51
|
Penaloza CG, Estevez B, Han DM, Norouzi M, Lockshin RA, Zakeri Z. Sex-dependent regulation of cytochrome P450 family members Cyp1a1, Cyp2e1, and Cyp7b1 by methylation of DNA. FASEB J 2013; 28:966-77. [PMID: 24161885 DOI: 10.1096/fj.13-233320] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sexual differences are only partially attributable to hormones. Cultured male or female cells, even from embryos before sexual differentiation, differ in gene expression and sensitivity to toxins, and these differences persist in isolated primary cells. Male and female cells from Swiss Webster CWF mice manifest sex-distinct patterns of DNA methylation for X-ist and for cytochrome P450 (CYP; family members 1a1, 2e1m, and 7b1. Dnmt3l is differentially expressed but not differentially methylated, and Gapdh is neither differentially methylated nor expressed. CYP family genes differ in expression in whole tissue homogenates and cell cultures, with female Cyp expression 2- to 355-fold higher and Dnmt3l 12- to 32-fold higher in males. DNA methylation in the promoters of these genes is sex dimorphic; reducing methylation differences reduces to 1- to 6-fold differences in the expression of these genes. Stress or estradiol alters both methylation and gene expression. We conclude that different methylation patterns partially explain the sex-based differences in expression of CYP family members and X-ist, which potentially leads to inborn differences between males and females and their different responses to chronic and acute changes. Sex-differential methylation may have medical effects.
Collapse
Affiliation(s)
- Carlos G Penaloza
- 1Queens College, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY 11367, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Elabd C, Cousin W, Chen RY, Chooljian MS, Pham JT, Conboy IM, Conboy MJ. DNA methyltransferase-3-dependent nonrandom template segregation in differentiating embryonic stem cells. J Cell Biol 2013; 203:73-85. [PMID: 24127215 PMCID: PMC3798252 DOI: 10.1083/jcb.201307110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/29/2013] [Indexed: 11/22/2022] Open
Abstract
Asymmetry of cell fate is one fundamental property of stem cells, in which one daughter cell self-renews, whereas the other differentiates. Evidence of nonrandom template segregation (NRTS) of chromosomes during asymmetric cell divisions in phylogenetically divergent organisms, such as plants, fungi, and mammals, has already been shown. However, before this current work, asymmetric inheritance of chromatids has never been demonstrated in differentiating embryonic stem cells (ESCs), and its molecular mechanism has remained unknown. Our results unambiguously demonstrate NRTS in asymmetrically dividing, differentiating human and mouse ESCs. Moreover, we show that NRTS is dependent on DNA methylation and on Dnmt3 (DNA methyltransferase-3), indicating a molecular mechanism that regulates this phenomenon. Furthermore, our data support the hypothesis that retention of chromatids with the "old" template DNA preserves the epigenetic memory of cell fate, whereas localization of "new" DNA strands and de novo DNA methyltransferase to the lineage-destined daughter cell facilitates epigenetic adaptation to a new cell fate.
Collapse
Affiliation(s)
- Christian Elabd
- Department of Bioengineering, Stem Cell Center, and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Wendy Cousin
- Department of Bioengineering, Stem Cell Center, and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Robert Y. Chen
- Department of Bioengineering, Stem Cell Center, and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Marc S. Chooljian
- Department of Bioengineering, Stem Cell Center, and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Joey T. Pham
- Department of Bioengineering, Stem Cell Center, and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Irina M. Conboy
- Department of Bioengineering, Stem Cell Center, and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Michael J. Conboy
- Department of Bioengineering, Stem Cell Center, and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
53
|
Leseva M, Santostefano KE, Rosenbluth AL, Hamazaki T, Terada N. E2f6-mediated repression of the meiotic Stag3 and Smc1β genes during early embryonic development requires Ezh2 and not the de novo methyltransferase Dnmt3b. Epigenetics 2013; 8:873-84. [PMID: 23880518 PMCID: PMC3883790 DOI: 10.4161/epi.25522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/12/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022] Open
Abstract
The E2f6 transcriptional repressor is an E2F-family member essential for the silencing of a group of meiosis-specific genes in somatic tissues. Although E2f6 has been shown to associate with both polycomb repressive complexes (PRC) and the methyltransferase Dnmt3b, the cross-talk between these repressive machineries during E2f6-mediated gene silencing has not been clearly demonstrated yet. In particular, it remains largely undetermined when and how E2f6 establishes repression of meiotic genes during embryonic development. We demonstrate here that the inactivation of a group of E2f6 targeted genes, including Stag3 and Smc1β, first occurs at the transition from mouse embryonic stem cells (ESCs) to epiblast stem cells (EpiSCs), which represent pre- and post-implantation stages, respectively. This process was accompanied by de novo methylation of their promoters. Of interest, despite a clear difference in DNA methylation status, E2f6 was similarly bound to the proximal promoter regions both in ESCs and EpiSCs. Neither E2f6 nor Dnmt3b overexpression in ESCs decreased meiotic gene expression or increased DNA methylation, indicating that additional factors are required for E2f6-mediated repression during the transition. When the SET domain of Ezh2, a core subunit of the PRC2 complex, was deleted, however, repression of Stag3 and Smc1β during embryoid body differentiation was largely impaired, indicating that the event required the enzymatic activity of Ezh2. In addition, repression of Stag3 and Smc1β occurred in the absence of Dnmt3b. The data presented here suggest a primary role of PRC2 in E2f6-mediated gene silencing of the meiotic genes.
Collapse
Affiliation(s)
- Milena Leseva
- Department of Pathology; University of Florida College of Medicine; Gainesville, FL USA
| | | | - Amy L Rosenbluth
- Department of Pathology; University of Florida College of Medicine; Gainesville, FL USA
| | - Takashi Hamazaki
- Department of Pathology; University of Florida College of Medicine; Gainesville, FL USA
- Department of Pediatrics; Osaka City University Graduate School of Medicine; Osaka, Japan
| | - Naohiro Terada
- Department of Pathology; University of Florida College of Medicine; Gainesville, FL USA
| |
Collapse
|
54
|
Vendetti FP, Rudin CM. Epigenetic therapy in non-small-cell lung cancer: targeting DNA methyltransferases and histone deacetylases. Expert Opin Biol Ther 2013; 13:1273-85. [PMID: 23859704 DOI: 10.1517/14712598.2013.819337] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Epigenetics refers to heritable modifications of DNA and associated chromatin components that influence gene expression without altering DNA coding sequence. Epigenetic dysregulation is a central contributor to oncogenesis and is increasingly a focus of interest in cancer therapeutic research. Two key levels of aberrant epigenetic control are DNA methylation and histone acetylation. Primary regulators of these epigenetic changes include DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). AREAS COVERED This review focuses on epigenetic changes in non-small-cell lung cancer and recent preclinical and clinical studies targeting these changes. DNMT inhibitors were previously explored at or near maximally tolerated doses, levels at which these agents are cytotoxic but have suboptimal effects on DNA methylation. Use of these inhibitors at substantially lower doses, in combination with HDAC inhibitors, can promote re-expression of silenced tumor suppressor genes, can result in major clinical responses and may alter tumor responsiveness to subsequent cytotoxic therapies. EXPERT OPINION Combinatorial epigenetic therapy has demonstrated encouraging clinical activity, but many relevant questions remain. Global strategies influencing the epigenome may have both positive and potential negative long-term effects on cancer progression. Further clinical investigation of this approach, including exploratory studies to define predictive biomarkers, is warranted.
Collapse
Affiliation(s)
- Frank P Vendetti
- Johns Hopkins University, The Sidney Kimmel Comprehensive Cancer Center, David H. Koch Cancer Research Building 2, Room 562, 1550 Orleans Street, Baltimore, MD 21231, USA
| | | |
Collapse
|
55
|
Huan YJ, Zhu J, Xie BT, Wang JY, Liu SC, Zhou Y, Kong QR, He HB, Liu ZH. Treating cloned embryos, but not donor cells, with 5-aza-2'-deoxycytidine enhances the developmental competence of porcine cloned embryos. J Reprod Dev 2013; 59:442-9. [PMID: 23748715 PMCID: PMC3934119 DOI: 10.1262/jrd.2013-026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The efficiency of cloning by somatic cell nuclear transfer (SCNT) has remained low.
In most cloned embryos, epigenetic reprogramming is incomplete, and usually the
genome is hypermethylated. The DNA methylation inhibitor 5-aza-2’-deoxycytidine
(5-aza-dC) could improve the developmental competence of cow, pig, cat and human SCNT
embryos in previous studies. However, the parameters of 5-aza-dC treatment among
species are different, and whether 5-aza-dC could enhance the developmental
competence of porcine cloned embryos has still not been well studied. Therefore, in
this study, we treated porcine fetal fibroblasts (PFF) that then were used as donor
nuclei for nuclear transfer or fibroblast-derived reconstructed embryos with
5-aza-dC, and the concentration- and time-dependent effects of 5-aza-dC on porcine
cloned embryos were investigated by assessing pseudo-pronucleus formation,
developmental potential and pluripotent gene expression of these reconstructed
embryos. Our results showed that 5-aza-dC significantly reduced the DNA methylation
level in PFF (0 nM vs. 10 nM vs. 25 nM
vs. 50 nM, 58.70% vs. 37.37%
vs. 45.43% vs. 39.53%, P<0.05), but did not
improve the blastocyst rate of cloned embryos derived from these cells. Treating
cloned embryos with 25 nM 5-aza-dC for 24 h significantly enhanced the blastocyst
rate compared with that of the untreated group. Furthermore, treating cloned embryos,
but not donor cells, significantly promoted pseudo-pronucleus formation at 4 h post
activation (51% for cloned embryos treated, 34% for donor cells treated and 36% for
control, respectively, P<0.05) and enhanced the expression levels of pluripotent
genes (Oct4, Nanog and Sox2) up to
those of in vitro fertilized embryos during embryo development. In
conclusion, treating cloned embryos, but not donor cells, with 5-aza-dC enhanced the
developmental competence of porcine cloned embryos by promotion of pseudo-pronucleus
formation and improvement of pluripotent gene expression.
