51
|
Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers. mBio 2017; 8:mBio.00036-17. [PMID: 28246356 PMCID: PMC5347340 DOI: 10.1128/mbio.00036-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches.IMPORTANCE Both epitope-focused and trimer-based strategies are currently being explored in HIV-1 vaccine development, which aims to elicit broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the viral envelope (Env). However, little is known about the differences in antibody response to these bNAb targets presented by foreign scaffolds and native Env. In this study, a systematic effort was undertaken to design multivalent epitope scaffolds and soluble gp140.681 trimers with a complete antigenic surface, and to comparatively analyze the antibody responses elicited by these antigens to the N332 supersite and MPER in a mouse model. This study will inform both epitope-focused and trimer-based vaccine design and will facilitate integration of the two vaccine strategies.
Collapse
|
52
|
El Bannoudi H, Anquetil C, Braunstein MJ, Pond SLK, Silverman GJ. Unbiased RACE-Based Massive Parallel Surveys of Human IgA Antibody Repertoires. Methods Mol Biol 2017; 1643:45-73. [PMID: 28667529 DOI: 10.1007/978-1-4939-7180-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
For investigations of human B-cell receptor (BCR) repertoires, we have developed a protocol for large-scale surveys of human antibody heavy chain (VH) rearrangements. Here we study IgA repertoires, as more IgA antibodies are synthesized in the human body on a daily level than all other isotypes combined. In fact, IgA is secreted at all mucosal surfaces, and it is also secreted in the perspiration that coats our cutaneous surfaces. In these studies we can characterize the IgA clonal diversity of B-cell populations obtained from any donor. To recover representative repertoire libraries, we make our libraries from antibody gene transcript templates (i.e., cDNA), as these are closer reflections of the immune repertoire expressed at the antibody protein level. To avoid biases potentially introduced by upstream oligonucleotide primers that hybridize to variable region framework regions, our approach also uses rapid amplification of cDNA ends (RACE) of antibody transcripts. For exploration of human IgA responses, we have designed a duplexing antisense constant region primer that efficiently amplifies, side-by-side, heavy chain transcripts of both the IgA1 and IgA2 subclasses. By these methods we have begun to define the molecular differences in the IgA1 and IgA2 responses occurring simultaneously in different donors. These methods will be used to investigate the effects of microbial virulence factors on host defenses, during autoimmune responses, and in B-cell malignancies.
Collapse
Affiliation(s)
- Hanane El Bannoudi
- Department of Medicine, NYU School of Medicine, 450 E. 29th Street, New York, NY, 10016, USA
| | - Céline Anquetil
- Department of Medicine, NYU School of Medicine, 450 E. 29th Street, New York, NY, 10016, USA
| | - Marc J Braunstein
- Department of Medicine, NYU School of Medicine, 450 E. 29th Street, New York, NY, 10016, USA
| | | | - Gregg J Silverman
- Department of Medicine, NYU School of Medicine, Alexandria Center for Life Science, 8th Floor, Rm 804, 450 E. 29th Street, New York, NY, 10016, USA.
| |
Collapse
|
53
|
Friedensohn S, Khan TA, Reddy ST. Advanced Methodologies in High-Throughput Sequencing of Immune Repertoires. Trends Biotechnol 2016; 35:203-214. [PMID: 28341036 DOI: 10.1016/j.tibtech.2016.09.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/19/2016] [Accepted: 09/30/2016] [Indexed: 11/19/2022]
Abstract
In recent years, major efforts have been made to develop sophisticated experimental and bioinformatic workflows for sequencing adaptive immune repertoires. The immunological insight gained has been applied to fields as varied as lymphocyte biology, immunodiagnostics, vaccines, cancer immunotherapy, and antibody engineering. In this review, we provide a detailed overview of these advanced methodologies, focusing specifically on strategies to reduce sequencing errors and bias and to achieve high-throughput pairing of variable regions (e.g., heavy-light or alpha-beta chains). In addition, we highlight recent technologies for single-cell transcriptome sequencing that can be integrated with immune repertoires. Finally, we provide a perspective on advanced immune repertoire sequencing and its ability to impact basic immunology, biopharmaceutical drug discovery and development, and cancer immunotherapy.
