; (b) describe implications of violence exposure for brain development, particularly within the hippocampus and prefrontal cortex; and (c) consider the effects of violence on developing human stress and startle responses. This review integrates literatures on the developmental effects of violence among rodents, nonhuman primates, and humans. Many neurobiological changes that are adaptive for survival in violent contexts become maladaptive in other environments, conferring life-long risk for psychopathology.
Collapse
Affiliation(s)
- Hilary K Mead
- University of Washington, Seattle, WA 98195-1525, USA
| | | | | |
Collapse
|
87
|
Gillies GE, McArthur S. Independent influences of sex steroids of systemic and central origin in a rat model of Parkinson's disease: A contribution to sex-specific neuroprotection by estrogens. Horm Behav 2010; 57:23-34. [PMID: 19538962 DOI: 10.1016/j.yhbeh.2009.06.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 11/16/2022]
Abstract
This review considers evidence which reveals considerable complexity and sex differences in the response of the nigrostriatal dopaminergic (NSDA) system to hormonal influences. This pathway degenerates in Parkinson's disease (PD) and sex hormones contribute to sex differences in PD, where men fare worse than women. Here we discuss evidence from animal studies which allows us to hypothesize that, contrary to expectations, the acclaimed neuroprotective property of physiological concentrations of estradiol arises not by promoting NSDA neuron survival, but by targeting powerful adaptive responses in the surviving neurons, which restore striatal DA functionality until over 60% of neurons are lost. Estrogen generated locally in the NSDA region appears to promote these adaptive mechanisms in females and males to preserve striatal DA levels in the partially injured NSDA pathway. However, responses to systemic steroids differ between the sexes. In females there is general agreement that gonadal steroids and exogenous estradiol promote striatal adaptation in the partially injured NSDA pathway to protect against striatal DA loss. In contrast, the balance of evidence suggests that in males gonadal factors and exogenous estradiol have negligible or even harmful effects. Sex differences in the organization of NSDA-related circuitry may well account for these differences. Compensatory mechanisms and sexually dimorphic hard-wiring are therefore likely to represent important biological substrates for sex dimorphisms. As these processes may be targeted differentially by systemic steroids in males and females, further understanding of the underlying processes would provide valuable insights into the potential for hormone-based therapies in PD, which would need to be sex-specific. Alternatively, evidence that estrogen generated locally is protective in the injured male NSDA pathway indicates the great therapeutic potential of harnessing central steroid synthesis to ameliorate neurodegenerative disorders. A clearer understanding of the relative contributions and inter-relationships of central and systemic steroids within the NSDA system is an important goal for future studies.
Collapse
Affiliation(s)
- Glenda E Gillies
- Department of Cellular and Molecular Neuroscience, Imperial College London, Hammersmith Hospital Campus, UK.
| | | |
Collapse
|
88
|
Katunar MR, Saez T, Brusco A, Antonelli MC. Ontogenetic expression of dopamine-related transcription factors and tyrosine hydroxylase in prenatally stressed rats. Neurotox Res 2009; 18:69-81. [PMID: 19936865 DOI: 10.1007/s12640-009-9132-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/15/2009] [Accepted: 09/30/2009] [Indexed: 01/27/2023]
Abstract
The development of the central nervous system can be permanently affected by insults received during the perinatal period, predisposing the organism to long-term behavioral and neurochemical abnormalities. Rats exposed to different types of stress during the last week of gestation produce offspring that show several alterations, many of which have been attributed to changes in dopamine (DA) neurotransmission that could serve as the neurochemical basis for the development of neuropsychiatric disorders. Employing an immunocytochemical approach, we studied the expression levels of two transcription factors Nurr1 and Pitx3 which are expressed at critical moments of DA neurons differentiation as well as the expression of the rate limiting enzyme in DA synthesis, tyrosine hydroxylase (TH) in mesencephalic areas of the brains of prenatally stressed (PS) offspring at different postnatal ages. Main results show that stress exerted to the gestant mother produces permanent effect in the ontogenetic expression of key factors related to the DA metabolism mainly in the ventral tegmental area (VTA) of the mesencephalon. The immunocytochemical expression of the transcription factor Nurr1 shows an increase at postnatal days (PNDs) 7, 28, and 60 whereas Pitx3 shows a decrease at PND 28 and an increase at 60 PND. The rate limiting step in DA synthesis, the enzyme TH shows a decrease at PND 7 to reach control levels at PNDs 28 and 60. The increase of TFs might be up-regulating TH in order to restore DA levels that were previously seen to be normal before puberty. The area selectivity of the increase of the TFs toward VTA and the mesolimbic pathway indicates that an insult received during the prenatal period will exert mainly motivational, emotional, and reward behavior impairments in the adult life.
