51
|
Casadei E, Salinas I. Comparative models for human nasal infections and immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:212-222. [PMID: 30513304 PMCID: PMC7102639 DOI: 10.1016/j.dci.2018.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 05/09/2023]
Abstract
The human olfactory system is a mucosal surface and a major portal of entry for respiratory and neurotropic pathogens into the body. Understanding how the human nasopharynx-associated lymphoid tissue (NALT) halts the progression of pathogens into the lower respiratory tract or the central nervous system is key for developing effective cures. Although traditionally mice have been used as the gold-standard model for the study of human nasal diseases, mouse models present important caveats due to major anatomical and functional differences of the human and murine olfactory system and NALT. We summarize the NALT anatomy of different animal groups that have thus far been used to study host-pathogen interactions at the olfactory mucosa and to test nasal vaccines. The goal of this review is to highlight the strengths and limitations of each animal model of nasal immunity and to identify the areas of research that require further investigation to advance human health.
Collapse
Affiliation(s)
- Elisa Casadei
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA.
| | - Irene Salinas
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA
| |
Collapse
|
52
|
Wright WF, Pinto CN, Palisoc K, Baghli S. Viral (aseptic) meningitis: A review. J Neurol Sci 2019; 398:176-183. [PMID: 30731305 DOI: 10.1016/j.jns.2019.01.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/17/2022]
Abstract
Viral meningitis is an inflammation of the meninges associated with acute onset of meningeal symptoms and fever, pleocytosis of the cerebrospinal fluid, and no growth on routine bacterial culture. It is sometimes associated with viral encephalitis and meningoencephalitis. Viruses reach the central nervous system (CNS) hematogenously or in a retrograde manner from nerve endings. The viral etiology varies according to age and country. Molecular diagnostics technology has helped improve the rate of pathogen detection reducing unnecessary antibiotic use and length of hospitalization. Most of the viral infections detailed in this article have no specific treatment other than supportive care. Many of the viruses discussed are preventable by vaccination and proper skin protection against transmitting vectors.
Collapse
Affiliation(s)
- William F Wright
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical Center, Pinnacle, United States.
| | - Casey N Pinto
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical Center, Pinnacle, United States; Department of Public Health Sciences, The Pennsylvania State University, United States.
| | - Kathryn Palisoc
- Division of Hospital Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pinnacle, United States
| | - Salim Baghli
- Division of Hospital Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pinnacle, United States
| |
Collapse
|
53
|
El-Habashi N, El-Nahass ELS, Abd-Ellatieff H, Saleh A, Abas O, Tsuchiya Y, Fukushi H, Yanai T. Lesions and Distribution of Viral Antigen in the Brain of Hamsters Infected With Equine Herpesvirus (EHV)–9, EHV-1 Strain Ab4p, and Zebra-Borne EHV-1. Vet Pathol 2019; 56:691-702. [DOI: 10.1177/0300985818825129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Encephalitis in hamsters, which was induced by equine herpesvirus (EHV)–9, EHV-1 strain Ab4p, and zebra-borne EHV-1, was investigated and compared to assess viral kinetics and identify the progression and severity of neuropathological findings. Hamsters were inoculated with EHV-9, EHV-1 strain Ab4p, and zebra-borne EHV-1 via the nasal route and euthanized at 24, 48, 72, 96, 120, 144, and 168 hours postinoculation (HPI). The inoculated hamsters had mild to severe neurological signs at 60 to 72, 96, and 120 HPI, and the mortality rate was 75%, 0%, and 0% for animals inoculated with EHV-9, EHV-1 strain Ab4p, and zebra-borne EHV-1 viruses, respectively. Inoculated hamsters had varying degrees of rhinitis and lymphoplasmacytic meningoencephalitis, as well as differences in the severity and distribution of cerebral lesions. Furthermore, the cellular distribution of viral antigen depended on the inoculated virus. Neuronal necrosis was widely detected in animals inoculated with EHV-9, while marked perivascular cuffs of infiltrating inflammatory cells and gliosis were detected in animals inoculated with EHV-1 strain Ab4p and zebra-borne EHV-1. In the present study, 3 viruses belonging to the herpesvirus family induced encephalitis after initial propagation in the nasal cavity. These viruses might travel to the brain via the olfactory pathway and/or trigeminal nerve, showing different distributions and severities of neuropathological changes.
Collapse
Affiliation(s)
- Nagwan El-Habashi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - EL-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hoda Abd-Ellatieff
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt
| | - Asmaa Saleh
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt
| | - Osama Abas
- Department of Animal Medicine, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Yuya Tsuchiya
- Department of Veterinary Pathology and Microbiology, Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Hideto Fukushi
- Department of Veterinary Pathology and Microbiology, Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| | - Tokuma Yanai
- Department of Veterinary Pathology and Microbiology, Faculty of Applied Biological Science, Gifu University, Gifu, Japan
| |
Collapse
|
54
|
Tiong V, Shu MH, Wong WF, AbuBakar S, Chang LY. Nipah Virus Infection of Immature Dendritic Cells Increases Its Transendothelial Migration Across Human Brain Microvascular Endothelial Cells. Front Microbiol 2018; 9:2747. [PMID: 30483242 PMCID: PMC6244409 DOI: 10.3389/fmicb.2018.02747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/26/2018] [Indexed: 01/09/2023] Open
Abstract
Nipah virus (NiV) can infect multiple organs in humans with the central nervous system (CNS) being the most severely affected. Currently, it is not fully understood how NiV spreads throughout the body. NiV has been shown to infect certain leukocyte populations and we hypothesized that these infected cells could cross the blood-brain barrier (BBB), facilitating NiV entry into the CNS. Here, three leukocyte types, primary immature dendritic cells (iDC), primary monocytes (pMO), and monocytic cell line (THP-1), were evaluated for permissiveness to NiV. We found only iDC and THP-1 were permissive to NiV. Transendothelial migration of mock-infected and NiV-infected leukocytes was then evaluated using an in vitro BBB model established with human brain microvascular endothelial cells (HBMEC). There was approximately a threefold increase in migration of NiV-infected iDC across endothelial monolayer when compared to mock-infected iDC. In contrast, migration rates for pMO and THP-1 did not change upon NiV infection. Across TNF-α-treated endothelial monolayer, there was significant increase of almost twofold in migration of NiV-infected iDC and THP-1 over mock-infected cells. Immunofluorescence analysis showed the migrated NiV-infected leukocytes retained their ability to infect other cells. This study demonstrates for the first time that active NiV infection of iDC and THP-1 increased their transendothelial migration activity across HBMEC and activation of HBMEC by TNF-α further promoted migration. The findings suggest that NiV infection of leukocytes to disseminate the virus via the “Trojan horse” mechanism is a viable route of entry into the CNS.
