51
|
Reidel B, Radicioni G, Clapp PW, Ford AA, Abdelwahab S, Rebuli ME, Haridass P, Alexis NE, Jaspers I, Kesimer M. E-Cigarette Use Causes a Unique Innate Immune Response in the Lung, Involving Increased Neutrophilic Activation and Altered Mucin Secretion. Am J Respir Crit Care Med 2018; 197:492-501. [PMID: 29053025 PMCID: PMC5821909 DOI: 10.1164/rccm.201708-1590oc] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022] Open
Abstract
RATIONALE E-cigarettes have become increasingly popular and little is known about their potential adverse health effects. OBJECTIVES To determine the effects of e-cigarette use on the airways. METHODS Induced sputum samples from cigarette smokers, e-cigarette users, and nonsmokers were analyzed by quantitative proteomics, and the total and individual concentrations of mucins MUC5AC and MUC5B were determined by light scattering/refractometry and labeled mass spectrometry, respectively. Neutrophil extracellular trap (NET) formation rates were also determined for the same groups. MEASUREMENTS AND MAIN RESULTS E-cigarette users exhibited significant increases in aldehyde-detoxification and oxidative stress-related proteins associated with cigarette smoke compared with nonsmokers. The levels of innate defense proteins associated with chronic obstructive pulmonary disease, such as elastase and matrix metalloproteinase-9, were significantly elevated in e-cigarette users as well. E-cigarette users' sputum also uniquely exhibited significant increases in neutrophil granulocyte-related and NET-related proteins, such as myeloperoxidase, azurocidin, and protein-arginine deiminase 4, despite no significant elevation in neutrophil cell counts. Peripheral neutrophils from e-cigarette users showed increased susceptibility to phorbol 12-myristate 13-acetate-induced NETosis. Finally, a compositional change in the gel-forming building blocks of airway mucus (i.e., an elevated concentration of mucin MUC5AC) was observed in both cigarette smokers and e-cigarette users. CONCLUSIONS Together, our results indicate that e-cigarette use alters the profile of innate defense proteins in airway secretions, inducing similar and unique changes relative to cigarette smoking. These data challenge the concept that e-cigarettes are a healthier alternative to cigarettes.
Collapse
Affiliation(s)
- Boris Reidel
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Giorgia Radicioni
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Phillip W. Clapp
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Amina A. Ford
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Sabri Abdelwahab
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| | - Meghan E. Rebuli
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Neil E. Alexis
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Marsico Lung Institute
- Department of Pathology and Laboratory Medicine, and
| |
Collapse
|
52
|
Demouveaux B, Gouyer V, Gottrand F, Narita T, Desseyn JL. Gel-forming mucin interactome drives mucus viscoelasticity. Adv Colloid Interface Sci 2018; 252:69-82. [PMID: 29329667 DOI: 10.1016/j.cis.2017.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022]
Abstract
Mucus is a hydrogel that constitutes the first innate defense in all mammals. The main organic component of mucus, gel-forming mucins, forms a complex network through both reversible and irreversible interactions that drive mucus gel formation. Significant advances in the understanding of irreversible gel-forming mucins assembly have been made using recombinant protein approaches. However, little is known about the reversible interactions that may finely modulate mucus viscoelasticity, which can be characterized using rheology. This approach can be used to investigate both the nature of gel-forming mucins interactions and factors that influence hydrogel formation. This knowledge is directly relevant to the development of new drugs to modulate mucus viscoelasticity and to restore normal mucus functions in diseases such as in cystic fibrosis. The aim of the present review is to summarize the current knowledge about the relationship between the mucus protein matrix and its functions, with emphasis on mucus viscoelasticity.
Collapse
Affiliation(s)
| | - Valérie Gouyer
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Frédéric Gottrand
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France
| | - Tetsuharu Narita
- Laboratoire Sciences et Ingénierie de la Matière Molle, PSL Research University, UPMC Univ Paris 06, ESPCI Paris, CNRS, 10 rue Vauquelin, 75231 Paris Cedex 05, France; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Jean-Luc Desseyn
- Univ. Lille, Inserm, CHU Lille, LIRIC UMR 995, F-59000 Lille, France.
| |
Collapse
|
53
|
Bansil R, Turner BS. The biology of mucus: Composition, synthesis and organization. Adv Drug Deliv Rev 2018; 124:3-15. [PMID: 28970050 DOI: 10.1016/j.addr.2017.09.023] [Citation(s) in RCA: 394] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/24/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Abstract
In this review we discuss mucus, the viscoelastic secretion from goblet or mucous producing cells that lines the epithelial surfaces of all organs exposed to the external world. Mucus is a complex aqueous fluid that owes its viscoelastic, lubricating and hydration properties to the glycoprotein mucin combined with electrolytes, lipids and other smaller proteins. Electron microscopy of mucosal surfaces reveals a highly convoluted surface with a network of fibers and pores of varying sizes. The major structural and functional component, mucin is a complex glycoprotein coded by about 20 mucin genes which produce a protein backbone having multiple tandem repeats of Serine, Threonine (ST repeats) where oligosaccharides are covalently O-linked. The N- and C-terminals of this apoprotein contain other domains with little or no glycosylation but rich in cysteines leading to dimerization and further multimerization via SS bonds. The synthesis of this complex protein starts in the endoplasmic reticulum with the formation of the apoprotein and is further modified via glycosylation in the cis and medial Golgi and packaged into mucin granules via Ca2+ bridging of the negative charges on the oligosaccharide brush in the trans Golgi. The mucin granules fuse with the plasma membrane of the secretory cells and following activation by signaling molecules release Ca2+ and undergo a dramatic change in volume due to hydration of the highly negatively charged polymer brush leading to exocytosis from the cells and forming the mucus layer. The rheological properties of mucus and its active component mucin and its mucoadhesivity are briefly discussed in light of their importance to mucosal drug delivery.
Collapse
|
54
|
Siber-Hoogeboom R, Schicht M, Hoogeboom S, Paulsen F, Traxdorf M. Obstructive sleep apnea and rhonchopathy are associated with downregulation of trefoil factor family peptide 3 (TFF3)-Implications of changes in oral mucus composition. PLoS One 2017; 12:e0185200. [PMID: 29028798 PMCID: PMC5640215 DOI: 10.1371/journal.pone.0185200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/07/2017] [Indexed: 11/19/2022] Open
Abstract
Study objectives Trefoil factor family (TFF) peptides belong to the family of mucin-associated peptides and are expressed in most mucosal surfaces. TFF peptides carry out functions such as proliferation and migration enhancement, anti-apoptosis, and wound healing. Moreover, TFFs are associated with mucins and interact with them as “linker peptides”, thereby influencing mucus viscosity. To test the hypothesis that in rhonchopathy and obstructive sleep apnea (OSA) changes occur in the expression of TFF3 and -2 that could contribute to changes in mucus viscosity, leading to an increase in upper airway resistance during breathing. Methods RT-PCR, Western-blot, immunohistochemistry and ELISA were performed to detect and quantify TFF3 and -2 in uvula samples. In addition, 99 saliva samples from patients with mild, moderate or severe OSA, as well as samples from rhonchopathy patients and from healthy volunteers, were analyzed by ELISA. Results TFF3 was detected in all uvula samples. Immunohistochemistry revealed a subjectively decreasing antibody reactivity of the uvula epithelia with increasing disease severity. ELISA demonstrated significantly higher TFF3 saliva protein concentrations in the healthy control group compared to cases with rhonchopathy and OSA. Predisposing factors of OSA such as BMI or age showed no correlation with TFF3. No significant changes were observed with regard to TFF2. Conclusions The results suggest the involvement of TFF3 in the pathogenesis of rhonchopathy and OSA and lead to the hypothesis that reduction of TFF3 production by the epithelium and subepithelial mucous glands of the uvula contribute to an increase in breathing resistance due to a change in mucus organization.
