51
|
Zhu J, Wang H, Fan Y, Lin Y, Zhang L, Ji X, Zhou M. Targeting the NF-E2-related factor 2 pathway: a novel strategy for glioblastoma (review). Oncol Rep 2014; 32:443-50. [PMID: 24926991 DOI: 10.3892/or.2014.3259] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/26/2014] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most common and malignant subtype among all brain tumors. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential component of cellular defense against a variety of endogenous and exogenous stresses. A marked increase in research over the past few decades focusing on Nrf2 and its role in regulating glioblastoma has revealed the potential value of Nrf2 in the treatment of glioblastoma. In the present review, we discuss a novel framework of Nrf2 in the regulation of glioblastoma and the mechanisms regarding the downregulation of Nrf2 in treating glioblastoma. The candidate mechanisms include direct and indirect means. Direct mechanisms target tumor molecular pathways in order to overcome resistance to chemotherapy and radiotherapy, to inhibit proliferation, to block invasion and migration, to induce apoptosis, to promote differentiation, to enhance autophagy and to target glioblastoma stem cells. Indirect mechanisms target the reaction between glioblastoma cells and the surrounding microenvironment. Overall, the value of the Nrf2 pathway in glioblastoma provides a promising opportunity for new approaches by which to treat glioblastoma.
Collapse
Affiliation(s)
- Jianhong Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Youwu Fan
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yixing Lin
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiangjun Ji
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
52
|
Matsumoto H, Kataoka K, Tsoka P, Connor KM, Miller JW, Vavvas DG. Strain difference in photoreceptor cell death after retinal detachment in mice. Invest Ophthalmol Vis Sci 2014; 55:4165-74. [PMID: 24854853 DOI: 10.1167/iovs.14-14238] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate the potential for mouse genetic background to effect photoreceptor cell death in response to experimental retinal detachment (RD). METHODS Retinal detachment was induced in three inbred mouse strains (C57BL/6, BALB/c, and B6129SF2) by subretinal injection of sodium hyaluronate. A time course of photoreceptor cell death was assessed by TUNEL assay. Total photoreceptor cell death was analyzed through comparing the outer nuclear layer (ONL)/inner nuclear layer (INL) ratio 7 days post RD. Western blot analysis or quantitative real-time PCR (qPCR) were performed to assess cell death signaling, expression of endogenous neurotrophin, and levels of apoptosis inhibitors 24 hours after RD. Inflammatory cytokine secretion and inflammatory cell infiltration were quantified by ELISA and immunostaining, respectively. RESULTS The peak of photoreceptor cell death after RD was at 24 hours in all strains. Photoreceptor cell death as well as monocyte chemoattractant protein 1 and interleukin 6 secretion at 24 hours after RD was the highest in BALB/c, followed in order of magnitude by C57BL/6 and B6129SF2. Conversely, nerve growth factor expression and ONL/INL ratio were the lowest in BALB/c. Apoptosis signaling was higher in C57BL/6, whereas necroptosis signaling was higher in C57BL/6 and BALB/c. Autophagic signaling was higher in BALB/c. X-linked inhibitor of apoptosis (XIAP) and survivin protein levels were lower in C57BL/6 and BALB/c, respectively. Macrophage/microglia infiltration was higher in C57BL/6 and BALB/c at 24 hours after RD. CONCLUSIONS Photoreceptor cell death after RD was significantly different among the three strains, suggesting the presence of genetic factors that affect photoreceptor cell death after RD.
Collapse
Affiliation(s)
- Hidetaka Matsumoto
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Keiko Kataoka
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Pavlina Tsoka
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Kip M Connor
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Joan W Miller
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
53
|
Garimella SV, Gehlhaus K, Dine JL, Pitt JJ, Grandin M, Chakka S, Nau MM, Caplen NJ, Lipkowitz S. Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening. Breast Cancer Res 2014; 16:R41. [PMID: 24745479 PMCID: PMC4053258 DOI: 10.1186/bcr3645] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/02/2014] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) binds to its receptors, TRAIL-receptor 1 (TRAIL-R1) and TRAIL-receptor 2 (TRAIL-R2), leading to apoptosis by activation of caspase-8 and the downstream executioner caspases, caspase-3 and caspase-7 (caspase-3/7). Triple-negative breast cancer (TNBC) cell lines with a mesenchymal phenotype are sensitive to TRAIL, whereas other breast cancer cell lines are resistant. The underlying mechanisms that control TRAIL sensitivity in breast cancer cells are not well understood. Here, we performed small interfering RNA (siRNA) screens to identify molecular regulators of the TRAIL pathway in breast cancer cells. METHODS We conducted siRNA screens of the human kinome (691 genes), phosphatome (320 genes), and about 300 additional genes in the mesenchymal TNBC cell line MB231. Forty-eight hours after transfection of siRNA, parallel screens measuring caspase-8 activity, caspase-3/7 activity, or cell viability were conducted in the absence or presence of TRAIL for each siRNA, relative to a negative control siRNA (siNeg). A subset of genes was screened in cell lines representing epithelial TNBC (MB468), HER2-amplified breast cancer (SKBR3), and estrogen receptor-positive breast cancer (T47D). Selected putative negative regulators of the TRAIL pathway were studied by using small-molecule inhibitors. RESULTS The primary screens in MB231 identified 150 genes, including 83 kinases, 4 phosphatases, and 63 nonkinases, as potential negative regulators of TRAIL. The identified genes are involved in many critical cell processes, including apoptosis, growth factor-receptor signaling, cell-cycle regulation, transcriptional regulation, and DNA repair. Gene-network analysis identified four genes (PDPK1, IKBKB, SRC, and BCL2L1) that formed key nodes within the interaction network of negative regulators. A secondary screen of a subset of the genes identified in additional cell lines representing different breast cancer subtypes and sensitivities to TRAIL validated and extended these findings. Further, we confirmed that small-molecule inhibition of SRC or BCL2L1, in combination with TRAIL, sensitizes breast cancer cells to TRAIL-induced apoptosis, including cell lines resistant to TRAIL-induced cytotoxicity. CONCLUSIONS These data identify novel molecular regulators of TRAIL-induced apoptosis in breast cancer cells and suggest strategies for the enhanced application of TRAIL as a therapy for breast cancer.
Collapse
|
54
|
Yuan Z, Syed MA, Panchal D, Joo M, Colonna M, Brantly M, Sadikot RT. Triggering receptor expressed on myeloid cells 1 (TREM-1)-mediated Bcl-2 induction prolongs macrophage survival. J Biol Chem 2014; 289:15118-29. [PMID: 24711453 DOI: 10.1074/jbc.m113.536490] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1) is a superimmunoglobulin receptor expressed on myeloid cells that plays an important role in the amplification of inflammation. Recent studies suggest a role for TREM-1 in tumor-associated macrophages with relationship to tumor growth and progression. Whether the effects of TREM-1 on inflammation and tumor growth are mediated by an alteration in cell survival signaling is not known. In these studies, we show that TREM-1 knock-out macrophages exhibit an increase in apoptosis of cells in response to lipopolysaccharide (LPS) suggesting a role for TREM-1 in macrophage survival. Specific ligation of TREM-1 with monoclonal TREM-1 (mTREM-1) or overexpression of TREM-1 with adeno-TREM-1 induced B-cell lymphoma-2 (Bcl-2) with depletion of the key executioner caspase-3 prevents the cleavage of poly(ADP-ribose) polymerase. TREM-1 knock-out cells showed lack of induction of Bcl2 with an increase in caspase-3 activation in response to lipopolysaccharide. In addition overexpression of TREM-1 with adeno-TREM-1 led to an increase in mitofusins (MFN1 and MFN2) and knockdown of TREM-1 decreased the expression of mitofusins suggesting that TREM-1 contributes to the maintenance of mitochondrial integrity favoring cell survival. Investigations into potential mechanisms by which TREM-1 alters cell survival showed that TREM-1-induced Bcl-2 in an Egr2-dependent manner. Furthermore, our data shows that expression of Egr2 in response to specific ligation of TREM-1 is ERK mediated. These data for the first time provide novel mechanistic insights into the role of TREM-1 as an anti-apoptotic protein that prolongs macrophage survival.
Collapse
Affiliation(s)
- Zhihong Yuan
- From the Veterans Affairs Medical Center, Gainesville, Florida 32610, the Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida 32610
| | - Mansoor Ali Syed
- the Section of Pulmonary, Critical Care, and Sleep Medicine, University of Illinois, Chicago, Illinois 60612
| | - Dipti Panchal
- the Section of Pulmonary, Critical Care, and Sleep Medicine, University of Illinois, Chicago, Illinois 60612
| | - Myungsoo Joo
- the Department of Immunology, Pusan University, Yangsan 626-870, Korea, and
| | - Marco Colonna
- the Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Mark Brantly
- the Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida 32610
| | - Ruxana T Sadikot
- From the Veterans Affairs Medical Center, Gainesville, Florida 32610, the Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida 32610,
| |
Collapse
|
55
|
Doğan M, Çağlı S, Yüce İ, Bayram A, Somdaş MA, Karataş D, Cihan MC, Yüksel F, Güney E. Survivin expression correlates with nodal metastasis in T1-T2 squamous cell carcinoma of the tongue. Eur Arch Otorhinolaryngol 2014; 272:689-94. [PMID: 24676727 DOI: 10.1007/s00405-014-3009-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/11/2014] [Indexed: 02/06/2023]
Abstract
In this study, the correlation between neck metastasis and recurrence was investigated by studying specimens of tongue squamous cell carcinoma patients immunohistochemical with survivin antibodies in the primary biopsy. A retrospective review was conducted at the Academic University Hospital. 46 patients who had squamous cell carcinoma of the tongue, who underwent various types of glossectomy and neck dissections between 1991 and 2008, were evaluated. The patient's sex, TNM staging, differentiation and recurrence rates were analyzed. There were 20 T1 patients and 26 T2 patients; 27 of the patients were N0 and 19 had metastatic lymph nodes in the neck. Survivin antibodies were applied with streptavidin-biotin method to the sections that were prepared from the primary tumor biopsy specimens of the patients. The correlation between neck metastasis and recurrence and survivins' immunohistochemical staining was analyzed with statistical methods. There were no significant differences between the patient's age, sex, tumor's T stage, tumor differentiation and survivin staining density. Survivin staining was positive in 15 (79 %) of 19 patients with neck metastasis, while it was positive in 16 (59 %) of 27 patients without neck metastasis. Eleven (79 %) of the 14 patients who had recurrence and all 6 patients who had neck recurrence only were stained by survivin. Expression of nuclear and cytoplasmic survivin can be a useful marker for predicting cervical lymph node metastasis in T1-T2 tumors in tongue SCC.