Collapse
Affiliation(s)
- Vunjia Tiong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Meng-Hooi Shu
- Tropical Infectious Diseases Research and Education Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Tropical Infectious Diseases Research and Education Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
55
|
|
56
|
Henipavirus Infection: Natural History and the Virus-Host Interplay. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018. [DOI: 10.1007/s40506-018-0155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
57
|
Abstract
Advances in CNS immunity and anatomy bridge the CNS and the peripheral immune system. Region-specific antiviral responses alter BBB permeability during viral invasion. CNS barriers have anatomical specializations with tailored defenses against pathogens. Immunocytotherapies for persistent CNS infections can promote non-cytopathic viral clearance.
The central nervous system (CNS) is an immunologically specialized organ where restrictive barrier structures protect the parenchyma from inflammation and infection. This protection is important in preventing damage to non-renewable resident cell populations, such as neurons, responsible for functions ranging from executive to autonomic. Despite these barriers, the CNS can be infected through several entry portals, giving rise to meningitis and encephalitis. Following infection, resident cells recruit peripherally derived immune cells to sites of viral infection. In this review, we discuss recent advances in immune recruitment and entry at barrier structures as well as current immunotherapeutic strategies for the treatment of persistent viral infections.
Collapse
|
58
|
Sepahi A, Tacchi L, Casadei E, Takizawa F, LaPatra SE, Salinas I. CK12a, a CCL19-like Chemokine That Orchestrates both Nasal and Systemic Antiviral Immune Responses in Rainbow Trout. THE JOURNAL OF IMMUNOLOGY 2017; 199:3900-3913. [PMID: 29061765 DOI: 10.4049/jimmunol.1700757] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022]
Abstract
Chemokines and chemokine receptors have rapidly diversified in teleost fish but their immune functions remain unclear. We report in this study that CCL19, a chemokine known to control lymphocyte migration and compartmentalization of lymphoid tissues in mammals, diversified in salmonids leading to the presence of six CCL19-like genes named CK10a, CK10b, CK12a, CK12b, CK13a, and CK13b. Salmonid CCL19-like genes all contain the DCCL-conserved motif but share low amino acid sequence identity. CK12 (but not CK10 or CK13) is constitutively expressed at high levels in all four trout MALT. Nasal vaccination with a live attenuated virus results in sustained upregulation of CK12 (but not CK10 or CK13) expression in trout nasopharynx-associated lymphoid tissue. Recombinant His-tagged trout CK12a (rCK12a) is not chemotactic in vitro but it increases the width of the nasal lamina propria when delivered intranasally. rCK12a delivered intranasally or i.p. stimulates the expression of CD8α, granulysin, and IFN-γ in mucosal and systemic compartments and increases nasal CD8α+ cell numbers. rCK12a is able to stimulate proliferation of head kidney leukocytes from Ag-experienced trout but not naive controls, yet it does not confer protection against viral challenge. These results show that local nasal production of CK12a contributes to antiviral immune protection both locally and systemically via stimulation of CD8 cellular immune responses and highlight a conserved role for CK12 in the orchestration of mucosal and systemic immune responses against viral pathogens in vertebrates.
Collapse
Affiliation(s)
- Ali Sepahi
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Luca Tacchi
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Elisa Casadei
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
| | | | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131;
| |
Collapse
|
59
|
Hendra and Nipah Virus Infection in Cultured Human Olfactory Epithelial Cells. mSphere 2017; 2:mSphere00252-17. [PMID: 28680971 PMCID: PMC5489660 DOI: 10.1128/msphere.00252-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 01/23/2023] Open
Abstract
Henipaviruses are emerging zoonotic pathogens that can cause acute and severe respiratory and neurological disease in humans. The pathways by which henipaviruses enter the central nervous system (CNS) in humans are still unknown. The observation that human olfactory neurons are highly susceptible to infection with henipaviruses demonstrates that the olfactory epithelium can serve as a site of Henipavirus entry into the CNS. Henipaviruses are emerging zoonotic viruses and causative agents of encephalitis in humans. However, the mechanisms of entry into the central nervous system (CNS) in humans are not known. Here, we evaluated the possible role of olfactory epithelium in virus entry into the CNS. We characterized Hendra virus (HeV) and Nipah virus (NiV) infection of primary human olfactory epithelial cultures. We show that henipaviruses can infect mature olfactory sensory neurons. Henipaviruses replicated efficiently, resulting in cytopathic effect and limited induction of host responses. These results show that human olfactory epithelium is susceptible to infection with henipaviruses, suggesting that this could be a pathway for neuroinvasion in humans. IMPORTANCE Henipaviruses are emerging zoonotic pathogens that can cause acute and severe respiratory and neurological disease in humans. The pathways by which henipaviruses enter the central nervous system (CNS) in humans are still unknown. The observation that human olfactory neurons are highly susceptible to infection with henipaviruses demonstrates that the olfactory epithelium can serve as a site of Henipavirus entry into the CNS.
Collapse
|
60
|
Platt MP, Agalliu D, Cutforth T. Hello from the Other Side: How Autoantibodies Circumvent the Blood-Brain Barrier in Autoimmune Encephalitis. Front Immunol 2017; 8:442. [PMID: 28484451 PMCID: PMC5399040 DOI: 10.3389/fimmu.2017.00442] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
Antibodies against neuronal receptors and synaptic proteins are associated with autoimmune encephalitides (AE) that produce movement and psychiatric disorders. In order to exert their pathological effects on neural circuits, autoantibodies against central nervous system (CNS) targets must gain access to the brain and spinal cord by crossing the blood–brain barrier (BBB), a tightly regulated gateway formed by endothelial cells lining CNS blood vessels. To date, the pathogenic mechanisms that underlie autoantibody-triggered encephalitic syndromes are poorly understood, and how autoantibodies breach the barrier remains obscure for almost all AE syndromes. The relative importance of cellular versus humoral immune mechanisms for disease pathogenesis also remains largely unexplored. Here, we review the proposed triggers for various autoimmune encephalopathies and their animal models, as well as basic structural features of the BBB and how they differ among various CNS regions, a feature that likely underlies some regional aspects of autoimmune encephalitis pathogenesis. We then discuss the routes that antibodies and immune cells employ to enter the CNS and their implications for AE. Finally, we explore future therapeutic strategies that may either preserve or restore barrier function and thereby limit immune cell and autoantibody infiltration into the CNS. Recent mechanistic insights into CNS autoantibody entry indicate promising future directions for therapeutic intervention beyond current, short-lived therapies that eliminate circulating autoantibodies.
