51
|
Huang Y, Zhang Y, Zheng J, Wang L, Qin Q, Huang X. Metabolic profiles of fish nodavirus infection in vitro: RGNNV induced and exploited cellular fatty acid synthesis for virus infection. Cell Microbiol 2020; 22:e13216. [PMID: 32388899 DOI: 10.1111/cmi.13216] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
Red-spotted grouper nervous necrosis virus (RGNNV), the causative agent of viral nervous necrosis disease, has caused high mortality and heavy economic losses in marine aquaculture worldwide. However, changes in host cell metabolism during RGNNV infection remain largely unknown. Here, the global metabolic profiling during RGNNV infection and the roles of cellular fatty acid synthesis in RGNNV infection were investigated. As the infection progressed, 71 intracellular metabolites were significantly altered in RGNNV-infected cells compared with mock-infected cells. The levels of metabolites involved in amino acid biosynthesis and metabolism were significantly decreased, whereas those that correlated with fatty acid synthesis were significantly up-regulated during RGNNV infection. Among them, tryptophan and oleic acid were assessed as the most crucial biomarkers for RGNNV infection. In addition, RGNNV infection induced the formation of lipid droplets and re-localization of fatty acid synthase (FASN), indicating that RGNNV induced and required lipogenesis for viral infection. The exogenous addition of palmitic acid (PA) enhanced RGNNV infection, and the inhibition of FASN and acetyl-CoA carboxylase (ACC) significantly decreased RGNNV replication. Additionally, not only inhibition of palmitoylation and phospholipid synthesis, but also destruction of fatty acid β-oxidation significantly decreased viral replication. These data suggest that cellular fatty acid synthesis and mitochondrial β-oxidation are essential for RGNNV to complete the viral life cycle. Thus, it has been demonstrated for the first time that RGNNV infection in vitro overtook host cell metabolism and, in that process, cellular fatty acid synthesis was an essential component for RGNNV replication.
Collapse
Affiliation(s)
- Youhua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Ya Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiaying Zheng
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaohong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| |
Collapse
|
52
|
Lipid Metabolism in Development and Progression of Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12061419. [PMID: 32486341 PMCID: PMC7352397 DOI: 10.3390/cancers12061419] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
: Metabolic reprogramming is critically involved in the development and progression of cancer. In particular, lipid metabolism has been investigated as a source of energy, micro-environmental adaptation, and cell signalling in neoplastic cells. However, the specific role of lipid metabolism dysregulation in hepatocellular carcinoma (HCC) has not been widely described yet. Alterations in fatty acid synthesis, β-oxidation, and cellular lipidic composition contribute to initiation and progression of HCC. The aim of this review is to elucidate the mechanisms by which lipid metabolism is involved in hepatocarcinogenesis and tumour adaptation to different conditions, focusing on the transcriptional aberrations with new insights in lipidomics and lipid zonation. This will help detect new putative therapeutic approaches in the second most frequent cause of cancer-related death.
Collapse
|
53
|
Nagai K, Uranbileg B, Chen Z, Fujioka A, Yamazaki T, Matsumoto Y, Tsukamoto H, Ikeda H, Yatomi Y, Chiba H, Hui S, Nakazawa T, Saito R, Koshiba S, Aoki J, Saigusa D, Tomioka Y. Identification of novel biomarkers of hepatocellular carcinoma by high-definition mass spectrometry: Ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry and desorption electrospray ionization mass spectrometry imaging. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 1:e8551. [PMID: 31412144 PMCID: PMC7154627 DOI: 10.1002/rcm.8551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/26/2019] [Accepted: 08/06/2019] [Indexed: 05/13/2023]
Abstract
RATIONALE Hepatocellular carcinoma (HCC) is a highly malignant disease for which the development of prospective or prognostic biomarkers is urgently required. Although metabolomics is widely used for biomarker discovery, there are some bottlenecks regarding the comprehensiveness of detected features, reproducibility of methods, and identification of metabolites. In addition, information on localization of metabolites in tumor tissue is needed for functional analysis. Here, we developed a wide-polarity global metabolomics (G-Met) method, identified HCC biomarkers in human liver samples by high-definition mass spectrometry (HDMS), and demonstrated localization in cryosections using desorption electrospray ionization MS imaging (DESI-MSI) analysis. METHODS Metabolic profiling of tumor (n = 38) and nontumor (n = 72) regions in human livers of HCC was performed by an ultrahigh-performance liquid chromatography quadrupole time-of-flight MS (UHPLC/QTOFMS) instrument equipped with a mixed-mode column. The HCC biomarker candidates were extracted by multivariate analyses and identified by matching values of the collision cross section and their fragment ions on the mass spectra obtained by HDMS. Cryosections of HCC livers, which included both tumor and nontumor regions, were analyzed by DESI-MSI. RESULTS From the multivariate analysis, m/z 904.83 and m/z 874.79 were significantly high and low, respectively, in tumor samples and were identified as triglyceride (TG) 16:0/18:1(9Z)/20:1(11Z) and TG 16:0/18:1(9Z)/18:2(9Z,12Z) using the synthetic compounds. The TGs were clearly localized in the tumor or nontumor areas of the cryosection. CONCLUSIONS Novel biomarkers for HCC were identified by a comprehensive and reproducible G-Met method with HDMS using a mixed-mode column. The combination analysis of UHPLC/QTOFMS and DESI-MSI revealed that the different molecular species of TGs were associated with tumor distribution and were useful for characterizing the progression of tumor cells and discovering prospective biomarkers.
Collapse
Affiliation(s)
- Koshi Nagai
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | | | - Zhen Chen
- Faculty of Health ScienceHokkaido UniversityJapan
| | - Amane Fujioka
- Department of OphthalmologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Takahiro Yamazaki
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory MedicineUniversity of TokyoJapan
| | - Yutaka Yatomi
- Department of Clinical Laboratory MedicineUniversity of TokyoJapan
| | | | - Shu‐Ping Hui
- Faculty of Health ScienceHokkaido UniversityJapan
| | - Toru Nakazawa
- Department of OphthalmologyTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine
| | - Ritsumi Saito
- Department of Integrative GenomicsTohoku University Tohoku Medical Megabank OrganizationSendaiJapan
- Medical BiochemistryTohoku University Graduate School of MedicineSendaiJapan
| | - Seizo Koshiba
- Tohoku University Advanced Research Center for Innovations in Next-Generation Medicine
- Department of Integrative GenomicsTohoku University Tohoku Medical Megabank OrganizationSendaiJapan
- Medical BiochemistryTohoku University Graduate School of MedicineSendaiJapan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| | - Daisuke Saigusa
- Department of Integrative GenomicsTohoku University Tohoku Medical Megabank OrganizationSendaiJapan
- Medical BiochemistryTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
54
|
GPR43 regulates HBV X protein (HBx)-induced inflammatory response in human LO2 hepatocytes. Biomed Pharmacother 2020; 123:109737. [DOI: 10.1016/j.biopha.2019.109737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
|
55
|
PNPLA3 and TM6SF2, but Not MBOAT7, Are Associated with Steatosis and HBV Viral Persistence in Pakistani Population. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.97397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
56
|
Metabolic Reprogramming of Host Cells in Response to Enteroviral Infection. Cells 2020; 9:cells9020473. [PMID: 32085644 PMCID: PMC7072837 DOI: 10.3390/cells9020473] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Enterovirus 71 (EV71) infection is an endemic disease in Southeast Asia and China. We have previously shown that EV71 virus causes functional changes in mitochondria. It is speculative whether EV71 virus alters the host cell metabolism to its own benefit. Using a metabolomics approach, we demonstrate that EV71-infected Vero cells had significant changes in metabolism. Glutathione and its related metabolites, and several amino acids, such as glutamate and aspartate, changed significantly with the infectious dose of virus. Other pathways, including glycolysis and tricarboxylic acid cycle, were also altered. A change in glutamine/glutamate metabolism is critical to the viral infection. The presence of glutamine in culture medium was associated with an increase in viral replication. Dimethyl α-ketoglutarate treatment partially mimicked the effect of glutamine supplementation. In addition, the immunoblot analysis revealed that the expression of glutamate dehydrogenase (GDH) and trifunctional carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) increased during infection. Knockdown of expression of glutaminase (GLS), GDH and CAD drastically reduced the cytopathic effect (CPE) and viral replication. Furthermore, we found that CAD bound VP1 to promote the de novo pyrimidine synthesis. Our findings suggest that virus may induce metabolic reprogramming of host cells to promote its replication through interactions between viral and host cell proteins.
Collapse
|
57
|
Satriano L, Lewinska M, Rodrigues PM, Banales JM, Andersen JB. Metabolic rearrangements in primary liver cancers: cause and consequences. Nat Rev Gastroenterol Hepatol 2019; 16:748-766. [PMID: 31666728 DOI: 10.1038/s41575-019-0217-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
Primary liver cancer (PLC) is the fourth most frequent cause of cancer-related death. The high mortality rates arise from late diagnosis and the limited accuracy of diagnostic and prognostic biomarkers. The liver is a major regulator, orchestrating the clearance of toxins, balancing glucose, lipid and amino acid uptake, managing whole-body metabolism and maintaining metabolic homeostasis. Tumour onset and progression is frequently accompanied by rearrangements of metabolic pathways, leading to dysregulation of metabolism. The limitation of current therapies targeting PLCs, such as hepatocellular carcinoma and cholangiocarcinoma, points towards the importance of deciphering this metabolic complexity. In this Review, we discuss the role of metabolic liver disruptions and the implications of these processes in PLCs, emphasizing their clinical relevance and value in early diagnosis and prognosis and as putative therapeutic targets. We also describe system biology approaches able to reconstruct the metabolic complexity of liver diseases. We also discuss whether metabolic rearrangements are a cause or consequence of PLCs, emphasizing the opportunity to clinically exploit the rewired metabolism. In line with this idea, we discuss circulating metabolites as promising biomarkers for PLCs.