Collapse
Affiliation(s)
- Murat Doğan
- Research and Traınıng Hospital, Kayseri, Turkey,
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Wen PY, Kesari S, Drappatz J. Malignant gliomas: strategies to increase the effectiveness of targeted molecular treatment. Expert Rev Anticancer Ther 2014; 6:733-54. [PMID: 16759164 DOI: 10.1586/14737140.6.5.733] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, there has been increasing interest in the use of targeted molecular agents for the treatment of malignant gliomas. These agents are generally well tolerated but have demonstrated only modest activity. In this article, the current status of targeted molecular agents for malignant gliomas will be reviewed and strategies to improve their effectiveness will be discussed.
Collapse
Affiliation(s)
- Patrick Y Wen
- Harvard Medical School, Dana-Farber/Brigham and Women's Cancer Center, SW430D, Boston, MA 02115, USA.
| | | | | |
Collapse
|
57
|
Penas-Prado M, Gilbert MR. Molecularly targeted therapies for malignant gliomas: advances and challenges. Expert Rev Anticancer Ther 2014; 7:641-61. [PMID: 17492929 DOI: 10.1586/14737140.7.5.641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The identification of molecular markers associated with tumor but not with normal tissue has allowed the development of highly specific, targeted therapies for the treatment of cancer. Over the last several years, tremendous advances in our understanding of the genetic and molecular changes involved in the progression of malignant gliomas have triggered a large effort in the development of targeted therapies to treat these tumors. However, to date only a modest clinical benefit, limited to subsets of patients, has been demonstrated. Furthermore, despite a high degree of target selectivity, the use of targeted therapies often has systemic toxicity. The reasons behind this limited clinical success are complex and include the intricacy of the signaling pathways in gliomas and the heterogeneity of the disease process, compounded by existing limitations in assessing the efficacy of these novel agents when conventional end points and clinical trial designs are utilized. However, despite these difficulties targeted therapies remain a very attractive avenue of treatment for malignant gliomas. Three basic approaches are needed to overcome the hurdles associated with targeted therapies: first, further development of genetic profiling techniques will help to better determine the genetic changes and molecular pathways involved in gliomas and will potentially allow the design of individualized therapies based on the genetic and molecular signature of each tumor. Second, there is a need for the development of better combination strategies (complementary targeted agents or targeted agents with chemotherapy drugs) directed towards disease heterogeneity. Third, we need to optimize the design of preclinical and clinical trials to obtain the maximum amount of information in the shortest period of time.
Collapse
Affiliation(s)
- Marta Penas-Prado
- The UT MD Anderson Cancer Center, Department of Neuro-Oncology, Houston, 77030 TX, USA.
| | | |
Collapse
|
58
|
Apoptosis: the intrinsic pathway. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
59
|
|
60
|
Zhang F, Yin W, Chen J. Apoptosis in cerebral ischemia: executional and regulatory signaling mechanisms. Neurol Res 2013; 26:835-45. [PMID: 15727267 DOI: 10.1179/016164104x3824] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Programmed cell death, often in the form of apoptosis, is an important contributing mechanism in the pathogenesis of ischemic brain injury. Depending on the severity of the insult and the stage of the injury, the executional pathways that are directly responsible for cell death and the signaling mechanisms that participate in the regulation of these death pathways may vary. It is likely that molecular or pharmacological targeting of the upstream signaling mechanisms that control the death executional pathways may offer opportunities for more complete and long-term neuroprotection. This review summarizes the recent advancements in the understanding of the executional and regulatory signaling mechanisms in ischemic brain injury.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurology and Institute of Neurodegenerative Disorders University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
61
|
Wang K, Lin B. Inhibitor of apoptosis proteins (IAPs) as regulatory factors of hepatic apoptosis. Cell Signal 2013; 25:1970-80. [PMID: 23770286 DOI: 10.1016/j.cellsig.2013.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/13/2013] [Accepted: 06/04/2013] [Indexed: 12/29/2022]
Abstract
IAPs are a group of regulatory proteins that are structurally related. Their conserved homologues have been identified in various organisms. In human, eight IAP members have been recognized based on baculoviral IAP repeat (BIR) domains. IAPs are key regulators of apoptosis, cytokinesis and signal transduction. The antiapoptotic property of IAPs depends on their professional role for caspases. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. IAPs impede apoptotic process via membrane receptor-dependent (extrinsic) cascade and mitochondrial dependent (intrinsic) pathway. IAP-mediated apoptosis affects the progression of liver diseases. Therapeutic options of liver diseases may depend on the understanding toward mechanisms of the IAP-mediated apoptosis.
Collapse
Affiliation(s)
- Kewei Wang
- Departments of Surgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
| | | |
Collapse
|
62
|
Azidothymidine hinders arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells by induction of p21 and attenuation of G2/M arrest. Ann Hematol 2013; 92:1207-20. [DOI: 10.1007/s00277-013-1763-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/12/2013] [Indexed: 12/12/2022]
|
63
|
Li X, Fan S, Li L, Wang L, Fan G, Zhao Q, Li Y. RNA interference-mediated knockdown of Livin suppresses cell proliferation and invasion and enhances the chemosensitivity to cisplatin in human osteosarcoma cells. Int J Oncol 2013; 43:159-68. [PMID: 23632777 DOI: 10.3892/ijo.2013.1925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/12/2013] [Indexed: 11/06/2022] Open
Abstract
Livin is a novel member of the inhibitor of apoptosis protein (IAP) family that has been reported to be overexpressed in a variety of human malignancies, including osteosarcoma. However, the potential roles of Livin in tumorigenesis have not been elucidated. In the present study, we employed RNA interference (RNAi) technology to suppress endogenous Livin expression in osteosarcoma cells and successfully generated a U2-OS cell line with stably knockdown of Livin. Functional analysis showed that knockdown of Livin significantly reduced cell proliferation, colony formation, and invasion and migration capacities of U2-OS cells in vitro. Moreover, specific downregulation of Livin led to cell cycle arrest at the G0/G1 phase and eventual apoptosis. Meanwhile, western blot analysis revealed that cells with stably knockdown of Livin showed decreased expression levels of Cyclin D1, Bcl-2, matrix metalloproteinase (MMP)-2 and MMP-9, but increased expression levels of activated Caspase-3, Bax and cleaved poly (ADP-ribose) polymerase (PARP) compared to those transfected with a control vector. We also observed that suppression of Livin expression in osteosarcoma cells increased their chemosensitivity to cisplatin. Taken together, our data suggest that Livin is involved in tumorigenesis of human osteosarcoma and may serve as a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Xu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | | | | | | | | | | | | |
Collapse
|
64
|
Song K, Shankar E, Yang J, Bane KL, Wahdan-Alaswad R, Danielpour D. Critical role of a survivin/TGF-β/mTORC1 axis in IGF-I-mediated growth of prostate epithelial cells. PLoS One 2013; 8:e61896. [PMID: 23658701 PMCID: PMC3641055 DOI: 10.1371/journal.pone.0061896] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
Survivin is a unique member of the inhibitor of apoptosis (IAP) proteins that is overexpressed in numerous cancers through poorly defined mechanisms. One such mechanism may be through constitutive activation of the insulin-like growth factor-I (IGF-I) signaling pathway, implicated in the development and progression of prostate cancer. Using the pre-neoplastic NRP-152 rat prostate cell line as a model, we showed that IGF-I induces Survivin expression, and that silencing Survivin by lentiviral-mediated small hairpin RNA (shRNA) represses IGF-I-stimulated cell growth, implicating Survivin as a mediator of this growth response. Moreover, our data support that the induction of Survivin by IGF-I occurs through a transcriptional mechanism that is mediated in part by the PI3K/Akt/mTORC1 pathway. Use of various Survivin promoter-luciferase constructs revealed that the CDE and CHR response elements in the proximal region of the Survivin promoter are involved in this IGF-I response. Transforming growth factor (TGF-β) signaling antagonists similarly activated the Surivin promoter and rendered cells refractory to further promoter activation by IGF-I. IGF-I suppressed levels of phospho-Smads 2 and 3 with kinetics similar to that of Survivin induction. Suppression of TGF-β signaling, either by TGF-β receptor kinase inhibitors or by silencing Smads 2 and 3, induced Survivin expression and promoted cell growth similar to that induced by IGF-I. TGF-β receptor antagonists also rescued cells from down-regulation of Survivin expression and growth suppression by pharmacological inhibitors of PI3K, Akt, MEK and mTOR. Sh-RNA gene silencing studies suggest that mTORC1 induces while mTORC2 represses the expression of Survivin by IGF-I. Taken together, these results suggest that IGF-I signaling through a PI3K/Akt/mTORC1 mechanism elevates expression of Survivin and promotes growth of prostate epithelial cells by suppressing Smad-dependent autocrine TGF-β signaling.