Collapse
Affiliation(s)
- Maryann P Platt
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Dritan Agalliu
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.,Department of Pharmacology, Columbia University Medical Center, New York, NY, USA.,Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| | - Tyler Cutforth
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.,Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
61
|
Loss in lung volume and changes in the immune response demonstrate disease progression in African green monkeys infected by small-particle aerosol and intratracheal exposure to Nipah virus. PLoS Negl Trop Dis 2017; 11:e0005532. [PMID: 28388650 PMCID: PMC5397074 DOI: 10.1371/journal.pntd.0005532] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/19/2017] [Accepted: 03/28/2017] [Indexed: 02/07/2023] Open
Abstract
Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that emerged in the late 1990s in Malaysia and has since been identified as the cause of sporadic outbreaks of severe febrile disease in Bangladesh and India. NiV infection is frequently associated with severe respiratory or neurological disease in infected humans with transmission to humans through inhalation, contact or consumption of NiV contaminated foods. In the work presented here, the development of disease was investigated in the African Green Monkey (AGM) model following intratracheal (IT) and, for the first time, small-particle aerosol administration of NiV. This study utilized computed tomography (CT) and magnetic resonance imaging (MRI) to temporally assess disease progression. The host immune response and changes in immune cell populations over the course of disease were also evaluated. This study found that IT and small-particle administration of NiV caused similar disease progression, but that IT inoculation induced significant congestion in the lungs while disease following small-particle aerosol inoculation was largely confined to the lower respiratory tract. Quantitative assessment of changes in lung volume found up to a 45% loss in IT inoculated animals. None of the subjects in this study developed overt neurological disease, a finding that was supported by MRI analysis. The development of neutralizing antibodies was not apparent over the 8–10 day course of disease, but changes in cytokine response in all animals and activated CD8+ T cell numbers suggest the onset of cell-mediated immunity. These studies demonstrate that IT and small-particle aerosol infection with NiV in the AGM model leads to a severe respiratory disease devoid of neurological indications. This work also suggests that extending the disease course or minimizing the impact of the respiratory component is critical to developing a model that has a neurological component and more accurately reflects the human condition. Nipah virus (NiV) was identified in the late 1990s as the causative agent of severe respiratory and neurological disease in Malaysia and Bangladesh. The virus is transmitted by inhalation, contact or consumption of contaminated material. In this study, our objective was to characterize NiV-induced disease progression in the African Green Monkey model utilizing clinical imaging capabilities. In this work, we also provide the first temporal evaluation of the immune response to infection following NiV infection and the first characterization of disease following aerosol exposure. Here, we found that NiV infection following intratracheal and aerosol exposure lead to a severe respiratory disease and rapid disease course with no overt clinical evidence of neurological disease. Despite the rapid course of disease, changes in the cytokine response and peripheral immune cell populations suggest development of a cell-mediated immune response in the latter stage of disease. While the current model for evaluating NiV infection is useful for testing of medical countermeasures, further work is required to understand how this model can represent human disease.
Collapse
|
62
|
Yu P, Xu Y, Deng W, Bao L, Huang L, Xu Y, Yao Y, Qin C. Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus. PLoS One 2017; 12:e0172093. [PMID: 28234937 PMCID: PMC5325479 DOI: 10.1371/journal.pone.0172093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/31/2017] [Indexed: 01/06/2023] Open
Abstract
Middle East respiratory syndrome (MERS), which is caused by a newly discovered coronavirus (CoV), has recently emerged. It causes severe viral pneumonia and is associated with a high fatality rate. However, the pathogenesis, comparative pathology and inflammatory cell response of rhesus macaques and common marmosets experimentally infected with MERS-CoV are unknown. We describe the histopathological, immunohistochemical, and ultrastructural findings from rhesus macaque and common marmoset animal models of MERS-CoV infection. The main histopathological findings in the lungs of rhesus macaques and common marmosets were varying degrees of pulmonary lesions, including pneumonia, pulmonary oedema, haemorrhage, degeneration and necrosis of the pneumocytes and bronchial epithelial cells, and inflammatory cell infiltration. The characteristic inflammatory cells in the lungs of rhesus macaques and common marmosets were eosinophils and neutrophils, respectively. Based on these observations, the lungs of rhesus macaques and common marmosets appeared to develop chronic and acute pneumonia, respectively. MERS-CoV antigens and viral RNA were identified in type I and II pneumocytes, alveolar macrophages and bronchial epithelial cells, and ultrastructural observations showed that viral protein was found in type II pneumocytes and inflammatory cells in both species. Correspondingly, the entry receptor DDP4 was found in type I and II pneumocytes, bronchial epithelial cells, and alveolar macrophages. The rhesus macaque and common marmoset animal models of MERS-CoV can be used as a tool to mimic the oncome of MERS-CoV infections in humans. These models can help to provide a better understanding of the pathogenic process of this virus and to develop effective medications and prophylactic treatments.