Collapse
Affiliation(s)
- Letizia Satriano
- Biotech Research and Innovation Centre (BRIC) Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Monika Lewinska
- Biotech Research and Innovation Centre (BRIC) Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pedro M Rodrigues
- Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Jesus M Banales
- Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC) Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
58
|
Wang J, Alvin Chew BL, Lai Y, Dong H, Xu L, Balamkundu S, Cai WM, Cui L, Liu CF, Fu XY, Lin Z, Shi PY, Lu TK, Luo D, Jaffrey SR, Dedon PC. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res 2019; 47:e130. [PMID: 31504804 PMCID: PMC6847653 DOI: 10.1093/nar/gkz751] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/16/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022] Open
Abstract
Chemical modification of transcripts with 5' caps occurs in all organisms. Here, we report a systems-level mass spectrometry-based technique, CapQuant, for quantitative analysis of an organism's cap epitranscriptome. The method was piloted with 21 canonical caps-m7GpppN, m7GpppNm, GpppN, GpppNm, and m2,2,7GpppG-and 5 'metabolite' caps-NAD, FAD, UDP-Glc, UDP-GlcNAc, and dpCoA. Applying CapQuant to RNA from purified dengue virus, Escherichia coli, yeast, mouse tissues, and human cells, we discovered new cap structures in humans and mice (FAD, UDP-Glc, UDP-GlcNAc, and m7Gpppm6A), cell- and tissue-specific variations in cap methylation, and high proportions of caps lacking 2'-O-methylation (m7Gpppm6A in mammals, m7GpppA in dengue virus). While substantial Dimroth-induced loss of m1A and m1Am arose with specific RNA processing conditions, human lymphoblast cells showed no detectable m1A or m1Am in caps. CapQuant accurately captured the preference for purine nucleotides at eukaryotic transcription start sites and the correlation between metabolite levels and metabolite caps.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, People's Republic of China
- School of Life Sciences, Inner Mongolia University, Hohhot, People's Republic of China
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Bing Liang Alvin Chew
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- NTU Institute of Health Technologies, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore
| | - Yong Lai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Hongping Dong
- Shanghai Blueray Biopharma, Shanghai, People's Republic of China
| | - Luang Xu
- Cancer Science Institute of Singapore, Singapore
| | - Seetharamsingh Balamkundu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Weiling Maggie Cai
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- Department of Microbiology, National University of Singapore, Singapore
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Chuan Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Xin-Yuan Fu
- Cancer Science Institute of Singapore, Singapore
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO, USA
| | - Pei-Yong Shi
- Departments of Biochemistry & Molecular Biology and Pharmacology & Toxicology, and Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Timothy K Lu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- Synthetic Biology Center, Departments of Biological Engineering and Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
- Dept. of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
59
|
Chen J, Zhou Y, Zhuang Y, Qin T, Guo M, Jiang J, Niu J, Li JZ, Chen X, Wang Q. The metabolic regulator small heterodimer partner contributes to the glucose and lipid homeostasis abnormalities induced by hepatitis C virus infection. Metabolism 2019; 100:153954. [PMID: 31400386 DOI: 10.1016/j.metabol.2019.153954] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection can predispose the host to metabolic abnormalities. The orphan nuclear receptor small heterodimer partner (SHP; NR0B2) has been identified as a key transcriptional regulatory factor of genes involved in diverse metabolic pathways. The protective effects of SHP against HCV-induced hepatic fibrosis have been reported. However, the exact mechanisms of its role on metabolism are largely unknown. We investigated the role of hepatic SHP in regulating glucose and lipid homeostasis, particularly in the metabolic stress response caused by HCV infection. MATERIALS AND METHODS Gluconeogenesis and lipogenesis levels and SHP expression were measured in HCV-infected cells, as well as in liver samples from HCV-infected patients and persistently HCV-infected mice. RESULTS We demonstrated that SHP is involved in gluconeogenesis via the acetylation of the Forkhead box O (FoxO) family transcription factor FoxO1, which is mediated by histone deacetylase 9 (HDAC9). Meanwhile, SHP regulates lipogenesis in the liver via suppressing the induction of sterol regulatory element-binding protein-1c (SREBP-1c) expression by the SUMOylation of Liver X receptor α (LXRα) at the SREBP-1c promoter. In particular, SHP can be strongly reduced upon stimulation, such as by HCV infection. The SHP expression levels were decreased in the livers from the CHC patients and persistently HCV-infected mice, and a negative correlation was observed between the SHP expression levels and gluconeogenic or lipogenic activities, emphasizing the clinical relevance of these results. CONCLUSIONS Our results suggest that SHP is involved in HCV-induced abnormal glucose and lipid homeostasis and that SHP could be a major target for therapeutic interventions targeting HCV-associated metabolic diseases.
Collapse
Affiliation(s)
- Jizheng Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yue Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Yuan Zhuang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Tian Qin
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China
| | - Min Guo
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jing Jiang
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, China
| | - John Zhong Li
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China.
| | - Xinwen Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qian Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
60
|
Huang Q, Lei H, Ding L, Wang Y. Stimulated phospholipid synthesis is key for hepatitis B virus replications. Sci Rep 2019; 9:12989. [PMID: 31506451 PMCID: PMC6736851 DOI: 10.1038/s41598-019-49367-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B Virus (HBV) infection has high morbidity, high pathogenicity and unclear pathogenesis. To elucidate the relationship between HBV replication and host phospholipid metabolites, we measured 10 classes of phospholipids in serum of HBV infected patients and cells using ultra performance liquid chromatograph-triple quadruple mass spectrometry. We found that the levels of phosphatidylcholine (PC), phosphatidylethanolamine, and lyso-phosphatidic acid were increased in HBsAg (+) serum of infected patients compared with HBsAg (-), while phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, and sphingomyelin were decreased, which were confirmed in an HBV infected HepG2.2.15 cell line. We further evaluated the enzyme levels of PC pathways and found that PCYT1A and LPP1 for PC synthesis were up-regulated after HBV infection. Moreover, HBV replication was inhibited when PCYT1A and LPP1 were inhibited. These results indicated that the PC synthesis in HBV infected host are regulated by PCYT1A and LPP1, which suggests that PCYT1A, LPP1 could be new potential targets for HBV treatment.
Collapse
Affiliation(s)
- Qingxia Huang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Laifeng Ding
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore.
| |
Collapse
|
61
|
Mehmankhah M, Bhat R, Anvar MS, Ali S, Alam A, Farooqui A, Amir F, Anwer A, Khan S, Azmi I, Ali R, Ishrat R, Hassan MI, Minuchehr Z, Kazim SN. Structure-Guided Approach to Identify Potential Inhibitors of Large Envelope Protein to Prevent Hepatitis B Virus Infection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1297484. [PMID: 31772697 PMCID: PMC6854180 DOI: 10.1155/2019/1297484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
Abstract
Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, which can lead to hepatocellular carcinoma. The role of HBV envelope proteins is crucial in viral morphogenesis, infection, and propagation. Thus, blocking the pleiotropic functions of these proteins especially the PreS1 and PreS2 domains of the large surface protein (LHBs) is a promising strategy for designing efficient antivirals against HBV infection. Unfortunately, the structure of the LHBs protein has not been elucidated yet, and it seems that any structure-based drug discovery is critically dependent on this. To find effective inhibitors of LHBs, we have modeled and validated its three-dimensional structure and subsequently performed a virtual high-throughput screening against the ZINC database using RASPD and ParDOCK tools. We have identified four compounds, ZINC11882026, ZINC19741044, ZINC00653293, and ZINC15000762, showing appreciable binding affinity with the LHBs protein. The drug likeness was further validated using ADME screening and toxicity analysis. Interestingly, three of the four compounds showed the formation of hydrogen bonds with amino acid residues lying in the capsid binding region of the PreS1 domain of LHBs, suggesting the possibility of inhibiting the viral assembly and maturation process. The identification of potential lead molecules will help to discover more potent inhibitors with significant antiviral activities.
Collapse
Affiliation(s)
- Mahboubeh Mehmankhah
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ruchika Bhat
- Department of Chemistry & School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Mohammad Sabery Anvar
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahnawaz Ali
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aftab Alam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anam Farooqui
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Fatima Amir
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ayesha Anwer
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saniya Khan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Iqbal Azmi
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi 110025, India
| | - Rafat Ali
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Zarrin Minuchehr
- Systems Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Syed Naqui Kazim
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
62
|
Abstract
This review discusses the current state of the viral metabolism field and gaps in knowledge that will be important for future studies to investigate. We discuss metabolic rewiring caused by viruses, the influence of oncogenic viruses on host cell metabolism, and the use of viruses as guides to identify critical metabolic nodes for cancer anabolism. We also discuss the need for more mechanistic studies identifying viral proteins responsible for metabolic hijacking and for in vivo studies of viral-induced metabolic rewiring. Improved technologies for detailed metabolic measurements and genetic manipulation will lead to important discoveries over the next decade.
Collapse
Affiliation(s)
- Shivani K Thaker
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - James Ch'ng
- Department of Pediatrics, Division of Hematology/Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
63
|
Yang Q, Guo M, Zhou Y, Hu X, Wang Y, Wu C, Yang M, Pei R, Chen X, Chen J. Phosphatidylserine-Specific Phospholipase A1 is the Critical Bridge for Hepatitis C Virus Assembly. Virol Sin 2019; 34:521-537. [PMID: 31161554 DOI: 10.1007/s12250-019-00123-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
The phosphatidylserine-specific phospholipase A1 (PLA1A) is an essential host factor in hepatitis C virus (HCV) assembly. In this study, we mapped the E2, NS2 and NS5A involved in PLA1A interaction to their lumenal domains and membranous parts, through which they form oligomeric protein complexes to participate in HCV assembly. Multiple regions of PLA1A were involved in their interaction and complex formation. Furthermore, the results represented structures with PLA1A and E2 in closer proximity than NS2 and NS5A, and strongly suggest PLA1A-E2's physical interaction in cells. Meanwhile, we mapped the NS5A sequence which participated in PLA1A interaction with the C-terminus of domain 1. Interestingly, these amino acids in the sequence are also essential for viral RNA replication. Further experiments revealed that these four proteins interact with each other. Moreover, PLA1A expression levels were elevated in livers from HCV-infected patients. In conclusion, we exposed the structural determinants of PLA1A, E2, NS2 and NS5A proteins which were important for HCV assembly and provided a detailed characterization of PLA1A in HCV assembly.
Collapse
Affiliation(s)
- Qi Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Min Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Min Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
64
|
Tarancon-Diez L, Rodríguez-Gallego E, Rull A, Peraire J, Viladés C, Portilla I, Jimenez-Leon MR, Alba V, Herrero P, Leal M, Ruiz-Mateos E, Vidal F. Immunometabolism is a key factor for the persistent spontaneous elite control of HIV-1 infection. EBioMedicine 2019; 42:86-96. [PMID: 30879922 PMCID: PMC6491381 DOI: 10.1016/j.ebiom.2019.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Approximately 25% of elite controllers (ECs) lose their virological control by mechanisms that are only partially known. Recently, immunovirological and proteomic factors have been associated to the loss of spontaneous control. Our aim was to perform a metabolomic approach to identify the underlying mechanistic pathways and potential biomarkers associated with this loss of control. METHODS Plasma samples from EC who spontaneously lost virological control (Transient Controllers, TC, n = 8), at two and one year before the loss of control, were compared with a control group of EC who persistently maintained virological control during the same follow-up period (Persistent Controllers, PC, n = 8). The determination of metabolites and plasma lipids was performed by GC-qTOF and LC-qTOF using targeted and untargeted approaches. Metabolite levels were associated with the polyfunctionality of HIV-specific CD8+T-cell response. FINDINGS Our data suggest that, before the loss of control, TCs showed a specific circulating metabolomic profile characterized by aerobic glycolytic metabolism, deregulated mitochondrial function, oxidative stress and increased immunological activation. In addition, CD8+ T-cell polyfunctionality was strongly associated with metabolite levels. Finally, valine was the main differentiating factor between TCs and PCs. INTERPRETATION All these metabolomic differences should be considered not only as potential biomarkers but also as therapeutic targets in HIV infection. FUND: This work was supported by grants from Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Fondos FEDER; Red de Investigación en Sida, Gilead Fellowship program, Spanish Ministry of Education and Spanish Ministry of Economy and Competitiveness.