Collapse
Affiliation(s)
- Kyung Song
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Eswar Shankar
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jiayi Yang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kara L. Bane
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Reema Wahdan-Alaswad
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
65
|
Liarmakopoulos E, Theodoropoulos G, Vaiopoulou A, Rizos S, Aravantinos G, Kouraklis G, Nikiteas N, Gazouli M. Effects of stromal cell-derived factor-1 and survivin gene polymorphisms on gastric cancer risk. Mol Med Rep 2013; 7:887-892. [PMID: 23258739 DOI: 10.3892/mmr.2012.1247] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/07/2012] [Indexed: 11/06/2022] Open
Abstract
Stromal-cell derived factor-1 (SDF-1), a CXC chemokine, is important for growth, angiogenesis and metastasis of tumor cells. The SDF1-3'A polymorphism has been investigated in various types of cancer; however, no information is currently available on its role in gastric cancer. Survivin is a member of the inhibitor of apoptosis family of proteins and has a genetic polymorphism (-31G/C) located in the CDE/CHR repressor element of its promoter. In this study, 88 gastric cancer patients and 480 normal healthy control subjects were investigated for the genotype and allelic SDF1-3'A and survivin -31G/C frequencies using polymerase chain reaction‑restriction fragment length polymorphism. The SDF1-3'A genotype frequencies for GG, GA and AA were 44.32, 48.86 and 6.92% in patients and 42.71, 47.71 and 9.58% in healthy subjects, respectively. GA+AA genotype frequency and A allele distribution were not identified as significantly different between gastric cancer cases and controls. The survivin frequencies for GG, GC and CC were 20.45, 50 and 29.54% in patients and 33.96, 45 and 21.04% in healthy subjects, respectively. The C carriers (GC+CC genotype) and the C allele were over-represented among the gastric cancer cases (P=0.013 and P=0.0083, respectively). Overall, no statistically significant association was identified for SDF-1 and survivin gene examined alleles and genotypes and any parameter investigated, (e.g., stage, differentiation status and survival). The survivin promoter -31G/C polymorphism may confer an increased susceptibility to gastric cancer, while the SDF1-3'A polymorphism may not be a candidate genetic variant to select individuals at higher risk of developing gastric cancer.
Collapse
|
66
|
Cao LP, Song JL, Yi XP, Li YX. Double inhibition of NF-κB and XIAP via RNAi enhances the sensitivity of pancreatic cancer cells to gemcitabine. Oncol Rep 2013; 29:1659-65. [PMID: 23354694 DOI: 10.3892/or.2013.2246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/28/2012] [Indexed: 11/05/2022] Open
Abstract
The majority of patients with pancreatic cancer are resistant to gemcitabine. One of the mechanisms involved is the anti-apoptotic ability of these cells. The median lethal dose (LD50) of gemcitabine for PANC-1 cells was higher than that for Mia PaCa-2 cells and the former had higher nuclear factor-κB (NF-κB) and X-linked inhibitor of apoptosis protein (XIAP) levels. NF-κB contributes to the inhibition of apoptosis by the downregulation of downstream genes, such as XIAP and Bcl-2 and it confers chemoresistance. The two cell lines were infected with NF-κB p65 small interfering RNA (siRNA). p65 protein was effectively downregulated accompanied by the downregulation of XIAP protein. The combination treatment with gemcitabine and p65 siRNA increased the apoptotic rates in both cell lines; however, this was not sufficient. XIAP is involved in apoptosis to a greater extent compated to Bcl-2. XIAP may serve as another factor affecting the sufficiency of chemotherapy. XIAP siRNA was designed to knockdown XIAP. Mia PaCa-2 and PANC-1 cells were co-infected with XIAP siRNA and p65 siRNA. XIAP and p65 proteins were effectively downregulated and the gemcitabine-induced apoptotic rates were significantly increased. These results suggest that XIAP and NF-κB are two important factors conferring the chemoresistance of pancreatic cancer cells, and that their downregulation via RNAi effectively enhances the chemosensitivity of pancreatic cancer cells to gemcitabine.
Collapse
Affiliation(s)
- Li-Ping Cao
- Department of General Surgery, Xiangya Hospital, Central South University, Hunan 410008, PR China
| | | | | | | |
Collapse
|
67
|
Modulation of cancer traits by tumor suppressor microRNAs. Int J Mol Sci 2013; 14:1822-42. [PMID: 23325049 PMCID: PMC3565350 DOI: 10.3390/ijms14011822] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/28/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene expression. In mammalian cells, miRNAs typically suppress mRNA stability and/or translation through partial complementarity with target mRNAs. Each miRNA can regulate a wide range of mRNAs, and a single mRNA can be regulated by multiple miRNAs. Through these complex regulatory interactions, miRNAs participate in many cellular processes, including carcinogenesis. By altering gene expression patterns, cancer cells can develop specific phenotypes that allow them to proliferate, survive, secure oxygen and nutrients, evade immune recognition, invade other tissues and metastasize. At the same time, cancer cells acquire miRNA signature patterns distinct from those of normal cells; the differentially expressed miRNAs contribute to enabling the cancer traits. Over the past decade, several miRNAs have been identified, which functioned as oncogenic miRNAs (oncomiRs) or tumor-suppressive miRNAs (TS-miRNAs). In this review, we focus specifically on TS-miRNAs and their effects on well-established cancer traits. We also discuss the rising interest in TS-miRNAs in cancer therapy.
Collapse
|
68
|
Cheng K, Agarwal R, Mitra S, Mills G. Rab25 Small GTPase Mediates Secretion of Tumor Necrosis Factor Receptor Superfamily Member 11b (osteoprotegerin) Protecting Cancer Cells from Effects of TRAIL. ACTA ACUST UNITED AC 2013; 4. [PMID: 25520884 PMCID: PMC4266180 DOI: 10.4172/2157-7412.1000153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Expression of Rab25, which is located in the 1q amplicon present at high frequency in many cancer lineages, promotes cancer cell survival under multiple stress conditions. While Rab proteins play essential roles in all stages of vesicle trafficking, the functions and endogenous cargoes for Rab25 remain to be fully elucidated. Osteoprotegerin (OPG) is a secreted glycoprotein that binds the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) thus preventing it from activating the TNF-family death receptors. In the present study, we demonstrated that Rab25 regulates OPG at both the transcription and secretion level. METHODS The effect of Rab25 on OPG expression and its effect on TRAIL-induced cell were examined in both ovarian and breast cells. Signal transduction pathways regulation of OPG expression was examined in cells using pharmacogenetic approaches. RESULTS Expression of Rab25 to levels similar to those in tumors with RAB25 amplification, increased OPG mRNA expression and secretion from ovarian and breast cancer cell lines, whereas down regulation with Rab25 specific siRNA decreased OPG secretion and sensitized cells to TRAIL-induced cell death. Critically, exogenous OPG mimicked the effects of Rab25 on cell death supporting the contention that Rab25-induced accumulation of OPG protects cancer cells from the effects of TRAIL. Rab25 cooperates with EGFR-mediated MAPK signaling to increase TRAIL production and release. Importantly, priming cells with EGFR inhibitors increased sensitivity to TRAIL-induced cells death regardless of the Rab25 background. CONCLUSION Increased OPG expression induced by Rab25 may provide a mechanistic advantage for cancer development and progression.
Collapse
Affiliation(s)
- Kw Cheng
- Department of Systems Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - R Agarwal
- Department of Surgery & Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, W12 0NN, UK
| | - S Mitra
- Department of Systems Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gb Mills
- Department of Systems Biology, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
69
|
Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-α-independent mechanism. Breast Cancer Res Treat 2012; 137:359-71. [PMID: 23225169 DOI: 10.1007/s10549-012-2352-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/21/2012] [Indexed: 01/04/2023]
Abstract
X-linked inhibitor of apoptosis protein (XIAP), the most potent mammalian caspase inhibitor, has been associated with acquired therapeutic resistance in inflammatory breast cancer (IBC), an aggressive subset of breast cancer with an extremely poor survival rate. The second mitochondria-derived activator of caspases (Smac) protein is a potent antagonist of IAP proteins and the basis for the development of Smac mimetic drugs. Here, we report for the first time that bivalent Smac mimetic Birinapant induces cell death as a single agent in TRAIL-insensitive SUM190 (ErbB2-overexpressing) cells and significantly increases potency of TRAIL-induced apoptosis in TRAIL-sensitive SUM149 (triple-negative, EGFR-activated) cells, two patient tumor-derived IBC models. Birinapant has high binding affinity (nM range) for cIAP1/2 and XIAP. Using isogenic SUM149- and SUM190-derived cells with differential XIAP expression (SUM149 wtXIAP, SUM190 shXIAP) and another bivalent Smac mimetic (GT13402) with high cIAP1/2 but low XIAP binding affinity (K (d) > 1 μM), we show that XIAP inhibition is necessary for increasing TRAIL potency. In contrast, single agent efficacy of Birinapant is due to pan-IAP antagonism. Birinapant caused rapid cIAP1 degradation, caspase activation, PARP cleavage, and NF-κB activation. A modest increase in TNF-α production was seen in SUM190 cells following Birinapant treatment, but no increase occurred in SUM149 cells. Exogenous TNF-α addition did not increase Birinapant efficacy. Neutralizing antibodies against TNF-α or TNFR1 knockdown did not reverse cell death. However, pan-caspase inhibitor Q-VD-OPh reversed Birinapant-mediated cell death. In addition, Birinapant in combination or as a single agent decreased colony formation and anchorage-independent growth potential of IBC cells. By demonstrating that Birinapant primes cancer cells for death in an IAP-dependent manner, these findings support the development of Smac mimetics for IBC treatment.