Collapse
Affiliation(s)
- Regina Siber-Hoogeboom
- Department of Anatomy II, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Schicht
- Department of Anatomy II, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Hoogeboom
- Department of Anatomy II, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Friedrich Paulsen
- Department of Anatomy II, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
- * E-mail:
| | - Maximilian Traxdorf
- Department of Otorhinolaryngology, Head & Neck Surgery, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
55
|
Abstract
Trefoil factor (TFF) peptides, with a 40-amino acid motif and including six conserved cysteine residues that form intramolecular disulfide bonds, are a family of mucin-associated secretory molecules mediating many physiological roles that maintain and restore gastrointestinal (GI) mucosal homeostasis. TFF peptides play important roles in response to GI mucosal injury and inflammation. In response to acute GI mucosal injury, TFF peptides accelerate cell migration to seal the damaged area from luminal contents, whereas chronic inflammation leads to increased TFF expression to prevent further progression of disease. Although much evidence supports the physiological significance of TFF peptides in mucosal defenses, the molecular and cellular mechanisms of TFF peptides in the GI epithelium remain largely unknown. In this review, we summarize the functional roles of TFF1, 2, and 3 and illustrate their action mechanisms, focusing on defense mechanisms in the GI tract.
Collapse
Affiliation(s)
- Eitaro Aihara
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Kristen A Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| | - Marshall H Montrose
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio 45267;
| |
Collapse
|
56
|
Bastholm SK, Samson MH, Becher N, Hansen LK, Stubbe PR, Chronakis IS, Nexo E, Uldbjerg N. Trefoil factor peptide 3 is positively correlated with the viscoelastic properties of the cervical mucus plug. Acta Obstet Gynecol Scand 2016; 96:47-52. [PMID: 27731893 DOI: 10.1111/aogs.13038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/07/2016] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The viscoelastic properties of the cervical mucus plug are considered essential for the occlusion of the cervical canal and thereby for protection against ascending infections during pregnancy. Factors controlling this property are virtually unknown. This study explores a possible role of trefoil factor peptides 1, 2 and 3 (TFF1-3); peptides believed to influence mucus viscosity. MATERIAL AND METHODS The study is based on spontaneously shed cervical mucus plugs from 14 women in active labor. The viscoelastic properties; the elastic modulus (G') and the viscous modulus (G") were determined by an oscillatory rheometer. The concentrations of TFF1-3 were measured by an in-house enzyme-linked immunosorbent assay. Associations were analyzed by random-effects generalized least-squares regression analyses. RESULTS Median (range) concentrations of TFF1, TFF2 and TFF3 were 3.1 (1.2-8.6), 1.1 (<0.006-3.7) and 1000 (170-5300) nmol/g cervical mucus plug, respectively. The TFF3 concentration was associated with G' (regression coefficient 11.7 Pa/Log nm; 95% CI 3.0-20.4, p = 0.009) and G" (regression coefficient 3.2 Pa/Log nm; 95% CI 1.5-5.0, p < 0.001). CONCLUSION We suggest that TFF3 plays a role in the viscoelastic properties of the cervical mucus plug.
Collapse
Affiliation(s)
- Sara K Bastholm
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - Mie H Samson
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Naja Becher
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Lea K Hansen
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter R Stubbe
- Food Production Engineering Research Group, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ioannis S Chronakis
- Nano-BioScience Research Group, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ebba Nexo
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
57
|
The innate immune properties of airway mucosal surfaces are regulated by dynamic interactions between mucins and interacting proteins: the mucin interactome. Mucosal Immunol 2016; 9:1442-1454. [PMID: 27072609 PMCID: PMC5063652 DOI: 10.1038/mi.2016.27] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 03/01/2016] [Indexed: 02/04/2023]
Abstract
Chronic lung diseases such as cystic fibrosis, chronic bronchitis, and asthma are characterized by hypersecretion and poor clearance of mucus, which are associated with poor prognosis and mortality. Little is known about the relationship between the biophysical properties of mucus and its molecular composition. The mucins MUC5B and MUC5AC are traditionally believed to generate the characteristic biophysical properties of airway mucus. However, the contribution of hundreds of globular proteins to the biophysical properties of mucus is not clear. Approximately one-third of the total mucus proteome comprises distinct, multi-protein complexes centered around airway mucins. These complexes constitute a discrete entity we call the "mucin interactome". The data suggest that while the majority of these proteins interact with mucins via electrostatic and weak interactions, some interact through very strong hydrophobic and/or covalent interactions. Using reagents that interfere with protein-protein interactions, the complexes can be disassembled, and mucus rheology can be dramatically altered. Using MUC5B-glutathione S-transferase (GST) and MUC5B-galectin-3 as a representative of these interactions, we provide evidence that individual mucin protein interactions can alter the biophysical properties of mucus and modulate the biological function of the protein. We propose that the key mechano- and bio-active functions of mucus depend on the dynamic interactions between mucins and globular proteins. These observations challenge the paradigm that mucins are the only molecules that confer biophysical properties of mucus. These observations may ultimately lead to a greater understanding of the system and guide the development of strategies for more effective interventions using better therapeutic agents.
Collapse
|
58
|
Endometriosis Leads to an Increased Trefoil Factor 3 Concentration in the Peritoneal Cavity but Does Not Alter Systemic Levels. Reprod Sci 2016; 24:258-267. [DOI: 10.1177/1933719116653676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
59
|
Dietary palygorskite supplementation improves immunity, oxidative status, intestinal integrity, and barrier function of broilers at early age. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
60
|
Dubeykovskaya Z, Si Y, Chen X, Worthley DL, Renz BW, Urbanska AM, Hayakawa Y, Xu T, Westphalen CB, Dubeykovskiy A, Chen D, Friedman RA, Asfaha S, Nagar K, Tailor Y, Muthupalani S, Fox JG, Kitajewski J, Wang TC. Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nat Commun 2016; 7:10517. [PMID: 26841680 PMCID: PMC4742920 DOI: 10.1038/ncomms10517] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/16/2015] [Indexed: 12/31/2022] Open
Abstract
CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) expand in the spleen during cancer and promote progression through suppression of cytotoxic T cells. An anti-inflammatory reflex arc involving the vagus nerve and memory T cells is necessary for resolution of acute inflammation. Failure of this neural circuit could promote procarcinogenic inflammation and altered tumour immunity. Here we show that splenic TFF2, a secreted anti-inflammatory peptide, is released by vagally modulated memory T cells to suppress the expansion of MDSCs through CXCR4. Splenic denervation interrupts the anti-inflammatory neural arc, resulting in the expansion of MDSCs and colorectal cancer. Deletion of Tff2 recapitulates splenic denervation to promote carcinogenesis. Colorectal carcinogenesis could be suppressed through transgenic overexpression of TFF2, adenoviral transfer of TFF2 or transplantation of TFF2-expressing bone marrow. TFF2 is important to the anti-inflammatory reflex arc and plays an essential role in arresting MDSC proliferation. TFF2 offers a potential approach to prevent and to treat cancer. During colorectal inflammation and cancer, myeloid cells accumulate in the spleen and suppress the host immunity response. In this study, the authors use a mouse model of colitis to demonstrate that upon vagus stimulation splenic memory T cells release TFF2, which suppresses the expansion of myeloid cells and cancer progression.