Collapse
Affiliation(s)
- Pin Yu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, 5 Panjiayuan Nanli, Chaoyang District, Beijing, People’s Republic of China
| | - Yanfeng Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, 5 Panjiayuan Nanli, Chaoyang District, Beijing, People’s Republic of China
| | - Wei Deng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, 5 Panjiayuan Nanli, Chaoyang District, Beijing, People’s Republic of China
| | - Linlin Bao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, 5 Panjiayuan Nanli, Chaoyang District, Beijing, People’s Republic of China
| | - Lan Huang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, 5 Panjiayuan Nanli, Chaoyang District, Beijing, People’s Republic of China
| | - Yuhuan Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, 5 Panjiayuan Nanli, Chaoyang District, Beijing, People’s Republic of China
| | - Yanfeng Yao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, 5 Panjiayuan Nanli, Chaoyang District, Beijing, People’s Republic of China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, 5 Panjiayuan Nanli, Chaoyang District, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
63
|
Imamura F, Hasegawa-Ishii S. Environmental Toxicants-Induced Immune Responses in the Olfactory Mucosa. Front Immunol 2016; 7:475. [PMID: 27867383 PMCID: PMC5095454 DOI: 10.3389/fimmu.2016.00475] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/19/2016] [Indexed: 01/02/2023] Open
Abstract
Olfactory sensory neurons (OSNs) are the receptor cells for the sense of smell. Although cell bodies are located in the olfactory mucosa (OM) of the nasal cavity, OSN axons directly project to the olfactory bulb (OB) that is a component of the central nervous system (CNS). Because of this direct and short connection from this peripheral tissue to the CNS, the olfactory system has attracted attention as a port-of-entry for environmental toxicants that may cause neurological dysfunction. Selected viruses can enter the OB via the OM and directly affect the CNS. On the other hand, environmental toxicants may induce inflammatory responses in the OM, including infiltration of immune cells and production of inflammatory cytokines. In addition, these inflammatory responses cause the loss of OSNs that are then replaced with newly generated OSNs that re-connect to the OB after inflammation has subsided. It is now known that immune cells and cytokines in the OM play important roles in both degeneration and regeneration of OSNs. Thus, the olfactory system is a unique neuroimmune interface where interaction between nervous and immune systems in the periphery significantly affects the structure, neuronal circuitry, and immunological status of the CNS. The mechanisms by which immune cells regulate OSN loss and the generation of new OSNs are, however, largely unknown. To help develop a better understanding of the mechanisms involved, we have provided a review of key research that has investigated how the immune response in the OM affects the pathophysiology of OSNs.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine , Hershey, PA , USA
| | | |
Collapse
|
64
|
Identifying Early Target Cells of Nipah Virus Infection in Syrian Hamsters. PLoS Negl Trop Dis 2016; 10:e0005120. [PMID: 27812087 PMCID: PMC5094696 DOI: 10.1371/journal.pntd.0005120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022] Open
Abstract
Background Nipah virus causes respiratory and neurologic disease with case fatality rates up to 100% in individual outbreaks. End stage lesions have been described in the respiratory and nervous systems, vasculature and often lymphoid organs in fatal human cases; however, the initial target organs of Nipah virus infection have not been identified. Here, we detected the initial target tissues and cells of Nipah virus and tracked virus dissemination during the early phase of infection in Syrian hamsters inoculated with a Nipah virus isolate from Malaysia (NiV-M) or Bangladesh (NiV-B). Methodology/Principal Findings Syrian hamsters were euthanized between 4 and 48 hours post intranasal inoculation and tissues were collected and analyzed for the presence of viral RNA, viral antigen and infectious virus. Virus replication was first detected at 8 hours post inoculation (hpi). Nipah virus initially targeted type I pneumocytes, bronchiolar respiratory epithelium and alveolar macrophages in the lung and respiratory and olfactory epithelium lining the nasal turbinates. By 16 hpi, virus disseminated to epithelial cells lining the larynx and trachea. Although the pattern of viral dissemination was similar for both virus isolates, the rate of spread was slower for NiV-B. Infectious virus was not detected in the nervous system or blood and widespread vascular infection and lesions within lymphoid organs were not observed, even at 48 hpi. Conclusions/Significance Nipah virus initially targets the respiratory system. Virus replication in the brain and infection of blood vessels in non-respiratory tissues does not occur during the early phase of infection. However, virus replicates early in olfactory epithelium and may serve as the first step towards nervous system dissemination, suggesting that development of vaccines that block virus dissemination or treatments that can access the brain and spinal cord and directly inhibit virus replication may be necessary for preventing central nervous system pathology. Nipah virus is a highly fatal paramyxovirus that causes respiratory and neurologic disease with widespread vascular damage. Although end stage disease has been characterized in humans and in animal models, the early phase of infection has yet to be described. Thus, it is known where the virus replicates during the final stages of infection, but not how the virus is transported to these end stage tissues or which tissues are targeted first. Using Syrian hamsters that were intranasally inoculated with virus as a model of Nipah virus infection, we show here that Nipah virus initially targets the respiratory tract, specifically the nasal cavity and lung, with virus replication being detected as early as 8 hours after inoculation. During the first 48 hours of infection, the virus slowly penetrates into the underlying tissues of the respiratory tract, but viremia and virus replication in the brain are not detected. In the lung, Nipah virus initially infects epithelial cells lining airways, followed by spread to arterial smooth muscle cells, suggesting that localized spread of the virus within an organ can lead to viral dissemination into the vasculature. Likewise, replication in the olfactory epithelium likely precedes spread of Nipah virus along the olfactory nerve into the brain. Understanding how Nipah virus spreads through the host to cause encephalitis is important for developing effective countermeasures that can target Nipah virus replication and prevent viral dissemination.
Collapse
|
65
|
Satterfield BA, Geisbert TW, Mire CE. Inhibition of the host antiviral response by Nipah virus: current understanding and future perspectives. Future Virol 2016. [DOI: 10.2217/fvl-2016-0027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nipah virus (NiV) is a lethal paramyxovirus that has recently emerged as a human pathogen capable of causing acute respiratory disease and encephalitis. Like many viral pathogens, NiV has developed multiple means of antagonizing the host antiviral response. The viral proteins responsible for this antiviral inhibition are encoded in the NiV P gene and include the P, V, W and C proteins, which contain various unique and overlapping roles. This review examines the current data on inhibition of the host antiviral response for each of these proteins gathered from viral protein expression systems, in vitro data using recombinant NiV mutants and from in vivo studies using recombinant NiV mutants, as well as a future perspective regarding the direction of the field.
Collapse
Affiliation(s)
- Benjamin A Satterfield
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chad E Mire
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
66
|
Durrant DM, Ghosh S, Klein RS. The Olfactory Bulb: An Immunosensory Effector Organ during Neurotropic Viral Infections. ACS Chem Neurosci 2016; 7:464-9. [PMID: 27058872 DOI: 10.1021/acschemneuro.6b00043] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In 1935, the olfactory route was hypothesized to be a portal for virus entry into the central nervous system (CNS). This hypothesis was based on experiments in which nasophayngeal infection with poliovirus in monkeys was prevented from spreading to their CNS via transection of olfactory tracts between the olfactory neuroepithelium (ONE) of the nasal cavity and the olfactory bulb (OB). Since then, numerous neurotropic viruses have been observed to enter the CNS via retrograde transport along axons of olfactory sensory neurons whose cell bodies reside in the ONE. Importantly, this route of infection can occur even after subcutaneous inoculation of arboviruses that can cause encephalitis in humans. While the olfactory route is now accepted as an important pathway for viral entry into the CNS, it is unclear whether it provides a way for infection to spread to other brain regions. More recently, studies of antiviral innate and adaptive immune responses within the olfactory bulb suggest it provides early virologic control. Here we will review the data demonstrating that neurotropic viruses gain access to the CNS initially via the olfactory route with emphasis on findings that suggest the OB is a critical immunosensory effector organ that effectively clears virus.
Collapse
Affiliation(s)
- Douglas M. Durrant
- Biological
Sciences Department, California State Polytechnic University, 3801 West
Temple Ave., Pomona, California 91768, United States
| | | | | |
Collapse
|
67
|
Immune Responses to Viruses in the CNS. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7151986 DOI: 10.1016/b978-0-12-374279-7.14022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For recovery from infection, the immune response in the central nervous system (CNS) must eliminate or control virus replication without destroying nonrenewable, essential cells. Thus, upon intracellular virus detection, the infected cell must initiate clearance pathways without triggering neuronal cell death. As a result, the inflammatory response must be tightly regulated and unique mechanisms contribute to the immune response in the CNS. Early restriction of virus replication is accomplished by the innate immune response upon activation of pattern recognition receptors in resident cells. Infiltrating immune cells enter from the periphery to clear virus. Antibodies and interferon-γ are primary contributors to noncytolytic clearance of virus in the CNS. Lymphocytes are retained in the CNS after the acute phase of infection presumably to block reactivation of virus replication.