Collapse
|
70
|
Tennant BR, Islam R, Kramer MM, Merkulova Y, Kiang RL, Whiting CJ, Hoffman BG. The transcription factor Myt3 acts as a pro-survival factor in β-cells. PLoS One 2012; 7:e51501. [PMID: 23236509 PMCID: PMC3517555 DOI: 10.1371/journal.pone.0051501] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 11/01/2012] [Indexed: 01/01/2023] Open
Abstract
Aims/Hypothesis We previously identified the transcription factor Myt3 as specifically expressed in pancreatic islets. Here, we sought to determine the expression and regulation of Myt3 in islets and to determine its significance in regulating islet function and survival. Methods Myt3 expression was determined in embryonic pancreas and adult islets by qPCR and immunohistochemistry. ChIP-seq, ChIP-qPCR and luciferase assays were used to evaluate regulation of Myt3 expression. Suppression of Myt3 was used to evaluate gene expression, insulin secretion and apoptosis in islets. Results We show that Myt3 is the most abundant MYT family member in adult islets and that it is expressed in all the major endocrine cell types in the pancreas after E18.5. We demonstrate that Myt3 expression is directly regulated by Foxa2, Pdx1, and Neurod1, which are critical to normal β-cell development and function, and that Ngn3 induces Myt3 expression through alterations in the Myt3 promoter chromatin state. Further, we show that Myt3 expression is sensitive to both glucose and cytokine exposure. Of specific interest, suppressing Myt3 expression reduces insulin content and increases β-cell apoptosis, at least in part, due to reduced Pdx1, Mafa, Il-6, Bcl-xl, c-Iap2 and Igfr1 levels, while over-expression of Myt3 protects islets from cytokine induced apoptosis. Conclusion/Interpretation We have identified Myt3 as a novel transcriptional regulator with a critical role in β-cell survival. These data are an important step in clarifying the regulatory networks responsible for β-cell survival, and point to Myt3 as a potential therapeutic target for improving functional β-cell mass.
Collapse
Affiliation(s)
- Bryan R. Tennant
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Ratib Islam
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Marabeth M. Kramer
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Yulia Merkulova
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Roger L. Kiang
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Cheryl J. Whiting
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Brad G. Hoffman
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: E-mail:
| |
Collapse
|
71
|
Nucleotide composition of cellular internal ribosome entry sites defines dependence on NF45 and predicts a posttranscriptional mitotic regulon. Mol Cell Biol 2012; 33:307-18. [PMID: 23129811 DOI: 10.1128/mcb.00546-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The vast majority of cellular mRNAs initiate their translations through a well-defined mechanism of ribosome recruitment that occurs at the 5'-terminal 7-methylguanosine cap with the help of several canonical protein factors. A subset of cellular and viral mRNAs contain regulatory motifs in their 5' untranslated regions (UTRs), termed internal ribosome entry sites (IRES), that sidestep this canonical mode of initiation. On cellular mRNAs, this mechanism requires IRES trans-acting protein factors (ITAFs) that facilitate ribosome recruitment downstream of the cap. While several ITAFs and their target mRNAs have been empirically identified, the in silico prediction of targets has proved difficult. Here, we report that a high AU content (>60%) of the IRES-containing 5' UTRs serves as an excellent predictor of dependence on NF45, a recently identified ITAF. Moreover, we provide evidence that cells deficient in NF45 ITAF activity exhibit reduced IRES-mediated translation of X-linked inhibitor of apoptosis protein (XIAP) and cellular inhibitor of apoptosis protein 1 (cIAP1) mRNAs that, in turn, leads to dysregulated expression of their respective targets, survivin and cyclin E. This specific defect in IRES translation explains in part the cytokinesis impairment and senescence-like phenotype observed in HeLa cells expressing NF45 RNA interference (RNAi). This study uncovers a novel role for NF45 in regulating ploidy and highlights the importance of IRES-mediated translation in cellular homeostasis.
Collapse
|
72
|
Apoptosis in health and disease and modulation of apoptosis for therapy: An overview. Indian J Clin Biochem 2012; 22:6-16. [PMID: 23105676 DOI: 10.1007/bf02913307] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apoptosis a physiological mechanism that eliminates excessive, damaged or unwanted cells, is a highly regulated pathway important for maintaining homeostasis in multicellular organisms. It can be initiated through various signals via the extrinsic pathway which involves death receptors, or via the intrinsic pathway which is initiated by intracellular damage and involves the mitochondria and release of cytochrome c from it to further activate caspases. The Bcl-2 family of proteins is situated upstream to the irreversible damage of cellular constituents and is an important checkpoint in the fate of a cell. The pro-apoptotic members, BH3 only members include BID, BAD and BIM. They directly or indirectly activate multidomain BAX/BAK that constitute the requisite gateway to the intrinsic pathway which operates at the mitochondrial surface and endoplasmic reticulum. In contrast, antiapoptotic members such as Bcl-2, Bcl-XL bind and sequester activation. Downstream of mitochondria, the apoptosome involvement is seen to generate caspase activity. Post mitochondria regulation involves IAPs, and their inhibitors. The pathogenesis of several diseases such as cancer, neurodegenerative disorders, autoimmune disorders, heart disease, infectious diseases including AIDS is closely related to aberrant apoptosis. Consequently interest has emerged in employing various the rapeutic approaches such as gene therapy, antisense therapy, recombinant biologicals, organic and combinatorial chemistry, to specifically target apoptosis signaling pathways such as death receptors FAS/TRAIL, Bcl-2, p53, IAPs, SMAC and caspases, etc. and are now advancing from preclinical to clinical phase.
Collapse
|
73
|
Zuo J, Schmitt SM, Zhang Z, Prakash J, Fan Y, Bi C, Kodanko JJ, Dou QP. Novel Polypyridyl chelators deplete cellular zinc and destabilize the X-linked inhibitor of apoptosis protein (XIAP) prior to induction of apoptosis in human prostate and breast cancer cells. J Cell Biochem 2012; 113:2567-75. [PMID: 22415943 DOI: 10.1002/jcb.24132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
X-linked inhibitor of apoptosis protein (XIAP), inhibits the initiation and execution phases of the apoptotic pathway. XIAP is the most potent member of the inhibitor of apoptosis protein (IAP) family of the endogenous caspase inhibitors. Therefore, targeting XIAP may be a promising strategy for the treatment of apoptosis-resistant malignancies. In this study, we systematically studied the relationships of chemical structures of several novel ligands to their zinc (Zn)-binding ability, molecular target XIAP, and tumor cell death-inducing activity. We show that treatment of PC-3 prostate cancer and MDA-MB-231 breast cancer cells with these membrane-permeable Zn-chelators with different Zn affinities results in varying degrees of XIAP depletion. Following decreased level of XIAP expression, we also show apoptosis-related caspase activation and cellular morphological changes upon treatment with strong Zn-chelators N4Py and BnTPEN. Addition of Zn has a full protective effect on the cells treated with these chelators, while iron (Fe) addition has only partial protection that, however, can be further increased to a comparable level of protection as Zn by inhibition of ROS generation, indicating that cell death effects mediated by Fe- but not Zn-complexes involve redox cycling. These findings suggest that strong Zn-chelating agents may be useful in the treatment of apoptosis-resistant human cancers.
Collapse
Affiliation(s)
- Jian Zuo
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology and Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Gao K, Xiong Q, Xu J, Wang K, Wang K. CpBir1 is required for conidiation, virulence and anti-apoptotic effects and influences hypovirus transmission in Cryphonectria parasitica. Fungal Genet Biol 2012; 51:60-71. [PMID: 23084963 DOI: 10.1016/j.fgb.2012.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/29/2022]
Abstract
Inhibitors of apoptosis proteins (IAPs) are critically important in the regulation of unicellular yeast and metazoan apoptosis. All IAPs contain one to three baculovirus IAP repeat (BIR) domains, which are essential for the anti-apoptotic activity of the IAPs. A homolog of IAPs, CpBir1, which bears two BIR domains, was recently identified from the chestnut blight fungus Cryphonectria parasitica genome. CpIAP was deleted by gene replacement, and the phenotypes of ΔIAP were characterized. CpBir1 was significantly down-regulated by hypovirus infection but up-regulated by H(2)O(2). Similar to Saccharomyces cerevisiae Bir1p, the Cpbir1 mutant was sensitive to H(2)O(2), and constitutive overexpression of CpBir1 increased resistance to H(2)O(2). The Cpbir1 mutant also showed defects in aerial hyphal formation, colony growth, mycelial morphology, conidiogenesis, pigmentation, resistance to stress conditions and virulence. Genetic complementation with native Cpbir1 fully recovered all these defective phenotypes. The CpBir1-eGFP fusion protein was localized to the nucleus in juvenile cultures, while it was found in the cytoplasm in old cultures, suggesting that the localization pattern of CpBir1 may correlate with the process of anti-apoptosis. Increased accumulation of reactive oxygen species (ROS) in the Cpbir1 deletion mutant further supports the anti-apoptotic function of CpBir1. Among five selected vegetative compatible (vc) types of C. parasitica, Cpbir1 deletion was found to block virus from transferring between Cpbir1 mutants. However, hypovirus infected Cpbir1 mutants showed a similar ability to transmit virus to other virus-free isolates compared with the infected wild-type strain. In summary, Cpbir1 encodes an IAP CpBir1 that is down-regulated by hypovirus infection and required for conidiation, virulence and anti-apoptosis, as well as affects hypovirus transmission in chestnut blight fungus C. parasitica.