Collapse
Affiliation(s)
- Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Tarik A Khan
- Pharmaceutical Development & Supplies Biologics Europe, F. Hoffman-La Roche Ltd, Basel, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
54
|
Hou D, Chen C, Seely EJ, Chen S, Song Y. High-Throughput Sequencing-Based Immune Repertoire Study during Infectious Disease. Front Immunol 2016; 7:336. [PMID: 27630639 PMCID: PMC5005336 DOI: 10.3389/fimmu.2016.00336] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
The selectivity of the adaptive immune response is based on the enormous diversity of T and B cell antigen-specific receptors. The immune repertoire, the collection of T and B cells with functional diversity in the circulatory system at any given time, is dynamic and reflects the essence of immune selectivity. In this article, we review the recent advances in immune repertoire study of infectious diseases, which were achieved by traditional techniques and high-throughput sequencing (HTS) techniques. HTS techniques enable the determination of complementary regions of lymphocyte receptors with unprecedented efficiency and scale. This progress in methodology enhances the understanding of immunologic changes during pathogen challenge and also provides a basis for further development of novel diagnostic markers, immunotherapies, and vaccines.
Collapse
Affiliation(s)
- Dongni Hou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University , Shanghai , China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University , Shanghai , China
| | - Eric John Seely
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco , San Francisco, CA , USA
| | - Shujing Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University , Shanghai , China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
55
|
Turchaninova MA, Davydov A, Britanova OV, Shugay M, Bikos V, Egorov ES, Kirgizova VI, Merzlyak EM, Staroverov DB, Bolotin DA, Mamedov IZ, Izraelson M, Logacheva MD, Kladova O, Plevova K, Pospisilova S, Chudakov DM. High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat Protoc 2016; 11:1599-616. [DOI: 10.1038/nprot.2016.093] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
56
|
Lai M, Gonzalez-Martin A, Cooper AB, Oda H, Jin HY, Shepherd J, He L, Zhu J, Nemazee D, Xiao C. Regulation of B-cell development and tolerance by different members of the miR-17∼92 family microRNAs. Nat Commun 2016; 7:12207. [PMID: 27481093 PMCID: PMC4974641 DOI: 10.1038/ncomms12207] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/10/2016] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanisms that regulate B-cell development and tolerance remain incompletely understood. In this study, we identify a critical role for the miR-17∼92 microRNA cluster in regulating B-cell central tolerance and demonstrate that these miRNAs control early B-cell development in a cell-intrinsic manner. While the cluster member miR-19 suppresses the expression of Pten and plays a key role in regulating B-cell tolerance, miR-17 controls early B-cell development through other molecular pathways. These findings demonstrate differential control of two closely linked B-cell developmental stages by different members of a single microRNA cluster through distinct molecular pathways. MicroRNA cluster 17∼92 plays a critical role in B-cell differentiation. Here the authors show that miR-19 regulates B-cell tolerance via suppressing the expression of PTEN, whereas miR- 17 is essential for early B-cell development independently of Pten, Phlpp2, or Bim.
Collapse
Affiliation(s)
- Maoyi Lai
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Alicia Gonzalez-Martin
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Anthony B Cooper
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Hiroyo Oda
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Hyun Yong Jin
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.,Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jovan Shepherd
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Linling He
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Jiang Zhu
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - David Nemazee
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
57
|
Vigdorovich V, Oliver BG, Carbonetti S, Dambrauskas N, Lange MD, Yacoob C, Leahy W, Callahan J, Stamatatos L, Sather DN. Repertoire comparison of the B-cell receptor-encoding loci in humans and rhesus macaques by next-generation sequencing. Clin Transl Immunology 2016; 5:e93. [PMID: 27525066 PMCID: PMC4973324 DOI: 10.1038/cti.2016.42] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/29/2022] Open
Abstract
Rhesus macaques (RMs) are a widely used model system for the study of vaccines, infectious diseases and microbial pathogenesis. Their value as a model lies in their close evolutionary relationship to humans, which, in theory, allows them to serve as a close approximation of the human immune system. However, despite their prominence as a human surrogate model system, many aspects of the RM immune system remain ill characterized. In particular, B cell-mediated immunity in macaques has not been sufficiently characterized, and the B-cell receptor-encoding loci have not been thoroughly annotated. To address these gaps, we analyzed the circulating heavy- and light-chain repertoires in humans and RMs by next-generation sequencing. By comparing V gene segment usage, J-segment usage and CDR3 lengths between the two species, we identified several important similarities and differences. These differences were especially notable in the IgM(+) B-cell repertoire. However, the class-switched, antigen-educated B-cell populations converged on a set of similar characteristics, implying similarities in how each species responds to antigen. Our study provides the first comprehensive overview of the circulating repertoires of the heavy- and light-chain sequences in RMs, and provides insight into how they may perform as a model system for B cell-mediated immunity in humans.