Collapse
|
68
|
Henipaviruses. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153454 DOI: 10.1007/978-3-319-33133-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The first henipaviruses, Hendra virus (HeV), and Nipah virus (NiV) were pathogenic zoonoses that emerged in the mid to late 1990s causing serious disease outbreaks in livestock and humans. HeV was recognized in Australia 1994 in horses exhibiting respiratory disease along with a human case fatality, and then NiV was identified during a large outbreak of human cases of encephalitis with high mortality in Malaysia and Singapore in 1998–1999 along with respiratory disease in pigs which served as amplifying hosts. The recently identified third henipavirus isolate, Cedar virus (CedPV), is not pathogenic in animals susceptible to HeV and NiV disease. Molecular detection of additional henipavirus species has been reported but no additional isolates of virus have been reported. Central pathological features of both HeV and NiV infection in humans and several susceptible animal species is a severe systemic and often fatal neurologic and/or respiratory disease. In people, both viruses can also manifest relapsed encephalitis following recovery from an acute infection, particularly NiV. The recognized natural reservoir hosts of HeV, NiV, and CedPV are pteropid bats, which do not show clinical illness when infected. With spillovers of HeV continuing to occur in Australia and NiV in Bangladesh and India, these henipaviruses continue to be important transboundary biological threats. NiV in particular possesses several features that highlight a pandemic potential, such as its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals along with a capacity of limited human-to-human transmission. Several henipavirus animal challenge models have been developed which has aided in understanding HeV and NiV pathogenesis as well as how they invade the central nervous system, and successful active and passive immunization strategies against HeV and NiV have been reported which target the viral envelope glycoproteins.
Collapse
|
69
|
Ong KC, Wong KT. Henipavirus Encephalitis: Recent Developments and Advances. Brain Pathol 2015; 25:605-13. [PMID: 26276024 PMCID: PMC7161744 DOI: 10.1111/bpa.12278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 06/18/2015] [Indexed: 01/27/2023] Open
Abstract
The genus Henipavirus within the family Paramyxoviridae includes the Hendra virus (HeV) and Nipah virus (NiV) which were discovered in the 1990s in Australia and Malaysia, respectively, after emerging to cause severe and often fatal outbreaks in humans and animals. While HeV is confined to Australia, more recent NiV outbreaks have been reported in Bangladesh, India and the Philippines. The clinical manifestations of both henipaviruses in humans appear similar, with a predominance of an acute encephalitic syndrome. Likewise, the pathological features are similar and characterized by disseminated, multi-organ vasculopathy comprising endothelial infection/ulceration, vasculitis, vasculitis-induced thrombosis/occlusion, parenchymal ischemia/microinfarction, and parenchymal cell infection in the central nervous system (CNS), lung, kidney and other major organs. This unique dual pathogenetic mechanism of vasculitis-induced microinfarction and neuronal infection causes severe tissue damage in the CNS. Both viruses can also cause relapsing encephalitis months and years after the acute infection. Many animal models studied to date have largely confirmed the pathology of henipavirus infection, and provided the means to test new therapeutic agents and vaccines. As the bat is the natural host of henipaviruses and has worldwide distribution, spillover events into human populations are expected to occur in the future.
Collapse
Affiliation(s)
- Kien Chai Ong
- Department of Biomedical ScienceFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Kum Thong Wong
- Department ofPathologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
70
|
de Wit E, Munster VJ. Animal models of disease shed light on Nipah virus pathogenesis and transmission. J Pathol 2015; 235:196-205. [PMID: 25229234 DOI: 10.1002/path.4444] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022]
Abstract
Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans.
Collapse
Affiliation(s)
- Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | | |
Collapse
|
71
|
van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 2015; 235:277-87. [PMID: 25294743 DOI: 10.1002/path.4461] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 02/01/2023]
Abstract
The olfactory nerve consists mainly of olfactory receptor neurons and directly connects the nasal cavity with the central nervous system (CNS). Each olfactory receptor neuron projects a dendrite into the nasal cavity on the apical side, and on the basal side extends its axon through the cribriform plate into the olfactory bulb of the brain. Viruses that can use the olfactory nerve as a shortcut into the CNS include influenza A virus, herpesviruses, poliovirus, paramyxoviruses, vesicular stomatitis virus, rabies virus, parainfluenza virus, adenoviruses, Japanese encephalitis virus, West Nile virus, chikungunya virus, La Crosse virus, mouse hepatitis virus, and bunyaviruses. However, mechanisms of transport via the olfactory nerve and subsequent spread through the CNS are poorly understood. Proposed mechanisms are either infection of olfactory receptor neurons themselves or diffusion through channels formed by olfactory ensheathing cells. Subsequent virus spread through the CNS could occur by multiple mechanisms, including trans-synaptic transport and microfusion. Viral infection of the CNS can lead to damage from infection of nerve cells per se, from the immune response, or from a combination of both. Clinical consequences range from nervous dysfunction in the absence of histopathological changes to severe meningoencephalitis and neurodegenerative disease.
Collapse
Affiliation(s)
- Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
72
|
Swanson PA, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol 2015; 11:44-54. [PMID: 25681709 DOI: 10.1016/j.coviro.2014.12.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/17/2014] [Indexed: 11/18/2022]
Abstract
Virus-induced diseases of the central nervous system (CNS) represent a significant burden to human health worldwide. The complexity of these diseases is influenced by the sheer number of different neurotropic viruses, the diverse routes of CNS entry, viral tropism, and the immune system. Using a combination of human pathological data and experimental animal models, we have begun to uncover many of the mechanisms that viruses use to enter the CNS and cause disease. This review highlights a selection of neurotropic viruses that infect the CNS and explores the means by which they induce neurological diseases such as meningitis, encephalitis, and myelitis.
Collapse
Affiliation(s)
- Phillip A Swanson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
73
|
Martin G, Plowright R, Chen C, Kault D, Selleck P, Skerratt LF. Hendra virus survival does not explain spillover patterns and implicates relatively direct transmission routes from flying foxes to horses. J Gen Virol 2015; 96:1229-1237. [PMID: 25667321 DOI: 10.1099/vir.0.000073] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/25/2015] [Indexed: 11/18/2022] Open
Abstract
Hendra virus (HeV) is lethal to humans and horses, and little is known about its epidemiology. Biosecurity restrictions impede advances, particularly on understanding pathways of transmission. Quantifying the environmental survival of HeV can be used for making decisions and to infer transmission pathways. We estimated HeV survival with a Weibull distribution and calculated parameters from data generated in laboratory experiments. HeV survival rates based on air temperatures 24 h after excretion ranged from 2 to 10 % in summer and from 12 to 33 % in winter. Simulated survival across the distribution of the black flying fox (Pteropus alecto), a key reservoir host, did not predict spillover events. Based on our analyses we concluded that the most likely pathways of transmission did not require long periods of virus survival and were likely to involve relatively direct contact with flying fox excreta shortly after excretion.