Collapse
Affiliation(s)
- Laura Tarancon-Diez
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Esther Rodríguez-Gallego
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Rull
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Joaquim Peraire
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Consuelo Viladés
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Irene Portilla
- Infectious Diseases, Instituto de Investigación Sanitaria y Biomédica de Alicante, ISABIAL - FISABIO, Hospital General Universitario de Alicante, Alicante, Spain
| | - María Reyes Jimenez-Leon
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Verónica Alba
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Manuel Leal
- Servicio de Medicina Interna, Hospital Viamed Santa Ángela de la Cruz, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Sevilla
| | - Ezequiel Ruiz-Mateos
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain.
| | - Francesc Vidal
- Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain.
| |
Collapse
|
65
|
Zhao Y, Chahar HS, Komaravelli N, Dossumbekova A, Casola A. Human metapneumovirus infection of airway epithelial cells is associated with changes in core metabolic pathways. Virology 2019; 531:183-191. [PMID: 30927711 DOI: 10.1016/j.virol.2019.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/28/2023]
Abstract
Human metapneumovirus (hMPV) is an important cause of acute lower respiratory tract infections in infants, elderly and immunocompromised individuals. Ingenuity pathway analysis of microarrays data showed that 20% of genes affected by hMPV infection of airway epithelial cells (AECs) were related to metabolism. We found that levels of the glycolytic pathway enzymes hexokinase 2, pyruvate kinase M2, and lactate dehydrogenase A were significantly upregulated in normal human AECs upon hMPV infection, as well as levels of enzymes belonging to the hexosamine biosynthetic and glycosylation pathways. On the other hand, expression of the majority of the enzymes belonging to the tricarboxylic acid cycle was significantly diminished. Inhibition of hexokinase 2 and of the glycosylating enzyme O-linked N-acetylglucosamine transferase led to a significant reduction in hMPV titer, indicating that metabolic changes induced by hMPV infection play a major role during the virus life cycle, and could be explored as potential antiviral targets.
Collapse
Affiliation(s)
- Yanhua Zhao
- Dept. of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | - Anar Dossumbekova
- Dept. of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonella Casola
- Dept. of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA; Dept. of Microbiology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
66
|
Shrinet J, Srivastava P, Kumar A, Dubey SK, Sirisena PDNN, Srivastava P, Sunil S. Differential Proteome Analysis of Chikungunya Virus and Dengue Virus Coinfection in Aedes Mosquitoes. J Proteome Res 2018; 17:3348-3359. [DOI: 10.1021/acs.jproteome.8b00211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jatin Shrinet
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), 110067 New Delhi, India
| | - Priyanshu Srivastava
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), 110067 New Delhi, India
| | - Ankit Kumar
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), 110067 New Delhi, India
| | - Sunil Kumar Dubey
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), 110067 New Delhi, India
| | | | - Pratibha Srivastava
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), 110067 New Delhi, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), 110067 New Delhi, India
| |
Collapse
|
67
|
Kim Y, Pierce CM, Robinson LA. Impact of viral presence in tumor on gene expression in non-small cell lung cancer. BMC Cancer 2018; 18:843. [PMID: 30134863 PMCID: PMC6106745 DOI: 10.1186/s12885-018-4748-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Background In our recent study, most non-small-lung cancer (NSCLC) tumor specimens harbored viral DNA but it was absent in non-neoplastic lung. However, their targets and roles in the tumor cells remain poorly understood. We analyzed gene expression microarrays to identify genes and pathways differentially altered between virus-infected and uninfected NSCLC tumors. Methods Gene expression microarrays of 30 primary and 9 metastatic NSCLC patients were preprocessed through a series of quality control analyses. Linear Models for Microarray Analysis and Gene Set Enrichment Analysis were used to assess differential expression. Results Various genes and gene sets had significantly altered expressions between virus-infected and uninfected NSCLC tumors. Notably, 22 genes on the viral carcinogenesis pathway were significantly overexpressed in virus-infected primary tumors, along with three oncogenic gene sets. A total of 12 genes, as well as seven oncogenic and 133 immunologic gene sets, were differentially altered in squamous cell carcinomas, depending on the virus. In adenocarcinoma, 14 differentially expressed genes (DEGs) were identified, but no oncogenic and immunogenic gene sets were significantly altered. In bronchioloalveolar carcinoma, several genes were highly overexpressed in virus-infected specimens, but not statistically significant. Only five of 69 DEGs (7.2%) from metastatic tumor analysis overlapped with 1527 DEGs from the primary tumor analysis, indicating differences in host cellular targets and the viral impact between primary and metastatic NSCLC. Conclusions The differentially expressed genes and gene sets were distinctive among infected viral types, histological subtypes, and metastatic disease status of NSCLC. These results support the hypothesis that tumor viruses play a role in NSCLC by regulating host genes in tumor cells during NSCLC differentiation and progression. Electronic supplementary material The online version of this article (10.1186/s12885-018-4748-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youngchul Kim
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, 33612-9416, Florida, USA.
| | - Christine M Pierce
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, 33612-9416, Florida, USA.,Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, 33612-9416, Florida, USA.,Division of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida, 33612-9416, USA
| | - Lary A Robinson
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, 33612-9416, Florida, USA.,Division of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida, 33612-9416, USA
| |
Collapse
|
68
|
Tian JS, Liu SB, He XY, Xiang H, Chen JL, Gao Y, Zhou YZ, Qin XM. Metabolomics studies on corticosterone-induced PC12 cells: A strategy for evaluating an in vitro depression model and revealing the metabolic regulation mechanism. Neurotoxicol Teratol 2018; 69:27-38. [PMID: 30076895 DOI: 10.1016/j.ntt.2018.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022]
Abstract
There are three types of differentiated (un-, poorly- and well-differentiated) PC12 cells, which have been widely used as a model system for depression studies after the administration of corticosterone (CORT). In order to investigate the underlying metabolic profiles of CORT-induced PC12 cells and evaluate the suitable differentiated types of PC12 cells for use in depressive studies, proton nuclear magnetic resonance (1H NMR) metabolomics coupled with network analysis approaches were employed. The results showed that CORT induced metabolic alterations in PC12 cells. There were 8 and 13 common differential metabolites in intracellular and extracellular extracts, respectively, of the three types of differentiated PC12 cells in response to CORT treatment, and the perturbed metabolic pathways were involved in amino acid metabolism, glutathione metabolism, pyruvate metabolism and inositol phosphate metabolism. Eighteen protein targets of depression were identified from the five different metabolic pathways from metabolomics and network analysis among the three types of CORT-induced differentiated PC12 cells, and these proteins were all found in the pathways that were perturbed by CORT treatment of poorly-differentiated PC12 cells. These results may indicate that the metabolism of CORT-induced PC12 cells is similar to the pathogenesis of depression, and poorly-differentiated PC12 cells are the most suitable cells for depressive research among the distinct types of differentiated PC12 cells. Thus, an effective predicative strategy to evaluate the in vitro disease models could be referenced.
Collapse
Affiliation(s)
- Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China.
| | - Shao-Bo Liu
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Xiao-Yan He
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Huan Xiang
- Departments of Physical Education of Shanxi University, Taiyuan 030006, PR China
| | - Jian-Li Chen
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Yu-Zhi Zhou
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
69
|
Guo W, Tan HY, Wang N, Wang X, Feng Y. Deciphering hepatocellular carcinoma through metabolomics: from biomarker discovery to therapy evaluation. Cancer Manag Res 2018; 10:715-734. [PMID: 29692630 PMCID: PMC5903488 DOI: 10.2147/cmar.s156837] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of death from cancer, with increasing prevalence worldwide. The mortality rate of HCC is similar to its incidence rate, which reflects its poor prognosis. At present, the diagnosis of HCC is still mostly dependent on invasive biopsy, imaging methods, and serum α-fetoprotein (AFP) testing. Because of the asymptomatic nature of early HCC, biopsy and imaging methods usually detect HCC at the middle-late stages. AFP has limited sensitivity and specificity, as many other nonmalignant liver diseases can also result in a very high serum level of AFP. Therefore, better biomarkers with higher sensitivity and specificity at earlier stages are greatly needed. Since metabolic reprogramming is an essential hallmark of cancer and the liver is the metabolic hub of living systems, it is useful to investigate HCC from a metabolic perspective. As a noninvasive and nondestructive approach, metabolomics provides holistic information on dynamically metabolic responses of living systems to both endogenous and exogenous factors. Therefore, it would be conducive to apply metabolomics in investigating HCC. In this review, we summarize recent metabolomic studies on HCC cellular, animal, and clinicopathologic models with attention to metabolomics as a biomarker in cancer diagnosis. Recent applications of metabolomics with respect to therapeutic and prognostic evaluation of HCC are also covered, with emphasis on the potential of treatment by drugs from natural products. In the last section, the current challenges and trends of future development of metabolomics on HCC are discussed. Overall, metabolomics provides us with novel insight into the diagnosis, prognosis, and therapeutic evaluation of HCC.
Collapse
Affiliation(s)
- Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
70
|
MicroRNA 130a Regulates both Hepatitis C Virus and Hepatitis B Virus Replication through a Central Metabolic Pathway. J Virol 2018; 92:JVI.02009-17. [PMID: 29321333 PMCID: PMC5972888 DOI: 10.1128/jvi.02009-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection has been shown to regulate microRNA 130a (miR-130a) in patient biopsy specimens and in cultured cells. We sought to identify miR-130a target genes and to explore the mechanisms by which miR-130a regulates HCV and hepatitis B virus (HBV) replication. We used bioinformatics software, including miRanda, TargetScan, PITA, and RNAhybrid, to predict potential miR-130a target genes. miR-130a and its target genes were overexpressed or were knocked down by use of small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 guide RNA (gRNA). Selected gene mRNAs and their proteins, together with HCV replication in OR6 cells, HCV JFH1-infected Huh7.5.1 cells, and HCV JFH1-infected primary human hepatocytes (PHHs) and HBV replication in HepAD38 cells, HBV-infected NTCP-Huh7.5.1 cells, and HBV-infected PHHs, were measured by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting, respectively. We selected 116 predicted target genes whose expression was related to viral pathogenesis or immunity for qPCR validation. Of these, the gene encoding pyruvate kinase in liver and red blood cell (PKLR) was confirmed to be regulated by miR-130a overexpression. miR-130a overexpression (via a mimic) knocked down PKLR mRNA and protein levels. A miR-130a inhibitor and gRNA increased PKLR expression, HCV replication, and HBV replication, while miR-130a gRNA and PKLR overexpression increased HCV and HBV replication. Supplemental pyruvate increased HCV and HBV replication and rescued the inhibition of HCV and HBV replication by the miR-130a mimic and PKLR knockdown. We concluded that miR-130a regulates HCV and HBV replication through its targeting of PKLR and subsequent pyruvate production. Our data provide novel insights into key metabolic enzymatic pathway steps regulated by miR-130a, including the steps involving PKLR and pyruvate, which are subverted by HCV and HBV replication. IMPORTANCE We identified that miR-130a regulates the target gene PKLR and its subsequent effect on pyruvate production. Pyruvate is a key intermediate in several metabolic pathways, and we identified that pyruvate plays a key role in regulation of HCV and HBV replication. This previously unrecognized, miRNA-regulated antiviral mechanism has implications for the development of host-directed strategies to interrupt the viral life cycle and prevent establishment of persistent infection for HCV, HBV, and potentially other viral infections.