Collapse
Affiliation(s)
- Yan Jun Huan
- College of Life Science, Northeast Agricultural University, Haerbin 150030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Liu J, Xie YS, Wang FL, Zhang LJ, Zhang Y, Luo HS. Cytotoxicity of 5-Aza-2'-deoxycytidine against gastric cancer involves DNA damage in an ATM-P53 dependent signaling pathway and demethylation of P16(INK4A). Biomed Pharmacother 2013; 67:78-87. [PMID: 23201008 DOI: 10.1016/j.biopha.2012.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/22/2012] [Indexed: 01/06/2023] Open
Abstract
The DNA methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR) has increasingly attracted worldwide attention for its antineoplastic potential. The cytotoxitic mechanisms, however, especially, the relative contribution of silenced genes reactivation by demethylation and enzyme-DNA adduct formation to the efficacy of 5-Aza-CdR is still a crucial unresolved question. In this investigation, we demonstrated that 5-Aza-CdR treatment resulted in growth suppression in a concentration and time-dependent manner and G2 phrase arrest - hallmarks of a DNA damage response in gastric cancer AGS cells. Formation of DNA double-strand breaks, as monitored by comet assay was examined in an ATM (ataxia-telangiectasia mutated)-dependent manner based on the fact that PI3K inhibitor Wortmannin abolished the action of cytotoxicity of 5-Aza-CdR. Upon treatment with 5-Aza-CdR, ATM activation was clearly associated with P53 phosphorylation at Ser(15), which was directly responsible for 5-Aza-CdR modified P21(Waf1/Cip1) expression. Further exploration revealed that demethylation of P16(INK4A) correlated with the strikingly down-regulated expressions of DNA methyltransferase 3A as well as 3B was, at least in part, attributed to the cytotoxicity of 5-Aza-CdR in AGS cells. Conclusively, these results greatly enhance our understanding of the mechanisms of cytotoxicity of 5-Aza-CdR and strongly provide the preclinical rationale for an assessment of 5-Aza-CdR to ameliorate patient outcome with gastric cancer.
Collapse
Affiliation(s)
- Juan Liu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, PR China
| | | | | | | | | | | |
Collapse
|
57
|
Karahoca M, Momparler RL. Pharmacokinetic and pharmacodynamic analysis of 5-aza-2'-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy. Clin Epigenetics 2013; 5:3. [PMID: 23369223 PMCID: PMC3570332 DOI: 10.1186/1868-7083-5-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/04/2013] [Indexed: 12/31/2022] Open
Abstract
5-Aza-2′-deoxycytidine (5-AZA-CdR, decitabine), an epigenetic drug that inhibits DNA methylation, is currently used to treat myelodysplastic syndrome (MDS), and is under investigation for treating acute myeloid leukemia (AML) and other malignancies. 5-AZA-CdR can reactivate tumor suppressor genes silenced by aberrant DNA methylation, a frequent event in all types of cancer. Because this epigenetic change is reversible, it is a good target for 5-AZA-CdR therapy. We have reviewed the preclinical data of 5-AZA-CdR to analyze the concentrations and exposure times required to eradicate cancer stem cells. We analyzed the dose-schedules used in animal models that show potent antineoplastic activity of 5-AZA-CdR. We attempted to correlate the preclinical data with the responses obtained in clinical trials of 5-AZA-CdR in patients with cancer. The pharmacokinetics and drug distribution of 5-AZA-CdR are key parameters because adequate therapeutic drug levels are required to eliminate cancer stem cells in all anatomic compartments. The plasma half-life of 5-AZA-CdR in humans is approximately 20 minutes due to the high levels in the liver of cytidine deaminase, the enzyme that inactivates this analogue. This provides a rationale to use an inhibitor of cytidine deaminase in combination with 5-AZA-CdR. Low-dose 5-AZA-CdR is effective for MDS and AML and can induce complete remissions (CR). However, maintenance of CR with low-dose 5-AZA-CdR is difficult. Based on analyses of preclinical and clinical data, low dose 5-AZA-CdR has the potential to be an effective form of therapy in some patients with cancer. For patients who do not respond to low dose therapy we recommend dose-intensive treatment with 5-AZA-CdR. Patients who are candidates for intensive dose 5-AZA-CdR should have a good bone marrow status so as to permit adequate recovery from myelosuppression, the major toxicity of 5-AZA-CdR. Solid tumors are also interesting targets for therapy with 5-AZA-CdR. Both low dose and intensive therapy with 5-AZA-CdR can reduce the proliferative potential of tumor stem cells in animal models. We propose novel dose schedules of 5-AZA-CdR for investigation in patients with cancer. The full chemotherapeutic potential of 5-AZA-CdR to treat cancer merits further clinical investigation and can only be realized when its optimal dose-schedule is determined.
Collapse
Affiliation(s)
- Metin Karahoca
- Département de Pharmacologie, Université de Montréal, Montréal, Québec, Canada.
| | | |
Collapse
|
58
|
Laska MJ, Nissen KK, Nexø BA. (Some) cellular mechanisms influencing the transcription of human endogenous retrovirus, HERV-Fc1. PLoS One 2013; 8:e53895. [PMID: 23382858 PMCID: PMC3557288 DOI: 10.1371/journal.pone.0053895] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/06/2012] [Indexed: 11/18/2022] Open
Abstract
DNA methylation and histone acetylation are epigenetic modifications that act as regulators of gene expression. DNA methylation is considered an important mechanism for silencing of retroelements in the mammalian genome. However, the methylation of human endogenous retroviruses (HERVs) is not well investigated. The aim of this study was to investigate the transcriptional potential of HERV-Fc1 proviral 5'LTR in more detail, and examined the specific influence of CpG methylation on this LTR in number of cell lines. Specifically, the role of demethylating chemicals e.g. 5-aza-2' deoxycytidine and Trichostatin-A, in inducing or reactivating expression of HERV-Fc1 specific sequences and the mechanisms were investigated. In our present study, 5-aza-dC is shown to be a powerful inducer of HERV-Fc1, and at the same time it strongly inhibits methylation of DNA. Treatment with this demethylating agent 5-aza-dC, results in significantly increased levels of HERV-Fc1 expression in cells previously not expressing HERV-Fc1, or with a very low expression level. The extent of expression of HERV-Fc1 RNAs precisely correlates with the apparent extent of demethylation of the related DNA sequences. In conclusion, the results suggest that inhibition of DNA methylation/histone deacetylase can interfere with gene silencing mechanisms affecting HERV-Fc1 expression in human cells.
Collapse
|
59
|
Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One 2012; 7:e53003. [PMID: 23300844 PMCID: PMC3531428 DOI: 10.1371/journal.pone.0053003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 11/26/2012] [Indexed: 12/28/2022] Open
Abstract
Human embryonal carcinoma (EC) cells are the stem cells of nonseminoma testicular germ cells tumors (TGCTs) and share remarkable similarities to human embryonic stem (ES) cells. In prior work we found that EC cells are hypersensitive to low nanomolar doses of 5-aza deoxycytidine (5-aza) and that this hypersensitivity partially depended on unusually high levels of the DNA methyltransferase, DNMT3B. We show here that low-dose 5-aza treatment results in DNA damage and induction of p53 in NT2/D1 cells. In addition, low-dose 5-aza results in global and gene specific promoter DNA hypomethylation. Low-dose 5-aza induces a p53 transcriptional signature distinct from that induced with cisplatin in NT2/D1 cells and also uniquely downregulates genes associated with pluripotency including NANOG, SOX2, GDF3 and Myc target genes. Changes in the p53 and pluripotency signatures with 5-aza were to a large extent dependent on high levels of DNMT3B. In contrast to the majority of p53 target genes upregulated by 5-aza that did not show DNA hypomethylation, several other genes induced with 5-aza had corresponding decreases in promoter methylation. These genes include RIN1, SOX15, GPER, and TLR4 and are novel candidate tumors suppressors in TGCTs. Our studies suggest that the hypersensitivity of NT2/D1 cells to low-dose 5-aza is multifactorial and involves the combined activation of p53 targets, repression of pluripotency genes, and activation of genes repressed by DNA methylation. Low-dose 5-aza therapy may be a general strategy to treat those tumors that are sustained by cells with embryonic stem-like properties.GEO NUMBER FOR THE MICROARRAY DATA: GSE42647.
Collapse
|
60
|
Ding YB, Long CL, Liu XQ, Chen XM, Guo LR, Xia YY, He JL, Wang YX. 5-aza-2'-deoxycytidine leads to reduced embryo implantation and reduced expression of DNA methyltransferases and essential endometrial genes. PLoS One 2012; 7:e45364. [PMID: 23028963 PMCID: PMC3460940 DOI: 10.1371/journal.pone.0045364] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 08/21/2012] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The DNA demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) incorporates into DNA and decreases DNA methylation, sparking interest in its use as a potential therapeutic agent. We aimed to determine the effects of maternal 5-aza-CdR treatment on embryo implantation in the mouse and to evaluate whether these effects are associated with decreased levels of DNA methyltransferases (Dnmts) and three genes (estrogen receptor α [Esr1], progesterone receptor [Pgr], and homeobox A10 [Hoxa10]) that are vital for control of endometrial changes during implantation. METHODS AND PRINCIPAL FINDINGS Mice treated with 5-aza-CdR had a dose-dependent decrease in number of implantation sites, with defected endometrial decidualization and stromal cell proliferation. Western blot analysis on pseudo-pregnant day 3 (PD3) showed that 0.1 mg/kg 5-aza-CdR significantly repressed Dnmt3a protein level, and 0.5 mg/kg 5-aza-CdR significantly repressed Dnmt1, Dnmt3a, and Dnmt3b protein levels in the endometrium. On PD5, mice showed significantly decreased Dnmt3a protein level with 0.1 mg/kg 5-aza-CdR, and significantly decreased Dnmt1 and Dnmt3a with 0.5 mg/kg 5-aza-CdR. Immunohistochemical staining showed that 5-aza-CdR repressed DNMT expression in a cell type-specific fashion within the uterus, including decreased expression of Dnmt1 in luminal and/or glandular epithelium and of Dnmt3a and Dnmt3b in stroma. Furthermore, the 5' flanking regions of the Esr1, Pgr, and Hoxa10 were hypomethylated on PD5. Interestingly, the higher (0.5 mg/kg) dose of 5-aza-CdR decreased protein expression of Esr1, Pgr, and Hoxa10 in the endometrium on PD5 in both methylation-dependent and methylation-independent manners. CONCLUSIONS The effects of 5-aza-CdR on embryo implantation in mice were associated with altered expression of endometrial Dnmts and genes controlling endometrial changes, suggesting that altered gene methylation, and not cytotoxicity alone, contributes to implantation defects induced by 5-aza-CdR.
Collapse
Affiliation(s)
- Yu-Bin Ding
- Department of Reproductive Biology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Chun-Lan Long
- Department of Reproductive Biology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xue-Qing Liu
- Department of Reproductive Biology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xue-Mei Chen
- Department of Reproductive Biology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Liang-Rui Guo
- Department of Reproductive Biology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yin-Yin Xia
- Department of Reproductive Biology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun-Lin He
- Department of Reproductive Biology, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Biology, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
61
|
De novo DNA methyltransferases: oncogenes, tumor suppressors, or both? Trends Genet 2012; 28:474-9. [PMID: 22704242 DOI: 10.1016/j.tig.2012.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 11/23/2022]
Abstract
Aberrant promoter DNA hypermethylation of tumor suppressor genes is a hallmark of cancer. This alteration is largely dependent on the action of de novo DNA methyltransferases (DNMTs) early during tumor progression, which supports the oncogenic role for these enzymes. However, recent research has identified several inactivating mutations of de novo DNMTs in various types of tumor. In addition, it has been shown that loss of de novo DNA methylation activity at advanced tumor stages leads to the promoter DNA demethylation-dependent expression of specific oncogenes. These new data support the notion that de novo DNMTs also have an important role in the maintenance of DNA methylation and suggest that, in addition to acting as oncogenes, they also behave as tumor suppressors. This potential dual role might have clinical implications, as DNMTs are currently considered bona fide targets in cancer therapy.