Collapse
Affiliation(s)
- Zina Dubeykovskaya
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Yiling Si
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Xiaowei Chen
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Daniel L Worthley
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Bernhard W Renz
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA.,Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, Hospital of the University of Munich, 81377 Munich, Germany
| | - Aleksandra M Urbanska
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Yoku Hayakawa
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Ting Xu
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - C Benedikt Westphalen
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Alexander Dubeykovskiy
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Duan Chen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Pb 8905, N-7491 Trondheim, Norway
| | - Richard A Friedman
- Department of Biomedical Informatics, Irving Cancer Research Center, Columbia University, New York, New York 10032, USA
| | - Samuel Asfaha
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Karan Nagar
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Yagnesh Tailor
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Sureshkumar Muthupalani
- Department of Biological Engineering, Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James G Fox
- Department of Biological Engineering, Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jan Kitajewski
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| |
Collapse
|
61
|
Li J, Luo Y, Zhang R, Shi H, Zhu W, Shi J. Neuropeptide Trefoil Factor 3 Reverses Depressive-Like Behaviors by Activation of BDNF-ERK-CREB Signaling in Olfactory Bulbectomized Rats. Int J Mol Sci 2015; 16:28386-400. [PMID: 26633367 PMCID: PMC4691052 DOI: 10.3390/ijms161226105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/18/2022] Open
Abstract
The trefoil factors (TFFs) are a family of three polypeptides, among which TFF1 and TFF3 are widely distributed in the central nervous system. Our previous study indicated that TFF3 was a potential rapid-onset antidepressant as it reversed the depressive-like behaviors induced by acute or chronic mild stress. In order to further identify the antidepressant-like effect of TFF3, we applied an olfactory bulbectomy (OB), a classic animal model of depression, in the present study. To elucidate the mechanism underlying the antidepressant-like activity of TFF3, we tested the role of brain-derived neurotrophic factor (BDNF)-extracellular signal-related kinase (ERK)-cyclic adenosine monophosphate response element binding protein (CREB) signaling in the hippocampus in the process. Chronic systemic administration of TFF3 (0.1 mg/kg, i.p.) for seven days not only produced a significant antidepressant-like efficacy in the OB paradigm, but also restored the expression of BDNF, pERK, and pCREB in the hippocampal CA3. Inhibition of BDNF or extracellular signal-related kinase (ERK) signaling in CA3 blocked the antidepressant-like activity of TFF3 in OB rats. Our findings further confirmed the therapeutic effect of TFF3 against depression and suggested that the normalization of the BDNF-ERK-CREB pathway was involved in the behavioral response of TFF3 for the treatment of depression.
Collapse
Affiliation(s)
- Jiali Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China.
| | - Yixiao Luo
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
| | - Ruoxi Zhang
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China.
| | - Haishui Shi
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
| | - Weili Zhu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China.
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
- Key Laboratory for Neuroscience of the Ministry of Education and Ministry of Public Healthy, Beijing 100191, China.
| |
Collapse
|
62
|
Kesimer M, Cullen J, Cao R, Radicioni G, Mathews KG, Seiler G, Gookin JL. Excess Secretion of Gel-Forming Mucins and Associated Innate Defense Proteins with Defective Mucin Un-Packaging Underpin Gallbladder Mucocele Formation in Dogs. PLoS One 2015; 10:e0138988. [PMID: 26414376 PMCID: PMC4586375 DOI: 10.1371/journal.pone.0138988] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/07/2015] [Indexed: 12/18/2022] Open
Abstract
Mucosal protection of the gallbladder is vital yet we know very little about the mechanisms involved. In domestic dogs, an emergent syndrome referred to as gallbladder mucocele formation is characterized by excessive secretion of abnormal mucus that results in obstruction and rupture of the gallbladder. The cause of gallbladder mucocele formation is unknown. In these first mechanistic studies of this disease, we investigated normal and mucocele-forming dog gallbladders to determine the source, identity, biophysical properties, and protein associates of the culprit mucins with aim to identify causes for abnormal mucus behavior. We established that mucocele formation involves an adoptive excess secretion of gel forming mucins with abnormal properties by the gallbladder epithelium. The mucus is characterized by a disproportionally significant increase in Muc5ac relative to Muc5b, defective mucin un-packaging, and mucin-interacting innate defense proteins that are capable of dramatically altering the physical and functional properties of mucus. These findings provide an explanation for abnormal mucus behavior and based on similarity to mucus observed in the airways of people with cystic fibrosis, suggest that abnormal mechanisms for maintenance of gallbladder epithelial hydration may be an instigating factor for mucocele formation in dogs.
Collapse
Affiliation(s)
- Mehmet Kesimer
- Department of Pathology and Laboratory Medicine and Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John Cullen
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Rui Cao
- Department of Pathology and Laboratory Medicine and Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Giorgia Radicioni
- Department of Pathology and Laboratory Medicine and Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kyle G. Mathews
- Department of Clinical Sciences, College of Veterinary Medicine, Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Gabriela Seiler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jody L. Gookin
- Department of Clinical Sciences, College of Veterinary Medicine, Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
63
|
Hoffmann W. TFF2, a MUC6-binding lectin stabilizing the gastric mucus barrier and more (Review). Int J Oncol 2015. [PMID: 26201258 DOI: 10.3892/ijo.2015.3090] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptide TFF2 (formerly 'spasmolytic polypeptide'), a member of the trefoil factor family (TFF) containing two TFF domains, is mainly expressed together with the mucin MUC6 in the gastric epithelium and duodenal Brunner's glands. Pathologically, TFF2 expression is observed ectopically during stone diseases, chronic inflammatory conditions and in several metaplastic and neoplastic epithelia; most prominent being the 'spasmolytic polypeptide-expressing metaplasia' (SPEM), which is an established gastric precancerous lesion. TFF2 plays a critical role in maintaining gastric mucosal integrity and appears to restrain tumorigenesis in the stomach. Recently, porcine TFF2 has been shown to interact with the gastric mucin MUC6 and thus stabilize the gastric mucus barrier. On the one hand, TFF2 binds to MUC6 via non-covalent lectin interactions with the glycotope GlcNAcα1→4Galβ1→R. On the other hand, TFF2 is probably also covalently bound to MUC6 via disulfide bridges. Thus, implications for the complex multimeric assembly, cross-linking, and packaging of MUC6 as well as the rheology of gastric mucus are discussed in detail in this review. Furthermore, TFF2 is also expressed in minor amounts in the immune and nervous systems. Thus, similar to galectins, its lectin activity would perfectly enable TFF2 to form multivalent complexes and cross-linked lattices with a plethora of transmembrane glycoproteins and thus modulate different signal transduction processes. This could explain the multiple and diverse biological effects of TFF2 [e.g., motogenic, (anti)apoptotic, and angiogenic effects]. Finally, a function during fertilization is also possible for TFF domains because they occur as shuffled modules in certain zona pellucida proteins.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany
| |
Collapse
|
64
|
Abstract
The structural and functional integrity of the gastric and duodenal mucosa represents equilibrium between aggressive factors and protective mechanisms. Mucus-buffers-phospholipid layer as pre-epithelial barrier, enhanced by prostaglandins and epidermal growth factor, remains a vanguard of mucosal protection. It maintains a neutral pH at the surface epithelial luminal interface, facing luminal pH dropping to 1.0, i.e., hydrogen ion concentration gradient equal 1,000,000. The surface epithelial cells, elaborating mucins, buffers, phospholipids, prostaglandins, trefoil peptides, peptide growth factor and their receptors, heat shock proteins, cathelicidins, and β-defensins form the second line of defense. Endothelium exerts mucosal protection through production of potent vasodilators like nitric oxide and prostacyclins and through release of angiogenic growth factors, securing adequate blood flow and representing the third and an ultimate line of mucosal protection. This microcirculation is instrumental for supply of oxygen, nitric oxide, hydrogen sulfide and removal of ad hoc generated toxic substances as well as for continuous mucosal cell renewal from progenitor cells, secured by growth factors accompanied by survivin preventing early apoptosis.