Collapse
Affiliation(s)
- Kun Gao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
75
|
Cross-linking of cell surface amyloid precursor protein leads to increased β-amyloid peptide production in hippocampal neurons: implications for Alzheimer's disease. J Neurosci 2012; 32:10674-85. [PMID: 22855816 DOI: 10.1523/jneurosci.6473-11.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The accumulation of the β-amyloid peptide (Aβ) in Alzheimer's disease (AD) is thought to play a causative role in triggering synaptic dysfunction in neurons, leading to their eventual demise through apoptosis. Aβ is produced and secreted upon sequential cleavage of the amyloid precursor protein (APP) by β-secretases and γ-secretases. However, while Aβ levels have been shown to be increased in the brains of AD patients, little is known about how the cleavage of APP and the subsequent generation of Aβ is influenced, or whether the cleavage process changes over time. It has been proposed that Aβ can bind APP and promote amyloidogenic processing of APP, further enhancing Aβ production. Proof of this idea has remained elusive because a clear mechanism has not been identified, and the promiscuous nature of Aβ binding complicates the task of demonstrating the idea. To work around these problems, we used an antibody-mediated approach to bind and cross-link cell-surface APP in cultured rat primary hippocampal neurons. Here we show that cross-linking of APP is sufficient to raise the levels of Aβ in viable neurons with a concomitant increase in the levels of the β-secretase BACE1. This appears to occur as a result of a sorting defect that stems from the caspase-3-mediated inactivation of a key sorting adaptor protein, namely GGA3, which prevents the lysosomal degradation of BACE1. Together, our data suggest the occurrence of a positive pathogenic feedback loop involving Aβ and APP in affected neurons possibly allowing Aβ to spread to nearby healthy neurons.
Collapse
|
76
|
Leu JH, Chen YC, Chen LL, Chen KY, Huang HT, Ho JM, Lo CF. Litopenaeus vannamei inhibitor of apoptosis protein 1 (LvIAP1) is essential for shrimp survival. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:78-87. [PMID: 22564858 DOI: 10.1016/j.dci.2012.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/25/2012] [Accepted: 04/12/2012] [Indexed: 05/31/2023]
Abstract
The members of the inhibitor of apoptosis protein (IAP) family are involved in the regulation of diverse cellular processes, including apoptosis, signal transduction and mitosis. Here, we report the cloning and characterization of three IAP genes from Pacific white shrimp Litopenaeus vannamei: LvIAP1, LvIAP2 and LvSurvivin. LvIAP1, the orthologue of Penaeus monodon IAP (PmIAP), consists of three BIR domains and one RING domain; LvIAP2 consists of two BIR domains and LvSurvivin has only one BIR domain. Expression profiling by absolute quantitative real-time RT-PCR revealed that of the three IAP genes, LvIAP1 had the highest expression levels in almost all examined tissues and LvSurvivin had the lowest expression levels. Furthermore, among the examined tissues, the lymphoid organs most strongly expressed all three genes. When LvIAP1 expression was silenced by injection of its corresponding dsRNA, the shrimp died within 48h after injection, whereas injection of the other two dsRNAs did not cause shrimp death. In LvIAP1-silenced shrimp, the number of circulating haemocytes decreased dramatically because of extensive apoptosis. This suggested that LvIAP1 is central to the regulation of shrimp haemocyte apoptosis.
Collapse
Affiliation(s)
- Jiann-Horng Leu
- Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, Taiwan, ROC.
| | | | | | | | | | | | | |
Collapse
|
77
|
Kalungi S, Wabinga H, Bostad L. Expression of apoptosis associated proteins Survivin, Livin and Thrombospondin-1 in Burkitt lymphoma. APMIS 2012; 121:239-45. [DOI: 10.1111/j.1600-0463.2012.02962.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 07/10/2012] [Indexed: 11/26/2022]
Affiliation(s)
| | - Henry Wabinga
- Department of Pathology; Makerere University College of Health Sciences; Kampala; Uganda
| | | |
Collapse
|
78
|
Moussata D, Amara S, Siddeek B, Decaussin M, Hehlgans S, Paul-Bellon R, Mornex F, Gerard JP, Romestaing P, Rödel F, Flourie B, Benahmed M, Mauduit C. XIAP as a radioresistance factor and prognostic marker for radiotherapy in human rectal adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1271-8. [PMID: 22867709 DOI: 10.1016/j.ajpath.2012.06.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/21/2012] [Accepted: 06/11/2012] [Indexed: 01/31/2023]
Abstract
A differential responsiveness of patients to ionizing radiation is observed after preoperative radiotherapy for rectal adenocarcinoma that might be related, in part, to an apoptosis defect. To establish if proteins of the apoptotic cascades [pro-apoptotic: active caspase 3, 8, and 9 and DIABLO (direct inhibitor of apoptosis-binding protein with low pI); anti-apoptotic: XIAP (X-linked inhibitor of apoptosis)] are involved, we analyzed their profile in radioresistant (SW480) and radiosensitive (SW48) human colorectal cell lines. We demonstrated that, after irradiation, the SW48 cells increased the expression of the pro-apoptotic proteins, whereas the SW480 cells increased the expression of the anti-apoptotic protein XIAP. Moreover, XIAP knockdown in SW480 cells enhanced the basal and radiation-induced apoptotic index; the propensity of the SW480 cells to undergo apoptosis after radiation was higher compared with SW48 cells. In a translational study of 38 patients with rectal carcinoma, we analyzed the apoptotic profile for tumor and noncancerous tissue for each biopsy specimen using IHC. According to their response to preoperative radiotherapy, patients were classified into two groups: responsive and nonresponsive. Although no difference in expression of caspase 3, 8, or 9 was observed in the tumor/normal tissue ratio between responsive and nonresponsive patients, the ratio decreased for DIABLO and increased for XIAP. In conclusion, inhibition of XIAP rescues cellular radiosensitivity and both DIABLO and XIAP might be potential predictive markers of radiation responsiveness in rectal adenocarcinoma.
Collapse
Affiliation(s)
- Driffa Moussata
- Service de Gastroentérologie, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Rodríguez-Enfedaque A, Delmas E, Guillaume A, Gaumer S, Mignotte B, Vayssière JL, Renaud F. zVAD-fmk upregulates caspase-9 cleavage and activity in etoposide-induced cell death of mouse embryonic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1343-52. [DOI: 10.1016/j.bbamcr.2012.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 05/04/2012] [Accepted: 05/10/2012] [Indexed: 11/17/2022]
|
80
|
Flygare JA, Beresini M, Budha N, Chan H, Chan IT, Cheeti S, Cohen F, Deshayes K, Doerner K, Eckhardt SG, Elliott LO, Feng B, Franklin MC, Reisner SF, Gazzard L, Halladay J, Hymowitz SG, La H, LoRusso P, Maurer B, Murray L, Plise E, Quan C, Stephan JP, Young SG, Tom J, Tsui V, Um J, Varfolomeev E, Vucic D, Wagner AJ, Wallweber HJA, Wang L, Ware J, Wen Z, Wong H, Wong JM, Wong M, Wong S, Yu R, Zobel K, Fairbrother WJ. Discovery of a potent small-molecule antagonist of inhibitor of apoptosis (IAP) proteins and clinical candidate for the treatment of cancer (GDC-0152). J Med Chem 2012; 55:4101-13. [PMID: 22413863 DOI: 10.1021/jm300060k] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of compounds were designed and synthesized as antagonists of cIAP1/2, ML-IAP, and XIAP based on the N-terminus, AVPI, of mature Smac. Compound 1 (GDC-0152) has the best profile of these compounds; it binds to the XIAP BIR3 domain, the BIR domain of ML-IAP, and the BIR3 domains of cIAP1 and cIAP2 with K(i) values of 28, 14, 17, and 43 nM, respectively. These compounds promote degradation of cIAP1, induce activation of caspase-3/7, and lead to decreased viability of breast cancer cells without affecting normal mammary epithelial cells. Compound 1 inhibits tumor growth when dosed orally in the MDA-MB-231 breast cancer xenograft model. Compound 1 was advanced to human clinical trials, and it exhibited linear pharmacokinetics over the dose range (0.049 to 1.48 mg/kg) tested. Mean plasma clearance in humans was 9 ± 3 mL/min/kg, and the volume of distribution was 0.6 ± 0.2 L/kg.