Collapse
|
62
|
LIU JUAN, ZHANG YAN, XIE YISHAN, WANG FULIANG, ZHANG LIJUN, DENG TAO, LUO HESHENG. 5-Aza-2′-deoxycytidine induces cytotoxicity in BGC-823 cells via DNA methyltransferase 1 and 3a independent of p53 status. Oncol Rep 2012; 28:545-52. [DOI: 10.3892/or.2012.1838] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/27/2012] [Indexed: 11/06/2022] Open
|
63
|
Kim YI, Shim J, Kim BH, Lee SJ, Lee HK, Cho C, Cho BN. Transcriptional silencing of the inhibin-α gene in human gastric carcinoma cells. Int J Oncol 2012; 41:690-700. [PMID: 22581369 DOI: 10.3892/ijo.2012.1472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/06/2012] [Indexed: 11/06/2022] Open
Abstract
Although inhibin was first identified as a hormone regulating pituitary FSH secretion, it was later recognized to act as a tumor suppressor in the gonad and adrenal glands. Recently, the alpha subunit of this dimeric hormone (inhibin‑α) was reported to be involved in prostate tumorigenesis. To identify additional roles outside the reproductive axis, we investigated inhibin‑α gene activity and subsequent cell fate in human gastric cancer cells. The results were as follows: all the gastric cancer cells had at least one of a set of abnormalities including hypermethylation of the promoter, mutation of the 5'‑UTR or allelic imbalance including LOH in the inhibin‑α gene. Hypermethylation of the promoter and mutation of the 5'‑UTR in inhibin‑α were observed in SNU‑1, SNU‑5 and SNU‑484 cells. LOH was observed in AGS, KATO III, SNU‑5, SNU‑484 and SNU‑668 cells. Treatment with 5‑AzaC, a demethylating agent, induced demethylation of the inhibin‑α promoter in the SNU‑1, SNU‑5 and SNU‑484 cell lines, with the CpG5 site being strongly influenced by 5‑AzaC. In addition, inhibin‑α mRNA and protein were maintained at low levels in most of the gastric cancer cell lines. These low levels of mRNA and protein expression could be increased in most lines by treatment with 5‑AzaC. These increased inhibin‑α expression levels seemed to be closely associated with apoptosis and suppression of cell growth. Taken together, our results reveal that the inhibin‑α gene is transcriptionally silenced in human gastric cancer cells, and that reactivation of the gene suppresses their growth characteristics. This suggests that inhibin‑α may have a more general tumor suppressor activity outside the reproductive axis.
Collapse
Affiliation(s)
- Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
64
|
Schrump DS. Targeting epigenetic mediators of gene expression in thoracic malignancies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:836-45. [PMID: 22507242 DOI: 10.1016/j.bbagrm.2012.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/20/2012] [Accepted: 03/28/2012] [Indexed: 12/14/2022]
Abstract
Lung and esophageal cancers and malignant pleural mesotheliomas are highly lethal neoplasms that are leading causes of cancer-related deaths worldwide. Presently, limited information is available pertaining to epigenetic mechanisms mediating initiation and progression of these neoplasms. The following presentation will focus on the potential clinical relevance of epigenomic alterations in thoracic malignancies mediated by DNA methylation, perturbations in the histone code, and polycomb group proteins, as well as ongoing translational efforts to target epigenetic regulators of gene expression for treatment of these neoplasms. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
Affiliation(s)
- David S Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Rm. 4-3940, 10 Center Drive, MSC 1201, Bethesda, MD 20892-1201, USA.
| |
Collapse
|
65
|
Epigenetic biomarkers in prostate cancer: Current and future uses. Cancer Lett 2012; 342:248-56. [PMID: 22391123 DOI: 10.1016/j.canlet.2012.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 12/18/2022]
Abstract
Epigenome alterations are characteristic of nearly all human malignancies and include changes in DNA methylation, histone modifications and microRNAs (miRNAs). However, what induces these epigenetic alterations in cancer is largely unknown and their mechanistic role in prostate tumorigenesis is just beginning to be evaluated. Identification of the epigenetic modifications involved in the development and progression of prostate cancer will not only identify novel therapeutic targets but also prognostic and diagnostic markers. This review will focus on the use of epigenetic modifications as biomarkers for prostate cancer.
Collapse
|
66
|
Recurrent DNMT3A R882 mutations in Chinese patients with acute myeloid leukemia and myelodysplastic syndrome. PLoS One 2011; 6:e26906. [PMID: 22066015 PMCID: PMC3204995 DOI: 10.1371/journal.pone.0026906] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/06/2011] [Indexed: 12/20/2022] Open
Abstract
Somatic mutations of DNMT3A gene have recently been reported in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). We examined the entire coding sequences of DNMT3A gene by high-resolution melting analysis and sequencing in Chinese patients with myeloid malignancies. R882 mutations were found in 12/182 AML and in 4/51 MDS, but not in either 79 chronic myeloid leukemia (CML), or 57 myeloproliferative neoplasms (MPNs), or 4 chronic monomyelocytic leukemia. No other DNMT3A mutations were detected in all patients. R882 mutations were associated with old age and more frequently present in monoblastic leukemia (M4 and M5, 7/52) compared to other subtypes (5/130). Furthermore, 14/16 (86.6%) R882 mutations were observed in patients with normal karyotypes. The overall survival of mutated MDS patients was shorter than those without mutation (median 9 and 25 months, respectively). We conclude that DNMT3A R882 mutations are recurrent molecular aberrations in AML and MDS, and may be an adverse prognostic event in MDS.
Collapse
|
67
|
Yamada N, Kitamoto S, Yokoyama S, Hamada T, Goto M, Tsutsumida H, Higashi M, Yonezawa S. Epigenetic regulation of mucin genes in human cancers. Clin Epigenetics 2011; 2:85-96. [PMID: 22704331 PMCID: PMC3365379 DOI: 10.1007/s13148-011-0037-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/18/2011] [Indexed: 12/16/2022] Open
Abstract
Mucins are high molecular weight glycoproteins that play important roles in diagnostic and prognostic prediction and in carcinogenesis and tumor invasion. Regulation of expression of mucin genes has been studied extensively, and signaling pathways, transcriptional regulators, and epigenetic modification in promoter regions have been described. Detection of the epigenetic status of cancer-related mucin genes is important for early diagnosis of cancer and for monitoring of tumor behavior and response to targeted therapy. Effects of micro-RNAs on mucin gene expression have also started to emerge. In this review, we discuss the current views on epigenetic mechanisms of regulation of mucin genes (MUC1, MUC2, MUC3A, MUC4, MUC5AC, MUC5B, MUC6, MUC16, and MUC17) and the possible clinical applications of this epigenetic information.
Collapse
|
68
|
Wang Y, Su J, Wang L, Xu W, Quan F, Liu J, Zhang Y. The effects of 5-aza-2'- deoxycytidine and trichostatin A on gene expression and DNA methylation status in cloned bovine blastocysts. Cell Reprogram 2011; 13:297-306. [PMID: 21486115 DOI: 10.1089/cell.2010.0098] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We previously found that treatment of both donor cells and early cloned embryos with combination of 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A (TSA) significantly improve the in vitro and full-term development of nuclear transfer (NT) bovine embryos. To investigate how this treatment improved the epigenetic reprogramming of somatic cell nuclei, we compared the expression levels of DNA methylation-, chromatin structure-, and development-related genes in in vitro fertilized (IVF group), NT (C-NT group), and 5-aza-dC and TSA-treated NT (T-NT group) single blastocyst using quantitative real-time PCR. We also compared the DNA methylation status of satellite I among three groups using bisulfite sequencing analysis and combined bisulfite restriction analysis (COBRA). There were significantly lower levels of DNMT1, DNMT3b, HDAC2, and IGF2 transcripts in T-NT blastocysts than in C-NT blastocysts, whereas the relative abundance of OCT4 and SOX2 mRNA was significantly increased in T-NT blastocysts compared to C-NT blastocysts. In addition, the treatment also reduced the DNA methylation levels of NT blastocysts on satellite I sequence. It is likely that TSA may act synergistically with 5-aza-dC to exert such modifications in gene expression and DNA methylation, subsequently enhancing developmental potential (in vitro and full-term) of treated cloned embryos.
Collapse
Affiliation(s)
- Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University , Key Laboratory of Animal Reproductive Physiology & Embryo Technology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
69
|
Rodríguez-Reyes R, Morales-Ramírez P. The in vivo induction of sister chromatid exchange by the demethylating agent 5-aza-2'-deoxycytidine. Mutagenesis 2011; 26:551-4. [PMID: 21454325 DOI: 10.1093/mutage/ger015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Previously, we observed that the demethylating agent 5-azacytidine (azaC) induces a constant and limited low frequency of sister chromatid exchange (SCE), seemingly due to a limited number of SCE-prone sites whose expression is related to DNA demethylation. An alternative explanation for the low frequency of SCE induction may be its inefficient incorporation into DNA, as it has a higher incorporation into RNA. The aim of the present work is to determine if the frequency of SCE induction is increased after exposure to 5-aza-2'-deoxycytidine (azadC), a compound with the same mechanism of demethylation as azaC but more efficiently incorporated into DNA. Groups of mice were treated with 2.2, 4.4, 6.6 and 8.8 μmol azadC per kilogram body weight, and the SCE frequency, the mitotic index and the average generation time were determined after two cell division cycles. The dose-response data of SCE induction showed two components: (i) a dose-dependent increase between 0 and 4.4 μmol and (ii) almost a same level of two SCEs per cell at 4.4 and 8.8 μmol. Although azadC is incorporated more efficiently into DNA, as shown by a lower dose required for a maximal effect, the highest frequency of SCE induction is similar to that observed with azaC. These results indicate that the low incorporation of azaC into DNA seems not to be the factor that limits SCE induction, but the limited number of specific SCE-prone sites in demethylated DNA. Perhaps, there are a restricted number of sites prone to homologous recombination due to DNA demethylation.