Collapse
Affiliation(s)
- Vladimir Vigdorovich
- Center for Infectious Disease Research (formerly Seattle BioMed) , Seattle, WA, USA
| | - Brian G Oliver
- Center for Infectious Disease Research (formerly Seattle BioMed) , Seattle, WA, USA
| | - Sara Carbonetti
- Center for Infectious Disease Research (formerly Seattle BioMed) , Seattle, WA, USA
| | - Nicholas Dambrauskas
- Center for Infectious Disease Research (formerly Seattle BioMed) , Seattle, WA, USA
| | - Miles D Lange
- Center for Infectious Disease Research (formerly Seattle BioMed) , Seattle, WA, USA
| | - Christina Yacoob
- Fred Hutchinson Cancer Research Center, Viral and Infectious Disease Division , Seattle, WA, USA
| | | | | | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Viral and Infectious Disease Division , Seattle, WA, USA
| | - D Noah Sather
- Center for Infectious Disease Research (formerly Seattle BioMed) , Seattle, WA, USA
| |
Collapse
|
58
|
Clonify: unseeded antibody lineage assignment from next-generation sequencing data. Sci Rep 2016; 6:23901. [PMID: 27102563 PMCID: PMC4840318 DOI: 10.1038/srep23901] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/11/2016] [Indexed: 11/13/2022] Open
Abstract
Defining the dynamics and maturation processes of antibody clonal lineages is crucial to understanding the humoral response to infection and immunization. Although individual antibody lineages have been previously analyzed in isolation, these studies provide only a narrow view of the total antibody response. Comprehensive study of antibody lineages has been limited by the lack of an accurate clonal lineage assignment algorithm capable of operating on next-generation sequencing datasets. To address this shortcoming, we developed Clonify, which is able to perform unseeded lineage assignment on very large sets of antibody sequences. Application of Clonify to IgG+ memory repertoires from healthy individuals revealed a surprising lack of influence of large extended lineages on the overall repertoire composition, indicating that this composition is driven less by the order and frequency of pathogen encounters than previously thought. Clonify is freely available at www.github.com/briney/clonify-python.
Collapse
|
59
|
Key gp120 Glycans Pose Roadblocks to the Rapid Development of VRC01-Class Antibodies in an HIV-1-Infected Chinese Donor. Immunity 2016; 44:939-50. [PMID: 27067056 DOI: 10.1016/j.immuni.2016.03.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022]
Abstract
VRC01-class antibodies neutralize diverse HIV-1 strains by targeting the conserved CD4-binding site. Despite extensive investigations, crucial events in the early stage of VRC01 development remain elusive. We demonstrated how VRC01-class antibodies emerged in a Chinese donor by antigen-specific single B cell sorting, structural and functional studies, and longitudinal antibody and virus repertoire analyses. A monoclonal antibody DRVIA7 with modest neutralizing breadth was isolated that displayed a subset of VRC01 signatures. X-ray and EM structures revealed a VRC01-like angle of approach, but less favorable interactions between the DRVIA7 light-chain CDR1 and the N terminus with N276 and V5 glycans of gp120. Although the DRVIA7 lineage was unable to acquire broad neutralization, longitudinal analysis revealed a repertoire-encoded VRC01 light-chain CDR3 signature and VRC01-like neutralizing heavy-chain precursors that rapidly matured within 2 years. Thus, light chain accommodation of the glycan shield should be taken into account in vaccine design targeting this conserved site of vulnerability.