Collapse
|
71
|
Kwee SA, Wong L, Chan OTM, Kalathil S, Tsai N. PET/CT with 18F Fluorocholine as an Imaging Biomarker for Chronic Liver Disease: A Preliminary Radiopathologic Correspondence Study in Patients with Liver Cancer. Radiology 2018; 287:294-302. [PMID: 29315063 DOI: 10.1148/radiol.2018171333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose To determine the relationship between hepatic uptake at preoperative fluorine 18 (18F) fluorocholine combined positron emission tomography (PET) and computed tomography (CT) and the histopathologic features of chronic liver disease in patients with Child-Pugh class A or B disease who are undergoing hepatic resection for liver cancer. Materials and Methods Forty-eight patients with resectable liver tumors underwent preoperative 18F fluorocholine PET/CT. Mean liver standardized uptake value (SUVmean) measurements were obtained from PET images, while histologic indexes of inflammation and fibrosis were applied to nontumor liver tissue from resection specimens. Effects of histopathologic features on liver SUVmean were examined with analysis of variance. Results Liver SUVmean ranged from 4.3 to 11.6, correlating significantly with Knodell histologic activity index (ρ = -0.81, P < .001) and several clinical indexes of liver disease severity. Liver SUVmean also differed significantly across groups stratified by necroinflammatory severity and Metavir fibrosis stage (P < . 001). The area under the receiver operating characteristic curve for 18F fluorocholine PET/CT detecting Metavir fibrosis stage F1 or higher was 0.89 ± 0.05, with an odds-ratio of 3.03 (95% confidence interval: 1.59, 5.88) and sensitivity and specificity of 82% and 93%, respectively. Conclusion Correlations found in patients undergoing hepatic resection for liver cancer between liver 18F fluorocholine uptake and histopathologic indexes of liver fibrosis and inflammation support the use of 18F fluorocholine PET/CT as a potential imaging biomarker for chronic liver disease. © RSNA, 2018.
Collapse
Affiliation(s)
- Sandi A Kwee
- From the Hamamatsu/Queen's PET Imaging Center (S.A.K.) and Liver Center (S.K., N.T.), The Queen's Medical Center, 1301 Punchbowl St, Honolulu, HI 96813; Departments of Medicine and Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii (S.A.K., L.W.); and Department of Pathology, University of Hawaii Cancer Center, Honolulu, Hawaii (O.T.M.C.)
| | - Linda Wong
- From the Hamamatsu/Queen's PET Imaging Center (S.A.K.) and Liver Center (S.K., N.T.), The Queen's Medical Center, 1301 Punchbowl St, Honolulu, HI 96813; Departments of Medicine and Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii (S.A.K., L.W.); and Department of Pathology, University of Hawaii Cancer Center, Honolulu, Hawaii (O.T.M.C.)
| | - Owen T M Chan
- From the Hamamatsu/Queen's PET Imaging Center (S.A.K.) and Liver Center (S.K., N.T.), The Queen's Medical Center, 1301 Punchbowl St, Honolulu, HI 96813; Departments of Medicine and Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii (S.A.K., L.W.); and Department of Pathology, University of Hawaii Cancer Center, Honolulu, Hawaii (O.T.M.C.)
| | - Sumodh Kalathil
- From the Hamamatsu/Queen's PET Imaging Center (S.A.K.) and Liver Center (S.K., N.T.), The Queen's Medical Center, 1301 Punchbowl St, Honolulu, HI 96813; Departments of Medicine and Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii (S.A.K., L.W.); and Department of Pathology, University of Hawaii Cancer Center, Honolulu, Hawaii (O.T.M.C.)
| | - Naoky Tsai
- From the Hamamatsu/Queen's PET Imaging Center (S.A.K.) and Liver Center (S.K., N.T.), The Queen's Medical Center, 1301 Punchbowl St, Honolulu, HI 96813; Departments of Medicine and Surgery, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii (S.A.K., L.W.); and Department of Pathology, University of Hawaii Cancer Center, Honolulu, Hawaii (O.T.M.C.)
| |
Collapse
|
72
|
Simillion C, Semmo N, Idle JR, Beyoğlu D. Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients. Metabolites 2017; 7:metabo7040051. [PMID: 28991180 PMCID: PMC5746731 DOI: 10.3390/metabo7040051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
About one in 15 of the world’s population is chronically infected with either hepatitis virus B (HBV) or C (HCV), with enormous public health consequences. The metabolic alterations caused by these infections have never been directly compared and contrasted. We investigated groups of HBV-positive, HCV-positive, and uninfected healthy controls using gas chromatography-mass spectrometry analyses of their plasma and urine. A robust regression analysis of the metabolite data was conducted to reveal correlations between metabolite pairs. Ten metabolite correlations appeared for HBV plasma and urine, with 18 for HCV plasma and urine, none of which were present in the controls. Metabolic perturbation networks were constructed, which permitted a differential view of the HBV- and HCV-infected liver. HBV hepatitis was consistent with enhanced glucose uptake, glycolysis, and pentose phosphate pathway metabolism, the latter using xylitol and producing threonic acid, which may also be imported by glucose transporters. HCV hepatitis was consistent with impaired glucose uptake, glycolysis, and pentose phosphate pathway metabolism, with the tricarboxylic acid pathway fueled by branched-chain amino acids feeding gluconeogenesis and the hepatocellular loss of glucose, which most probably contributed to hyperglycemia. It is concluded that robust regression analyses can uncover metabolic rewiring in disease states.
Collapse
Affiliation(s)
- Cedric Simillion
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland.
| | - Nasser Semmo
- Department of BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland.
- Department of Visceral Surgery and Medicine, Department of Hepatology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland.
| | - Jeffrey R Idle
- Department of BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland.
- Department of Visceral Surgery and Medicine, Department of Hepatology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland.
- Division of Systems Pharmacology and Pharmacogenomics, Samuel J. and Joan B. Williamson Institute, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, 11201 New York, NY, USA.
| | - Diren Beyoğlu
- Department of BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland.
- Division of Systems Pharmacology and Pharmacogenomics, Samuel J. and Joan B. Williamson Institute, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, 11201 New York, NY, USA.
| |
Collapse
|
73
|
Comparative Gene Expression Analysis within Mouse Macrophage for Identifying Critical Pathways in Macrophage and Brucella suis Interaction. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.59275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
74
|
Li L, Shao M, Peng P, Yang C, Song S, Duan F, Jia D, Zhang M, Zhao J, Zhao R, Wu W, Wang L, Li C, Wu H, Zhang J, Wu X, Ruan Y, Gu J. High expression of GFAT1 predicts unfavorable prognosis in patients with hepatocellular carcinoma. Oncotarget 2017; 8:19205-19217. [PMID: 28186970 PMCID: PMC5386678 DOI: 10.18632/oncotarget.15164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/23/2017] [Indexed: 01/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths worldwide. As a branch of glucose metabolism, hexosamine biosynthesis pathway (HBP) has been reported to play a critical role in the insulin resistance and progression of cancer. Glutamine:fructose-6-phosphate amidotransferase (GFAT) is the rate-limiting enzyme of the HBP; nevertheless, the prognostic value of GFAT1 in HCC remains elusive. In this study, we found that high expression of GFAT1 was significantly associated with serum alpha-fetoprotein (AFP), serum alanine aminotransferase (ALT), tumor size, tumor encapsulation, T stage and TNM stage. High GFAT1 expression was identified as an independent prognostic factor which predicted poor overall survival (OS) and recurrence-free survival (RFS) in HCC patients. Incorporation of GFAT1 expression could improve the prognostic accuracy of traditional TNM stage system. Integration of GFAT1 expression with other independent prognosticators generated a predictive nomogram, which showed better prognostic efficiency for OS and RFS in HCC patients. In vitro studies also revealed that GFAT1 promoted the proliferation, cell cycle progression, migration and invasion of HCC cells. In conclusion, GFAT1 is a potential prognostic biomarker for overall survival and recurrence-free survival of HCC patients after surgery.
Collapse
Affiliation(s)
- Lili Li
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China
| | - Miaomiao Shao
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China
| | - Peike Peng
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China
| | - Caiting Yang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China
| | - Shushu Song
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China
| | - Fangfang Duan
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R.China
| | - Dongwei Jia
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China
| | - Mingming Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China
| | - Junjie Zhao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, P.R.China
| | - Ran Zhao
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R.China
| | - Weicheng Wu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China
| | - Lan Wang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R.China
| | - Can Li
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China
| | - Hao Wu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China
| | - Jie Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R.China
| | - Xin Wu
- Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University Shanghai, P.R.China
| | - Yuanyuan Ruan
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China
| | - Jianxin Gu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P.R.China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, P.R.China
| |
Collapse
|
75
|
Liu C, Du B, Hao F, Lei H, Wan Q, He G, Wang Y, Tang H. Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1346-1357. [PMID: 28278368 PMCID: PMC5595709 DOI: 10.1111/pbi.12721] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/19/2017] [Accepted: 03/06/2017] [Indexed: 05/05/2023]
Abstract
Brown planthopper (Nilaparvata lugens Stål, BPH) causes huge economic losses in rice-growing regions, and new strategies for combating BPH are required. To understand how BPHs respond towards BPH-resistant plants, we systematically analysed the metabolic differences between BPHs feeding on the resistant and susceptible plants using NMR and GC-FID/MS. We also measured the expression of some related genes involving glycolysis and biosyntheses of trehalose, amino acids, chitin and fatty acids using real-time PCR. BPH metabonome was dominated by more than 60 metabolites including fatty acids, amino acids, carbohydrates, nucleosides/nucleotides and TCA cycle intermediates. After initial 12 h, BPHs feeding on the resistant plants had lower levels of amino acids, glucose, fatty acids and TCA cycle intermediates than on the susceptible ones. The levels of these metabolites recovered after 24 h feeding. This accompanied with increased level in trehalose, choline metabolites and nucleosides/nucleotides compared with BPH feeding on the susceptible plants. Decreased levels of BPH metabolites at the early feeding probably resulted from less BPH uptakes of sap from resistant plants and recovery of BPH metabolites at the later stage probably resulted from their adaptation to the adverse environment with their increased hopping frequency to ingest more sap together with contributions from yeast-like symbionts in BPHs. Throughout 96 h, BPH feeding on the resistant plants showed significant up-regulation of chitin synthase catalysing biosynthesis of chitin for insect exoskeleton, peritrophic membrane lining gut and tracheae. These findings provided useful metabolic information for understanding the BPH-rice interactions and perhaps for developing new BPH-combating strategies.