Collapse
Affiliation(s)
- Harathi Yandrapu
- Department of Internal Medicine, Molecular Medicine Research Laboratory, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 4800 Alberta Avenue, El Paso, TX, 79905, USA,
| | | |
Collapse
|
65
|
Cheng YM, Lu MT, Yeh CM. Functional expression of recombinant human trefoil factor 1 by Escherichia coli and Brevibacillus choshinensis. BMC Biotechnol 2015; 15:32. [PMID: 25990322 PMCID: PMC4438461 DOI: 10.1186/s12896-015-0149-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/22/2015] [Indexed: 12/13/2022] Open
Abstract
Background Trefoil factor 1 (TFF1) mediates mucosal repair and belongs to a highly conserved trefoil factor family proteins which are secreted by epithelial cells in the stomach or colon mucous membrane. TFF1 forms a homodimer via a disulphide linkage that affects wound healing activity. Previous recombinant expressions of TFF1 were too low yield for industrial application. This study aims to improve the expression level of bioactive recombinant TFF1 (rTFF1) and facilitate application potency. Methods The rTFF1 gene rtff1 was synthesized, expressed by Escherichia coli and secreted by Brevibacillus choshinensis. The rTFF1s were purified. The polymeric patterns and wound healing capacities of purified rTFF1s were checked. Results In Escherichia coli, 21.08 mg/L rTFF1 was stably expressed as monomer, dimer and oligomer in soluble fraction. In Brevebacillus choshinensis, the rTFF1 was secreted extracellularly at high level (35.73 mg/L) and formed monomer, dimer and oligomer forms. Both proteins from different sources were purified by Ni-NTA chromatography and exhibited the wound healing activities. The rTFF1 produced by B. choshinensis had better wound healing capability than the rTFF1 produced by E. coli. After pH 2.4 buffer treatments, the purified rTFF1 formed more oligomeric forms as well as better wound healing capability. Glycosylation assay and LC-MS/MS spectrometry experiments showed that the rTFF1 produced by B. choshinensis was unexpectedly glycosylated at N-terminal Ser residue. The glycosylation may contribute to the better wound healing capacity. Conclusions This study provides a potent tool of rTFF1 production to be applied in gastric damage protection and wound healing. The protein sources from B. choshinensis were more efficient than rTFF1 produced by E. coli. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0149-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yueh-Mei Cheng
- Department of Food Science and Biotechnology, National Chung-Hsing University, Taichung, Taiwan, Republic of China.
| | - Meng-Ting Lu
- Department of Food Science and Biotechnology, National Chung-Hsing University, Taichung, Taiwan, Republic of China.
| | - Chuan Mei Yeh
- Department of Food Science and Biotechnology, National Chung-Hsing University, Taichung, Taiwan, Republic of China. .,Agricultural Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
66
|
Belovari T, Bijelić N, Tolušić Levak M, Baus Lončar M. Trefoil factor family peptides TFF1 and TFF3 in the nervous tissues of developing mouse embryo. Bosn J Basic Med Sci 2015; 15:33-7. [PMID: 25725142 DOI: 10.17305/bjbms.2015.251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/28/2023] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, and TFF3) are predominantly found in mucous epithelia of various organs. However, they have also been reported in the nervous tissue, particularly mouse, rat, porcine, and human brain. The aim of this research was to determine the presence of TFF1 and TFF3 in the nervous system of developing mouse embryo. Mouse embryos, at the stages E15 to E17 were isolated, fixed in 4% paraformaldehyde and embedded in paraffin blocks. Sagittal 6µm sections were made, processed for immunohistochemistry, and incubated with anti-TFF1 or anti-TFF3 primary polyclonal rabbit antibodies. Labeled streptavidin-biotin method was used for TFF detection. TFF1 and 3 were found in the cytoplasm of ganglion cell somata, while TFF3 staining was also visible in the cytoplasm of neurons in different areas and nuclei of brain and medulla oblongata. Neurons in the gray matter of spinal cord were also TFF1 and TFF3 positive, and signal for both peptides was found in the choroid plexus. TFF peptides might be involved in the complex processes of nervous system development and differentiation and brain plasticity.
Collapse
Affiliation(s)
- Tatjana Belovari
- Department of Histology and Embryology, Faculty of Medicine, University of Osijek, Osijek.
| | | | | | | |
Collapse
|
67
|
Chu X, Xing P, Li S, Ma M, Hao J, Hao A. Dual-tuning multidimensional superstructures based on a T-shaped molecule: vesicle, helix, membrane and nanofiber-constructed gel. RSC Adv 2015. [DOI: 10.1039/c4ra12185f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual-tuning self-assembly of Fmoc–Gly (a T-shape molecule) supramolecular self assembly was firstly reported here.
Collapse
Affiliation(s)
- Xiaoxiao Chu
- School of Chemistry and Chemical Engineering and Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- Shandong University
- Jinan 250100
- PR China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering and Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- Shandong University
- Jinan 250100
- PR China
| | - Shangyang Li
- School of Chemistry and Chemical Engineering and Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- Shandong University
- Jinan 250100
- PR China
| | - Mingfang Ma
- School of Chemistry and Chemical Engineering and Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- Shandong University
- Jinan 250100
- PR China
| | - Jingcheng Hao
- School of Chemistry and Chemical Engineering and Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- Shandong University
- Jinan 250100
- PR China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering and Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- Shandong University
- Jinan 250100
- PR China
| |
Collapse
|
68
|
|
69
|
Viby NE, Nexø E, Kissow H, Andreassen H, Clementsen P, Thim L, Poulsen SS. Trefoil factors (TFFs) are increased in bronchioalveolar lavage fluid from patients with chronic obstructive lung disease (COPD). Peptides 2015; 63:90-5. [PMID: 25445610 DOI: 10.1016/j.peptides.2014.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 12/19/2022]
Abstract
Trefoil factors (TFFs) 1, 2 and 3 are small polypeptides that are co-secreted with mucin throughout the body. They are up-regulated in cancer and inflammatory processes in the gastrointestinal system, where they are proposed to be involved in tissue regeneration, proliferation and protection. Our aim was to explore their presence in pulmonary secretions and to investigate whether they are up-regulated in pulmonary diseases characterized by mucin hypersecretion. Bronchioalveolar lavage fluid was obtained from 92 individuals referred to bronchoscopy. The patients were grouped according to diagnosis and pulmonary function. The concentrations of TFF1, TFF2 and TFF3 were measured by ELISA. All three peptides were detected in bronchioalveolar lavage fluid. Patients with chronic obstructive pulmonary disease had concentrations two to three times above the levels in the healthy reference group, and patients with pulmonary malignancies had concentrations of TFF1 and TFF2 three times that of the reference group. The results suggest that TFFs are involved in tissue regeneration, proliferation and protection in lung diseases.