Collapse
Affiliation(s)
- R Rodríguez-Reyes
- Instituto Nacional de Investigaciones Nucleares, AP 18-1027 México, Distrito Federal, México
| | | |
Collapse
|
70
|
The rhox homeobox gene cluster is imprinted and selectively targeted for regulation by histone h1 and DNA methylation. Mol Cell Biol 2011; 31:1275-87. [PMID: 21245380 DOI: 10.1128/mcb.00734-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone H1 is an abundant and essential component of chromatin whose precise role in regulating gene expression is poorly understood. Here, we report that a major target of H1-mediated regulation in embryonic stem (ES) cells is the X-linked Rhox homeobox gene cluster. To address the underlying mechanism, we examined the founding member of the Rhox gene cluster-Rhox5-and found that its distal promoter (Pd) loses H1, undergoes demethylation, and is transcriptionally activated in response to loss of H1 genes in ES cells. Demethylation of the Pd is required for its transcriptional induction and we identified a single cytosine in the Pd that, when methylated, is sufficient to inhibit Pd transcription. Methylation of this single cytosine prevents the Pd from binding GA-binding protein (GABP), a transcription factor essential for Pd transcription. Thus, H1 silences Rhox5 transcription by promoting methylation of one of its promoters, a mechanism likely to extend to other H1-regulated Rhox genes, based on analysis of ES cells lacking DNA methyltransferases. The Rhox cluster genes targeted for H1-mediated transcriptional repression are also subject to another DNA methylation-regulated process: Xp imprinting. Remarkably, we found that only H1-regulated Rhox genes are imprinted, not those immune to H1-mediated repression. Together, our results indicate that the Rhox gene cluster is a major target of H1-mediated transcriptional repression in ES cells and that H1 is a candidate to have a role in Xp imprinting.
Collapse
|
71
|
Luszczek W, Cheriyath V, Mekhail TM, Borden EC. Combinations of DNA methyltransferase and histone deacetylase inhibitors induce DNA damage in small cell lung cancer cells: correlation of resistance with IFN-stimulated gene expression. Mol Cancer Ther 2010; 9:2309-21. [PMID: 20682643 DOI: 10.1158/1535-7163.mct-10-0309] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Because epigenetic inhibitors can reduce cancer cell proliferation, we tested the hypothesis that concurrent inhibition of histone acetylation and DNA methylation could synergistically reduce the viability of small cell lung cancer (SCLC) cells. Sub-IC(50) concentrations of the DNA methyltransferase (DNMT) inhibitor decitabine (5-AZA-dC) and the histone deacetylase (HDAC) inhibitors (LBH589 or MGCD0103) synergistically reduced the proliferation of five of nine SCLC cell lines. Loss of viability of sensitive SCLC cells did not correlate with the inhibition of either DNMT1 or HDACs, suggesting nonepigenetic mechanisms for synergy between these two classes of epigenetic modulators. Because combinations of 5-AZA-dC and HDAC inhibitors had marginal effects on the apoptosis index, Comet assay was undertaken to assess DNA damage. MGCD0103 and 5AZA-dC cotreatment augmented DNA damage in SCLC cells, resulting in increased tail length and moment in Comet assays by 24 hours in sensitive cell lines (P < 0.01). Consistent with augmented DNA damage, combination of a DNMT and HDAC inhibitor markedly increased the levels of phospho-H2A.X in sensitive cells but not in resistant ones. Comparison of basal gene expression between resistant and sensitive cells identified markedly higher basal expression of IFN-stimulated genes in the resistant cell lines, suggesting that IFN-stimulated gene expression may determine SCLC cell sensitivity to epigenetic modulators or other DNA damaging agents.
Collapse
Affiliation(s)
- Wioleta Luszczek
- Hematology/Oncology Research, Taussig Cancer Institute, The Cleveland Clinic, 9500 Euclid Avenue/R40, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
72
|
Genomewide DNA methylation analysis reveals novel targets for drug development in mantle cell lymphoma. Blood 2010; 116:1025-34. [PMID: 20427703 DOI: 10.1182/blood-2009-12-257485] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a mostly incurable malignancy arising from naive B cells (NBCs) in the mantle zone of lymph nodes. We analyzed genomewide methylation in MCL patients with the HELP (HpaII tiny fragment Enrichment by Ligation-mediated PCR) assay and found significant aberrancy in promoter methylation patterns compared with normal NBCs. Using biologic and statistical criteria, we further identified 4 hypermethylated genes CDKN2B, MLF-1, PCDH8, and HOXD8 and 4 hypomethylated genes CD37, HDAC1, NOTCH1, and CDK5 when aberrant methylation was associated with inverse changes in mRNA levels. Immunohistochemical analysis of an independent cohort of MCL patient samples confirmed CD37 surface expression in 93% of patients, validating its selection as a target for MCL therapy. Treatment of MCL cell lines with a small modular immunopharmaceutical (CD37-SMIP) resulted in significant loss of viability in cell lines with intense surface CD37 expression. Treatment of MCL cell lines with the DNA methyltransferase inhibitor decitabine resulted in reversal of aberrant hypermethylation and synergized with the histone deacetylase inhibitor suberoylanilide hydroxamic acid in induction of the hypermethylated genes and anti-MCL cytotoxicity. Our data show prominent and aberrant promoter methylation in MCL and suggest that differentially methylated genes can be targeted for therapeutic benefit in MCL.
Collapse
|
73
|
Steensma DP, Stone RM. Practical Recommendations for Hypomethylating Agent Therapy of Patients With Myelodysplastic Syndromes. Hematol Oncol Clin North Am 2010; 24:389-406. [DOI: 10.1016/j.hoc.2010.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
74
|
Beyrouthy MJ, Garner KM, Hever MP, Freemantle SJ, Eastman A, Dmitrovsky E, Spinella MJ. High DNA methyltransferase 3B expression mediates 5-aza-deoxycytidine hypersensitivity in testicular germ cell tumors. Cancer Res 2009; 69:9360-6. [PMID: 19951990 PMCID: PMC2795063 DOI: 10.1158/0008-5472.can-09-1490] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Testicular germ cell tumors (TGCT) are the most common solid tumors of 15- to 35-year-old men. TGCT patients are frequently cured with cytotoxic cisplatin-based therapy. However, TGCT patients refractory to cisplatin-based chemotherapy have a poor prognosis, as do those having a late relapse. Pluripotent embryonal carcinomas (EC) are the malignant counterparts to embryonic stem cells and are considered the stem cells of TGCTs. Here, we show that human EC cells are highly sensitive to 5-aza-deoxycytidine (5-aza-CdR) compared with somatic solid tumor cells. Decreased proliferation and survival with low nanomolar concentrations of 5-aza-CdR is associated with ATM activation, H2AX phosphorylation, increased expression of p21, and the induction of genes known to be methylated in TGCTs (MGMT, RASSF1A, and HOXA9). Notably, 5-aza-CdR hypersensitivity is associated with markedly abundant expression of the pluripotency-associated DNA methyltransferase 3B (DNMT3B) compared with somatic tumor cells. Knockdown of DNMT3B in EC cells results in substantial resistance to 5-aza-CdR, strongly indicating that 5-aza-CdR sensitivity is mechanistically linked to high levels of DNMT3B. Intriguingly, cisplatin-resistant EC cells retain an exquisite sensitivity to low-dose 5-aza-CdR treatment, and pretreatment of 5-aza-CdR resensitizes these cells to cisplatin-mediated toxicity. This resensitization is also partially dependent on high DNMT3B levels. These novel findings indicate that high expression of DNMT3B, a likely byproduct of their pluripotency and germ cell origin, sensitizes TGCT-derived EC cells to low-dose 5-aza-CdR treatment.
Collapse
Affiliation(s)
- Maroun J. Beyrouthy
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Kristen M. Garner
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Mary P. Hever
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Sarah J. Freemantle
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Alan Eastman
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755
| | - Ethan Dmitrovsky
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Department of Medicine, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755
| | - Michael J. Spinella
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755
| |
Collapse
|
75
|
Nakano T, Katafuchi A, Matsubara M, Terato H, Tsuboi T, Masuda T, Tatsumoto T, Pack SP, Makino K, Croteau DL, Van Houten B, Iijima K, Tauchi H, Ide H. Homologous recombination but not nucleotide excision repair plays a pivotal role in tolerance of DNA-protein cross-links in mammalian cells. J Biol Chem 2009; 284:27065-76. [PMID: 19674975 PMCID: PMC2785636 DOI: 10.1074/jbc.m109.019174] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/06/2009] [Indexed: 11/06/2022] Open
Abstract
DNA-protein cross-links (DPCs) are unique among DNA lesions in their unusually bulky nature. The steric hindrance imposed by cross-linked proteins (CLPs) will hamper DNA transactions, such as replication and transcription, posing an enormous threat to cells. In bacteria, DPCs with small CLPs are eliminated by nucleotide excision repair (NER), whereas oversized DPCs are processed exclusively by RecBCD-dependent homologous recombination (HR). Here we have assessed the roles of NER and HR for DPCs in mammalian cells. We show that the upper size limit of CLPs amenable to mammalian NER is relatively small (8-10 kDa) so that NER cannot participate in the repair of chromosomal DPCs in mammalian cells. Moreover, CLPs are not polyubiquitinated and hence are not subjected to proteasomal degradation prior to NER. In contrast, HR constitutes the major pathway in tolerance of DPCs as judged from cell survival and RAD51 and gamma-H2AX nuclear foci formation. Induction of DPCs results in the accumulation of DNA double strand breaks in HR-deficient but not HR-proficient cells, suggesting that fork breakage at the DPC site initiates HR and reactivates the stalled fork. DPCs activate both ATR and ATM damage response pathways, but there is a time lag between two responses. These results highlight the differential involvement of NER in the repair of DPCs in bacterial and mammalian cells and demonstrate the versatile and conserved role of HR in tolerance of DPCs among species.
Collapse
Affiliation(s)
- Toshiaki Nakano
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Atsushi Katafuchi
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Mayumi Matsubara
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Hiroaki Terato
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tomohiro Tsuboi
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tasuku Masuda
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takahiro Tatsumoto
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Seung Pil Pack
- the Department of Biotechnology and Bioinformatics, Korea University, Jochiwon, Chungnam 339-700, Korea
| | - Keisuke Makino
- the Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan
| | - Deborah L. Croteau
- the Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, and
| | - Bennett Van Houten
- the Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, and
| | - Kenta Iijima
- the **Department of Environmental Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Hiroshi Tauchi
- the **Department of Environmental Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Hiroshi Ide
- From the Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
76
|
Efficient readout of posttranslational codes on the 50-residue tail of histone H3 by high-resolution MS/MS. Anal Biochem 2009; 396:180-7. [PMID: 19761750 DOI: 10.1016/j.ab.2009.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 09/04/2009] [Accepted: 09/10/2009] [Indexed: 11/22/2022]
Abstract
Histone modifications are highly linked to DNA methylation and together they exert epigenetic control over many activities in the cell including gene transcription. Using a streamlined mass spectrometric approach to determine changes in modification states in the first 50 residues of histone H3, we found a decrease in the global methylation states of H3.1 at Lys 9, Lys 14, and Lys 27 after inhibition of DNA methyltransferases by 5-aza-2'-deoxycytidine. Collisional ion dissociation methods proved adequate to determine site-specific H3 posttranslational modifications (PTMs) because ample backbone bonds are cleaved between each modification site and PTMs were stable to MS/MS using threshold fragmentation in a linear ion trap (LTQ). Our assay allows for a quick profiling and site-specific interrogation of modification states on the first 50 residues of H3 and is directly applicable to H3.1, H3.2, or H3.3 using most OrbiTrap, FT ICR, or TOF mass spectrometers.