Collapse
Affiliation(s)
- John A Flygare
- Department of Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Maksimovic-Ivanic D, Stosic-Grujicic S, Nicoletti F, Mijatovic S. Resistance to TRAIL and how to surmount it. Immunol Res 2012; 52:157-68. [DOI: 10.1007/s12026-012-8284-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
82
|
Mazrouei S, Ziaei A, Tanhaee AP, Keyhanian K, Esmaeili M, Baradaran A, Salehi M. Apoptosis inhibition or inflammation: the role of NAIP protein expression in Hodgkin and non-Hodgkin lymphomas compared to non-neoplastic lymph node. JOURNAL OF INFLAMMATION-LONDON 2012; 9:4. [PMID: 22357131 PMCID: PMC3297494 DOI: 10.1186/1476-9255-9-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 02/23/2012] [Indexed: 01/12/2023]
Abstract
Background Inhibitors of Apoptosis (IAP) family play a critical role in apoptosis and inflammatory response. Neuronal Apoptosis Inhibitory Protein (NAIP), as a member of both IAPs and NLR families (NOD-Like Receptor), is a unique IAP harboring NOD (Nucleotide Oligomerization Domain) and LLR (Leucine Rich Repeat) motifs. Considering these motifs in NAIP, it has been suggested that the main function of NAIP is distinct from other members of IAPs. As a member of NLR, NAIP mediates the assembly of 'Inflammasome' for inflammatory caspase activation. Pathologic expression of NAIP has been reported not only in some infectious and inflammatory diseases but also in some malignancies. However, there is no report to elucidate NAIP expression in lymphomatic malignancies. Methods In this study, we examined NAIP protein expression in 101 Formalin-Fixed Paraffin-Embedded blocks including samples from 39 Hodgkin Lymphoma and 23 Non Hodgkin Lymphoma cases in comparison with 39 control samples (30 normal and 9 Reactive Lymphoid Hyperplasia (RLH) lymph nodes) using semi-quantitative immuno-flourecent Staining. Results NAIP expression was not statistically different in lymphoma samples neither in HL nor in NHL cases comparing to normal samples. However, we evaluated NAIP expression in normal and RLH lymph nodes. Surprisingly, we have found a statistically significant-difference between the NAIP expression in RLH (M.R of NAIP/GAPDH expression = 0.6365 ± 0.017) and normal lymph node samples (M.R of NAIP/GAPDH expression = 0.5882 ± 0.047) (P < 0.01). Conclusions These findings show that the regulation of apoptosis could not be the main function of NAIP in the cell, so the pathologic expression of NAIP is not involved in lymphoma. But, we concluded that the over expression of NAIP has more effective role in the inflammatory response. Also, this study clarifies the NAIP expression level in lymphoma which is required for IAPs profiling in order to be used in potential translational applications of IAPs.
Collapse
Affiliation(s)
- Safoura Mazrouei
- Dept of Genetics and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran.
| | | | | | | | | | | | | |
Collapse
|
83
|
Elhasid R, Larisch S. ARTS-based anticancer therapy: taking aim at cancer stem cells. Future Oncol 2012; 7:1185-94. [PMID: 21992730 DOI: 10.2217/fon.11.96] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Apoptosis related protein in TGF-β signaling pathway (ARTS/septin 4 isoform 2) hereforth referred to as ARTS, was originally found to promote apoptosis induced by TGF-β, but later was shown to promote apoptosis induced by a wide variety of apoptotic stimuli. In vivo and in vitro studies revealed that ARTS-induced apoptosis is mainly executed through direct binding and antagonizing XIAP. High levels of XIAP are found in many types of cancers and often correlate with poor prognosis. ARTS was shown to function as a tumor-suppressor protein in human patients and mouse-tumor models. In particular, Septin 4/ARTS-deficient mice have increased tumor susceptibility and contain increased numbers of stem cells (SCs) and progenitor cells, apparently owing to their resistance towards apoptosis. Based on these results we propose that loss of proapoptotic ARTS may act as the 'first hit' initiating tumorigenesis in two distinct ways. First, loss of ARTS-mediated apoptosis leads to increased numbers of normal SCs. Elevated numbers of normal SCs may lead to increased cancer risk due to higher numbers of cellular targets available for transforming mutations. Second, after these SCs acquire additional transforming mutations and become cancer SC (CSCs), they are more likely to survive in the absence of ARTS owing to increased resistance toward apoptosis. A combination of these two mechanisms, over time, is expected to significantly increase tumor risk. Because CSCs appear to share phenotypic markers with normal SCs, targeting the signaling pathways that affect normal SC development and maintenance can serve as a useful approach towards true eradication of cancer. In this article we describe the role of ARTS in apoptosis and cancer, with focus on its potential role as a CSC marker and as a potential target for anticancer and anti-CSC therapy.
Collapse
Affiliation(s)
- Ronit Elhasid
- Pediatric Hemato-Oncology Unit, 'Dana' Children's Hospital, Tel-Aviv, Israel
| | | |
Collapse
|
84
|
Retinal degeneration and cellular suicide. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 723:207-14. [PMID: 22183335 DOI: 10.1007/978-1-4614-0631-0_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
85
|
Bornstein B, Edison N, Gottfried Y, Lev T, Shekhtman A, Gonen H, Rajalingam K, Larisch S. X-linked Inhibitor of Apoptosis Protein promotes the degradation of its antagonist, the pro-apoptotic ARTS protein. Int J Biochem Cell Biol 2011; 44:489-95. [PMID: 22185822 DOI: 10.1016/j.biocel.2011.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/24/2011] [Accepted: 12/06/2011] [Indexed: 02/07/2023]
Abstract
ARTS (Sept4_i2) is a mitochondrial pro-apoptotic tumor suppressor protein. In response to apoptotic signals, ARTS translocates to the cytosol where it promotes caspase activation through caspase de-repression and proteasome mediated degradation of X-linked Inhibitor of Apoptosis Protein (XIAP). Here we show that XIAP regulates the levels of ARTS by serving as its ubiquitin ligase, thereby providing a potential feedback mechanism to protect against unwanted apoptosis. Using both in vitro and in vivo ubiquitination assays we found that ARTS is directly ubiquitinated by XIAP. Moreover, we found that XIAP-induced ubiquitination and degradation is prevented by removal of the first four amino acids in the N-terminus of ARTS, which contains a single lysine residue at position 3. Thus, this lysine at position 3 is a likely target for ubiquitination by XIAP. Importantly, although the stabilized ARTS lacking its first 4 residues binds XIAP as well as the full length ARTS, it is more potent in promoting apoptosis than the full length ARTS. This suggests that increased stability of ARTS has a significant effect on its ability to induce apoptosis. Collectively, our data reveal a mutual regulatory mechanism by which ARTS and XIAP control each other's levels through the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Bavat Bornstein
- Cell Death Research Laboratory, Department of Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Bornstein B, Gottfried Y, Edison N, Shekhtman A, Lev T, Glaser F, Larisch S. ARTS binds to a distinct domain in XIAP-BIR3 and promotes apoptosis by a mechanism that is different from other IAP-antagonists. Apoptosis 2011; 16:869-81. [PMID: 21695558 DOI: 10.1007/s10495-011-0622-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ARTS (Sept4_i2), is a pro-apoptotic protein localized at the mitochondria of living cells. In response to apoptotic signals, ARTS rapidly translocates to the cytosol where it binds and antagonizes XIAP to promote caspase activation. However, the mechanism of interaction between these two proteins and how it is regulated remained to be explored. In this study, we show that ARTS and XIAP bind directly to each other, as recombinant ARTS and XIAP proteins co-immunoprecipitate together. We also show that over expression of ARTS alone is sufficient to induce a strong down-regulation of XIAP protein levels and that this reduction occurs through the ubiquitin proteasome system (UPS). Using various deletion and mutation constructs of XIAP we show that ARTS specifically binds to the BIR3 domain in XIAP. Moreover, we found that ARTS binds to different sequences in BIR3 than other IAP antagonists such as SMAC/Diablo. Computational analysis comparing the location of the putative ARTS interface in BIR3 with the known interfaces of SMAC/Diablo and caspase 9 support our results indicating that ARTS interacts with residues in BIR3 that are different from those involved in binding SMAC/Diablo and caspase 9. We therefore suggest that ARTS binds and antagonizes XIAP in a way which is distinct from other IAP-antagonists to promote apoptosis.
Collapse
Affiliation(s)
- Bavat Bornstein
- Cell Death Research Laboratory, Department of Biology, University of Haifa, Mount Carmel, Israel
| | | | | | | | | | | | | |
Collapse
|
87
|
Arockiaraj J, Vanaraja P, Easwvaran S, Singh A, Othman RY, Bhassu S. Bioinformatic characterization and gene expression pattern of apoptosis inhibitor from Macrobrachium rosenbergii challenged with infectious hypodermal and hematopoietic necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1259-1267. [PMID: 21945707 DOI: 10.1016/j.fsi.2011.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/23/2011] [Accepted: 09/09/2011] [Indexed: 05/31/2023]
Abstract
Apoptosis is genetically programmed cellular killing processes that execute unnecessary or infected cells. It plays an important role in embryogenesis, homeostasis, insect metamorphosis and immunity. Apoptosis inhibitor (MrIAP) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrIAP consisted of 1753 base pair nucleotides encoded 535 polypeptide with an estimated molecular mass of 60 kDa. MrIAP amino acid sequence contains IAP superfamily domain between 5 and 490. The deduced amino acid sequences of the MrIAP were aligned with the other IAP family members. The highest sequence similarity was observed in IAP-5 from ant Camponotus floridanus (67%) followed by IAP from body louse Pediculus humanus corporis (66%) and the lowest (62%) in IAP-5 isoform-5 from common chimpanzee Pan troglodytes and IAP-5 from Aedes aegypti. The IAP phylogenetic tree showed that MrIAP closely related to other arthropod blacklegged tick Ixodes scapularis, formed a sister group with IAP from a hemichordate acorn worm Saccoglossus kowalevskii and finally clustered together with IAPs from fish groups. The quantitative real time PCR analysis revealed that significantly (P < 0.05) highest expression was noticed in hepatopancreas and significantly (P < 0.05) lowest expression in pleopods. Based on the results of gene expression analysis, MrIAP mRNA transcription in M. rosenbergii challenged to infectious hypodermal and hematopoietic necrosis virus (IHHNV) was highly induced in hepatopancreas. The collective results of this study indicate that the MrIAP is an essential immune gene and influences the immune response against IHHNV infection in M. rosenbergii.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Centre for Biotechnology in Agriculture Research, Division of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
88
|
Role of positive selection in functional divergence of mammalian neuronal apoptosis inhibitor proteins during evolution. J Biomed Biotechnol 2011; 2011:809765. [PMID: 22131819 PMCID: PMC3216670 DOI: 10.1155/2011/809765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/28/2011] [Accepted: 08/26/2011] [Indexed: 01/22/2023] Open
Abstract
Neuronal apoptosis inhibitor proteins (NAIPs) are members of Nod-like receptor (NLR) protein family. Recent research demostrated that some NAIP genes were strongly associated with both innate immunity and many inflammatory diseases in humans. However, no similar phenomena have been reported in other mammals. Furthermore, some NAIP genes have undergone pseudogenization or have been lost during the evolution of some higher mammals. We therefore aimed to determine if functional divergence had occurred, and if natural selection had played an important role in the evolution of these genes. The results showed that NAIP genes have undergone pseudogenization and functional divergence, driven by positive selection. Positive selection has also influenced NAIP protein structure, resulting in further functional divergence.
