51
|
Maestri E, Marmiroli M, Marmiroli N. Bioactive peptides in plant-derived foodstuffs. J Proteomics 2016; 147:140-155. [DOI: 10.1016/j.jprot.2016.03.048] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 01/07/2023]
|
52
|
Jemil I, Abdelhedi O, Nasri R, Mora L, Marrekchi R, Jamoussi K, ElFeki A, Hajji M, Toldrá F, Nasri M. Hypolipidemic, antiobesity and cardioprotective effects of sardinelle meat flour and its hydrolysates in high-fat and fructose diet fed Wistar rats. Life Sci 2016; 176:54-66. [PMID: 27460865 DOI: 10.1016/j.lfs.2016.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/17/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
AIMS The present study aims to evaluate the antiobesity, hypolipidemic and cardioprotective effects of fermented sardinelle (Sardinella aurita) protein hydrolysates (FSPHs) produced with two proteolytic bacteria, Bacillus subtilis A26 (FSPH-A26) and Bacillus amyloliquefaciens An6 (FSPH-An6). MAIN METHODS Wistar rats were fed during 10weeks a standard laboratory diet, a high caloric diet (HCD) and a HCD coupled with the oral administration of sardinelle meat flour (SMF) or FSPHs. KEY FINDINGS HCD caused hyperlipidemia and increased body weight (BW). The daily oral administration of FSPHs or SMF reduced the total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-c) serum levels, and increased the level of high-density lipoprotein cholesterol (HDL-c). Nevertheless, FSPHs were found to be more efficient than SMF. FSPHs also lowered hepatic TC and TG content and decreased the pancreatic lipase activity. Further, the administration of FSPHs or SMF decreased the BW gain, the food intake and the relative epididymal adipose tissue weight. FSPHs exhibited a potent cardioprotective effect against heart attack, which was demonstrated by returning atherogenic indexes to their normal levels and the conservation of standard histological structure of the heart and aorta. SIGNIFICANCE The overall results indicate that FSPHs contained bioactive peptides which significantly attenuated hyperlipidemia, and might reduce the risk of cardiovascular disease (CVD) in rats fed HCD.
Collapse
Affiliation(s)
- Ines Jemil
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| | - Ola Abdelhedi
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Rim Marrekchi
- Laboratory of Biochemistry, CHU Hedi Chaker, Sfax 3029, Tunisia
| | - Kamel Jamoussi
- Laboratory of Biochemistry, CHU Hedi Chaker, Sfax 3029, Tunisia
| | - Abdelfattah ElFeki
- Laboratory of Animal Ecophysiology, Faculty of Sciences of Sfax (FSS), University of Sfax, P.O. Box 95, Sfax 3052, Tunisia
| | - Mohamed Hajji
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia
| |
Collapse
|
53
|
Chiesa G, Busnelli M, Manzini S, Parolini C. Nutraceuticals and Bioactive Components from Fish for Dyslipidemia and Cardiovascular Risk Reduction. Mar Drugs 2016; 14:md14060113. [PMID: 27338419 PMCID: PMC4926072 DOI: 10.3390/md14060113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/11/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease remains the most common health problem in developed countries, and residual risk after implementing all current therapies is still high. Permanent changes in lifestyle may be hard to achieve and people may not always be motivated enough to make the recommended modifications. Emerging research has explored the application of natural food-based strategies in disease management. In recent years, much focus has been placed on the beneficial effects of fish consumption. Many of the positive effects of fish consumption on dyslipidemia and heart diseases have been attributed to n-3 polyunsaturated fatty acids (n-3 PUFAs, i.e., EPA and DHA); however, fish is also an excellent source of protein and, recently, fish protein hydrolysates containing bioactive peptides have shown promising activities for the prevention/management of cardiovascular disease and associated health complications. The present review will focus on n-3 PUFAs and bioactive peptides effects on cardiovascular disease risk factors. Moreover, since considerable controversy exists regarding the association between n-3 PUFAs and major cardiovascular endpoints, we have also reviewed the main clinical trials supporting or not this association.
Collapse
Affiliation(s)
- Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, Milano 20133, Italy.
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, Milano 20133, Italy.
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, Milano 20133, Italy.
| | - Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, via Balzaretti 9, Milano 20133, Italy.
| |
Collapse
|
54
|
Old products, new applications? Considering the multiple bioactivities of plastein in peptide-based functional food design. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
55
|
The potential of antioxidative and anti-inflammatory peptides in reducing the risk of cardiovascular diseases. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
56
|
Zhang H, Wang J, Liu Y, Gong L, Sun B. Rice bran proteins and their hydrolysates modulate cholesterol metabolism in mice on hypercholesterolemic diets. Food Funct 2016; 7:2747-53. [DOI: 10.1039/c6fo00044d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hypolipidemic properties of defatted rice bran protein (DRBP), fresh rice bran protein (FRBP), DRBP hydrolysates (DRBPH), and FRBP hydrolysates (FRBPH) were determined in mice on high fat diets for four weeks.