Collapse
Affiliation(s)
- Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
| | - Ba Du
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhanChina
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
| | - Qianfen Wan
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
- State Key Laboratory of Genetic EngineeringZhongshan Hospital and School of Life SciencesFudan UniversityCollaborative Innovation Center for Genetics and DevelopmentMetabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular PhenomicsShanghaiChina
| | - Guangcun He
- State Key Laboratory of Hybrid RiceCollege of Life SciencesWuhan UniversityWuhanChina
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang UniversityHangzhouChina
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological SystemsState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsNational Centre for Magnetic Resonance in WuhanWuhan Institute of Physics and Mathematics, the Chinese Academy of SciencesWuhanChina
- State Key Laboratory of Genetic EngineeringZhongshan Hospital and School of Life SciencesFudan UniversityCollaborative Innovation Center for Genetics and DevelopmentMetabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular PhenomicsShanghaiChina
| |
Collapse
|
76
|
Masson JJ, Billings HW, Palmer CS. Metabolic reprogramming during hepatitis B disease progression offers novel diagnostic and therapeutic opportunities. Antivir Chem Chemother 2017; 25:53-57. [PMID: 28768434 PMCID: PMC5890528 DOI: 10.1177/2040206617701372] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Metabolic remodeling occurs in immune cells during an infection. Host cells must upregulate energy production for growth, proliferation, and effector functions to limit the damage imposed by pathogens. One example, the hepatitis B virus, induces hepatic injury in human hepatocytes through dysregulation of aerobic glycolysis and lipid metabolism. Increased glycolytic metabolism mediated by elevated expression of Glut1, glucose influx, and lactate secretion is associated with this Warburg phenotype, a classic metabolic signature also observed in cancer cells. This article brings into focus the tight interaction between HBV infection and metabolic dysfunction and how these processes facilitate the progression of end-stage liver diseases, such as hepatocellular carcinoma. We also provide evidence and models by which other viruses such as HIV and Zika disrupt their host metabolic machinery. The emergence of the immunometabolism field provides novel opportunities to take advantage of intermediary metabolites and key metabolic pathways for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Jesse Jr Masson
- 1 Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Hugh Ww Billings
- 1 Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - Clovis S Palmer
- 1 Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,2 Department of Infectious Diseases, Monash University, Melbourne, Australia.,3 Department of Microbiology and Immunology, University of, Melbourne, Melbourne, Australia
| |
Collapse
|
77
|
Chen J, Zhang Z, Wang N, Guo M, Chi X, Pan Y, Jiang J, Niu J, Ksimu S, Li JZ, Chen X, Wang Q. Role of HDAC9-FoxO1 Axis in the Transcriptional Program Associated with Hepatic Gluconeogenesis. Sci Rep 2017; 7:6102. [PMID: 28733598 PMCID: PMC5522426 DOI: 10.1038/s41598-017-06328-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022] Open
Abstract
Histone deacetylase 9 (HDAC9) regulates hepatic gluconeogenesis by deacetylating Forkhead box O 1 (FoxO1). HDAC9 upregulation is involved in hepatitis C virus (HCV)-associated exaggerated gluconeogenesis. Herein, we found in addition to FoxO1, HDAC9 also regulates other gluconeogenic transcription factors, including peroxisomeproliferator-activated receptor-γ coactivator-1α (PGC-1α), cyclic AMP-responsive element-binding protein (CREB), and glucocorticoid receptor (GR). Unlike FoxO1, which is regulated by post-translational modification responses to HDAC9, HDAC9 regulates PGC-1α, CREB and GR by altering gene expression. Similar to PGC-1α, CREB and GR were found to be novel regulatory targets of FoxO1 by examination of the FoxO1 binding site in their promoter. PGC-1α, CREB and GR were upregulated in response to HDAC9 via FoxO1 deacetylation. These findings indicate that HDAC9-FoxO1 signalling contributes to gluconeogenesis by modulating the expression of gluconeogenic transcription factors. In particular, metabolic profiling demonstrated a clear shift towards gluconeogenesis metabolism, and HDAC9-FoxO1 signalling can be strongly induced to upregulate gluconeogenic transcription factors following HCV infection. The positive correlation between HDAC9 and gluconeogenic transcription factor expression levels in the livers of both HCV-infected patients and normal individuals further emphasizes the clinical relevance of these results. Thus, HDAC9-FoxO1 signalling axis is involved in regulating gluconeogenic transcription factors, gluconeogenesis, and HCV-induced type 2 diabetes.
Collapse
Affiliation(s)
- Jizheng Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhilei Zhang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Ning Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Xiumei Chi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yu Pan
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing Jiang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Junqi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Sulaiman Ksimu
- The Center for Technology and Education, The first Affiliated Hospital of Xinjiang Medical University, Urumchi, 830054, China
| | - John Zhong Li
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China
| | - Xinwen Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Qian Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
78
|
Huang J, Zhao L, Yang P, Chen Z, Ruan XZ, Huang A, Tang N, Chen Y. Fatty acid translocase promoted hepatitis B virus replication by upregulating the levels of hepatic cytosolic calcium. Exp Cell Res 2017; 358:360-368. [PMID: 28697919 DOI: 10.1016/j.yexcr.2017.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) is designated a "metabolovirus" due to the intimate connection between the virus and host metabolism. The nutrition state of the host plays a relevant role in the severity of HBV infection. Metabolic syndrome (MS) is prone to increasing HBV DNA loads and accelerating the progression of liver disease in patients with chronic hepatitis B (CHB). Cluster of differentiation 36 (CD36), also named fatty acid translocase, is known to facilitate long-chain fatty acid uptake and contribute to the development of MS. We recently found that CD36 overexpression enhanced HBV replication. In this study, we further explored the mechanism by which CD36 overexpression promotes HBV replication. Our data showed that CD36 overexpression increased HBV replication, and CD36 knockdown inhibited HBV replication. RNA sequencing found some of the differentially expressed genes were involved in calcium ion homeostasis. CD36 overexpression elevated the cytosolic calcium level, and CD36 knockdown decreased the cytosolic calcium level. Calcium chelator BAPTA-AM could override the HBV replication increased by CD36 overexpression, and the calcium activator thapsigargin could improve the HBV replication reduced by CD36 knockdown. We further found that CD36 overexpression activated Src kinase, which plays an important role in the regulation of the store-operated Ca2+ channel. An inhibitor of Src kinase (SU6656) significantly reduced the CD36-induced HBV replication. We identified a novel link between CD36 and HBV replication, which is associated with cytosolic calcium and the Src kinase pathway. CD36 may represent a potential therapeutic target for the treatment of CHB patients with MS.
Collapse
Affiliation(s)
- Jian Huang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Lei Zhao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ping Yang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhen Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiong Z Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, NW3 2PF, United Kingdom; The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Zhejiang University, Hangzhou 310058, China
| | - Ailong Huang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Zhejiang University, Hangzhou 310058, China
| | - Ni Tang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
79
|
Manchester M, Anand A. Metabolomics: Strategies to Define the Role of Metabolism in Virus Infection and Pathogenesis. Adv Virus Res 2017; 98:57-81. [PMID: 28433052 DOI: 10.1016/bs.aivir.2017.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolomics is an analytical profiling technique for measuring and comparing large numbers of metabolites present in biological samples. Combining high-throughput analytical chemistry and multivariate data analysis, metabolomics offers a window on metabolic mechanisms. Because they intimately utilize and often rewire host metabolism, viruses are an excellent choice to study by metabolomics techniques. Studies of the effects of viruses on metabolism during replication in vitro and infection in animal models or human subjects have provided novel insights into these networks and provided new targets for therapy and biomarker development. Identifying the common metabolic pathways utilized by viruses has the potential to reveal those that can be targeted by broad-spectrum antiviral and vaccine approaches.
Collapse
Affiliation(s)
- Marianne Manchester
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland.
| | - Anisha Anand
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
80
|
Deng W, Zhang X, Ma Z, Lin Y, Lu M. MicroRNA-125b-5p mediates post-transcriptional regulation of hepatitis B virus replication via the LIN28B/let-7 axis. RNA Biol 2017; 14:1389-1398. [PMID: 28267418 DOI: 10.1080/15476286.2017.1293770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
MicroRNAs (miRNAs) are able to modulate hepatitis B virus (HBV) replication and play an important role in the pathogenesis of HBV infection. Recently, we have identified that serum miR-125b-5p levels correlated with HBV DNA levels and liver necroinflammation. In the present study, we addressed how miR-125b-5p regulated HBV replication at the different steps, inclduing viral transcription, assembly, and virion production and investigated the underlying mechanisms. We found that miR-125b-5p overexpression increased HBV replication without altering HBV transcription. This is the first demonstration of post-transcriptional miRNA regulation of HBV replication. In contrast, transfection of miR-125b-5p inhibitor resulted in downregulation of HBV replication in hepatoma cells. Further, miR-125b-5p inhibited the phosphorylation of retinoblastoma protein and blocked cell cycle progression at the G1/S phase in hepatoma cell lines. Our results indicate that certain miRNAs are able to arrest the cell cycle at G1 phase and may increase HBV replication. RNA sequencing revealed several liver-specific metabolic pathways regulated by miR-125b-5p, which was also found to suppress LIN28B and induce let-7 family members. Additional data demonstrated that miR-125b-5p targeted the LIN28B/let-7 axis to stimulate HBV replication at a post-transcriptional step.