Collapse
|
89
|
Chen JJ, Knudsen S, Mazin W, Dahlgaard J, Zhang B. A 71-gene signature of TRAIL sensitivity in cancer cells. Mol Cancer Ther 2011; 11:34-44. [PMID: 22027696 DOI: 10.1158/1535-7163.mct-11-0620] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TNF-related apoptosis inducing ligand (TRAIL) is a promising anticancer agent because of its ability to selectively induce apoptosis in cancer cells but not in most normal cells. However, some cancer cells are resistant to TRAIL cytotoxicity thereby limiting its therapeutic efficacy. Using genome-wide mRNA expression profiles from the NCI60 panel and their differential sensitivities to TRAIL-induced apoptosis, we have identified 71 genes whose expression levels are systemically higher in TRAIL-sensitive cell lines than resistant lines. The elevated expression of the 71 genes was able to accurately predict TRAIL sensitivity in the NCI60 training set and two test sets consisting of a total of 95 human cancer cell lines. Interestingly, the 71-gene signature is dominated by two functionally related gene families-interferon (IFN)-induced genes and the MHC genes. Consistent with this result, treatment with IFN-γ augmented TRAIL-induced apoptosis. The 71-gene signature could be evaluated clinically for predicting tumor response to TRAIL-related therapies.
Collapse
Affiliation(s)
- Jun-Jie Chen
- Division of Therapeutic Proteins, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
90
|
Li H, Nelson CE, Evans BC, Duvall CL. Delivery of intracellular-acting biologics in pro-apoptotic therapies. Curr Pharm Des 2011; 17:293-319. [PMID: 21348831 DOI: 10.2174/138161211795049642] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/18/2011] [Indexed: 12/21/2022]
Abstract
The recent elucidation of molecular regulators of apoptosis and their roles in cellular oncogenesis has motivated the development of biomacromolecular anticancer therapeutics that can activate intracellular apoptotic signaling pathways. Pharmaceutical scientists have employed a variety of classes of biologics toward this goal, including antisense oligodeoxynucleotides, small interfering RNA, proteins, antibodies, and peptides. However, stability in the in vivo environment, tumor-specific biodistribution, cell internalization, and localization to the intracellular microenvironment where the targeted molecule is localized pose significant challenges that limit the ability to directly apply intracellular-acting, pro-apoptotic biologics for therapeutic use. Thus, approaches to improve the pharmaceutical properties of therapeutic biomacromolecules are of great significance and have included chemically modifying the bioactive molecule itself or formulation with auxiliary compounds. Recently, promising advances in delivery of pro-apoptotic biomacromolecular agents have been made using tools such as peptide "stapling", cell penetrating peptides, fusogenic peptides, liposomes, nanoparticles, smart polymers, and synergistic combinations of these components. This review will discuss the molecular mediators of cellular apoptosis, the respective mechanisms by which these mediators are dysregulated in cellular oncogenesis, the history and development of both nucleic-acid and amino-acid based drugs, and techniques to achieve intracellular delivery of these biologics. Finally, recent applications where pro-apoptotic functionality has been achieved through delivery of intracellular-acting biomacromolecular drugs will be highlighted.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
91
|
Kim WY, Lee SY, Jung YJ, Chae HB, Nawkar GM, Shin MR, Kim SY, Park JH, Kang CH, Chi YH, Ahn IP, Yun DJ, Lee KO, Kim YM, Kim MG, Lee SY. Inhibitor of apoptosis (IAP)-like protein lacks a baculovirus IAP repeat (BIR) domain and attenuates cell death in plant and animal systems. J Biol Chem 2011; 286:42670-42678. [PMID: 21926169 DOI: 10.1074/jbc.m111.262204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel Arabidopsis thaliana inhibitor of apoptosis was identified by sequence homology to other known inhibitor of apoptosis (IAP) proteins. Arabidopsis IAP-like protein (AtILP) contained a C-terminal RING finger domain but lacked a baculovirus IAP repeat (BIR) domain, which is essential for anti-apoptotic activity in other IAP family members. The expression of AtILP in HeLa cells conferred resistance against tumor necrosis factor (TNF)-α/ActD-induced apoptosis through the inactivation of caspase activity. In contrast to the C-terminal RING domain of AtILP, which did not inhibit the activity of caspase-3, the N-terminal region, despite displaying no homology to known BIR domains, potently inhibited the activity of caspase-3 in vitro and blocked TNF-α/ActD-induced apoptosis. The anti-apoptotic activity of the AtILP N-terminal domain observed in plants was reproduced in an animal system. Transgenic Arabidopsis lines overexpressing AtILP exhibited anti-apoptotic activity when challenged with the fungal toxin fumonisin B1, an agent that induces apoptosis-like cell death in plants. In AtIPL transgenic plants, suppression of cell death was accompanied by inhibition of caspase activation and DNA fragmentation. Overexpression of AtILP also attenuated effector protein-induced cell death and increased the growth of an avirulent bacterial pathogen. The current results demonstrated the existence of a novel plant IAP-like protein that prevents caspase activation in Arabidopsis and showed that a plant anti-apoptosis gene functions similarly in plant and animal systems.
Collapse
Affiliation(s)
- Woe Yeon Kim
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Sun Yong Lee
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Young Jun Jung
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Ho Byoung Chae
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Ganesh M Nawkar
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Mi Rim Shin
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Sun Young Kim
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Jin Ho Park
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Chang Ho Kang
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Yong Hun Chi
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Il Pyung Ahn
- National Academy of Agricultural Science, RDA, Suwon 441-856, Korea
| | - Dae Jin Yun
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Kyun Oh Lee
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, College of Medicine, Kangwon National University, Chunchon, Korea
| | - Min Gab Kim
- National Academy of Agricultural Science, RDA, Suwon 441-856, Korea; College of Pharmacy, Gyeongsang National University, Jinju 660-751, Korea.
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, Korea.
| |
Collapse
|
92
|
Thakor N, Holcik M. IRES-mediated translation of cellular messenger RNA operates in eIF2α- independent manner during stress. Nucleic Acids Res 2011; 40:541-52. [PMID: 21917851 PMCID: PMC3258125 DOI: 10.1093/nar/gkr701] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Physiological and pathophysiological stress attenuates global translation via phosphorylation of eIF2α. This in turn leads to the reprogramming of gene expression that is required for adaptive stress response. One class of cellular messenger RNAs whose translation was reported to be insensitive to eIF2α phosphorylation-mediated repression of translation is that harboring an Internal Ribosome Entry Site (IRES). IRES-mediated translation of several apoptosis-regulating genes increases in response to hypoxia, serum deprivation or gamma irradiation and promotes tumor cell survival and chemoresistance. However, the molecular mechanism that allows IRES-mediated translation to continue in an eIF2α-independent manner is not known. Here we have used the X-chromosome linked Inhibitor of Apoptosis, XIAP, IRES to address this question. Using toeprinting assay, western blot analysis and polysomal profiling we show that the XIAP IRES supports cap-independent translation when eIF2α is phosphorylated both in vitro and in vivo. During normal growth condition eIF2α-dependent translation on the IRES is preferred. However, IRES-mediated translation switches to eIF5B-dependent mode when eIF2α is phosphorylated as a consequence of cellular stress.
Collapse
Affiliation(s)
- Nehal Thakor
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, 401 Smyth Rd, Ottawa, K1H 8L1, Canada
| | | |
Collapse
|
93
|
Apoptosis modulation as a promising target for treatment of systemic sclerosis. Int J Rheumatol 2011; 2011:495792. [PMID: 21912551 PMCID: PMC3170778 DOI: 10.1155/2011/495792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 12/22/2022] Open
Abstract
Diffuse systemic sclerosis (SSc) is a fatal autoimmune disease characterized by an excessive ECM deposition inducing a loss of function of skin and internal organs. Apoptosis is a key mechanism involved in all the stages of the disease: vascular damage, immune dysfunction, and fibrosis. The purpose of this paper is to gather new findings in apoptosis related to SSc, to highlight relations between apoptosis and fibrosis, and to identify new therapeutic targets.
Collapse
|
94
|
Guo XX, Kim H, Li Y, Yim H, Lee SK, Jin YH. Cdk2 acts upstream of mitochondrial permeability transition during paclitaxel-induced apoptosis. Protein Cell 2011; 2:543-53. [PMID: 21822799 DOI: 10.1007/s13238-011-1071-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/27/2011] [Indexed: 11/30/2022] Open
Abstract
Sequential activation of cyclin-dependent kinases (Cdks) controls mammalian cell cycle. Here we demonstrate that the upregulation of cyclin-dependent kinase 2 (Cdk2) activity coincides with the loss of mitochondrial membrane potential (MMP) in paclitaxel-induced apoptosis. Ectopic expression of the dominant negative Cdk2 (Cdk2-dn) and a specific Cdk2 inhibitor, p21( WAF1/CIP1 ), effectively suppresses the loss of MMP, the release of cytochrome c, and subsequent activation of caspase-3 in paclitaxel-treated cells. Whereas forced activation of Cdk2 by overexpression of cyclin A dramatically promotes these events. We further show that Cdk2 activation status does not interfere with a procedure that lies downstream of cytochrome c release induced by Bax protein. These findings suggest that Cdk2 kinase can regulate apoptosis at earlier stages than mitochondrial permeability transition and cytochrome c release.