Collapse
Affiliation(s)
- Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
- Key Laboratory of Space Nutrition and Food Engineering
| | - Yingli Liu
- Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Lingxiao Gong
- Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| | - Baoguo Sun
- Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing 100048
- China
| |
Collapse
|
57
|
Lado MB, Burini J, Rinaldi G, Añón MC, Tironi VA. Effects of the Dietary Addition of Amaranth (Amaranthus mantegazzianus) Protein Isolate on Antioxidant Status, Lipid Profiles and Blood Pressure of Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2015; 70:371-379. [PMID: 26497504 DOI: 10.1007/s11130-015-0516-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of the dietary addition of 2.5% (w/w) Amaranthus mantegazzianus protein isolate (AI) on blood pressure, lipid profiles and antioxidative status of Wistar rats were evaluated. Six diets were used to feed animals during 28 days: (base (AIN93G), Chol (cholesterol 1%, w/w), CE (α-tocopherol 0.005%, w/w), CholE (cholesterol 1% (w/w) + α-tocopherol 0.005%, w/w), CAI (AI 2.5% w/w), CholAI (cholesterol 1% (w/w) + AI 2.5%, w/w). Lipid profiles of plasma and liver and faecal cholesterol content were analyzed. Antioxidant status was evaluated by the ferric reducing activity of plasma (FRAP), the 2-thiobarbituric acid (TBA) assay and superoxide dismutase (SOD) activity in plasma and liver. Blood pressure was measured in the tail artery of rats. CholA group presented a significant (α < 0.05) reduction (16%) in the plasma total cholesterol. In liver, the intake of cholesterol (Chol group) induced a significant increment in cholesterol and triglycerides (2.5 and 2.3 times, respectively), which could be decreased (18% and 47%, respectively) by the addition of AI (CholA group). This last group also showed an increased faecal cholesterol excretion (20%). Increment (50%) in FRAP values, diminution of TBA value in plasma and liver (70% and 38%, respectively) and diminution of SOD activity (20%) in plasma of CholA group suggest an antioxidant effect because of the intake of AI. In addition, CA and CholA groups presented a diminution (18%) of blood pressure after 28 days.
Collapse
Affiliation(s)
- María B Lado
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - CCT La Plata-CONICET, UNLP, 47 y 116 (1900), La Plata, Argentina
| | - Julieta Burini
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - CCT La Plata-CONICET, UNLP, 47 y 116 (1900), La Plata, Argentina
| | - Gustavo Rinaldi
- Centro de Investigaciones Cardiovasculares - CCT La Plata-CONICET, Facultad de Medicina (UNLP), 60 y 120 (1900), La Plata, Argentina
| | - María C Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - CCT La Plata-CONICET, UNLP, 47 y 116 (1900), La Plata, Argentina
| | - Valeria A Tironi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - CCT La Plata-CONICET, UNLP, 47 y 116 (1900), La Plata, Argentina.
| |
Collapse
|
58
|
Montoya-Rodríguez A, de Mejía EG. Pure peptides from amaranth (Amaranthus hypochondriacus) proteins inhibit LOX-1 receptor and cellular markers associated with atherosclerosis development in vitro. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.06.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
59
|
Towards the design of hypolipidaemic peptides: Deoxycholate binding affinity of hydrophobic peptide aggregates of casein plastein. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
60
|
Egg white hydrolysates with in vitro biological multiactivities to control complications associated with the metabolic syndrome. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2518-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
61
|
Cheung RCF, Ng TB, Wong JH. Marine Peptides: Bioactivities and Applications. Mar Drugs 2015; 13:4006-43. [PMID: 26132844 PMCID: PMC4515606 DOI: 10.3390/md13074006] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
62
|
Udenigwe CC, Mohan A, Wu S. Peptide Aggregation during Plastein Reaction Enhanced Bile Acid-Binding Capacity of Enzymatic Chicken Meat Hydrolysates. J Food Biochem 2015. [DOI: 10.1111/jfbc.12139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chibuike C. Udenigwe
- Health and Bioproducts Research Laboratory; Department of Environmental Sciences; Faculty of Agriculture; Dalhousie University; Truro NS B2N 5E3 Canada
| | - Aishwarya Mohan
- Health and Bioproducts Research Laboratory; Department of Environmental Sciences; Faculty of Agriculture; Dalhousie University; Truro NS B2N 5E3 Canada
| | - Sihong Wu
- Health and Bioproducts Research Laboratory; Department of Environmental Sciences; Faculty of Agriculture; Dalhousie University; Truro NS B2N 5E3 Canada
| |
Collapse
|
63
|
The Role of Food Peptides in Lipid Metabolism during Dyslipidemia and Associated Health Conditions. Int J Mol Sci 2015; 16:9303-13. [PMID: 25918936 PMCID: PMC4463589 DOI: 10.3390/ijms16059303] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 01/17/2023] Open
Abstract
Animal and human clinical studies have demonstrated the ability of dietary food proteins to modulate endogenous lipid levels during abnormal lipid metabolism (dyslipidemia). Considering the susceptibility of proteins to gastric proteolytic activities, the hypolipidemic functions of proteins are possibly due, in part, to their peptide fragments. Food-derived peptides may directly modulate abnormal lipid metabolism in cell cultures and animal models of dyslipidemia. The peptides are thought to act by perturbing intestinal absorption of dietary cholesterol and enterohepatic bile acid circulation, and by inhibiting lipogenic enzymatic activities and gene expression in hepatocytes and adipocytes. Recent evidence indicates that the hypolipidemic activities of some peptides are due to activation of hepatic lipogenic transcription factors. However, detailed molecular mechanisms and structural requirements of peptides for these activities are yet to be elucidated. As hypolipidemic peptides can be released during enzymatic food processing, future studies can explore the prospects of combating metabolic syndrome and associated complications using peptide-rich functional food and nutraceutical products.