Collapse
|
77
|
Rahnama F, Thompson B, Steiner M, Shafiei F, Lobie PE, Mitchell MD. Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology 2009; 150:1466-72. [PMID: 18974268 DOI: 10.1210/en.2008-1142] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Key to the success of human reproduction is the capacity of an embryo to attach and implant into the endometrial wall after which a nutrient supply is established through placentation. Herein, we have examined the potential epigenetic regulation of uterine receptivity by use of the receptive RL95-2 and nonreceptive AN3-CA endometrial epithelial carcinoma cell lines. Using an in vitro model of embryo implantation, we demonstrate that inhibition of DNA methylation by 5'-aza-2'-deoxycytidine (AZA), resulted in the nonreceptive AN3-CA cell line becoming receptive to BeWo cell spheroid attachment. Examination of components of the adherens junction complex revealed that AZA specifically increased the expression of E-cadherin and plakoglobin at the mRNA and protein levels in AN3-CA cells, and E-cadherin protein expression was found to localize to sites of intercellular contact. Forced expression of E-cadherin in AN3-CA cells significantly enhanced receptivity. Small interfering RNA (siRNA)-mediated depletion of the individual DNA methyltransferase (DNMT) molecules did not induce E-cadherin expression in AN3-CA cells; however, concomitant siRNA-mediated depletion of both DNMT3A and DNMT3B induced the expression of E-cadherin. Furthermore, E-cadherin expression was significantly increased after the concomitant siRNA-mediated depletion of DNMT-1, -3A, and -3B in AN3-CA cells. Therefore, we have provided evidence that E-cadherin plays an important role in uterine receptivity and that E-cadherin expression is epigenetically regulated in AN3-CA cells, suppressed by the combined actions of DNMT-1, -3A, and -3B.
Collapse
Affiliation(s)
- Fahimeh Rahnama
- Faculty of Medical and Health Sciences, National Research Centre for Growth, Development and the Liggins Institute, University of Auckland, Private Bag, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
78
|
Deng T, Zhang Y. Possible involvement of activation of P53/P21 and demethylation of RUNX 3 in the cytotoxicity against Lovo cells induced by 5-Aza-2′-deoxycytidine. Life Sci 2009; 84:311-20. [DOI: 10.1016/j.lfs.2008.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 12/06/2008] [Accepted: 12/16/2008] [Indexed: 01/18/2023]
|
79
|
5-Aza-2'-deoxycytidine reactivates expression of RUNX3 by deletion of DNA methyltransferases leading to caspase independent apoptosis in colorectal cancer Lovo cells. Biomed Pharmacother 2008; 63:492-500. [PMID: 18848767 DOI: 10.1016/j.biopha.2008.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Accepted: 08/24/2008] [Indexed: 11/23/2022] Open
Abstract
The DNA methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR) has therapeutic value for the treatment of cancer. However, the mechanism by which 5-Aza-CdR induces antineoplastic activity is an important unresolved question. In this study, we found that 5-Aza-CdR at limited concentrations induced inhibition of colorectal cancer Lovo cell proliferation as well as increased apoptosis caused by DNA damage, which was independent of the caspase pathway. Regarding the mechanisms, for the first time, we examined that cytotoxicity against Lovo cells was regulated via down-regulation of DNA methyltransferase 3a, DNMT3b and then reactivated the expression of RUNX3. We therefore conclude that RUNX3 is a relevant target for methyltransferases dependent effects of 5-Aza-CdR on colorectal cancer Lovo cells.
Collapse
|
80
|
Abreu PA, Dellamora-Ortiz G, Leão-Ferreira LR, Gouveia M, Braggio E, Zalcberg I, Santos DO, Bourguinhon S, Cabral LM, Rodrigues CR, Castro HC. DNA methylation: a promising target for the twenty-first century. Expert Opin Ther Targets 2008; 12:1035-47. [PMID: 18620524 DOI: 10.1517/14728222.12.8.1035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Over the last few years DNA methylation and its involvement in diseases such as cancer has become of great interest for applied research. Since reversal of aberrant DNA methylation may influence the behavior of tumors, the methylation of DNA CpG sites is a potential target for the development of inhibitors for use in cancer treatment. OBJECTIVE/METHODS We briefly review the structural and mechanistic features of DNA methylation, including a structural analysis of the three main human DNA methyltransferases and some (pre)clinical results. RESULTS/CONCLUSION Despite side effects, data obtained to date still support the vision that DNA-methylation, possibly associated with the use of histone deacetylases (HDACs) and/or artificial transcription factors (ATFs), is a promising target for improving anticancer therapy in the 21st century.
Collapse
Affiliation(s)
- Paula A Abreu
- Federal Fluminense University, Biology Institute, Department of Celular and Molecular Biology, CEP 24020-150 Niterói, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Veerla S, Panagopoulos I, Jin Y, Lindgren D, Höglund M. Promoter analysis of epigenetically controlled genes in bladder cancer. Genes Chromosomes Cancer 2008; 47:368-78. [PMID: 18196590 DOI: 10.1002/gcc.20542] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
DNA methylation is an important epigenetic modification that regulates several genes crucial for tumor development. To identify epigenetically regulated genes in bladder cancer, we performed genome wide expression analyses of eight-bladder cancer cell lines treated with the demethylating agents 5-aza-2'-cytidine and zebularine. To identify methylated C-residues, we sequenced cloned DNA fragments from bisulfite-treated genomic DNA. We identified a total of 1092 genes that showed > or =2-fold altered expression in at least one cell line; 710 showed up-regulation and 382 down-regulation. Extensive sequencing of promoters from 25 genes in eight cell lines showed an association between methylation pattern and expression in 13 genes, including both CpG island and non-CpG island genes. Overall, the methylation patterns showed a patchy appearance with short segments showing high level of methylation separated by larger segments with no methylation. This pattern was not associated with MeCP2 binding sites or with evolutionarily conserved sequences. The genes UBXD2, AQP11, and TIMP1 showed particular patchy methylation patterns. We found several high-scoring and evolutionarily conserved transcription factor binding sites affected by methylated C residues. Two of the genes, FGF18 and MMP11, that were down-regulated as response to 5-aza-2'-cytidine and zebularine treatment showed methylation at specific sites in the untreated cells indicating an activating result of methylation. Apart from identifying epigenetically regulated genes, including TGFBR1, NUPR1, FGF18, TIMP1, and MMP11, that may be of importance for bladder cancer development the presented data also highlight the organization of the modified segments in methylated promoters. This article contains supplementary material available via the Internet at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Srinivas Veerla
- Department of Clinical Genetics, Lund University Hospital, SE-22185, Lund, Sweden.
| | | | | | | | | |
Collapse
|
82
|
The effect of thiopurine drugs on DNA methylation in relation to TPMT expression. Biochem Pharmacol 2008; 76:1024-35. [PMID: 18708030 DOI: 10.1016/j.bcp.2008.07.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/21/2008] [Accepted: 07/21/2008] [Indexed: 11/30/2022]
Abstract
The thiopurine drugs 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) are well-established agents for the treatment of leukaemia but their main modes of action are controversial. Thiopurine methyltransferase (TPMT) metabolises thiopurine drugs and influences their cytotoxic activity. TPMT, like DNA methyltransferases (DNMTs), transfers methyl groups from S-adenosylmethionine (SAM) and generates S-adenosylhomocysteine (SAH). Since SAM levels are dependent on de novo purine synthesis (DNPS) and the metabolic products of 6-TG and 6-MP differ in their ability to inhibit DNPS, we postulated that 6-TG compared to 6-MP would have differential effects on changes in SAM and SAH levels and global DNA methylation, depending on TPMT status. To test this hypothesis, we used a human embryonic kidney cell line with inducible TPMT. Although changes in SAM and SAH levels occurred with each drug, decrease in global DNA methylation more closely reflected a decrease in DNMT activity. Inhibition was influenced by TPMT for 6-TG, but not 6-MP. The decrease in global methylation and DNMT activity with 6-MP, or with 6-TG when TPMT expression was low, were comparable to 5-aza-2'-deoxycytidine. However, this was not reflected in changes in methylation at the level of an individual marker gene (MAGE1A). The results suggest that a non-TPMT metabolised metabolite of 6-MP and 6-TG and the TPMT-metabolised 6-MP metabolite 6-methylthioguanosine 5'-monophosphate, contribute to a decrease in DNMT levels and global DNA methylation. As demethylating agents have shown promise in leukaemia treatment, inhibition of DNA methylation by the thiopurine drugs may contribute to their cytotoxic affects.
Collapse
|
83
|
Wu QQ, Wei YN, Zhang SZ, Shu Q. Relationship between differentially expressed genes and epigenetic modification during the early stage of esophageal carcinoma induced by nitrosamine. Shijie Huaren Xiaohua Zazhi 2008; 16:1487-1492. [DOI: 10.11569/wcjd.v16.i14.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the differentially expressed genes in the process of esophageal carcinoma induced by nitrosamine, and analyze the property of gene expression at different stages, especially the relationship between differentially expressed genes and DNA methylation.
METHODS: One hundred and ten mice were randomly divided into group A (n = 40) and B (n = 70). The mice in group A were fed with distilled water, while those in group B were fed with carcinoma-inducing mixture containing 20 g/L sodium nitrite and 200 g/L N, N-dimethyl benzyl amine. At the 4, 8, and 20 wk of induction stages, the total RNA from esophageal tissues was isolated and reversely transcripted, and then hybridization with gene-chip was performed. The differentially expressed genes of the two groups were analyzed.
RESULTS: During the process of induction, the number of up-regulated oncogenes increased in a step-by-step fashion in group B as compared with that in group A, and the phase-specificity of oncogenes was observed. But most antioncogenes did not change remarkably. Most genes of DNA methylation did not change at 4 wk, but were up-regulated at 8 and 20 wk. The DNA demethylation gene Mdb2b was up-regulated from the 8 wk, but Gadd45a was up-regulated from the 4 wk and maintained a high level at 8 and 20 wk. Genes of histone acetylation, which were changed obviously, were not found.
CONCLUSION: During the process of nitrosamine-induced esophageal carcinoma, up-regulation of numerous genes may associate with the demethylation of genomic DNA at the early stage. Gadd45a may be involved in the demethylation during the early weeks.