Collapse
|
60
|
Khan TA, Friedensohn S, de Vries ARG, Straszewski J, Ruscheweyh HJ, Reddy ST. Accurate and predictive antibody repertoire profiling by molecular amplification fingerprinting. SCIENCE ADVANCES 2016; 2:e1501371. [PMID: 26998518 PMCID: PMC4795664 DOI: 10.1126/sciadv.1501371] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/17/2016] [Indexed: 05/31/2023]
Abstract
High-throughput antibody repertoire sequencing (Ig-seq) provides quantitative molecular information on humoral immunity. However, Ig-seq is compromised by biases and errors introduced during library preparation and sequencing. By using synthetic antibody spike-in genes, we determined that primer bias from multiplex polymerase chain reaction (PCR) library preparation resulted in antibody frequencies with only 42 to 62% accuracy. Additionally, Ig-seq errors resulted in antibody diversity measurements being overestimated by up to 5000-fold. To rectify this, we developed molecular amplification fingerprinting (MAF), which uses unique molecular identifier (UID) tagging before and during multiplex PCR amplification, which enabled tagging of transcripts while accounting for PCR efficiency. Combined with a bioinformatic pipeline, MAF bias correction led to measurements of antibody frequencies with up to 99% accuracy. We also used MAF to correct PCR and sequencing errors, resulting in enhanced accuracy of full-length antibody diversity measurements, achieving 98 to 100% error correction. Using murine MAF-corrected data, we established a quantitative metric of recent clonal expansion-the intraclonal diversity index-which measures the number of unique transcripts associated with an antibody clone. We used this intraclonal diversity index along with antibody frequencies and somatic hypermutation to build a logistic regression model for prediction of the immunological status of clones. The model was able to predict clonal status with high confidence but only when using MAF error and bias corrected Ig-seq data. Improved accuracy by MAF provides the potential to greatly advance Ig-seq and its utility in immunology and biotechnology.
Collapse
Affiliation(s)
- Tarik A. Khan
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Simon Friedensohn
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | | | - Jakub Straszewski
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Scientific IT Services, ETH Zurich, 4058 Basel, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
- Scientific IT Services, ETH Zurich, 4058 Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
61
|
Turner KB, Naciri J, Liu JL, Anderson GP, Goldman ER, Zabetakis D. Next-Generation Sequencing of a Single Domain Antibody Repertoire Reveals Quality of Phage Display Selected Candidates. PLoS One 2016; 11:e0149393. [PMID: 26895405 PMCID: PMC4760936 DOI: 10.1371/journal.pone.0149393] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Next-Generation Sequencing and bioinformatics are powerful tools for analyzing the large number of DNA sequences present in an immune library. In this work, we constructed a cDNA library of single domain antibodies from a llama immunized with staphylococcal enterotoxin B. The resulting library was sequenced, resulting in approximately 8.5 million sequences with 5.4 million representing intact, useful sequences. The sequenced library was interrogated using sequences of known SEB-binding single domain antibodies from the library obtained through phage display panning methods in a previous study. New antibodies were identified, produced, and characterized, and were shown to have affinities and melting temperatures comparable to those obtained by traditional panning methods. This demonstrates the utility of using NGS as a complementary tool to phage-displayed biopanning as a means for rapidly obtaining additional antibodies from an immune library. It also shows that phage display, using a library of high diversity, is able to select high quality antibodies even when they are low in frequency.