Collapse
Affiliation(s)
- Niels-Erik Viby
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Cardiothoracic Surgery, Copenhagen University Hospital, Denmark.
| | - Ebba Nexø
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helle Andreassen
- Department of Pulmonology, Gentofte University Hospital, Hellerup, Denmark
| | - Paul Clementsen
- Department of Pulmonology, Gentofte University Hospital, Hellerup, Denmark
| | - Lars Thim
- Department of Protein Engineering, Novo Nordisk A/S, Maalov, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
70
|
Abstract
The single-cell thick intestinal epithelial cell (IEC) lining with its protective layer of mucus is the primary barrier protecting the organism from the harsh environment of the intestinal lumen. Today it is clear that the balancing act necessary to maintain intestinal homeostasis is dependent on the coordinated action of all cell types of the IEC, and that there are no passive bystanders to gut immunity solely acting as absorptive or regenerative cells: Mucin and antimicrobial peptides on the epithelial surface are continually being replenished by goblet and Paneth's cells. Luminal antigens are being sensed by pattern recognition receptors on the enterocytes. The enteroendocrine cells sense the environment and coordinate the intestinal function by releasing neuropeptides acting both on IEC and inflammatory cells. All this while cells are continuously and rapidly being regenerated from a limited number of stem cells close to the intestinal crypt base. This review seeks to describe the cell types and structures of the intestinal epithelial barrier supporting intestinal homeostasis, and how disturbance in these systems might relate to inflammatory bowel disease.
Collapse
Affiliation(s)
- Rasmus Goll
- Medical Clinic, Section of Gastroenterology, University Hospital of North Norway , Tromsø , Norway
| | | |
Collapse
|
71
|
Boltin D, Niv Y. Pharmacological and alimentary alteration of the gastric barrier. Best Pract Res Clin Gastroenterol 2014; 28:981-94. [PMID: 25439065 DOI: 10.1016/j.bpg.2014.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/28/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
Abstract
The gastric barrier contains several lines of defence which protect the epithelium from harmful microbes and toxins. Pre-mucosal defence mechanisms include secreted acid (HCl 0.1 mmol/L) and pepsin, which are capable of denaturing tissue. A tightly adherent mucous layer provides the next line of defence, and physically separates any potentially hazardous substance in the lumen from the mucosal surface. Apical secretion of HCO3(-) maintains a non-acidic microenvironment at the mucosal surface. Membrane-bound phospholipids repel soluble toxins, and sulphydryls scavenge reactive oxygen species. However, when noxious agents overwhelm these mechanisms, the epithelium is damaged. Herein, we discuss the pathological and physiological basis for several disease states which are associated with a breakdown in one or more components of the gastric barrier, including: Helicobacter pylori-associated gastritis, atrophic gastritis, stress-related mucosal disease, age-related gastropathy and portal hypertensive gastropathy. The effect of non-steroidal anti-inflammatory drugs and proton pump inhibitors on the gastric mucosa, is explored. Finally, we outline the alterations in mucosal defence caused by alcohol, caffeine, minerals and vitamins.
Collapse
Affiliation(s)
- Doron Boltin
- Department of Gastroenterology, Rabin Medical Center, Israel; The Sackler Faculty of Medicine, Tel Aviv University, Israel.
| | - Yaron Niv
- Department of Gastroenterology, Rabin Medical Center, Israel; The Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
72
|
Hanisch FG, Bonar D, Schloerer N, Schroten H. Human trefoil factor 2 is a lectin that binds α-GlcNAc-capped mucin glycans with antibiotic activity against Helicobacter pylori. J Biol Chem 2014; 289:27363-75. [PMID: 25124036 DOI: 10.1074/jbc.m114.597757] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori infection is the major cause of gastric cancer and remains an important health care challenge. The trefoil factor peptides are a family of small highly conserved proteins that are claimed to play essential roles in cytoprotection and epithelial repair within the gastrointestinal tract. H. pylori colocalizes with MUC5AC at the gastric surface epithelium, but not with MUC6 secreted in concert with TFF2 by deep gastric glands. Both components of the gastric gland secretome associate non-covalently and show increased expression upon H. pylori infection. Although blood group active O-glycans of the Lewis-type form the basis of H. pylori adhesion to the surface mucin layer and to epithelial cells, α1,4-GlcNAc-capped O-glycans on gastric mucins were proposed to inhibit H. pylori growth as a natural antibiotic. We show here that the gastric glycoform of TFF2 is a calcium-independent lectin, which binds with high specificity to O-linked α1,4-GlcNAc-capped hexasaccharides on human and porcine stomach mucin. The structural assignments of two hexasaccharide isomers and the binding active glycotope were based on mass spectrometry, linkage analysis, (1)H nuclear magnetic resonance spectroscopy, glycan inhibition, and lectin competition of TFF2-mucin binding. Neoglycolipids derived from the C3/C6-linked branches of the two isomers revealed highly specific TFF2 binding to the 6-linked trisaccharide in GlcNAcα1-4Galβ1-4GlcNAcβ1-6(Fucα1-2Galβ1-3)GalNAc-ol(Structure 1). Supposedly, lectin TFF2 is involved in protection of gastric epithelia via a functional relationship to defense against H. pylori launched by antibiotic α1,4-GlcNAc-capped mucin glycans. Lectin-carbohydrate interaction may have also an impact on more general functional aspects of TFF members by mediating their binding to cell signaling receptors.
Collapse
Affiliation(s)
- Franz-Georg Hanisch
- From the Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Köln, the Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Köln,
| | - David Bonar
- From the Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Köln
| | - Nils Schloerer
- the Institute of Organic Chemistry, University of Cologne, Greinstr. 4, 50939 Köln, and
| | - Horst Schroten
- the University Children's Hospital, Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
73
|
Viby NE, Pedersen L, Lund TK, Kissow H, Backer V, Nexø E, Thim L, Poulsen SS. Trefoil factor peptides in serum and sputum from subjects with asthma and COPD. CLINICAL RESPIRATORY JOURNAL 2014; 9:322-9. [PMID: 24720774 DOI: 10.1111/crj.12146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 02/23/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Trefoil factor peptides (TFF) are secreted onto mucosal surfaces together with mucins and occur in high concentrations in pulmonary secretions from patients with chronic obstructive pulmonary disease (COPD). In the present study, we aimed to explore the concentrations of the peptides in serum and sputum in patients with COPD. MATERIALS AND METHODS Thirty-five individuals were included in the study, including 11 healthy individuals, 13 indivials with asthma and 11 individuals with COPD. TFF1, TFF2 and TFF3 were measured by enzyme-linked immunosorbent assay (ELISA) in sputum induced by hypertonic saline inhalation and in serum. Total protein content in sputum was also determined. RESULTS In the sputum samples from COPD patients, we observed an eightfold higher concentration of TFF1 and a fivefold higher concentration of TFF3 compared with controls. In the serum samples from COPD patients, we observed three-, three- and twofold higher concentrations of TFF1, TFF2 and TFF3 respectively compared with controls. CONCLUSIONS There is increased secretion of TFF peptides in the lungs of patients with COPD, as well as significant increases in serum levels. This suggests a role for TFF peptides in the pathogenesis of pulmonary diseases with mucus hypersecretion.