Collapse
|
84
|
Shafiei F, Rahnama F, Pawella L, Mitchell MD, Gluckman PD, Lobie PE. DNMT3A and DNMT3B mediate autocrine hGH repression of plakoglobin gene transcription and consequent phenotypic conversion of mammary carcinoma cells. Oncogene 2008; 27:2602-12. [PMID: 17998942 DOI: 10.1038/sj.onc.1210917] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 10/05/2007] [Accepted: 10/08/2007] [Indexed: 12/23/2022]
Abstract
Directed by microarray analyses, we report that autocrine human growth hormone (hGH) increased the mRNA and protein expression of DNA methyltransferase 1 (DNMT1), DNMT3A and DNMT3B in mammary carcinoma cells. Autocrine hGH stimulation of DNMT3A and DNMT3B expression was mediated by JAK2 and Src kinases, and treatment of mammary carcinoma cells with the DNMT inhibitor, 5'-aza-2'-deoxycytidine (AZA), abrogated autocrine hGH-stimulated cellular proliferation, apoptosis and anchorage-independent growth. AZA reversed the epitheliomesenchymal transition of mammary carcinoma cells induced by autocrine hGH, to an epithelioid morphology and abrogated cell migration stimulated by autocrine hGH. Autocrine hGH-stimulated hypermethylation of the first exon of the PLAKOGLOBIN gene and AZA abrogated the ability of autocrine hGH to repress plakoglobin gene transcription. Small interfering RNA (siRNA)-mediated depletion of the individual DNMT molecules did not release autocrine hGH repression of PLAKOGLOBIN promoter activity nor did individual DNMT depletion affect autocrine hGH-stimulated migration. However, concomitant siRNA-mediated depletion of both DNMT3A and DNMT3B abrogated hypermethylation of the PLAKOGLOBIN gene stimulated by autocrine hGH and subsequent repression of plakoglobin gene transcription and increased cell migration. Thus, the autocrine hGH-stimulated increases in DNMT3A and DNMT3B expression mediate repression of plakoglobin gene transcription by direct hypermethylation of its promoter and consequent phenotypic conversion of mammary carcinoma cells. Autocrine hGH, therefore, utilizes DNA methylation as a mechanism to exert its oncogenic effects in mammary carcinoma cells.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Autocrine Communication/drug effects
- Autocrine Communication/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Proliferation/drug effects
- Cytidine Monophosphate/analogs & derivatives
- Cytidine Monophosphate/pharmacology
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/biosynthesis
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA Methylation/drug effects
- DNA Methyltransferase 3A
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Growth Hormone/antagonists & inhibitors
- Growth Hormone/genetics
- Growth Hormone/metabolism
- Humans
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Phenotype
- Promoter Regions, Genetic/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Small Interfering/genetics
- gamma Catenin/biosynthesis
- gamma Catenin/genetics
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- F Shafiei
- National Research Centre for Growth and Development and the Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
85
|
Klinck R, Bramard A, Inkel L, Dufresne-Martin G, Gervais-Bird J, Madden R, Paquet ER, Koh C, Venables JP, Prinos P, Jilaveanu-Pelmus M, Wellinger R, Rancourt C, Chabot B, Abou Elela S. Multiple alternative splicing markers for ovarian cancer. Cancer Res 2008; 68:657-63. [PMID: 18245464 DOI: 10.1158/0008-5472.can-07-2580] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intense efforts are currently being directed toward profiling gene expression in the hope of developing better cancer markers and identifying potential drug targets. Here, we present a sensitive new approach for the identification of cancer signatures based on direct high-throughput reverse transcription-PCR validation of alternative splicing events. This layered and integrated system for splicing annotation (LISA) fills a gap between high-throughput microarray studies and high-sensitivity individual gene investigations, and was created to monitor the splicing of 600 cancer-associated genes in 25 normal and 21 serous ovarian cancer tissues. Out of >4,700 alternative splicing events screened, the LISA identified 48 events that were significantly associated with serous ovarian tumor tissues. In a further screen directed at 39 ovarian tissues containing cancer pathologies of various origins, our ovarian cancer splicing signature successfully distinguished all normal tissues from cancer. High-volume identification of cancer-associated splice forms by the LISA paves the way for the use of alternative splicing profiling to diagnose subtypes of cancer.
Collapse
Affiliation(s)
- Roscoe Klinck
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD. DNA methylation inhibitor 5-Aza-2'-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol 2008; 28:752-71. [PMID: 17991895 PMCID: PMC2223421 DOI: 10.1128/mcb.01799-07] [Citation(s) in RCA: 295] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 10/25/2007] [Indexed: 02/08/2023] Open
Abstract
Genome-wide DNA methylation patterns are frequently deregulated in cancer. There is considerable interest in targeting the methylation machinery in tumor cells using nucleoside analogs of cytosine, such as 5-aza-2'-deoxycytidine (5-azadC). 5-azadC exerts its antitumor effects by reactivation of aberrantly hypermethylated growth regulatory genes and cytoxicity resulting from DNA damage. We sought to better characterize the DNA damage response of tumor cells to 5-azadC and the role of DNA methyltransferases 1 and 3B (DNMT1 and DNMT3B, respectively) in modulating this process. We demonstrate that 5-azadC treatment results in growth inhibition and G(2) arrest-hallmarks of a DNA damage response. 5-azadC treatment led to formation of DNA double-strand breaks, as monitored by formation of gamma-H2AX foci and comet assay, in an ATM (ataxia-telangiectasia mutated)-dependent manner, and this damage was repaired following drug removal. Further analysis revealed activation of key strand break repair proteins including ATM, ATR (ATM-Rad3-related), checkpoint kinase 1 (CHK1), BRCA1, NBS1, and RAD51 by Western blotting and immunofluorescence. Significantly, DNMT1-deficient cells demonstrated profound defects in these responses, including complete lack of gamma-H2AX induction and blunted p53 and CHK1 activation, while DNMT3B-deficient cells generally showed mild defects. We identified a novel interaction between DNMT1 and checkpoint kinase CHK1 and showed that the defective damage response in DNMT1-deficient cells is at least in part due to altered CHK1 subcellular localization. This study therefore greatly enhances our understanding of the mechanisms underlying 5-azadC cytotoxicity and reveals novel functions for DNMT1 as a component of the cellular response to DNA damage, which may help optimize patient responses to this agent in the future.
Collapse
Affiliation(s)
- Stela S Palii
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Box 100245, 1600 SW Archer Rd., Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
87
|
Yauk CL, Polyzos A, Rowan-Carroll A, Kortubash I, Williams A, Kovalchuk O. Tandem repeat mutation, global DNA methylation, and regulation of DNA methyltransferases in cultured mouse embryonic fibroblast cells chronically exposed to chemicals with different modes of action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:26-35. [PMID: 18172875 DOI: 10.1002/em.20359] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mutations at expanded simple tandem repeat (ESTR) DNA sequences provide a useful tool for screening germline mutation. However, the mechanisms resulting in induced mutations are unknown and provide an impediment to the utility of the method. Induced ESTR mutations arise through a nontargeted mechanism resulting in destabilization of the repeat locus. We hypothesized that alterations in DNA methylation, or in DNA methyltransferase expression, may be associated with this indirect mechanism of mutation. DNA mutation frequency was measured in C3H/10T1/2 mouse embryonic fibroblast cells following chronic exposure to six chemicals exhibiting different modes of genotoxic action: N-nitroso-N-ethylurea (ENU); benzo(a)pyrene (BaP); etoposide (ETOP); okadaic acid (OA); cisplatin (CisPt); and 5-azacytidine (5azadC). Induced mutation ranged from 2-fold (ENU, BaP, ETOP), to 1.3-1.4 fold (OA, 5azadC), to nonresponsive (CisPt). Global DNA methylation, measured using the cytosine extension assay, revealed hypomethylation following exposure to ENU and 5azadC, hypermethylation following BaP and OA exposure, and no change following treatment with ETOP or CisPt. DNA methyltransferase transcription (Dnmt1, Dnmt3a, Dnmt3b) was significantly affected by all treatments except ETOP, with the vast majority of changes being downregulation. There was no direct correlation between ESTR mutation, global methylation, or DNA methyltransferase transcription. However, 4/5 ESTR mutagens caused changes in global methylation, while the noninducer (CisPt) did not cause changes in methylation. We hypothesize that chemicals that modify chromatin conformation through changes in methylation may compromise the ability of mismatch repair enzymes (or other enzymes) to access and repair secondary structures that may form across ESTR loci resulting in mutation.
Collapse
Affiliation(s)
- Carole L Yauk
- Environmental Health Sciences and Research Bureau, Safe Environments Programme, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
88
|
Latham T, Gilbert N, Ramsahoye B. DNA methylation in mouse embryonic stem cells and development. Cell Tissue Res 2007; 331:31-55. [PMID: 18060563 DOI: 10.1007/s00441-007-0537-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/17/2007] [Indexed: 01/01/2023]
Abstract
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.
Collapse
Affiliation(s)
- Tom Latham
- Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
89
|
Li JY, Pu MT, Hirasawa R, Li BZ, Huang YN, Zeng R, Jing NH, Chen T, Li E, Sasaki H, Xu GL. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol 2007; 27:8748-59. [PMID: 17938196 PMCID: PMC2169413 DOI: 10.1128/mcb.01380-07] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/22/2007] [Accepted: 10/04/2007] [Indexed: 12/22/2022] Open
Abstract
DNA methylation plays an important role in gene silencing in mammals. Two de novo methyltransferases, Dnmt3a and Dnmt3b, are required for the establishment of genomic methylation patterns in development. However, little is known about their coordinate function in the silencing of genes critical for embryonic development and how their activity is regulated. Here we show that Dnmt3a and Dnmt3b are the major components of a native complex purified from embryonic stem cells. The two enzymes directly interact and mutually stimulate each other both in vitro and in vivo. The stimulatory effect is independent of the catalytic activity of the enzyme. In differentiating embryonic carcinoma or embryonic stem cells and mouse postimplantation embryos, they function synergistically to methylate the promoters of the Oct4 and Nanog genes. Inadequate methylation caused by ablating Dnmt3a and Dnmt3b is associated with dysregulated expression of Oct4 and Nanog during the differentiation of pluripotent cells and mouse embryonic development. These results suggest that Dnmt3a and Dnmt3b form a complex through direct contact in living cells and cooperate in the methylation of the promoters of Oct4 and Nanog during cell differentiation. The physical and functional interaction between Dnmt3a and Dnmt3b represents a novel regulatory mechanism to ensure the proper establishment of genomic methylation patterns for gene silencing in development.