Collapse
Affiliation(s)
- Kendrick B. Turner
- American Society for Engineering Education, Postdoctoral Fellow at the US Naval Research Laboratory, Washington, DC, United States of America
| | - Jennifer Naciri
- American Society for Engineering Education, Science and Engineering Apprenticeship Participant at US Naval Research Laboratory, Washington, DC, United States of America
| | - Jinny L. Liu
- Center for Bio/molecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States of America
| | - George P. Anderson
- Center for Bio/molecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States of America
| | - Ellen R. Goldman
- Center for Bio/molecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States of America
| | - Dan Zabetakis
- Center for Bio/molecular Science and Engineering, US Naval Research Laboratory, Washington, DC, United States of America
| |
Collapse
|
62
|
Dai K, Khan SN, Wang Y, He L, Guenaga J, Ingale J, Sundling C, O'Dell S, McKee K, Phad G, Corcoran M, Wilson R, Mascola JR, Zhu J, Li Y, Karlsson Hedestam GB, Wyatt RT. HIV-1 Vaccine-elicited Antibodies Reverted to Their Inferred Naive Germline Reveal Associations between Binding Affinity and in vivo Activation. Sci Rep 2016; 6:20987. [PMID: 26879974 PMCID: PMC4754655 DOI: 10.1038/srep20987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/14/2016] [Indexed: 11/10/2022] Open
Abstract
The elicitation of HIV-1 broadly neutralizing antibodies following envelope glycoprotein (Env) vaccination is exceedingly difficult. Suboptimal engagement of naïve B cells is suggested to limit these low frequency events, especially at the conserved CD4bs. Here, we analyzed CD4bs-directed monoclonal antibodies (mAbs) elicited by YU2 gp140-foldon trimers in a non-human primate by selective sorting using CD4bs “knock out” trimers. Following two inoculations, the CD4bs-directed mAbs efficiently recognized the eliciting immunogen in their affinity-maturing state but did not recognize CD4bs-defective probes. We reverted these mAbs to their most likely inferred germline (igL) state, leaving the HCDR3 unaltered, to establish correlates of in vitro affinity to in vivo activation. Most igL-reverted mAbs bound the eliciting gp140 immunogen, indicating that CD4bs-directed B cells possessing reasonable affinity existed in the naïve repertoire. We detected relatively high affinities for the majority of the igL mAbs to gp120 and of Fabs to gp140, which, as expected, increased when the antibodies ‘matured’ following vaccination. Affinity increases were associated with slower off-rates as well as with acquisition of neutralizing capacity. These data reveal in vitro binding properties associated with in vivo activation that result in functional archiving of antigen-specific B cells elicited by a complex glycoprotein antigen following immunization.
Collapse
Affiliation(s)
- Kaifan Dai
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | - Salar N Khan
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | - Yimeng Wang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | - Linling He
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | - Javier Guenaga
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | - Jidnyasa Ingale
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA.,The Scripps CHAVI-ID, The Scripps Research Institute, La Jolla CA
| | - Christopher Sundling
- Department of Microbiology, and Tumor Cell Biology Karolinska Institutet, Stockholm SE
| | | | | | - Ganesh Phad
- Department of Microbiology, and Tumor Cell Biology Karolinska Institutet, Stockholm SE
| | - Martin Corcoran
- Department of Microbiology, and Tumor Cell Biology Karolinska Institutet, Stockholm SE
| | - Richard Wilson
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | | | - Jiang Zhu
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA.,The Scripps CHAVI-ID, The Scripps Research Institute, La Jolla CA
| | - Yuxing Li
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA
| | | | - Richard T Wyatt
- IAVI Neutralizing Antibody Center at TSRI, La Jolla CA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA.,The Scripps CHAVI-ID, The Scripps Research Institute, La Jolla CA
| |
Collapse
|
63
|
Cole C, Volden R, Dharmadhikari S, Scelfo-Dalbey C, Vollmers C. Highly Accurate Sequencing of Full-Length Immune Repertoire Amplicons Using Tn5-Enabled and Molecular Identifier–Guided Amplicon Assembly. THE JOURNAL OF IMMUNOLOGY 2016; 196:2902-7. [DOI: 10.4049/jimmunol.1502563] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/11/2016] [Indexed: 12/22/2022]
|
64
|
Ralph DK, Matsen FA. Consistency of VDJ Rearrangement and Substitution Parameters Enables Accurate B Cell Receptor Sequence Annotation. PLoS Comput Biol 2016; 12:e1004409. [PMID: 26751373 PMCID: PMC4709141 DOI: 10.1371/journal.pcbi.1004409] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/20/2015] [Indexed: 11/18/2022] Open
Abstract
VDJ rearrangement and somatic hypermutation work together to produce antibody-coding B cell receptor (BCR) sequences for a remarkable diversity of antigens. It is now possible to sequence these BCRs in high throughput; analysis of these sequences is bringing new insight into how antibodies develop, in particular for broadly-neutralizing antibodies against HIV and influenza. A fundamental step in such sequence analysis is to annotate each base as coming from a specific one of the V, D, or J genes, or from an N-addition (a.k.a. non-templated insertion). Previous work has used simple parametric distributions to model transitions from state to state in a hidden Markov model (HMM) of VDJ recombination, and assumed that mutations occur via the same process across sites. However, codon frame and other effects have been observed to violate these parametric assumptions for such coding sequences, suggesting that a non-parametric approach to modeling the recombination process could be useful. In our paper, we find that indeed large modern data sets suggest a model using parameter-rich per-allele categorical distributions for HMM transition probabilities and per-allele-per-position mutation probabilities, and that using such a model for inference leads to significantly improved results. We present an accurate and efficient BCR sequence annotation software package using a novel HMM "factorization" strategy. This package, called partis (https://github.com/psathyrella/partis/), is built on a new general-purpose HMM compiler that can perform efficient inference given a simple text description of an HMM.