Collapse
Affiliation(s)
- Gerardo Martin
- James Cook University, Townsville, Queensland, Australia
| | - Raina Plowright
- Pennsylvania State University, State College, PA, USA.,Montana State University, Bozeman, MT, USA.,James Cook University, Townsville, Queensland, Australia
| | - Carla Chen
- Monash University, Melbourne, Victoria, Australia.,James Cook University, Townsville, Queensland, Australia
| | - David Kault
- James Cook University, Townsville, Queensland, Australia
| | - Paul Selleck
- Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Lee F Skerratt
- James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
74
|
Abstract
Hendra virus and Nipah virus are closely related, recently emerged zoonotic paramyxoviruses, belonging to the Henipavirus genus. Both viruses induce generalized vasculitis affecting particularly the respiratory tract and CNS. The exceptionally broad species tropism of Henipavirus, the high case fatality rate and person-to-person transmission associated with Nipah virus outbreaks emphasize the necessity of effective antiviral strategies for these intriguing threatening pathogens. Current therapeutic approaches, validated in animal models, target early steps in viral infection; they include the use of neutralizing virus-specific antibodies and blocking membrane fusion with peptides that bind the viral fusion protein. A better understanding of Henipavirus pathogenesis is critical for the further advancement of antiviral treatment, and we summarize here the recent progress in the field.
Collapse
Affiliation(s)
- Cyrille Mathieu
- CIRI, International Center for Infectiology Research, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | | |
Collapse
|
75
|
Abstract
Emerging infectious diseases of zoonotic origin are shaping today's infectious disease field more than ever. In this article, we introduce and review three emerging zoonotic viruses. Novel hantaviruses emerged in the Americas in the mid-1990s as the cause of severe respiratory infections, designated hantavirus pulmonary syndrome, with case fatality rates of around 40%. Nipah virus emerged a few years later, causing respiratory infections and encephalitis in Southeast Asia, with case fatality rates ranging from 40% to more than 90%. A new coronavirus emerged in 2012 on the Arabian Peninsula with a clinical syndrome of acute respiratory infections, later designated as Middle East respiratory syndrome (MERS), and an initial case fatality rate of more than 40%. Our current state of knowledge on the pathogenicity of these three severe, emerging viral infections is discussed.
Collapse
Affiliation(s)
- David Safronetz
- Laboratory of Virology, Division of Intramural Research, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana; , ,
| | | | | |
Collapse
|
76
|
Bohmwald K, Espinoza JA, González PA, Bueno SM, Riedel CA, Kalergis AM. Central nervous system alterations caused by infection with the human respiratory syncytial virus. Rev Med Virol 2014; 24:407-19. [PMID: 25316031 DOI: 10.1002/rmv.1813] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 01/08/2023]
Abstract
Worldwide, the human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization because of acute respiratory tract infections, including severe bronchiolitis and pneumonia. Despite intense research, to date there is neither vaccine nor treatment available to control hRSV disease burden globally. After infection, an incubation period of 3-5 days is usually followed by symptoms, such as cough and low-grade fever. However, hRSV infection can also produce a larger variety of symptoms, some of which relate to the individual's age at infection. Indeed, infants can display severe symptoms, such as dyspnea and chest wall retractions. Upon examination, crackles and wheezes are also common features that suggest infection by hRSV. Additionally, infection in infants younger than 1 year is associated with several non-specific symptoms, such as failure to thrive, periodic breathing or apnea, and feeding difficulties that usually require hospitalization. Recently, neurological symptoms have also been associated with hRSV respiratory infection and include seizures, central apnea, lethargy, feeding or swallowing difficulties, abnormalities in muscle tone, strabismus, abnormalities in the CSF, and encephalopathy. Here, we discuss recent findings linking the neurological, extrapulmonary effects of hRSV with infection and functional impairment of the CNS.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
77
|
Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014; 194:145-58. [PMID: 25281913 PMCID: PMC7114389 DOI: 10.1016/j.virusres.2014.09.011] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
Human coronavirus (HCoV) are naturally neuroinvasive in both mice and humans. Both transneuronal and hematogenous route may allow virus invasion of the CNS. Infection of neurons leads to excitotoxicity, neurodegeneration and cell-death. HCoV are potentially associated with human neurological disorders.
Among the various respiratory viruses infecting human beings, coronaviruses are important pathogens, which usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, and various types of respiratory distress syndrome. The respiratory involvement of human coronaviruses has been clearly established since the 1960s. Nevertheless, for almost three decades now, data reported in the scientific literature has also demonstrated that, like it was described for other human viruses, coronaviruses have neuroinvasive capacities since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Neuroinvasive coronaviruses could damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuroimmunopathology) and/or viral replication, which directly induces damage to CNS cells (virus-induced neuropathology). Given all these properties, it has been suggested that these opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of neurologic diseases for which the etiology remains poorly understood. Herein, we present host and viral factors that participate in the regulation of the possible pathogenic processes associated with CNS infection by human coronaviruses and we try to decipher the intricate interplay between virus and host target cells in order to characterize their role in the virus life cycle as well as in the capacity of the cell to respond to viral invasion.
Collapse
Affiliation(s)
- Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Alain Le Coupanec
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Jenny K Stodola
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Mathieu Meessen-Pinard
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| |
Collapse
|
78
|
Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JAK, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 2014; 27:691-726. [PMID: 25278572 PMCID: PMC4187632 DOI: 10.1128/cmr.00118-13] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.
Collapse
Affiliation(s)
- Samantha J Dando
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Robert Norton
- Townsville Hospital, Townsville, Queensland, Australia
| | - Bart J Currie
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Jenny A K Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
79
|
Adhikari R, Thapa S. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 807:75-96. [PMID: 24619619 PMCID: PMC7121612 DOI: 10.1007/978-81-322-1777-0_6] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In humans, viral infections of the respiratory tract are a leading cause of morbidity and mortality worldwide. Several recognized respiratory viral agents have a neuroinvasive capacity since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Among the various respiratory viruses, coronaviruses are important pathogens of humans and animals. Human Coronaviruses (HCoV) usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly, and immune-compromised individuals, they can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, respiratory distress syndrome, or even severe acute respiratory syndrome (SARS). The respiratory involvement of HCoV has been clearly established since the 1960s. In addition, for almost three decades now, the scientific literature has also demonstrated that HCoV are neuroinvasive and neurotropic and could induce an overactivation of the immune system, in part by participating in the activation of autoreactive immune cells that could be associated with autoimmunity in susceptible individuals. Furthermore, it was shown that in the murine CNS, neurons are the main target of infection, which causes these essential cells to undergo degeneration and eventually die by some form of programmed cell death after virus infection. Moreover, it appears that the viral surface glycoprotein (S) represents an important factor in the neurodegenerative process. Given all these properties, it has been suggested that these recognized human respiratory pathogens could be associated with the triggering or the exacerbation of neurological diseases for which the etiology remains unknown or poorly understood.