Collapse
Affiliation(s)
- Jing-Yu Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Oakes CC, Kelly TLJ, Robaire B, Trasler JM. Adverse effects of 5-aza-2'-deoxycytidine on spermatogenesis include reduced sperm function and selective inhibition of de novo DNA methylation. J Pharmacol Exp Ther 2007; 322:1171-80. [PMID: 17581917 DOI: 10.1124/jpet.107.121699] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The anticancer agent, 5-aza-2'-deoxycytidine (5-azaCdR, decitabine), causes DNA hypomethylation and a robust, dose-dependent disruption of spermatogenesis. Previously, we have shown that altered testicular histology and reduced sperm production in 5-azaCdR-treated animals is associated with decreased global sperm DNA methylation and an increase in infertility and/or a decreased ability to support preimplantation embryonic development. The goal of this study was to determine potential contributors to 5-azaCdR-mediated infertility including alterations in sperm motility, fertilization ability, early embryo development, and sequence-specific DNA methylation. We find that although 5-azaCdR-treatment adversely affected sperm motility and the survival of sired embryos to the blastocyst stage, the major contributor to infertility was a marked (56-70%) decrease in fertilization ability. Sperm DNA methylation was investigated using Southern blot, restriction landmark genomic scanning, and quantitative analysis of DNA methylation by real-time polymerase chain reaction. Interestingly, hypomethylation was restricted to genomic loci that have been previously determined to acquire methylation during spermatogenesis, demonstrating that 5-azaCdR selectively inhibits de novo methylation activity. Similar to previous studies, we show that mice that are heterozygous for a nonfunctional Dnmt1 gene are partially protected against the deleterious effects of 5-azaCdR; however, methylation levels are not restored in these mice, suggesting that adverse effects are due to another mechanism(s) in addition to DNA hypomethylation. These results demonstrate that clinically relevant doses of 5-azaCdR specifically impair de novo methylation activity in male germ cells; however, genotype-specific differences in drug responses suggest that adverse reproductive outcomes are mainly mediated by the cytotoxic properties of the drug.
Collapse
Affiliation(s)
- Christopher C Oakes
- Department of Pharmacology and Therapeutics, McGill University-Montreal Children's Hospital Research Institute, 2300 Tupper St., Montreal, QC, Canada
| | | | | | | |
Collapse
|
91
|
Sigalotti L, Fratta E, Coral S, Cortini E, Covre A, Nicolay HJM, Anzalone L, Pezzani L, Di Giacomo AM, Fonsatti E, Colizzi F, Altomonte M, Calabrò L, Maio M. Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications. J Cell Physiol 2007; 212:330-44. [PMID: 17458893 DOI: 10.1002/jcp.21066] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the last three decades huge efforts have been made to characterize genetic defects responsible for cancer development and progression, leading to the comprehensive identification of distinct cellular pathways affected by the alteration of specific genes. Despite the undoubtable role of genetic mechanisms in triggering neoplastic cell transformation, epigenetic modifications (i.e., heritable changes of gene expression that do not derive from alterations of the nucleotide sequence of DNA) are rapidly emerging as frequent alterations that often occur in the early phases of tumorigenesis and that play an important role in tumor development and progression. Epigenetic alterations, such as modifications in DNA methylation patterns and post-translational modifications of histone tails, behave extremely different from genetic modifications, being readily revertable by "epigenetic drugs" such as inhibitors of DNA methyl transferases and inhibitors of histone deacetylases. Since epigenetic alterations in cancer cells affect virtually all cellular pathways that have been associated to tumorigenesis, it is not surprising that epigenetic drugs display pleiotropic activities, being able to concomitantly restore the defective expression of genes involved in cell cycle control, apoptosis, cell signaling, tumor cell invasion and metastasis, angiogenesis and immune recognition. Prompted by this emerging clinical relevance of epigenetic drugs, this review will focus on the large amount of available data, deriving both from in vitro experimentations and in vivo pre-clinical and clinical studies, which clearly indicate epigenetic drugs as effective modifiers of cancer phenotype and as positive regulators of tumor cell biology with a relevant therapeutic potential in cancer patients.
Collapse
Affiliation(s)
- Luca Sigalotti
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Hwang CK, Song KY, Kim CS, Choi HS, Guo XH, Law PY, Wei LN, Loh HH. Evidence of endogenous mu opioid receptor regulation by epigenetic control of the promoters. Mol Cell Biol 2007; 27:4720-36. [PMID: 17452465 PMCID: PMC1951474 DOI: 10.1128/mcb.00073-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The pharmacological effect of morphine as a painkiller is mediated mainly via the mu opioid receptor (MOR) and is dependent on the number of MORs in the cell surface membrane. While several studies have reported that the MOR gene is regulated by various cis- and trans-acting factors, many questions remain unanswered regarding in vivo regulation. The present study shows that epigenetic silencing and activation of the MOR gene are achieved through coordinated regulation at both the histone and DNA levels. In P19 mouse embryonal carcinoma cells, expression of the MOR was greatly increased after neuronal differentiation. MOR expression could also be induced by a demethylating agent (5'-aza-2'-deoxycytidine) or histone deacetylase inhibitors in the P19 cells, suggesting involvement of DNA methylation and histone deacetylation for MOR gene silencing. Analysis of CpG DNA methylation revealed that the proximal promoter region was unmethylated in differentiated cells compared to its hypermethylation in undifferentiated cells. In contrast, the methylation of other regions was not changed in either cell type. Similar methylation patterns were observed in the mouse brain. In vitro methylation of the MOR promoters suppressed promoter activity in the reporter assay. Upon differentiation, the in vivo interaction of MeCP2 was reduced in the MOR promoter region, coincident with histone modifications that are relevant to active transcription. When MeCP2 was disrupted using MeCP2 small interfering RNA, the endogenous MOR gene was increased. These data suggest that DNA methylation is closely linked to the MeCP2-mediated chromatin structure of the MOR gene. Here, we propose that an epigenetic mechanism consisting of DNA methylation and chromatin modification underlies the cell stage-specific mechanism of MOR gene expression.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Butcher DT, Rodenhiser DI. Epigenetic inactivation of BRCA1 is associated with aberrant expression of CTCF and DNA methyltransferase (DNMT3B) in some sporadic breast tumours. Eur J Cancer 2007; 43:210-9. [PMID: 17071074 DOI: 10.1016/j.ejca.2006.09.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/31/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
We assessed expression of the BRCA1, CTCF and DNMT3b methyltransferase genes along with BRCA1 promoter methylation to better define the epigenetic events involved in BRCA1 inactivation in sporadic breast cancer. These gene expression patterns were determined in 54 sporadic breast tumours by immunohistochemistry and the methylation status of the BRCA1 promoter was evaluated using methylation-specific PCR. We observed significant DNMT3b expression in 80% of the tumours and that 43% of tumours exhibited novel cytoplasmic CTCF expression. Pairwise analyses of gene expression patterns showed that 28/32 tumours lacked BRCA1 expression and also exhibited cytoplasmic CTCF staining, while 24/32 of these tumours also overexpressed DNMT3b. Furthermore, 86% of the BRCA1 low-expressing tumours were methylated at the BRCA1 promoter and a subset of these tumours displayed both cytoplasmic CTCF and increased DNMT3b expression. Thus, tumour subsets exist that display concurrent decreased BRCA1 expression, BRCA1 promoter methylation, cytoplasmic CTCF expression and with DNMT3b over-expression. We suggest that these altered CTCF and DNMT3b expression patterns represent (a) critical events responsible for the epigenetic inactivation of BRCA1 and (b) a diagnostic signature for epigenetic inactivation of other tumour suppressor genes in sporadic breast tumours.
Collapse
Affiliation(s)
- Darci T Butcher
- The University of Western Ontario and the London Regional Cancer Program, London Health Sciences Centre, Room A4-134, 790 Commissioners Rd. East, London, Ont., Canada N6A 4L6
| | | |
Collapse
|
94
|
Baqir S, Smith LC. Inhibitors of histone deacetylases and DNA methyltransferases alter imprinted gene regulation in embryonic stem cells. CLONING AND STEM CELLS 2006; 8:200-13. [PMID: 17009896 DOI: 10.1089/clo.2006.8.200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pluripotent embryonic stem cells are able to differentiate into a variety of cell types, thereby making them a valuable source for transplantation medicine. Recent studies have reported the use of pharmacological agents, namely 5-Aza-Cytidine (5AzaC) and Trichostatin A (TSA), to guide embryonic stem (ES) cells to differentiate into specific cellular lineages. However, those drugs are known to be potent inhibitors of DNA methyltransferases and/or histone deacetylases. Since both epigenetic mechanisms are involved in the expression of imprinted genes in fetal and adult somatic tissues, it is essential to investigate further the role of these agents in regulating imprinted gene expression in embryonic cells. Embryonic stem cells were exposed to 5AzaC and TSA and analyzed for transcript abundance of a number of imprinted and non-imprinted marker genes. Most imprinted gene transcripts increased following exposure to 5AzaC or TSA alone and responded in either an additive or synergistic manner when exposed to both drugs together. Interestingly, transcript levels of several imprinted genes remained high and in some cases, increased further after drug removal or even after passaging the cells, indicating a long lasting and retarded effect on gene expression. Together, our results suggest that DNA methylation and histone acetylation play jointly an important epigenetic role in governing imprinted gene expression in embryonic stem cells. Moreover, these results describe the sensitivity and irreversibility of embryonic stem cells to epigenetic modifiers, highlighting potential risks for their use in therapeutic applications.
Collapse
Affiliation(s)
- Senan Baqir
- Centre de Recherche en Reproduction Animale (CRRA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | |
Collapse
|
95
|
Rahnama F, Shafiei F, Gluckman PD, Mitchell MD, Lobie PE. Epigenetic regulation of human trophoblastic cell migration and invasion. Endocrinology 2006; 147:5275-83. [PMID: 16887905 DOI: 10.1210/en.2006-0288] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pivotal to successful mammalian reproduction is the ability of a developing embryo to implant to the uterine wall and establish a nutrient supply via placentation. Herein, we have examined the potential epigenetic regulation of human trophoblastic cell migration and invasion by use of the choriocarcinoma cell line, BeWo. Treatment of BeWo cells with a DNA methyltransferase inhibitor, 5'-aza-2'-deoxycytidine (AZA), resulted in conversion of cell morphology to a nonmigratory phenotype. This was exemplified by the ability of AZA to prevent BeWo cell migration in wound healing and transwell migration assays. AZA consequently inhibited BeWo cell invasion through reconstituted basement membrane. Examination of components of the adherens junction complex pivotal for determination of cell phenotype revealed that AZA specifically increased the mRNA level of E-cadherin and plakoglobin (gamma-catenin), but not alpha-catenin and beta-catenin. AZA also increased the gene promoter activity of both plakoglobin and E-cadherin. Protein levels of both plakoglobin and E-cadherin were increased by AZA, and AZA enhanced their localization to sites of intercellular contact. Forced expression of plakoglobin and E-cadherin abrogated BeWo cell migration, indicative that repression of these genes was required for BeWo cell migration. Small interfering RNA-mediated depletion of the individual DNA methyltransferase (DNMT) molecules did not affect plakoglobin and E-cadherin promoter activity or BeWo cell migration. However, increases in plakoglobin and E-cadherin promoter activity and inhibition of BeWo cell migration was achieved with small interfering RNA-mediated depletion of both DNMT-3a and DNMT-3b. Epigenetic regulation of plakoglobin and E-cadherin is therefore pivotal for appropriate trophoblastic invasion in vitro.