Collapse
Affiliation(s)
- Duncan K. Ralph
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Frederick A. Matsen
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
65
|
Li D, Wang Z, Ren L, Zhang J, Feng G, Hong K, Hao Y, Qi Z, Liang H, Shao Y. Study of antibody repertoires to the CD4 binding site of gp120 of a Chinese HIV-1-infected elite neutralizer, using 454 sequencing and single-cell sorting. Arch Virol 2015; 161:789-99. [PMID: 26671829 DOI: 10.1007/s00705-015-2710-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 11/29/2015] [Indexed: 11/25/2022]
Abstract
Broadly neutralizing antibodies (NAbs) against the CD4 binding site of HIV gp120 (CD4bs) have provided important information for vaccine design. In this study, we combined deep sequencing and single memory B cell sorting to isolate CD4bs-directed NAbs from a Chinese HIV-1-infected elite neutralizer. We first performed 454 pyrosequencing to capture the IGHV1, IGKV, and IGLV germline gene families. IGHV1-2*02, the heavy chain germline V gene (VH) of the CD4bs-directed bNAb VRC01, was found to have a relatively low somatic mutation rate. When an identity/divergence plot was used to interrogate the 454 sequencing data, no VRC01-like sequences were found within the dataset. We next used a pair of CD4bs-specific probes (RSC3/ΔRSC3) to sort the B cells from this Chinese donor and identified a CD4bs-directed Ab that showed limited neutralization capability. Interestingly, the VH gene of this weak NAb belongs to the IGHV5-51 lineage, with a somatic mutation rate of 7.99 %. Our study thus demonstrates that CD4bs-directed NAbs can be produced by rearrangement from other VH genes, such as IGHV5-51 in this donor, rather than IGHV1-2*02. The 454 sequencing data and NAb obtained from this study will provide useful insights into the CD4bs-directed B-cell response during HIV-1 infection as well as the diversity of neutralizing antibodies.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Zheng Wang
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China. .,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.
| | - Li Ren
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Jing Zhang
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Guangda Feng
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kunxue Hong
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Yanling Hao
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Zhi Qi
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Hua Liang
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China.,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Yiming Shao
- State Key Laboratory of Infectious Diseases Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China. .,Division of Research of Virology and Immunology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China. .,Center of Infectious Diseases, Peking University, Beijing, China.
| |
Collapse
|
66
|
Yaari G, Kleinstein SH. Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med 2015; 7:121. [PMID: 26589402 PMCID: PMC4654805 DOI: 10.1186/s13073-015-0243-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-throughput sequencing of B-cell immunoglobulin repertoires is increasingly being applied to gain insights into the adaptive immune response in healthy individuals and in those with a wide range of diseases. Recent applications include the study of autoimmunity, infection, allergy, cancer and aging. As sequencing technologies continue to improve, these repertoire sequencing experiments are producing ever larger datasets, with tens- to hundreds-of-millions of sequences. These data require specialized bioinformatics pipelines to be analyzed effectively. Numerous methods and tools have been developed to handle different steps of the analysis, and integrated software suites have recently been made available. However, the field has yet to converge on a standard pipeline for data processing and analysis. Common file formats for data sharing are also lacking. Here we provide a set of practical guidelines for B-cell receptor repertoire sequencing analysis, starting from raw sequencing reads and proceeding through pre-processing, determination of population structure, and analysis of repertoire properties. These include methods for unique molecular identifiers and sequencing error correction, V(D)J assignment and detection of novel alleles, clonal assignment, lineage tree construction, somatic hypermutation modeling, selection analysis, and analysis of stereotyped or convergent responses. The guidelines presented here highlight the major steps involved in the analysis of B-cell repertoire sequencing data, along with recommendations on how to avoid common pitfalls.