Collapse
Affiliation(s)
| | - Santosh Thapa
- Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
80
|
Mattera R, Farías GG, Mardones GA, Bonifacino JS. Co-assembly of viral envelope glycoproteins regulates their polarized sorting in neurons. PLoS Pathog 2014; 10:e1004107. [PMID: 24831812 PMCID: PMC4022726 DOI: 10.1371/journal.ppat.1004107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/24/2014] [Indexed: 12/14/2022] Open
Abstract
Newly synthesized envelope glycoproteins of neuroinvasive viruses can be sorted in a polarized manner to the somatodendritic and/or axonal domains of neurons. Although critical for transneuronal spread of viruses, the molecular determinants and interregulation of this process are largely unknown. We studied the polarized sorting of the attachment (NiV-G) and fusion (NiV-F) glycoproteins of Nipah virus (NiV), a paramyxovirus that causes fatal human encephalitis, in rat hippocampal neurons. When expressed individually, NiV-G exhibited a non-polarized distribution, whereas NiV-F was specifically sorted to the somatodendritic domain. Polarized sorting of NiV-F was dependent on interaction of tyrosine-based signals in its cytosolic tail with the clathrin adaptor complex AP-1. Co-expression of NiV-G with NiV-F abolished somatodendritic sorting of NiV-F due to incorporation of NiV-G•NiV-F complexes into axonal transport carriers. We propose that faster biosynthetic transport of unassembled NiV-F allows for its proteolytic activation in the somatodendritic domain prior to association with NiV-G and axonal delivery of NiV-G•NiV-F complexes. Our study reveals how interactions of viral glycoproteins with the host's transport machinery and between themselves regulate their polarized sorting in neurons. Neurons are highly polarized cells exhibiting somatodendritic and axonal domains with distinct protein and lipid compositions. Some enveloped viruses target neurons by binding of the viral envelope glycoproteins to neuronal surface receptors. The ensuing fusion of the viral and neuronal membranes delivers the genetic material of the virus into the neurons. During viral replication in neurons, newly synthesized envelope glycoproteins are sorted to the somatodendritic and/or axonal domains. Although critical for viral propagation, the mechanisms responsible for this sorting are largely unknown. We studied the neuronal sorting of the attachment (NiV-G) and fusion (NiV-F) glycoproteins of Nipah virus, a pathogen that causes fatal human encephalitis. When analyzed individually, NiV-G was delivered to both the axonal and somatodendritic domains. In contrast, NiV-F was exclusively targeted to the somatodendritic domain by virtue of interaction of specific signals in this protein with AP-1, a component of the neuronal protein transport machinery. Assembly with NiV-G, however, abolished somatodendritic sorting of NiV-F due to incorporation of complexes into axon-bound vesicles. Thus, coordinated interactions of viral glycoproteins with the host's sorting machinery and between themselves allow temporal and spatial regulation of their distribution in neurons. We propose that this coordination facilitates viral spread among neurons.
Collapse
Affiliation(s)
- Rafael Mattera
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ginny G. Farías
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gonzalo A. Mardones
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Juan S. Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
81
|
de Wit E, Prescott J, Falzarano D, Bushmaker T, Scott D, Feldmann H, Munster VJ. Foodborne transmission of nipah virus in Syrian hamsters. PLoS Pathog 2014; 10:e1004001. [PMID: 24626480 PMCID: PMC3953481 DOI: 10.1371/journal.ppat.1004001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/01/2014] [Indexed: 11/26/2022] Open
Abstract
Since 2001, outbreaks of Nipah virus have occurred almost every year in Bangladesh with high case-fatality rates. Epidemiological data suggest that in Bangladesh, Nipah virus is transmitted from the natural reservoir, fruit bats, to humans via consumption of date palm sap contaminated by bats, with subsequent human-to-human transmission. To experimentally investigate this epidemiological association between drinking of date palm sap and human cases of Nipah virus infection, we determined the viability of Nipah virus (strain Bangladesh/200401066) in artificial palm sap. At 22°C virus titers remained stable for at least 7 days, thus potentially allowing food-borne transmission. Next, we modeled food-borne Nipah virus infection by supplying Syrian hamsters with artificial palm sap containing Nipah virus. Drinking of 5×108 TCID50 of Nipah virus resulted in neurological disease in 5 out of 8 hamsters, indicating that food-borne transmission of Nipah virus can indeed occur. In comparison, intranasal (i.n.) inoculation with the same dose of Nipah virus resulted in lethal respiratory disease in all animals. In animals infected with Nipah virus via drinking, virus was detected in respiratory tissues rather than in the intestinal tract. Using fluorescently labeled Nipah virus particles, we showed that during drinking, a substantial amount of virus is deposited in the lungs, explaining the replication of Nipah virus in the respiratory tract of these hamsters. Besides the ability of Nipah virus to infect hamsters via the drinking route, Syrian hamsters infected via that route transmitted the virus through direct contact with naïve hamsters in 2 out of 24 transmission pairs. Although these findings do not directly prove that date palm sap contaminated with Nipah virus by bats is the origin of Nipah virus outbreaks in Bangladesh, they provide the first experimental support for this hypothesis. Understanding the Nipah virus transmission cycle is essential for preventing and mitigating future outbreaks. In Bangladesh, outbreaks of Nipah virus occur almost every year, resulting in respiratory and neurological disease with high case-fatality rates. Based on epidemiological data Nipah virus is thought to be transmitted from fruit bats to humans via drinking of date palm sap contaminated by bats that drink from the sap stream or collection vessel during collection. Additionally, human-to-human transmission has been shown to occur. Here, we experimentally modeled the proposed transmission cycle of Nipah virus in Bangladesh in Syrian hamsters. Hamsters that drank artificial palm sap containing high doses of Nipah virus became infected with the virus and developed neurological signs of disease. Virus replication occurred mainly in the respiratory rather than the intestinal tract. Most importantly, hamsters infected with Nipah virus through drinking of contaminated palm sap could transmit the virus to uninfected cage mates. As treatments for Nipah virus are currently unavailable and medical interventions are difficult to implement in rural outbreak areas, our best hope to prevent or intervene in future outbreaks of Nipah virus lies in the potential to block transmission from bats to humans and from human to human. Understanding how Nipah virus is transmitted is essential to achieve this.