Collapse
|
64
|
|
65
|
Udenigwe CC, Mohan A. Mechanisms of food protein-derived antihypertensive peptides other than ACE inhibition. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.03.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
66
|
Udenigwe CC. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2014.02.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
67
|
Udenigwe CC, Je JY, Cho YS, Yada RY. Almond protein hydrolysate fraction modulates the expression of proinflammatory cytokines and enzymes in activated macrophages. Food Funct 2014; 4:777-83. [PMID: 23575976 DOI: 10.1039/c3fo30327f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simulated gastrointestinal treatment of almond proteins with pepsin and pancreatic proteases resulting in 16.6% degree of hydrolysis or 1.33 milliequivalent leucine per g protein yielded a hydrolysate that modulated excessive nitric oxide production in lipopolysaccharide-activated RAW264.7 macrophages. After fractionation, a resulting fraction of molecular size > 5 kDa retained the nitric oxide modulatory effect observed initially in the crude hydrolysate. The high molecular size fraction was found to modulate levels of proinflammatory cytokines, interleukin (IL)-6, IL-1β, and tumour necrosis factor (TNF)-α in the activated cells. Immunoblotting analysis indicated that the hydrolysate fraction decreased the expression levels of inflammatory enzyme indicators, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 in the activated cells. RT-PCR analysis showed that treatment of the activated cells with the hydrolysate fraction resulted in the inhibition of relative gene expressions of proinflammatory IL-6, IL-1β, TNF-α, iNOS and COX-2. These results indicate a potential application of almond protein hydrolysates against inflammatory conditions, and will contribute to delineating the possible contributions of proteins to health benefits attributed to almond consumption.
Collapse
Affiliation(s)
- Chibuike C Udenigwe
- Health and Bio-products Research Laboratory, Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada.
| | | | | | | |
Collapse
|
68
|
Kapravelou G, Martínez R, Andrade AM, Sánchez C, Chaves CL, López-Jurado M, Aranda P, Cantarero S, Arrebola F, Fernández-Segura E, Galisteo M, Porres JM. Health promoting effects of Lupin (Lupinus albus var. multolupa) protein hydrolyzate and insoluble fiber in a diet-induced animal experimental model of hypercholesterolemia. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
69
|
Zhang H, Bartley GE, Zhang H, Jing W, Fagerquist CK, Zhong F, Yokoyama W. Peptides identified in soybean protein increase plasma cholesterol in mice on hypercholesterolemic diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8389-8395. [PMID: 23937379 DOI: 10.1021/jf4022288] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The in vitro micellar cholesterol displacement assay has been used to identify peptides that may potentially reduce cholesterol in vivo. Two of these peptides, LPYPR and WGAPSL, derived from soybean protein (SP) that have been reported to displace cholesterol from micelles were tested by feeding them as a part of a hypercholesterolemic diet to mice for 3 weeks. Except reduction of very low-density lipoprotein cholesterol (VLDL-C) and triglyceride contents, the peptide-containing diets increased plasma cholesterol content with the increasing dose of the peptides. Mice fed diets supplemented with the peptides also had lower fecal bile acid excretion. Negative correlations between fecal bile acid excretion and plasma total cholesterol content (r = -0.876, P = 0.062) and non-HDL-C content (r = -0.831, P = 0.084) were observed. The mRNA levels of the genes for cholesterol and bile acid metabolism, CYP51, LDLR, CYP7A1, and LPL, were up-regulated in mice fed diets supplemented with peptides except the group fed the low dose of WGAPSL. The results suggested that higher plasma total cholesterol content possibly due to lower fecal steroid excretion as well as lower VLDL-C and triglyceride contents might due to the up-regulated expression levels of the genes CYP51, LDLR, and LPL.
Collapse
Affiliation(s)
- Huijuan Zhang
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University , Beijing 100048, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|