Collapse
Affiliation(s)
- Gur Yaari
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, 5290002, Ramat Gan, Israel.
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA. .,Departments of Pathology and Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
67
|
Rhesus Macaque B-Cell Responses to an HIV-1 Trimer Vaccine Revealed by Unbiased Longitudinal Repertoire Analysis. mBio 2015; 6:e01375-15. [PMID: 26530382 PMCID: PMC4631801 DOI: 10.1128/mbio.01375-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Next-generation sequencing (NGS) has been used to investigate the diversity and maturation of broadly neutralizing antibodies (bNAbs) in HIV-1-infected individuals. However, the application of NGS to the preclinical assessment of human vaccines, particularly the monitoring of vaccine-induced B-cell responses in a nonhuman primate (NHP) model, has not been reported. Here, we present a longitudinal NGS analysis of memory B-cell responses to an HIV-1 trimer vaccine in a macaque that has been extensively studied by single B-cell sorting and antibody characterization. We first established an NHP antibodyomics pipeline using the available 454 pyrosequencing data from this macaque and developed a protocol to sequence the NHP antibody repertoire in an unbiased manner. Using these methods, we then analyzed memory B-cell repertoires at four time points of NHP immunization and traced the lineages of seven CD4-binding site (CD4bs)-directed monoclonal antibodies previously isolated from this macaque. Longitudinal analysis revealed distinct patterns of B-cell lineage development in response to an HIV-1 trimer vaccine. While the temporal B-cell repertoire profiles and lineage patterns provide a baseline for comparison with forthcoming HIV-1 trimer vaccines, the newly developed NHP antibody NGS technologies and antibodyomics tools will facilitate future evaluation of human vaccine candidates. The nonhuman primate model has been widely used in the preclinical assessment of human vaccines. Next-generation sequencing of B-cell repertoires provides a quantitative tool to analyze B-cell responses to a vaccine. In this study, the longitudinal B-cell repertoire analysis of a rhesus macaque immunized with an HIV-1 trimer vaccine revealed complex B-cell lineage patterns and showed the potential to facilitate the evaluation of future HIV-1 vaccines. The repertoire sequencing technologies and antibodyomics methods reported here can be extended to vaccine development for other human pathogens utilizing the nonhuman primate model.
Collapse
|
68
|
Laydon DJ, Bangham CRM, Asquith B. Estimating T-cell repertoire diversity: limitations of classical estimators and a new approach. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140291. [PMID: 26150657 PMCID: PMC4528489 DOI: 10.1098/rstb.2014.0291] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2015] [Indexed: 12/26/2022] Open
Abstract
A highly diverse T-cell receptor (TCR) repertoire is a fundamental property of an effective immune system, and is associated with efficient control of viral infections and other pathogens. However, direct measurement of total TCR diversity is impossible. The diversity is high and the frequency distribution of individual TCRs is heavily skewed; the diversity therefore cannot be captured in a blood sample. Consequently, estimators of the total number of TCR clonotypes that are present in the individual, in addition to those observed, are essential. This is analogous to the 'unseen species problem' in ecology. We review the diversity (species richness) estimators that have been applied to T-cell repertoires and the methods used to validate these estimators. We show that existing approaches have significant shortcomings, and frequently underestimate true TCR diversity. We highlight our recently developed estimator, DivE, which can accurately estimate diversity across a range of immunological and biological systems.