Collapse
Affiliation(s)
- Niels-Erik Viby
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiothoracic Surgery, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars Pedersen
- Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Thomas Kromann Lund
- Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Backer
- Department of Respiratory Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Ebba Nexø
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Thim
- Department of Protein Engineering, Novo Nordisk A/S, Maalov, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
74
|
Almeida JAS, Ponnuraj NP, Lee JJ, Utterback P, Gaskins HR, Dilger RN, Pettigrew JE. Effects of dietary clays on performance and intestinal mucus barrier of broiler chicks challenged with Salmonella enterica serovar Typhimurium and on goblet cell function in vitro. Poult Sci 2014; 93:839-47. [PMID: 24706960 DOI: 10.3382/ps.2013-03587] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In vivo and in vitro experiments were conducted to test for beneficial effects of dietary clays on broiler chicks challenged with Salmonella enterica serovar Typhimurium and to explore potential mechanisms. First, two hundred forty 1-d-old male broilers (initial BW: 41.6 ± 0.4 g) were allotted in a 2 × 4 factorial arrangement in a randomized complete block design. There were 2 infection treatments (with or without Salmonella) and 4 diets: basal (BAS), 0.3% smectite A (SMA), 0.3% smectite B, and 0.3% zeolite. The Salmonella reduced (P < 0.05) the growth rate of chicks fed the BAS, and feeding clay largely restored it (challenge × diet interaction, P < 0.05). Goblet cell number and size were increased (P < 0.05) by Salmonella in chicks fed the BAS and were reduced (P < 0.05) in Salmonella-challenged chicks by feeding SMA. Villus height was reduced by the Salmonella challenge in the chicks fed dietary clays (P < 0.01) but not in chicks fed the BAS (interaction P < 0.05). A human adenocarcinoma cell line (LS174T) was cultured in vitro in 3 separate experiments in the absence or presence of 3 concentrations (0.05, 0.10, and 0.50%) of SMA. Expression of mucin 2 (MUC2), resistin-like molecule β (RELMß), and trefoil factor 3 (TFF3) were determined by real-time reverse-transcription PCR. The expression of RELMβ was increased and expression of MUC2 was reduced (P < 0.05) by 0.10% SMA. Also, LS174T cells were cultured without or with SMA (0.05 and 0.10%) and the medium and cell lysate were analyzed for RELMβ using an immunoblot assay. Protein expression of RELMß in the cell lysate was reduced (P < 0.05) by SMA addition but increased in the medium, indicating that SMA increased secretion of RELMß, thus depleting the cell and concentrating this protein in the medium. In conclusion, the dietary clays restored the growth depression caused by Salmonella, and changes in goblet cell function may contribute to the benefits of one of the clays, specifically SMA.
Collapse
Affiliation(s)
- J A S Almeida
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | | | | | | | | | | | | |
Collapse
|
75
|
Li P, Turner JH. Chronic rhinosinusitis without nasal polyps is associated with increased expression of trefoil factor family peptides. Int Forum Allergy Rhinol 2014; 4:571-6. [DOI: 10.1002/alr.21334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/08/2014] [Accepted: 03/15/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Ping Li
- Department of Otolaryngology-Head and Neck Surgery; Vanderbilt University School of Medicine; Nashville TN
| | - Justin H. Turner
- Department of Otolaryngology-Head and Neck Surgery; Vanderbilt University School of Medicine; Nashville TN
| |
Collapse
|
76
|
Aamann L, Vestergaard EM, Grønbæk H. Trefoil factors in inflammatory bowel disease. World J Gastroenterol 2014; 20:3223-3230. [PMID: 24696606 PMCID: PMC3964394 DOI: 10.3748/wjg.v20.i12.3223] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/24/2014] [Accepted: 02/20/2014] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD), which comprises ulcerative colitis and Crohn’s disease, is characterized by inflammation of the gastrointestinal tract. The trefoil factors 1, 2, and 3 (TFF1-3) are a family of peptides that play important roles in the protection and repair of epithelial surfaces, including the gastrointestinal tract. TFFs may be involved in IBD pathogenesis and are a potential treatment option. In the present review, we describe the TFF family and their potential role in IBD by summarizing the current knowledge of their expression, possible function and pharmacological role in IBD.
Collapse
|
77
|
Bastholm SK, Becher N, Stubbe PR, Chronakis IS, Uldbjerg N. The viscoelastic properties of the cervical mucus plug. Acta Obstet Gynecol Scand 2014; 93:201-8. [DOI: 10.1111/aogs.12308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sara K. Bastholm
- Department of Obstetrics and Gynecology; Aarhus University Hospital; Aarhus Denmark
| | - Naja Becher
- Department of Clinical Genetics; Aarhus University Hospital; Aarhus Denmark
| | | | | | - Niels Uldbjerg
- Department of Obstetrics and Gynecology; Aarhus University Hospital; Aarhus Denmark
| |
Collapse
|
78
|
Copper promotes TFF1-mediated Helicobacter pylori colonization. PLoS One 2013; 8:e79455. [PMID: 24236136 PMCID: PMC3827375 DOI: 10.1371/journal.pone.0079455] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/01/2013] [Indexed: 02/08/2023] Open
Abstract
The trefoil peptides (TFF1, TFF2 and TFF3) are a family of small highly conserved proteins that play an essential role in epithelial regeneration within the gastrointestinal tract, where they are mainly expressed. TFF1 expression is strongly induced after mucosal injury and it has been proposed that tff1 functions as a gastric tumor suppressor gene. Several studies confirm that tff1 expression is frequently lost in gastric cancer because of deletions, mutations or methylation of the tff1 promoter. Infection by Helicobacter pylori (H. pylori) results in chronic gastritis and it can lead to the development of gastric or duodenal ulcers. Moreover, it is known that there is a strong link to the development of gastric cancer. It has been shown that H. pylori interacts with the dimeric form of TFF1 and that the rough form of lipopolysaccharide mediates this interaction. We have previously reported that the carboxy-terminus of TFF1 is able to specifically bind copper ions (Cu) and that Cu binding favours the homodimerization of the peptide, thus enhancing its motogenic activity. Here, we report that the Cu-TFF1 cuprocomplex promotes adherence of H. pylori to epithelial cells. Adherence of H. pylori to gastric adenocarcinoma cells, AGS AC1 cells, induced to hyper-express TFF1 was enhanced compared to noninduced cells. Copper further promoted this interaction. A H. pylori mutant unable to bind TFF1 did not show enhanced infection of induced cells. Cu treatment induced a thickening of the mucus layer produced by the colorectal adenocarcinoma mucus secreting, goblet cells, HT29-E12 and promoted H. pylori colonisation. Finally, SPR analysis shows that the C-terminus of TFF1, involved in the binding of copper, is also able to selectively bind H. pylori RF-LPS.