Collapse
Affiliation(s)
- Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail: (EdW); (VJM)
| | - Joseph Prescott
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Darryl Falzarano
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Trenton Bushmaker
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana Scott
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail: (EdW); (VJM)
| |
Collapse
|
82
|
Rockx B. Recent developments in experimental animal models of Henipavirus infection. Pathog Dis 2014; 71:199-206. [PMID: 24488776 DOI: 10.1111/2049-632x.12149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/13/2014] [Accepted: 01/23/2014] [Indexed: 11/27/2022] Open
Abstract
Hendra (HeV) and Nipah (NiV) viruses (genus Henipavirus (HNV; family Paramyxoviridae) are emerging zoonotic agents that can cause severe respiratory distress and acute encephalitis in humans. Given the lack of effective therapeutics and vaccines for human use, these viruses are considered as public health concerns. Several experimental animal models of HNV infection have been developed in recent years. Here, we review the current status of four of the most promising experimental animal models (mice, hamsters, ferrets, and African green monkeys) and their suitability for modeling the clinical disease, transmission, pathogenesis, prevention, and treatment for HNV infection in humans.
Collapse
Affiliation(s)
- Barry Rockx
- Galveston National Laboratory, Departments of Pathology and Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
83
|
Thomas RJ. Particle size and pathogenicity in the respiratory tract. Virulence 2013; 4:847-58. [PMID: 24225380 PMCID: PMC3925716 DOI: 10.4161/viru.27172] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/13/2022] Open
Abstract
Particle size dictates where aerosolized pathogens deposit in the respiratory tract, thereafter the pathogens potential to cause disease is influenced by tissue tropism, clearance kinetics and the host immunological response. This interplay brings pathogens into contact with a range of tissues spanning the respiratory tract and associated anatomical structures. In animal models, differential deposition within the respiratory tract influences infection kinetics for numerous select agents. Greater numbers of pathogens are required to infect the upper (URT) compared with the lower respiratory tract (LRT), and in comparison the URT infections are protracted with reduced mortality. Pathogenesis in the URT is characterized by infection of the URT lymphoid tissues, cervical lymphadenopathy and septicemia, closely resembling reported human infections of the URT. The olfactory, gastrointestinal, and ophthalmic systems are also infected in a pathogen-dependent manner. The relevant literature is reviewed with respect to particle size and infection of the URT in animal models and humans.
Collapse
|
84
|
Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc Natl Acad Sci U S A 2013; 110:16598-603. [PMID: 24062443 DOI: 10.1073/pnas.1310744110] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In 2012, a novel betacoronavirus, designated Middle East respiratory syndrome coronavirus or MERS-CoV and associated with severe respiratory disease in humans, emerged in the Arabian Peninsula. To date, 108 human cases have been reported, including cases of human-to-human transmission. The availability of an animal disease model is essential for understanding pathogenesis and developing effective countermeasures. Upon a combination of intratracheal, ocular, oral, and intranasal inoculation with 7 × 10(6) 50% tissue culture infectious dose of the MERS-CoV isolate HCoV-EMC/2012, rhesus macaques developed a transient lower respiratory tract infection. Clinical signs, virus shedding, virus replication in respiratory tissues, gene expression, and cytokine and chemokine profiles peaked early in infection and decreased over time. MERS-CoV caused a multifocal, mild to marked interstitial pneumonia, with virus replication occurring mainly in alveolar pneumocytes. This tropism of MERS-CoV for the lower respiratory tract may explain the severity of the disease observed in humans and the, up to now, limited human-to-human transmission.
Collapse
|
85
|
Croser EL, Marsh GA. The changing face of the henipaviruses. Vet Microbiol 2013; 167:151-8. [PMID: 23993256 DOI: 10.1016/j.vetmic.2013.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/12/2013] [Accepted: 08/05/2013] [Indexed: 01/11/2023]
Abstract
The Henipavirus genus represents a group of paramyxoviruses that are some of the deadliest of known human and veterinary pathogens. Hendra and Nipah viruses are zoonotic pathogens that can cause respiratory and encephalitic illness in humans with mortality rates that exceed 70%. Over the past several years, we have seen an increase in the number of cases and an altered clinical presentation of Hendra virus in naturally infected horses. Recent increase in the number of cases has also been reported with human Nipah virus infections in Bangladesh. These factors, along with the recent discovery of henipa and henipa-like viruses in Africa, Asia and South and Central America adds, a truly global perspective to this group of emerging viruses.
Collapse
Affiliation(s)
- Emma L Croser
- CSIRO Animal, Food and Health Sciences, Australian Animal Health Laboratory, Private Bag 24, Geelong 3220, Australia.
| | | |
Collapse
|
86
|
Dhondt KP, Horvat B. Henipavirus infections: lessons from animal models. Pathogens 2013; 2:264-87. [PMID: 25437037 PMCID: PMC4235719 DOI: 10.3390/pathogens2020264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/16/2022] Open
Abstract
The Henipavirus genus contains two highly lethal viruses, the Hendra and Nipah viruses and one, recently discovered, apparently nonpathogenic member; Cedar virus. These three, negative-sense single-stranded RNA viruses, are hosted by fruit bats and use EphrinB2 receptors for entry into cells. The Hendra and Nipah viruses are zoonotic pathogens that emerged in the middle of 90s and have caused severe, and often fatal, neurologic and/or respiratory diseases in both humans and different animals; including spillover into equine and porcine species. Development of relevant models is critical for a better understanding of viral pathogenesis, generating new diagnostic tools, and assessing anti-viral therapeutics and vaccines. This review summarizes available data on several animal models where natural and/or experimental infection has been demonstrated; including pteroid bats, horses, pigs, cats, hamsters, guinea pigs, ferrets, and nonhuman primates. It recapitulates the principal features of viral pathogenesis in these animals and current knowledge on anti-viral immune responses. Lastly it describes the recently characterized murine animal model, which provides the possibility to use numerous and powerful tools available for mice to further decipher henipaviruses immunopathogenesis, prophylaxis, and treatment. The utility of different models to analyze important aspects of henipaviruses-induced disease in humans, potential routes of transmission, and therapeutic approaches are equally discussed.
Collapse
Affiliation(s)
- Kévin P Dhondt
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon 1, 21 Avenue T. Garnier, Lyon 69007, France.
| | - Branka Horvat
- International Center for Infectiology Research, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon 1, 21 Avenue T. Garnier, Lyon 69007, France.
| |
Collapse
|