Collapse
Affiliation(s)
- Wanyu Deng
- a Institute of Virology, University Hospital Essen, University of Duisburg-Essen , Essen , Germany.,b College of Life Science, Shangrao Normal University , Shangrao , China
| | - Xiaoyong Zhang
- a Institute of Virology, University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Zhiyong Ma
- a Institute of Virology, University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Yong Lin
- a Institute of Virology, University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| | - Mengji Lu
- a Institute of Virology, University Hospital Essen, University of Duisburg-Essen , Essen , Germany
| |
Collapse
|
81
|
Wan Q, Wang Y, Tang H. Quantitative 13C Traces of Glucose Fate in Hepatitis B Virus-Infected Hepatocytes. Anal Chem 2017; 89:3293-3299. [PMID: 28221022 DOI: 10.1021/acs.analchem.6b03200] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantitative characterization of 13C-labeled metabolites is an important part of the stable isotope tracing method widely used in metabolic flux analysis. Given the long relaxation time and low sensitivity of 13C nuclei, direct measurement of 13C-labeled metabolites using one-dimensional 13C NMR often fails to meet the demand of metabolomics studies, especially with large numbers of samples and metabolites having low abundance. Although HSQC-based 2D NMR methods have improved sensitivity with inversion detection, they are time-consuming and thus unsuitable for high-throughput absolute quantification of 13C-labeled metabolites. In this study, we developed a method for absolute quantification of 13C-labeled metabolites using naturally abundant TSP as a reference with the first increment of the HMQC pulse sequence, taking polarization transfer efficiencies into consideration. We validated this method using a mixture of 13C-labeled alanine, methionine, glucose, and formic acid together with a mixture of alanine, lactate, glycine, uridine, cytosine, and hypoxanthine, which have natural 13C abundance with known concentrations. We subsequently applied this method to analyze the flux of glucose in HepG2 cells infected with hepatitis B virus (HBV). The results showed that HBV infection increased the cellular uptake of glucose, stimulated glycolysis, and enhanced the pentose phosphate and hexosamine pathways for biosynthesis of RNA and DNA and nucleotide sugars to facilitate HBV replication. This method saves experimental time and provides a possibility for absolute quantitative tracking of the 13C-labeled metabolites for high-throughput studies.
Collapse
Affiliation(s)
- Qianfen Wan
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University , Shanghai International Centre for Molecular Phenomics, Collaborative Innovation Center for Genetics and Development, Shanghai 200438, China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310058, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University , Shanghai International Centre for Molecular Phenomics, Collaborative Innovation Center for Genetics and Development, Shanghai 200438, China
| |
Collapse
|
82
|
Wu T, Zheng X, Yang M, Zhao A, Li M, Chen T, Panee J, Jia W, Ji G. Serum lipid alterations identified in chronic hepatitis B, hepatitis B virus-associated cirrhosis and carcinoma patients. Sci Rep 2017; 7:42710. [PMID: 28198443 PMCID: PMC5309878 DOI: 10.1038/srep42710] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/12/2017] [Indexed: 01/03/2023] Open
Abstract
The incidences of chronic hepatitis B (CHB), Hepatitis B virus (HBV)-associated cirrhosis and HBV-associated carcinoma are high and increasing. This study was designed to evaluate serum lipid metabolite changes that are associated with the progression from CHB to HBV-associated cirrhosis and ultimately to HBV-associated HCC. A targeted metabolomic assay was performed in fasting sera from 136 CHB patients, 104 HBV-associated cirrhosis, and 95 HBV-associated HCC using ultra-performance liquid chromatography triple quadrupole mass spectrometry. A total of 140 metabolites were identified. Clear separations between each two groups were obtained using the partial least squares discriminate analysis of 9 lipid metabolites. Progressively lower levels of long-chain lysophosphatidylcholines (lysoPC a C18:2, lysoPC a C20:3, lysoPC a C20:4) were observed from CHB to cirrhosis to carcinoma; lower levels of lysoPC a C20:4 were found in patients with higher model for end-stage liver disease in the same disease group; and lysoPC a C20:3 levels were lower in Child-Pugh Class C than in Class A and Class B in HBV-associated cirrhosis and HBV-associated HCC groups. The octadecadienyl carnitine level was higher in HBV-associated cirrhosis group than in other two groups. Serum levels of selected long-chain lysoPCs are promising markers for the progression of HBV-associated liver diseases.
Collapse
Affiliation(s)
- Tao Wu
- Center of Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiaojiao Zheng
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Ming Yang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Aihua Zhao
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Meng Li
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Jun Panee
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Monoa, Honolulu, Hawaii 96813, United States
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- University of Hawaii Cancer Center, Honolulu, Hawaii 96813, United States
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
83
|
Multi-omics analyses reveal metabolic alterations regulated by hepatitis B virus core protein in hepatocellular carcinoma cells. Sci Rep 2017; 7:41089. [PMID: 28112229 PMCID: PMC5253728 DOI: 10.1038/srep41089] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is partly responsible for hepatitis, fatty liver disease and hepatocellular carcinoma (HCC). HBV core protein (HBc), encoded by the HBV genome, may play a significant role in HBV life cycle. However, the function of HBc in the occurrence and development of liver disease is still unclear. To investigate the underlying mechanisms, HBc-transfected HCC cells were characterized by multi-omics analyses. Combining proteomics and metabolomics analyses, our results showed that HBc promoted the expression of metabolic enzymes and the secretion of metabolites in HCC cells. In addition, glycolysis and amino acid metabolism were significantly up-regulated by HBc. Moreover, Max-like protein X (MLX) might be recruited and enriched by HBc in the nucleus to regulate glycolysis pathways. This study provides further insights into the function of HBc in the molecular pathogenesis of HBV-induced diseases and indicates that metabolic reprogramming appears to be a hallmark of HBc transfection.
Collapse
|
84
|
Ivanov AV, Valuev-Elliston VT, Tyurina DA, Ivanova ON, Kochetkov SN, Bartosch B, Isaguliants MG. Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget 2017; 8:3895-3932. [PMID: 27965466 PMCID: PMC5354803 DOI: 10.18632/oncotarget.13904] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review.
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Daria A. Tyurina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Birke Bartosch
- Inserm U1052, Cancer Research Center Lyon, University of Lyon, Lyon, France
- DevWeCan Laboratories of Excellence Network, France
| | - Maria G. Isaguliants
- Riga Stradins University, Riga, Latvia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
85
|
Cao X, Qi Y, Xu C, Yang Y, Wang J. Transcriptome and metabolome responses of Shewanella oneidensis MR-1 to methyl orange under microaerophilic and aerobic conditions. Appl Microbiol Biotechnol 2017; 101:3463-3472. [PMID: 28070664 DOI: 10.1007/s00253-016-8087-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 02/08/2023]
Abstract
Shewanella oneidensis MR-1 degrades various azo dyes under microaerophilic and anaerobic conditions, but this process is inhibited under aerobic conditions. The mechanisms underlying azo dye biodegradation and inhibition remain unknown. Therefore, we investigated metabolic and transcriptional changes in strain MR-1, which was cultured under different conditions, to elucidate these mechanisms. At the transcriptional level, genes involved in certain metabolic processes, particularly the tricarboxylic acid (TCA) cycle, amino acid biodegradation, and the electron transfer system, were significantly altered (M ≧ 2, p > 0.8 ) in the presence of methyl orange (MO). Moreover, a high concentration of dissolved oxygen heavily impacted the expression levels of genes involved in fatty acid biodegradation. Metabolome analysis revealed significant alteration (p < 0.05) in the concentrations of nine metabolites when strain MR-1 was cultured under aerobic conditions; the majority of these metabolites were closely associated with amino acid metabolism and DNA replication. Accordingly, we propose a possible pathway for MO biodegradation and discuss the most likely causes of biodegradation inhibition due to dissolved oxygen.
Collapse
Affiliation(s)
- Xinhua Cao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueling Qi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Xu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China. .,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
86
|
Yan Y, Jiang W, Tan Y, Zou S, Zhang H, Mao F, Gong A, Qian H, Xu W. hucMSC Exosome-Derived GPX1 Is Required for the Recovery of Hepatic Oxidant Injury. Mol Ther 2017; 25:465-479. [PMID: 28089078 DOI: 10.1016/j.ymthe.2016.11.019] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/26/2016] [Accepted: 11/27/2016] [Indexed: 12/13/2022] Open
Abstract
Exosomes are small biological membrane vesicles secreted by various cells, including mesenchymal stem cells (MSCs). We previously reported that MSC-derived exosomes (MSC-Ex) can elicit hepatoprotective effects against toxicant-induced injury. However, the success of MSC-Ex-based therapy for treatment of liver diseases and the underlying mechanisms have not been well characterized. We used human umbilical cord MSC-derived exosome (hucMSC-Ex) administrated by tail vein or oral gavage at different doses and, in engrafted liver mouse models, noted antioxidant and anti-apoptotic effects and rescue from liver failure. A single systemic administration of hucMSC-Ex (16 mg/kg) effectively rescued the recipient mice from carbon tetrachloride (CCl4)-induced liver failure. Moreover, hucMSC-Ex-derived glutathione peroxidase1 (GPX1), which detoxifies CCl4 and H2O2, reduced oxidative stress and apoptosis. Knockdown of GPX1 in hucMSCs abrogated antioxidant and anti-apoptotic abilities of hucMSC-Ex and diminished the hepatoprotective effects of hucMSC-Ex in vitro and in vivo. Thus, hucMSC-Ex promote the recovery of hepatic oxidant injury through the delivery of GPX1.
Collapse
Affiliation(s)
- Yongmin Yan
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China.
| | - Wenqian Jiang
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Youwen Tan
- The Affiliated Third Hospital of Zhenjiang, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Shengqiang Zou
- The Affiliated Third Hospital of Zhenjiang, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Hongguang Zhang
- The Affiliated Third Hospital of Zhenjiang, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Fei Mao
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Aihua Gong
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Hui Qian
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China; Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China
| | - Wenrong Xu
- Liver Disease and Cancer Institute, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China; Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, 212013 Zhenjiang, Jiangsu, People's Republic of China.
| |
Collapse
|
87
|
Lin Y, Deng W, Pang J, Kemper T, Hu J, Yin J, Zhang J, Lu M. The microRNA-99 family modulates hepatitis B virus replication by promoting IGF-1R/PI3K/Akt/mTOR/ULK1 signaling-induced autophagy. Cell Microbiol 2017; 19. [PMID: 27886437 DOI: 10.1111/cmi.12709] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small highly conserved noncoding RNAs that are widely expressed in multicellular organisms and participate in the regulation of various cellular processes including autophagy and viral replication. Evidently, microRNAs are able to modulate host gene expression and thereby inhibit or enhance hepatitis B virus (HBV) replication. The miR-99 family members are highly expressed in the liver. Interestingly, the plasma levels of miR-99 family in the peripheral blood correspond with HBV DNA loads. Thus, we asked whether the miR-99 family regulated HBV replication and analyzed the underlying molecular mechanism. Compared with primary hepatocytes, miR-99 family expression was downregulated in hepatoma cells. Transfection of miR-99a, miR-99b, and miR-100 markedly increased HBV replication, progeny secretion, and antigen expression in hepatoma cells. However, miR-99 family had no effect on HBV transcription and HBV promoter activities, suggesting that they regulate HBV replication at posttranscriptional steps. Consistent with bioinformatic analysis and recent reports, ectopic expression of miR-99 family attenuated IGF-1R/Akt/mTOR pathway signaling and repressed insulin-stimulated activation in hepatoma cells. Moreover, the experimental data demonstrated that the miR-99 family promoted autophagy through mTOR/ULK1 signaling and thereby enhanced HBV replication. In conclusion, the miR-99 family promotes HBV replication posttranscriptionally through IGF-1R/PI3K/Akt/mTOR/ULK1 signaling-induced autophagy.