Collapse
|
79
|
Mann K, Mann M. The proteome of the calcified layer organic matrix of turkey (Meleagris gallopavo) eggshell. Proteome Sci 2013; 11:40. [PMID: 23981693 PMCID: PMC3766105 DOI: 10.1186/1477-5956-11-40] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/23/2013] [Indexed: 12/30/2022] Open
Abstract
Background Chicken eggshell mineralization is a prominent model for biomineralization not only because of its importance for avian reproduction but also because of the commercial interest associated with eggshell quality. An analysis and comparison of the protein constituents of eggshells of several species would contribute to a better understanding of the shell mineralization process. The recent publication of the turkey genome sequence now provides a basis for the in-depth analysis of the turkey eggshell proteome. Results Proteomic analysis of turkey acid-soluble and acid-insoluble organic eggshell matrix yielded 697 identified proteins/protein groups. However, intensity-based absolute quantification (iBAQ) results indicated that the 47 most abundant identified proteins already constituted 95% of the total turkey eggshell matrix proteome. Forty-four of these proteins were also identified in chicken eggshell matrix previously. Despite these similarities there were important and unexpected differences. While ovocleidin-116 and ovocalyxin-36 were major proteins constituting approximately 37% of the identified proteome, other members of the group of so-called eggshell-specific proteins were not identified. Thus ovocalyxin-21 and ovocalyxin-32 were missing among matrix proteins. Conversely, major turkey eggshell proteins were not detected in chicken, such as the bone protein periostin, the mammalian counterpart of which is involved in many aspects of bone metabolism and which represented 10-11% of the total identified proteome. Conclusions Even members of the same avian family show important differences in eggshell matrix composition and more studies on the proteome and the transcriptome level will be necessary to identify a common toolkit of eggshell mineralization and to work out species differences among functional eggshell protein sets and their role in eggshell production.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, D-82152, Martinsried, Am Klopferspitz 18, Germany.
| | | |
Collapse
|
80
|
Virulent Shigella flexneri affects secretion, expression, and glycosylation of gel-forming mucins in mucus-producing cells. Infect Immun 2013; 81:3632-43. [PMID: 23876800 DOI: 10.1128/iai.00551-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mucin glycoproteins are secreted in large amounts by the intestinal epithelium and constitute an efficient component of innate immune defenses to promote homeostasis and protect against enteric pathogens. In this study, our objective was to investigate how the bacterial enteropathogen Shigella flexneri, which causes bacillary dysentery, copes with the mucin defense barrier. We report that upon in vitro infection of mucin-producing polarized human intestinal epithelial cells, virulent S. flexneri manipulates the secretion of gel-forming mucins. This phenomenon, which is triggered only by virulent strains, results in accumulation of mucins at the cell apical surface, leading to the appearance of a gel-like structure that favors access of bacteria to the cell surface and the subsequent invasion process. We identify MUC5AC, a gel-forming mucin, as a component of this structure. Formation of this gel does not depend on modifications of electrolyte concentrations, induction of trefoil factor expression, endoplasmic reticulum stress, or response to unfolded proteins. In addition, transcriptional and biochemical analyses of infected cells reveal modulations of mucin gene expression and modifications of mucin glycosylation patterns, both of which are induced by virulent bacteria in a type III secretion system-dependent manner. Thus, S. flexneri has developed a dedicated strategy to alter the mucus barrier by targeting key elements of the gel-forming capacity of mucins: gene transcription, protein glycosylation, and secretion.
Collapse
|
81
|
Madsen J, Sorensen GL, Nielsen O, Tornøe I, Thim L, Fenger C, Mollenhauer J, Holmskov U. A variant form of the human deleted in malignant brain tumor 1 (DMBT1) gene shows increased expression in inflammatory bowel diseases and interacts with dimeric trefoil factor 3 (TFF3). PLoS One 2013; 8:e64441. [PMID: 23691218 PMCID: PMC3654909 DOI: 10.1371/journal.pone.0064441] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/15/2013] [Indexed: 12/27/2022] Open
Abstract
The protein deleted in malignant brain tumors (DMBT1) and the trefoil factor (TFF) proteins have all been proposed to have roles in epithelial cell growth and cell differentiation and shown to be up regulated in inflammatory bowel diseases. A panel of monoclonal antibodies was raised against human DMBT1gp340. Analysis of lung washings and colon tissue extracts by Western blotting in the unreduced state, two antibodies (Hyb213-1 and Hyb213-6) reacted with a double band of 290 kDa in lung lavage. Hyb213-6, in addition, reacted against a double band of 270 kDa in colon extract while Hyb213-1 showed no reaction. Hyb213-6 showed strong cytoplasmic staining in epithelial cells of both the small and large intestine whereas no staining was seen with Hyb213-1. The number of DMBT1gp340 positive epithelial cells, stained with Hyb213-6, was significantly up regulated in inflammatory colon tissue sections from patients with ulcerative colitis (p<0.0001) and Crohn’s disease (p = 0.006) compared to normal colon tissue. Immunohistochemical analysis of trefoil factor TFF1, 2 and 3 showed that TFF1 and 3 localized to goblet cells in both normal colon tissue and in tissue from patients with ulcerative colitis or Crohn’s disease. No staining for TFF2 was seen in goblet cells in normal colon tissue whereas the majority of tissue sections in ulcerative colitis and Crohn’s disease showed sparse and scattered TFF2 positive goblet cells. DMBT1 and TFF proteins did therefore not co-localize in the same cells but localized in adjacent cells in the colon. The interaction between DMBT1gp340 and trefoil TFFs proteins was investigated using an ELISA assay. DMBT1gp340 bound to solid-phase bound recombinant dimeric TFF3 in a calcium dependent manner (p<0.0001) but did not bind to recombinant forms of monomeric TFF3, TFF2 or glycosylated TFF2. This implies a role for DMBT1 and TFF3 together in inflammatory bowel disease.
Collapse
Affiliation(s)
- Jens Madsen
- Sir Henry Wellcome Laboratories, Department of Child Health, Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
|
83
|
Bijelić N, Belovari T, Baus Lončar M. Trefoil factor family protein 3 (TFF3) is present in cartilage during endochondral ossification in the developing mouse fetus. Acta Histochem 2013; 115:204-8. [PMID: 22818426 DOI: 10.1016/j.acthis.2012.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 01/25/2023]
Abstract
Trefoil factor family protein 3 (TFF3) is found in cartilage affected by osteoarthritis and septic arthritis, whereas no TFF3 presence is observed in healthy cartilage. During endochondral ossification, bone tissue replaces degenerating cartilage. There is no data about the role of TFF3 in this process. Our aim was to study the localization of TFF3 in cartilage during endochondral ossification in the mouse fetus. CD1 mouse fetuses, days 14-17, were isolated, fixed, and paraffin embedded. Fetuses were cut into 6μm sections, and processed for immunohistochemical staining with affinity purified polyclonal rabbit anti-TFF3 antibody. TFF3 was present in cartilage chondrocytes undergoing endochondral ossification, particularly in zone of proliferation, hypertrophy and calcification as well as in zone of cartilage degeneration during the monitored fetal period. Resting cartilage showed no presence of TFF3, while during endochondral ossification TFF3 localization showed an analogous pattern to that reported in cartilage affected by osteoarthritis and septic arthritis. Our data indicate that the role of TFF3 in these pathological conditions is similar to its role in the physiological process of endochondral ossification.
Collapse
|
84
|
Samson MH. Quantitative measurements of trefoil factor family peptides: possibilities and pitfalls. Scandinavian Journal of Clinical and Laboratory Investigation 2013; 73:193-202. [PMID: 23391285 DOI: 10.3109/00365513.2013.765962] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The trefoil factor family (TFF) peptides TFF1, TFF2, and TFF3 are produced and secreted by mucous membranes throughout the body. Their importance for the protection and repair of epithelial surfaces is well established, and the three peptides are present in various amounts in mucosal secretions as well as in the circulation. They have been linked to both inflammatory diseases and to various types of cancer, and serum concentrations of TFF3 show a more than 47-fold increase during pregnancy. Several both commercial and in-house immunoassays exist, but a number of methodological issues remain unresolved. This review describes methodological challenges in the measurement of the peptides in humans, and summarizes current knowledge concerning the occurrence and possible significance of the peptides in human health and disease.