Collapse
Affiliation(s)
- Maria R Katunar
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
89
|
Wędzony K, Markowicz-Kula K, Chocyk A, Fijał K, Przyborowska A, Maćkowiak M. Impact of postnatal dexamethasone on psychotomimetic effects of MK-801 measured on adult rats. Pharmacol Rep 2009; 61:1034-41. [DOI: 10.1016/s1734-1140(09)70165-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/26/2009] [Indexed: 11/30/2022]
|
90
|
Radcliffe PM, Sterling CR, Tank AW. Induction of tyrosine hydroxylase mRNA by nicotine in rat midbrain is inhibited by mifepristone. J Neurochem 2009; 109:1272-84. [PMID: 19476543 PMCID: PMC2731240 DOI: 10.1111/j.1471-4159.2009.06056.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Repeated nicotine administration induces tyrosine hydroxylase (TH) mRNA in rat midbrain. In this study we investigate the mechanisms responsible for this response using two models of midbrain dopamine neurons, rat ventral midbrain slice explant cultures and mouse MN9D cells. In both models nicotine stimulates TH gene transcription rate in a dose-dependent manner. However, this stimulation is short-lived, lasting for 1 h, but less than 3 h, and is not sufficient to induce TH mRNA or TH protein. Nicotine elevates circulating glucocorticoids, which induce TH expression in some model systems. We tested the hypothesis that the effect of nicotine on midbrain TH mRNA is mediated by the glucocorticoid receptor. When rats are administered the glucocorticoid receptor antagonist mifepristone, the induction of TH mRNA by nicotine in both substantia nigra and ventral tegmentum is inhibited. Furthermore, the glucocorticoid receptor agonist dexamethasone stimulates TH gene transcription for sustained periods of time in both midbrain slices and MN9D cells, leading to induction of TH mRNA and TH protein. Our results are consistent with the hypothesis that nicotine induces TH mRNA in midbrain by elevating glucocorticoids, which then act on glucocorticoid receptors in dopamine neurons leading to transcriptional activation of the TH gene.
Collapse
Affiliation(s)
- Pheona M Radcliffe
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
91
|
Abstract
Sex differences in motivation are apparent for the motivation to engage in sexual behavior, the motivation to take drugs of abuse, and the motivation to engage in parental behavior. In both males and females there is an increase in NAcc DA associated with motivated behaviors. Here it proposed that sex differences in the regulation of DA activity in the ascending mesolimbic projections may underlie sex differences in motivation. In particular, sex differences in the neuroendocrine regulation of this brain system play a role in the expression of sex differences in motivated behaviors. Here it is proposed that sexual differentiation of motivation is mediated, at least in part, by a novel mechanism in which ovarian hormones secreted at puberty in the female actively feminize the DA system.
Collapse
Affiliation(s)
- Jill B Becker
- Department of Psychology, Molecular and Behavioral Neuroscience Institute, Neuroscience Program, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
92
|
Watt DF, Panksepp J. Depression: An Evolutionarily Conserved Mechanism to Terminate Separation Distress? A Review of Aminergic, Peptidergic, and Neural Network Perspectives. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/15294145.2009.10773593] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
93
|
Drake AJ, Tang JI, Nyirenda MJ. Mechanisms underlying the role of glucocorticoids in the early life programming of adult disease. Clin Sci (Lond) 2007; 113:219-32. [PMID: 17663659 DOI: 10.1042/cs20070107] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Compelling epidemiological evidence suggests that exposure to an adverse intrauterine environment, manifested by low-birth weight, is associated with cardiometabolic and behavioural disorders in adulthood. These observations have led to the concept of 'fetal programming'. The molecular mechanisms that underlie this relationship remain unclear, but are being extensively investigated using a number of experimental models. One major hypothesis for early life physiological programming implicates fetal overexposure to stress (glucocorticoid) hormones. Several animal studies have shown that prenatal glucocorticoid excess, either from endogenous overproduction with maternal stress or through exogenous administration to the mother or fetus, reduces birth weight and causes lifelong hypertension, hyperglycaemia and behavioural abnormality in the offspring. Intriguingly, these effects are transmitted across generations without further exposure to glucocorticoids, which suggests an epigenetic mechanism. These animal observations could have huge implications if extrapolated to humans, where glucocorticoids have extensive therapeutic use in obstetric and neonatal practice.
Collapse
Affiliation(s)
- Amanda J Drake
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK
| | | | | |
Collapse
|