Collapse
MESH Headings
- Animals
- Gene Rearrangement, T-Lymphocyte
- Genetic Variation
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Lymphocyte Count
- Models, Genetic
- Models, Immunological
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Statistics, Nonparametric
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Daniel J Laydon
- Section of Immunology, Wright-Fleming Institute, Imperial College School of Medicine, London W2 1PG, UK
| | - Charles R M Bangham
- Section of Immunology, Wright-Fleming Institute, Imperial College School of Medicine, London W2 1PG, UK
| | - Becca Asquith
- Section of Immunology, Wright-Fleming Institute, Imperial College School of Medicine, London W2 1PG, UK
| |
Collapse
|
69
|
Egorov ES, Merzlyak EM, Shelenkov AA, Britanova OV, Sharonov GV, Staroverov DB, Bolotin DA, Davydov AN, Barsova E, Lebedev YB, Shugay M, Chudakov DM. Quantitative Profiling of Immune Repertoires for Minor Lymphocyte Counts Using Unique Molecular Identifiers. THE JOURNAL OF IMMUNOLOGY 2015; 194:6155-63. [DOI: 10.4049/jimmunol.1500215] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
|
70
|
Abstract
PURPOSE OF REVIEW To provide an update on neutralizing antibody targets in the context of the recent HIV-1 envelope trimer structure, describe new antibody isolation technologies, and discuss the implications of these data for HIV-1 prevention and therapy. RECENT FINDINGS Recent advances in B-cell technologies have dramatically expanded the number of antibodies isolated from HIV-infected donors with broadly neutralizing plasma activity. These, together with the first high-resolution crystal and cryo-electron microscopy (cryo-EM) structures of a cleaved, prefusion HIV-1 trimer, have defined new regions susceptible to neutralization. This year, three epitopes in the gp120-gp41 interface were structurally characterized, highlighting the importance of prefusion gp41 as a target. Similar to many other broadly neutralizing antibody epitopes, these new antibodies define a target that is also highly glycan dependent. Collectively, the epitopes for broadly neutralizing antibodies now reveal a continuum of vulnerability spanning the length of the HIV-1 envelope trimer. SUMMARY Progress in the last year has provided support for the use of rationally stabilized whole HIV-1 trimers as immunogens for eliciting antibodies to multiple epitopes. Furthermore, the increasing number of broad and potent antibodies with the potential for synergistic/complementary combinations opens up new avenues for preventing and treating HIV-1 infection.
Collapse
Affiliation(s)
- Constantinos Kurt Wibmer
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), University of the Witwatersrand, Johannesburg
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
| | - Penny L. Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), University of the Witwatersrand, Johannesburg
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD), National Health Laboratory Service (NHLS), University of the Witwatersrand, Johannesburg
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
71
|
Doria-Rose NA, Joyce MG. Strategies to guide the antibody affinity maturation process. Curr Opin Virol 2015; 11:137-47. [PMID: 25913818 DOI: 10.1016/j.coviro.2015.04.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 11/16/2022]
Abstract
Antibodies with protective activity are critical for vaccine efficacy. Affinity maturation increases antibody activity through multiple rounds of somatic hypermutation and selection in the germinal center. Identification of HIV-1 specific and influenza-specific antibody developmental pathways, as well as characterization of B cell and virus co-evolution in patients, has informed our understanding of antibody development. In order to counteract HIV-1 and influenza viral diversity, broadly neutralizing antibodies precisely target specific sites of vulnerability and require high levels of affinity maturation. We present immunization strategies that attempt to recapitulate these natural processes and guide the affinity maturation process.
Collapse
Affiliation(s)
- Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
72
|
Computational tools for epitope vaccine design and evaluation. Curr Opin Virol 2015; 11:103-12. [PMID: 25837467 DOI: 10.1016/j.coviro.2015.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Rational approaches will be required to develop universal vaccines for viral pathogens such as human immunodeficiency virus, hepatitis C virus, and influenza, for which empirical approaches have failed. The main objective of a rational vaccine strategy is to design novel immunogens that are capable of inducing long-term protective immunity. In practice, this requires structure-based engineering of the target neutralizing epitopes and a quantitative readout of vaccine-induced immune responses. Therefore, computational tools that can facilitate these two areas have played increasingly important roles in rational vaccine design in recent years. Here we review the computational techniques developed for protein structure prediction and antibody repertoire analysis, and demonstrate how they can be applied to the design and evaluation of epitope vaccines.
Collapse
|