Collapse
Affiliation(s)
- Xiao-Xi Guo
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | | | | | | | | | | |
Collapse
|
95
|
Busca A, Saxena M, Kryworuchko M, Kumar A. Anti-apoptotic genes in the survival of monocytic cells during infection. Curr Genomics 2011; 10:306-17. [PMID: 20119528 PMCID: PMC2729995 DOI: 10.2174/138920209788920967] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 05/06/2009] [Accepted: 06/08/2009] [Indexed: 01/28/2023] Open
Abstract
Macrophages are cells of the immune system that protect organisms against invading pathogens by fulfilling critical roles in innate and adaptive immunity and inflammation. They originate from circulating monocytes and show a high degree of heterogeneity, which reflects the specialization of function given by different anatomical locations. Differentiation of monocytes towards a macrophage phenotype is also accompanied by an increase of resistance against various apoptotic stimuli, a required characteristic that allows macrophages to accomplish their function in a stressful environment. Apoptosis, a form of programmed cell death, is a tightly regulated process, needed to maintain homeostasis by balancing proliferation with cellular demise. Caspases, a family of cysteine proteases that are highly conserved in multicellular organisms, function as central regulators of apoptosis. FLIP (FLICE-inhibitory protein), anti-apoptotic members of the Bcl2 family and inhibitors of apoptosis (IAP) are the main three groups of anti-apoptotic genes that counteract caspase activation through both the extrinsic and intrinsic apoptotic pathways. Modulation of the apoptotic machinery during viral and bacterial infections, as well as in various malignancies, is a wellestablished mechanism that promotes the survival of affected cells. The involvement of anti-apoptotic genes in the survival of monocytes/macrophages, either physiological or pathological, will be described in this review. How viral and bacterial infections that target cells of the monocytic lineage affect the expression of anti-apoptotic genes is important in understanding the pathological mechanisms that lead to manifested disease. The latest therapeutic approaches that target anti-apoptotic genes will also be discussed.
Collapse
Affiliation(s)
- Aurelia Busca
- Infectious Disease and Vaccine Research Centre, Children's Hospital of Eastern Ontario, Research Institute, Division of Virology
| | | | | | | |
Collapse
|
96
|
miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A 2011; 108:11662-7. [PMID: 21709246 DOI: 10.1073/pnas.1102635108] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is increasingly recognized that the mechanisms underlying ischemic cell death are sexually dimorphic. Stroke-induced cell death in males is initiated by the mitochondrial release of apoptosis-inducing factor, resulting in caspase-independent cell death. In contrast, ischemic cell death in females is primarily triggered by mitochondrial cytochrome c release with subsequent caspase activation. Because X-linked inhibitor of apoptosis (XIAP) is the primary endogenous inhibitor of caspases, its regulation may play a unique role in the response to injury in females. XIAP mRNA levels were higher in females at baseline. Stroke induced a significant decrease in XIAP mRNA in females, whereas no changes were seen in the male brain. However, XIAP protein levels were decreased in both sexes after stroke. MicroRNAs (miRNAs) predominantly induce translational repression and are emerging as a major regulators of mRNA and subsequent protein expression after ischemia. The miRNA miR-23a was predicted to bind XIAP mRNA. miR-23a directly bound the 3' UTR of XIAP, and miR-23a inhibition led to an increase in XIAP mRNA in vitro, demonstrating that XIAP is a previously uncharacterized target for miR-23a. miR-23a levels differed in male and female ischemic brains, providing evidence for sex-specific miRNA expression in stroke. Embelin, a small-molecule inhibitor of XIAP, decreased the interaction between XIAP and caspase-3 and led to enhanced caspase activity. Embelin treatment significantly exacerbated stroke-induced injury in females but had no effect in males, demonstrating that XIAP is an important mediator of sex-specific responses after stroke.
Collapse
|
97
|
Li XB, Jiao S, Sun H, Xue J, Zhao WT, Fan L, Wu GH, Fang J. The orphan nuclear receptor EAR2 is overexpressed in colorectal cancer and it regulates survivability of colon cancer cells. Cancer Lett 2011; 309:137-44. [PMID: 21696885 DOI: 10.1016/j.canlet.2011.05.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 12/28/2022]
Abstract
EAR2 is a member of the chick ovalbumin upstream promoter-transcription factors (COUP-TFs). COUP-TFs belong to orphan nuclear receptors and regulate many biological processes. Little is known regarding EAR2 in cancer, though much progress has been made in understanding the function of other COUP-TF members. The aim of this study is to investigate the expression and possible function of EAR2 in colorectal cancer. We determined expression of EAR2 in human primary colorectal malignant tumors and their paired adjacent normal colorectal tissues. We found that expression of EAR2 was upregulated in colorectal tumors. Knockdown of EAR2 induced apoptosis of colon cancer cells, suggesting that EAR2 may function to regulate survivability of colon cancer cells. In vivo tumor study demonstrated that knockdown of EAR2 inhibited the xenograft growth of colon cancer cells. We found that knockdown of EAR2 inhibited the expression of X-linked inhibitor of apoptosis protein (XIAP), suggesting that EAR2 regulates cell survivability, at least partly, through XIAP. In this manuscript, we demonstrated that expression of EAR2 was elevated in colorectal cancer and knockdown of EAR2 reduced survivability and tumor growth of colon cancer cells. Our results suggest that EAR2 plays an important role in development of colorectal cancer. The findings also suggest that EAR2 may serve as a potential therapeutic target of colorectal cancer.
Collapse
Affiliation(s)
- Xue-Bing Li
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Saffar AS, Ashdown H, Gounni AS. The molecular mechanisms of glucocorticoids-mediated neutrophil survival. Curr Drug Targets 2011; 12:556-62. [PMID: 21504070 PMCID: PMC3267167 DOI: 10.2174/138945011794751555] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neutrophil-dominated inflammation plays an important role in many airway diseases including asthma, chronic obstructive pulmonary disease (COPD), bronchiolitis and cystic fibrosis. In cases of asthma where neutrophil-dominated inflammation is a major contributing factor to the disease, treatment with corticosteroids can be problematic as corticosteroids have been shown to promote neutrophil survival which, in turn, accentuates neutrophilic inflammation. In light of such cases, novel targeted medications must be developed that could control neutrophilic inflammation while still maintaining their antibacterial/anti-fungal properties, thus allowing individuals to maintain effective innate immune responses to invading pathogens. The aim of this review is to describe the molecular mechanisms of neutrophil apoptosis and how these pathways are modulated by glucocorticoids. These new findings are of potential clinical value and provide further insight into treatment of neutrophilic inflammation in lung disease.
Collapse
Affiliation(s)
- Arash S Saffar
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
99
|
Concomitant activation of caspase-9 and down-regulation of IAP proteins as a mechanism of apoptotic death in HepG2, T47D and HCT-116 cells upon exposure to a derivative from 4-aryl-4H-chromenes family. Biomed Pharmacother 2011; 65:175-82. [PMID: 21565459 DOI: 10.1016/j.biopha.2011.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 12/08/2010] [Accepted: 03/01/2011] [Indexed: 11/24/2022] Open
|
100
|
Stevenson L, Allen WL, Proutski I, Stewart G, Johnston L, McCloskey K, Wilson PM, Longley DB, Johnston PG. Calbindin 2 (CALB2) regulates 5-fluorouracil sensitivity in colorectal cancer by modulating the intrinsic apoptotic pathway. PLoS One 2011; 6:e20276. [PMID: 21629658 PMCID: PMC3101240 DOI: 10.1371/journal.pone.0020276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 04/28/2011] [Indexed: 12/20/2022] Open
Abstract
The role of the calcium binding protein, Calbindin 2 (CALB2), in regulating the response of colorectal cancer (CRC) cells to 5-Fluorouracil (5-FU) was investigated. Real-time RT-PCR and Western blot analysis revealed that CALB2 mRNA and protein expression were down-regulated in p53 wild-type and p53 null isogenic HCT116 CRC cell lines following 48 h and 72 h 5-FU treatment. Moreover, 5-FU-induced apoptosis was significantly reduced in HCT116 and LS174T CRC cell lines in which CALB2 expression had been silenced. Further investigation revealed that CALB2 translocated to the mitochondria following 5-FU treatment and that 5-FU-induced loss of mitochondrial membrane potential (Δψ(m)) was abrogated in CALB2-silenced cells. Furthermore, CALB2 silencing decreased 5-FU-induced cytochrome c and smac release from the mitochondria and also decreased 5-FU-induced activation of caspases 9 and 3/7. Of note, co-silencing of XIAP overcame 5-FU resistance in CALB2-silenced cells. Collectively, these results suggest that following 5-FU treatment in CRC cell lines, CALB2 is involved in apoptosis induction through the intrinsic mitochondrial pathway. This indicates that CALB2 may be an important mediator of 5-FU-induced cell death. Moreover, down-regulation of CALB2 in response to 5-FU may represent an intrinsic mechanism of resistance to this anti-cancer drug.
Collapse
Affiliation(s)
- Leanne Stevenson
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
- * E-mail:
| | - Wendy L. Allen
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Irina Proutski
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Gail Stewart
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Louise Johnston
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Karen McCloskey
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Peter M. Wilson
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Daniel B. Longley
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Patrick G. Johnston
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|