Collapse
Affiliation(s)
- Fahimeh Rahnama
- National Research Centre for Growth and Development, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
96
|
Kameda T, Smuga-Otto K, Thomson JA. A severe de novo methylation of episomal vectors by human ES cells. Biochem Biophys Res Commun 2006; 349:1269-77. [PMID: 16973130 DOI: 10.1016/j.bbrc.2006.08.175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 08/29/2006] [Indexed: 11/29/2022]
Abstract
Episomal vectors can allow efficient genetic modification of cells and have the potential advantage of avoiding chromosomal position of integration effects. Here we explore the use of an Epstein-Barr virus-based episomal vector with human embryonic stem (ES) cells, and find high initial transfection rates, but a rapid loss of reporter gene expression. Similar to mouse ES cells, human ES cells express high levels of the de novo DNA methyltransferases, and we detected dramatic CpG methylation and minor non-CpG methylation on the episomes recovered from the human ES cells 7 days after the transfection, which was not present on the same episome recovered from 293 cells. Interestingly, the oriP region of the episomes was relatively excluded from this methylation. These findings define some of the limitations of using episomal vectors with human ES cells and offer a unique platform for analyzing epigenetic gene silencing in human ES cells.
Collapse
Affiliation(s)
- Takashi Kameda
- The Genome Center of Wisconsin, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
97
|
Boireau S, Buchert M, Samuel MS, Pannequin J, Ryan JL, Choquet A, Chapuis H, Rebillard X, Avancès C, Ernst M, Joubert D, Mottet N, Hollande F. DNA-methylation-dependent alterations of claudin-4 expression in human bladder carcinoma. Carcinogenesis 2006; 28:246-58. [PMID: 16829686 DOI: 10.1093/carcin/bgl120] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The expression pattern of tight junction (TJ) proteins is frequently disrupted in epithelial tumors. In particular, isoform- and organ-specific alterations of claudins have been detected in human cancers, highlighting them as interesting tools for the prognosis or treatment of various carcinomas. However, the molecular mechanisms responsible for these alterations are seldom identified. Here, we analyzed the expression and localization of claudins 1, 4, and 7 in human bladder carcinoma. Claudin-4 expression was significantly altered in 26/39 tumors, contrasting with the rare modifications detected in the expression of claudins 1 and 7. Overexpression of claudin-4 in differentiated carcinomas was followed by a strong downregulation in invasive/high-grade tumors, and this expression pattern was associated to the 1-year survival of bladder tumor patients. A CpG island was identified within the coding sequence of the CLDN4 gene, and treatment with a methyl-transferase inhibitor restored expression of the protein in primary cultures prepared from high-grade human bladder tumors. In addition, claudin-4 expression correlated with its gene methylation profile in healthy and tumoral bladders from 20 patients, and downregulation of claudin-4 expression was detected in the urothelium of mice overexpressing DNA methyl transferase 3a (Dnmt3a). Delocalization of claudins 1 and 4 from TJs was observed in most human bladder tumors and in the bladder tumor cell line HT-1376. Although the CLDN4 gene was unmethylated in these cells, pharmacological inhibition of methyl transferases re-addressed the two proteins to TJs, resulting in an increase of cell polarization and transepithelial resistance. These biological effects were prevented by expression of claudin-4-specific siRNAs, demonstrating the important role played by claudin-4 in maintaining a functional regulation of homeostasis in urothelial cells. Results of this study indicate that the TJ barrier is disrupted from early stages of urothelial tumorigenesis. In addition, we identified hypermethylation as the mechanism leading to the alteration of claudin-4 expression, and maybe also localization, in bladder carcinoma.
Collapse
Affiliation(s)
- Stéphanie Boireau
- CNRS UMR5203, INSERM U661, Université Montpellier I, and Service d'Anatomo-pathologie, CHU Groupe Hospitalisation Carémeau, Nîmes, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Macheiner D, Heller G, Kappel S, Bichler C, Stättner S, Ziegler B, Kandioler D, Wrba F, Schulte-Hermann R, Zöchbauer-Müller S, Grasl-Kraupp B. NORE1B, a candidate tumor suppressor, is epigenetically silenced in human hepatocellular carcinoma. J Hepatol 2006; 45:81-9. [PMID: 16516329 DOI: 10.1016/j.jhep.2005.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 12/12/2005] [Accepted: 12/20/2005] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS In human hepatocellular carcinoma (HCC) the ras-proto-oncogene is rarely mutated. We therefore studied the possible inactivation of the putative tumor-suppressors and ras-associating proteins, NORE1A, NORE1B, and RASSF1A in HCCs by mutation or epigenetic gene silencing through promoter-CpG hypermethylation. METHODS SSCP-analyses, sequencing, and methylation-specific PCR were performed in 28 fibrotic/cirrhotic livers and 40 HCCs. RESULTS The sequence of NORE1A/B exhibited no deviations and that of the RASSF1A gene a non-silent polymorphism ( approximately 10% of cases) and a missense mutation (one HCC). Both alterations may affect the growth-inhibiting capability of RASSF1A. Epigenetic inactivation of NORE1B was found in 62% of the HCCs and in hepatocarcinoma-cell lines due to considerable promoter-methylation of the gene. Methylation was detected also for RASSF1A in HCCs and hepatocarcinoma cell-lines. As a result, 97% of the HCCs revealed epigenetic silencing of NORE1B, RASSF1A, or both. In contrast every third fibrotic/cirrhotic liver only exhibited silencing of one or both genes. CONCLUSIONS The candidate tumor suppressor genes NORE1B and RASSF1A are epigenetically down-regulated alone in at least 62%, or in combination in 97% of the HCCs studied. This indicates a frequent and critical event in hepatocarcinogenesis, which may allow HCCs to subverse growth-control in the presence of an unaltered Ras.
Collapse
Affiliation(s)
- Doris Macheiner
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Oka M, Rodić N, Graddy J, Chang LJ, Terada N. CpG sites preferentially methylated by Dnmt3a in vivo. J Biol Chem 2006; 281:9901-8. [PMID: 16439359 DOI: 10.1074/jbc.m511100200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dnmt3a and Dnmt3b are two major de novo DNA methyltransferases essential for embryonic development in mammals. It has been shown that Dnmt3a and Dnmt3b have distinct substrate preferences for certain genomic loci, including major and minor satellite repeats. However, the exact target CpG sites where Dnmt3a and Dnmt3b catalyze DNA methylation remains largely unknown. To identify a CpG site that is specifically methylated by Dnmt3a or Dnmt3b, we screened methylated genomic loci by methylation sensitive restriction fingerprinting using genomic DNA from wild-type, Dnmt3a null, Dnmt3b null, and Dnmt3a-Dnmt3b double null ES cells. Interestingly, one of the CpG sites was preferentially methylated in wild-type and Dnmt3b null ES cells but not in Dnmt3a null or Dnmt3a-Dnmt3b double null ES cells, suggesting that the site-specific methylation was Dnmt3a-dependent. Sequencing results revealed that the isolated CpG site is located within the 1st exon of the G isoform of fibroblast growth factor (Fgf-1.G) on mouse chromosome 18. Exogenous expression of Dnmt3a but not Dnmt3b in the double null ES cells restored DNA methylation of this CpG site. When we examined alternative transcription initiation sites, we determined that another CpG site in the 5'-flanking region of the Fgf-1.A isoform was also methylated specifically by Dnmt3a. Using chimeric constructs between Dnmt3a and Dnmt3b, we further determined that the NH(2)-terminal regulatory domain of Dnmt3a was responsible for establishing its substrate specificity. These results indicate that certain CpG sites within the Fgf-1 gene locus are preferentially methylated by Dnmt3a but not by Dnmt3b. Selective methylation by a specific member of Dnmt3 may therefore play a role in the orchestration of gene expression during embryonic development.
Collapse
Affiliation(s)
- Masahiro Oka
- Department of Pathology, Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
100
|
Kassis ES, Zhao M, Hong JA, Chen GA, Nguyen DM, Schrump DS. Depletion of DNA methyltransferase 1 and/or DNA methyltransferase 3b mediates growth arrest and apoptosis in lung and esophageal cancer and malignant pleural mesothelioma cells. J Thorac Cardiovasc Surg 2006; 131:298-306. [PMID: 16434257 DOI: 10.1016/j.jtcvs.2005.05.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 05/20/2005] [Indexed: 11/28/2022]
Abstract
OBJECTIVE DNA methyltransferase (DNMT)1, DNMT3b, or both, facilitate malignant transformation through chromatin remodeling mechanisms. The present study was undertaken to examine the effects of antisense-mediated inhibition of DNMT expression in cultured thoracic malignancies. METHODS CALU-6 and A549 lung cancer, SKGT5 and BIC esophageal adenocarcinoma, and H2373 and H2052 malignant pleural mesothelioma (MPM) cells, as well as normal human bronchial epithelial (NHBE) cells, were transfected with phosphorothioate-modified antisense oligos targeting DNMT1, DNMT3b, or both, or mismatch oligos. Quantitative reverse transcription-polymerase chain reaction, Western blotting, trypan blue exclusion, and ApoBrdU techniques were used to evaluate DNMT expression, proliferation, and apoptosis after antisense oligo transfections. Gene expression profiles were assessed by using long-oligo array techniques. RESULTS Antisense oligos mediated specific and dose-dependent depletion of DNMT1 and DNMT3b, resulting in pronounced inhibition of proliferation of all thoracic cancer lines, but not NHBE cells. Depletion of DNMT1 or DNMT3b coincided with dramatic, caspase-dependent, p53-independent apoptosis in 4 of the 6 thoracic cancer lines. The antiproliferative effects of the antisense oligos were not attributable to induction of RASSF1A, p16, or p21 tumor suppressor genes, and did not coincide with demethylation of genes encoding cancer-testis antigens. DNA methyltransferase knockdown mediated induction of numerous genes regulating response to genotoxic stress. Gene expression profiles after DNMT1, DNMT3b, or combined DNMT1/3b depletion were remarkably similar, yet distinctly different from expression profiles mediated by 5 aza 2' deoxycytidine. CONCLUSIONS Antisense oligos targeting DNMT1 and DNMT3b induce genomic stress, and mediate potent growth inhibition in lung and esophageal cancer and MPM cells. These findings support further evaluation of DNMT knockdown strategies for cancer therapy.
Collapse
Affiliation(s)
- Edmund S Kassis
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Md 20892, USA
| | | | | | | | | | | |
Collapse
|