Collapse
Affiliation(s)
- Yong Lin
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wanyu Deng
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jinke Pang
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thekla Kemper
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jing Hu
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Jian Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
88
|
Huang WC, Easom NJ, Tang XZ, Gill US, Singh H, Robertson F, Chang C, Trowsdale J, Davidson BR, Rosenberg WM, Fusai G, Toubert A, Kennedy PT, Peppa D, Maini MK. T Cells Infiltrating Diseased Liver Express Ligands for the NKG2D Stress Surveillance System. THE JOURNAL OF IMMUNOLOGY 2016; 198:1172-1182. [PMID: 28031333 PMCID: PMC5253436 DOI: 10.4049/jimmunol.1601313] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/22/2016] [Indexed: 12/23/2022]
Abstract
NK cells, which are highly enriched in the liver, are potent regulators of antiviral T cells and immunopathology in persistent viral infection. We investigated the role of the NKG2D axis in T cell/NK cell interactions in hepatitis B. Activated and hepatitis B virus (HBV)-specific T cells, particularly the CD4 fraction, expressed NKG2D ligands (NKG2DL), which were not found on T cells from healthy controls (p < 0.001). NKG2DL-expressing T cells were strikingly enriched within HBV-infected livers compared with the periphery or to healthy livers (p < 0.001). NKG2D+NK cells were also increased and preferentially activated in the HBV-infected liver (p < 0.001), in direct proportion to the percentage of MICA/B-expressing CD4 T cells colocated within freshly isolated liver tissue (p < 0.001). This suggests that NKG2DL induced on T cells within a diseased organ can calibrate NKG2D-dependent activation of local NK cells; furthermore, NKG2D blockade could rescue HBV-specific and MICA/B-expressing T cells from HBV-infected livers. To our knowledge, this is the first ex vivo demonstration that non-virally infected human T cells can express NKG2DL, with implications for stress surveillance by the large number of NKG2D-expressing NK cells sequestered in the liver.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom.,Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Nicholas J Easom
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom
| | - Xin-Zi Tang
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom
| | - Upkar S Gill
- Centre for Immunobiology, Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Harsimran Singh
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom.,Institute for Liver and Digestive Health, University College London, London NW3 2PF, United Kingdom
| | - Francis Robertson
- Department of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - Chiwen Chang
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Brian R Davidson
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, United Kingdom.,Department of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - William M Rosenberg
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, United Kingdom
| | - Giuseppe Fusai
- Institute for Liver and Digestive Health, University College London, London NW3 2PF, United Kingdom.,Department of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| | - Antoine Toubert
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMRS 1160, AP-HP, Hôpital Saint-Louis, Paris 75013, France
| | - Patrick T Kennedy
- Centre for Immunobiology, Blizard Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Dimitra Peppa
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom;
| |
Collapse
|
89
|
The role of microRNAs in hepatocyte metabolism and hepatitis B virus replication. Virol Sin 2016; 31:472-479. [PMID: 28063013 DOI: 10.1007/s12250-016-3924-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
Abstract
Though efficient vaccines against hepatitis B virus (HBV) and antiviral therapies are available, chronic HBV infection is still a global health problem. The process of HBV infection and HBV life cycle are extensively studied in last decades, however, the mechanisms of HBV-induced alterations of host cell metabolisms and host factors involved in modulating of viral replication are not fully understood. Thus, it is an important issue to examine these specific HBV-host interactions for development of novel strategies for antiviral therapies. Recently, microRNAs (miRNAs), a class of post-transcriptional regulatory small RNA, seem to be the relevant fine tuning factors of various cellular activities and pathways, including cell growth, metabolism, and viral replication. In this review, we summarize the up to date knowledge concerning the virus-host interactions and emphasizing on the role of miRNAs in regulation of HBV replication and host cell metabolism.
Collapse
|
90
|
Guo J, Yong Y, Aa J, Cao B, Sun R, Yu X, Huang J, Yang N, Yan L, Li X, Cao J, Aa N, Yang Z, Kong X, Wang L, Zhu X, Ma X, Guo Z, Zhou S, Sun H, Wang G. Compound danshen dripping pills modulate the perturbed energy metabolism in a rat model of acute myocardial ischemia. Sci Rep 2016; 6:37919. [PMID: 27905409 PMCID: PMC5131350 DOI: 10.1038/srep37919] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 11/02/2016] [Indexed: 01/14/2023] Open
Abstract
The continuous administration of compound danshen dripping pills (CDDP) showed good efficacy in relieving myocardial ischemia clinically. To probe the underlying mechanism, metabolic features were evaluated in a rat model of acute myocardial ischemia induced by isoproterenol (ISO) and administrated with CDDP using a metabolomics platform. Our data revealed that the ISO-induced animal model showed obvious myocardial injury, decreased energy production, and a marked change in metabolomic patterns in plasma and heart tissue. CDDP pretreatment increased energy production, ameliorated biochemical indices, modulated the changes and metabolomic pattern induced by ISO, especially in heart tissue. For the first time, we found that ISO induced myocardial ischemia was accomplished with a reduced fatty acids metabolism and an elevated glycolysis for energy supply upon the ischemic stress; while CDDP pretreatment prevented the tendency induced by ISO and enhanced a metabolic shift towards fatty acids metabolism that conventionally dominates energy supply to cardiac muscle cells. These data suggested that the underlying mechanism of CDDP involved regulating the dominant energy production mode and enhancing a metabolic shift toward fatty acids metabolism in ischemic heart. It was further indicated that CDDP had the potential to prevent myocardial ischemia in clinic.
Collapse
Affiliation(s)
- Jiahua Guo
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Yonghong Yong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Bei Cao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Runbin Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Xiaoyi Yu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Jingqiu Huang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Na Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| | - Lulu Yan
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Xinxin Li
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Jing Cao
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Nan Aa
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Avenue, Nanjing, 210029, China
| | - Xuanxuan Zhu
- Key Lab of Chinese Medicine, Nanjing University of Chinese Medicine, No. 282 Hanzhong Road, Nanjing, 210029, China
| | - Xiaohui Ma
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
- School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, China
| | - Zhixin Guo
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - Shuiping Zhou
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
| | - He Sun
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly R&D Institute, Tianjin Tasly Group Co., Ltd., No. 2 Pujihe East Road, Tianjin, 300410, China
- School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Key laboratory of drug design and optimization, China Pharmaceutical University, No. 24 TongjiaLane, Nanjing, 210009, China
| |
Collapse
|
91
|
Understanding the immune system architecture and transcriptome responses to southern rice black-streaked dwarf virus in Sogatella furcifera. Sci Rep 2016; 6:36254. [PMID: 27805032 PMCID: PMC5090245 DOI: 10.1038/srep36254] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022] Open
Abstract
Sogatella furcifera, the white-backed planthopper (WBPH), has become one of the most destructive pests in rice production owing to its plant sap-sucking behavior and efficient transmission of Southern rice black-streaked dwarf virus (SRBSDV) in a circulative, propagative and persistent manner. The dynamic and complex SRBSDV-WBPH-rice plant interaction is still poorly understood. In this study, based on a homology-based genome-wide analysis, 348 immune-related genes belonging to 28 families were identified in WBPH. A transcriptome analysis of non-viruliferous (NVF) and viruliferous groups with high viral titers (HVT) and median viral titers (MVT) revealed that feeding on SRBSDV-infected rice plants has a significant impact on gene expression, regardless of viral titers in insects. We identified 278 up-regulated and 406 down-regulated genes shared among the NVF, MVT, and HVT groups and detected significant down-regulation of primary metabolism-related genes and oxidoreductase. In viruliferous WBPH with viral titer-specific transcriptome changes, 1,906 and 1,467 genes exhibited strict monotonically increasing and decreasing expression, respectively. The RNAi pathway was the major antiviral response to increasing viral titers among diverse immune responses. These results clarify the responses of immune genes and the transcriptome of WBPH to SRBSDV and improve our knowledge of the functional relationship between pathogen, vector, and host.
Collapse
|
92
|
Shi YX, Huang CJ, Yang ZG. Impact of hepatitis B virus infection on hepatic metabolic signaling pathway. World J Gastroenterol 2016; 22:8161-8167. [PMID: 27688657 PMCID: PMC5037084 DOI: 10.3748/wjg.v22.i36.8161] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/01/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023] Open
Abstract
A growing body of epidemiologic research has demonstrated that metabolic derangement exists in patients with hepatitis B virus (HBV) infection, indicating that there are clinical associations between HBV infection and host metabolism. In order to understand the complex interplay between HBV and hepatic metabolism in greater depth, we systematically reviewed these alterations in different metabolic signaling pathways due to HBV infection. HBV infection interfered with most aspects of hepatic metabolic responses, including glucose, lipid, nucleic acid, bile acid and vitamin metabolism. Glucose and lipid metabolism is a particular focus due to the significant promotion of gluconeogenesis, glucose aerobic oxidation, the pentose phosphate pathway, fatty acid synthesis or oxidation, phospholipid and cholesterol biosynthesis affected by HBV. These altered metabolic pathways are involved in the pathological process of not only hepatitis B, but also metabolic disorders, increasing the occurrence of complications, such as hepatocellular carcinoma and liver steatosis. Thus, a clearer understanding of the hepatic metabolic pathways affected by HBV and its pathogenesis is necessary to develop more novel therapeutic strategies targeting viral eradication.
Collapse
|
93
|
Li H, Stokes W, Chater E, Roy R, de Bruin E, Hu Y, Liu Z, Smit EF, Heynen GJJE, Downward J, Seckl MJ, Wang Y, Tang H, Pardo OE. Decreased glutathione biosynthesis contributes to EGFR T790M-driven erlotinib resistance in non-small cell lung cancer. Cell Discov 2016; 2:16031. [PMID: 27721983 PMCID: PMC5037574 DOI: 10.1038/celldisc.2016.31] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) inhibitors such as erlotinib are novel effective agents in the treatment of EGFR-driven lung cancer, but their clinical impact is often impaired by acquired drug resistance through the secondary T790M EGFR mutation. To overcome this problem, we analysed the metabonomic differences between two independent pairs of erlotinib-sensitive/resistant cells and discovered that glutathione (GSH) levels were significantly reduced in T790M EGFR cells. We also found that increasing GSH levels in erlotinib-resistant cells re-sensitised them, whereas reducing GSH levels in erlotinib-sensitive cells made them resistant. Decreased transcription of the GSH-synthesising enzymes (GCLC and GSS) due to the inhibition of NRF2 was responsible for low GSH levels in resistant cells that was directly linked to the T790M mutation. T790M EGFR clinical samples also showed decreased expression of these key enzymes; increasing intra-tumoural GSH levels with a small-molecule GST inhibitor re-sensitised resistant tumours to erlotinib in mice. Thus, we identified a new resistance pathway controlled by EGFR T790M and a therapeutic strategy to tackle this problem in the clinic.
Collapse
Affiliation(s)
- Hongde Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Centre for Genetics and Development, Shanghai International Centre for Molecular Phenomics, Metabonomics and Systems Biology Laboratory, Department of Biochemistry, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Magnetic Resonance in Biological Systems, National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - William Stokes
- Division of Cancer, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Emily Chater
- Division of Cancer, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Rajat Roy
- Division of Cancer, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Elza de Bruin
- Signal Transduction Laboratory, CRUK London Research Institute, London, UK
- Personalised Healthcare & Biomarkers, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Yili Hu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Zhigang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Egbert F Smit
- Department of Pulmonary Diseases, VU University Medical Centre, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Guus JJE Heynen
- Section of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Julian Downward
- Signal Transduction Laboratory, CRUK London Research Institute, London, UK
| | - Michael J Seckl
- Division of Cancer, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| | - Yulan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Centre for Genetics and Development, Shanghai International Centre for Molecular Phenomics, Metabonomics and Systems Biology Laboratory, Department of Biochemistry, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Magnetic Resonance in Biological Systems, National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital, London, UK
| |
Collapse
|
94
|
Powdrill MH, Desrochers GF, Singaravelu R, Pezacki JP. The role of microRNAs in metabolic interactions between viruses and their hosts. Curr Opin Virol 2016; 19:71-6. [PMID: 27475325 DOI: 10.1016/j.coviro.2016.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 02/07/2023]
Abstract
Productive viral infection requires changes to the cellular metabolic landscape in order to obtain the building blocks and create the microenvironments necessary for the viral life cycle. In mammals, these alterations of metabolic pathways have been shown to be mediated in part by host and virus-encoded microRNAs. To counteract virally-induced changes in the cellular metabolic profile, the interferon-regulated antiviral response restricts viral access to key metabolites by altering cellular metabolism, mediated through induction of specific microRNAs regulating key lipid biosynthetic processes. In this review, we examine recent studies demonstrating the important role of microRNAs in the regulation of metabolic flux during viral infection.
Collapse
Affiliation(s)
- Megan H Powdrill
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Geneviève F Desrochers
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Ragunath Singaravelu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5.
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5.
| |
Collapse
|
95
|
Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model. Sci Rep 2016; 6:28057. [PMID: 27329570 PMCID: PMC4916411 DOI: 10.1038/srep28057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 02/05/2023] Open
Abstract
The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs.
Collapse
|
96
|
Schoeman JC, Hou J, Harms AC, Vreeken RJ, Berger R, Hankemeier T, Boonstra A. Metabolic characterization of the natural progression of chronic hepatitis B. Genome Med 2016; 8:64. [PMID: 27286979 PMCID: PMC4902991 DOI: 10.1186/s13073-016-0318-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
Background Worldwide, over 350 million people are chronically infected with the hepatitis B virus (HBV) and are at increased risk of developing progressive liver diseases. The confinement of HBV replication to the liver, which also acts as the central hub for metabolic and nutritional regulation, emphasizes the interlinked nature of host metabolism and the disease. Still, the metabolic processes operational during the distinct clinical phases of a chronic HBV infection—immune tolerant, immune active, inactive carrier, and HBeAg-negative hepatitis phases—remains unexplored. Methods To investigate this, we conducted a targeted metabolomics approach on serum to determine the metabolic progression over the clinical phases of chronic HBV infection, using patient samples grouped based on their HBV DNA, alanine aminotransferase, and HBeAg serum levels. Results Our data illustrate the strength of metabolomics to provide insight into the metabolic dysregulation experienced during chronic HBV. The immune tolerant phase is characterized by the speculated viral hijacking of the glycerol-3-phosphate–NADH shuttle, explaining the reduced glycerophospholipid and increased plasmalogen species, indicating a strong link to HBV replication. The persisting impairment of the choline glycerophospholipids, even during the inactive carrier phase with minimal HBV activity, alludes to possible metabolic imprinting effects. The progression of chronic HBV is associated with increased concentrations of very long chain triglycerides together with citrulline and ornithine, reflective of a dysregulated urea cycle peaking in the HBV envelope antigen-negative phase. Conclusions The work presented here will aid in future studies to (i) validate and understand the implication of these metabolic changes using a thorough systems biology approach, (ii) monitor and predict disease severity, as well as (iii) determine the therapeutic value of the glycerol-3-phosphate–NADH shuttle. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0318-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes C Schoeman
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Jun Hou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Wytemaweg 80, Room Na-1011, 3015, CE, Rotterdam, The Netherlands
| | - Amy C Harms
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Rob J Vreeken
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Present address: Discovery Sciences, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ruud Berger
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Thomas Hankemeier
- Department of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands.,Netherlands Metabolomics Centre, Leiden University, Einsteinweg 55, 2333, CC, Leiden, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Wytemaweg 80, Room Na-1011, 3015, CE, Rotterdam, The Netherlands.
| |
Collapse
|
97
|
Yang L, Yang X, Kong X, Cao Z, Zhang Y, Hu Y, Tang K. Covariation Analysis of Serumal and Urinary Metabolites Suggests Aberrant Glycine and Fatty Acid Metabolism in Chronic Hepatitis B. PLoS One 2016; 11:e0156166. [PMID: 27228119 PMCID: PMC4881891 DOI: 10.1371/journal.pone.0156166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chronic hepatitis b (CHB) is one of the most serious viral diseases threatening human health by putting patients at lifelong risk of cirrhosis and hepatocellular carcinoma (HCC). Although some proofs of altered metabolites in CHB were accumulated, its metabolic mechanism remains poorly understood. Analyzing covariations between metabolites may provide new hints toward underlying metabolic pathogenesis in CHB patients. METHODS The present study collected paired urine and serum samples from the same subjects including 145 CHB and 23 healthy controls. A large-scale analysis of metabolites' covariation within and across biofluids was systematically done to explore the underlying biological evidences for reprogrammed metabolism in CHB. Randomization and relative ranking difference were introduced to reduce bias caused by different sample size. More importantly, functional indication was interpreted by mapping differentially changed covariations to known metabolic pathways. RESULTS Our results suggested reprogrammed pathways related to glycine metabolism, fatty acids metabolism and TCA cycle in CHB patients. With further improvement, the covariation analysis combined with network association study would pave new alternative way to interpret functional clues in clinical multi-omics data.
Collapse
Affiliation(s)
- Linlin Yang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xue Yang
- Changhai hospital of traditional Chinese Medicine, Second Military medical university, Shanghai, China
| | - Xiangliang Kong
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiwei Cao
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yongyu Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Hu
- Institute of Liver Diseases, Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kailin Tang
- School of Life Science and Technology, Tongji University, Shanghai, China
- Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| |
Collapse
|
98
|
Impact of Adenovirus infection in host cell metabolism evaluated by (1)H-NMR spectroscopy. J Biotechnol 2016; 231:16-23. [PMID: 27215342 DOI: 10.1016/j.jbiotec.2016.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022]
Abstract
Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5). In order to profile metabolic alterations, we used (1)H-NMR spectroscopy, which allowed the quantification of 35 metabolites in cell culture supernatants with low sample preparation and in a relatively short time. Significant differences between both cell lines in non-infected cultures were identified, namely in glutamine and acetate metabolism, as well as by-product secretion. The main response to AdV5 infection was an increase in glucose consumption and lactate production rates. Moreover, cultures performed with or without glutamine supplementation confirmed the exhaustion of this amino acid as one of the main causes of lower AdV5 production at high cell densities (10- and 1.5-fold less specific yields in HEK293 and 1G3 cells, respectively), and highlighted different degrees of glutamine dependency of adenovirus replication in each cell line. The observed metabolic alterations associated with AdV5 infection and specificity of the host cell line can be useful for targeted bioprocess optimization.
Collapse
|
99
|
Lam P, Cheung F, Tan HY, Wang N, Yuen MF, Feng Y. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities. Int J Mol Sci 2016; 17:465. [PMID: 27043533 PMCID: PMC4848921 DOI: 10.3390/ijms17040465] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
The liver is intimately connected to inflammation, which is the innate defense system of the body for removing harmful stimuli and participates in the hepatic wound-healing response. Sustained inflammation and the corresponding regenerative wound-healing response can induce the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress is associated with the activation of inflammatory pathways, while chronic inflammation is found associated with some human cancers. Inflammation and cancer may be connected by the effect of the inflammation-fibrosis-cancer (IFC) axis. Chinese medicinal herbs display abilities in protecting the liver compared to conventional therapies, as many herbal medicines have been shown as effective anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese medicinal herbs and composite formulae, which have been commonly used for preventing and treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang, were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal herbs work in therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Puiyan Lam
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital and Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
100
|
Liu C, Ding F, Hao F, Yu M, Lei H, Wu X, Zhao Z, Guo H, Yin J, Wang Y, Tang H. Reprogramming of Seed Metabolism Facilitates Pre-harvest Sprouting Resistance of Wheat. Sci Rep 2016; 6:20593. [PMID: 26860057 PMCID: PMC4748292 DOI: 10.1038/srep20593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Pre-harvest sprouting (PHS) is a worldwide problem for wheat production and transgene antisense-thioredoxin-s (anti-trx-s) facilitates outstanding resistance. To understand the molecular details of PHS resistance, we analyzed the metabonomes of the transgenic and wild-type (control) wheat seeds at various stages using NMR and GC-FID/MS. 60 metabolites were dominant in these seeds including sugars, organic acids, amino acids, choline metabolites and fatty acids. At day-20 post-anthesis, only malate level in transgenic wheat differed significantly from that in controls whereas at day-30 post-anthesis, levels of amino acids and sucrose were significantly different between these two groups. For mature seeds, most metabolites in glycolysis, TCA cycle, choline metabolism, biosynthesis of proteins, nucleotides and fatty acids had significantly lower levels in transgenic seeds than in controls. After 30-days post-harvest ripening, most metabolites in transgenic seeds had higher levels than in controls including amino acids, sugars, organic acids, fatty acids, choline metabolites and NAD+. These indicated that anti-trx-s lowered overall metabolic activities of mature seeds eliminating pre-harvest sprouting potential. Post-harvest ripening reactivated the metabolic activities of transgenic seeds to restore their germination vigor. These findings provided essential molecular phenomic information for PHS resistance of anti-trx-s and a credible strategy for future developing PHS resistant crops.
Collapse
Affiliation(s)
- Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Ding
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Men Yu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.,Wuhan Zhongke Metaboss Ltd, 128 Guang-Gu-Qi-Lu, Wuhan 430074, China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiangyu Wu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhengxi Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongxiang Guo
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
| | - Jun Yin
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Developmental Biology, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|