Collapse
|
85
|
Kim JJ, Khan WI. Goblet cells and mucins: role in innate defense in enteric infections. Pathogens 2013; 2:55-70. [PMID: 25436881 PMCID: PMC4235714 DOI: 10.3390/pathogens2010055] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 12/16/2022] Open
Abstract
Goblet cells reside throughout the gastrointestinal (GI) tract and are responsible for the production and preservation of a protective mucus blanket by synthesizing and secreting high molecular weight glycoproteins known as mucins. The concept of the mucus layer functioning as a dynamic protective barrier is suggested by studies showing changes in mucins in inflammatory conditions of the GI tract, by the altered goblet cell response in germ-free animals, and by the enhanced mucus secretion seen in response to infections. The mucin-containing mucus layer coating the GI epithelium is the front line of innate host defense. Mucins are likely to be the first molecules that invading pathogens interact with at the cell surface and thus, can limit binding to other glycoproteins and neutralize the pathogen. This review will focus on what is known about goblet cell response in various GI infections and the regulatory networks that mediate goblet cell function and mucin production in response to intestinal insults. In addition, we describe the current knowledge on the role of mucins in intestinal innate defense. It is the aim of this review to provide the readers with an update on goblet cell biology and current understanding on the role of mucins in host defense in enteric infections.
Collapse
Affiliation(s)
- Janice J Kim
- Farncombe Family Digestive Health Research Institute, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4K1, Canada.
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, 1280 Main St W, Hamilton, Ontario, L8S 4K1, Canada.
| |
Collapse
|
86
|
Hall T, Dymock D, Corfield AP, Weaver G, Woodward M, Berry M. Bacterial invasion of HT29-MTX-E12 monolayers: effects of human breast milk. J Pediatr Surg 2013; 48:353-7; discussion 357-8. [PMID: 23414864 DOI: 10.1016/j.jpedsurg.2012.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 11/17/2022]
Abstract
AIM The supramucosal gel, crucial for gut barrier function, might be compromised in necrotizing enterocolitis (NEC). Breast milk is associated with a reduced incidence of NEC. We compared the effects of human breast milk (BM) versus a neonatal formula, Nutriprem 1 (FF), on adherence, internalisation, and penetration of NEC-associated Escherichia coli through monolayers of mucus producing intestinal cells, HT29-MTX-E12 (E12). METHODS E12 cells were grown to confluence on membranes permeable to bacteria. E. coli, reference strain and isolated from a NEC-affected intestine, were cultured in LB broth, labelled with fluorescein and biotinylated. Bacteria were suspended in tissue culture medium (TC) or mixtures of TC with BM or FF and applied to the E12 cultures. Bacterial numbers were assessed by fluorescence. DyLight 650-labelled neutravidin, which cannot cross cell membrane, evaluated extracellular bacteria. Fluorescence of basolateral medium was measured to quantify translocation. Bacterial concentrations were compared using the Mann Whitney U test. RESULTS After 1h exposure, E12 cultures adhered or internalised more NEC-derived bacteria than standard strain E. coli and more suspended in FF than BM (P<0.001). A greater proportion of NEC-derived bacteria internalised when suspended in TC or BM. In FF, the NEC-derived strain internalised least. More translocation occurred in BM incubations compared to FF in the first 1-4h: NEC-E. coli less than the reference strain. After 24h translocated bacterial populations were equal. CONCLUSION In this pilot study, breast milk was associated with relatively less adhesion and internalisation of NEC-associated E. coli to mucus covered E12s compared to formula milk.
Collapse
Affiliation(s)
- Tim Hall
- University of Bristol, School of Clinical Sciences, Bristol Dental Hospital, Bristol, BS1 2LY, UK
| | | | | | | | | | | |
Collapse
|
87
|
Lillehoj EP, Kato K, Lu W, Kim KC. Cellular and molecular biology of airway mucins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:139-202. [PMID: 23445810 PMCID: PMC5593132 DOI: 10.1016/b978-0-12-407697-6.00004-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kosuke Kato
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenju Lu
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Kwang C. Kim
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
88
|
Hasnain SZ, Gallagher AL, Grencis RK, Thornton DJ. A new role for mucins in immunity: insights from gastrointestinal nematode infection. Int J Biochem Cell Biol 2012; 45:364-74. [PMID: 23107603 DOI: 10.1016/j.biocel.2012.10.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/21/2012] [Accepted: 10/23/2012] [Indexed: 12/26/2022]
Abstract
The body's mucosal surfaces are protected from pathogens and physical and chemical attack by the gel-like extracellular matrix, mucus. The framework of this barrier is provided by polymeric, gel-forming mucins. These enormous O-linked glycoproteins are synthesised, stored and secreted by goblet cells that are also the source of other protective factors. Immune regulation of goblet cells during the course of infection impacts on mucin production and properties and ultimately upon barrier function. The barrier function of mucins in protection of the host is well accepted as an important aspect of innate defence. However, it is becoming increasingly clear that mucins have a much more direct role in combating pathogens and parasites and are an important part of the coordinated immune response to infection. Of particular relevance to this review is the finding that mucins are essential anti-parasitic effector molecules. The current understanding of the roles of these multifunctional glycoproteins, and other goblet cell products, in mucosal defence against intestinal dwelling nematodes is discussed.
Collapse
Affiliation(s)
- Sumaira Z Hasnain
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute, Mater Health Services and the University of Queensland, Brisbane, QLD 4029, Australia
| | | | | | | |
Collapse
|
89
|
Ohno T, Okamoto M, Hara T, Hashimoto N, Imaizumi K, Matsushima M, Nishimura M, Shimokata K, Hasegawa Y, Kawabe T. Detection of loci for allergic asthma using SMXA recombinant inbred strains of mice. Immunogenetics 2012; 65:17-24. [PMID: 23081743 DOI: 10.1007/s00251-012-0656-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Asthma is regarded as a multifactorial inflammatory disorder arising as a result of inappropriate immune responses in genetically susceptible individuals to common environmental antigens. However, the precise molecular basis is unknown. To identify genes for susceptibility to three asthma-related traits, airway hyperresponsiveness (AHR), eosinophil infiltration, and allergen-specific serum IgE levels, we conducted a genetic analysis using SMXA recombinant inbred (RI) strains of mice. Quantitative trait locus analysis detected a significant locus for AHR on chromosome 17. For eosinophil infiltration, significant loci were detected on chromosomes 9 and 16. Although we could not detect any significant loci for allergen-specific serum IgE, analysis of consomic strains showed that chromosomes 17 and 19 carried genes that affected this trait. We detected genetic susceptibility loci that separately regulated the three asthma-related phenotypes. Our results suggested that different genetic mechanisms regulate these asthma-related phenotypes. Genetic analyses using murine RI and consomic strains enhance understanding of the molecular mechanisms of asthma in human.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Schroyen M, Goddeeris BM, Stinckens A, Verhelst R, Janssens S, Cox E, Georges M, Niewold T, Buys N. The effect of enterotoxigenic Escherichia coli F4ab,ac on early-weaned piglets: a gene expression study. Vet Immunol Immunopathol 2012; 152:87-92. [PMID: 23078902 DOI: 10.1016/j.vetimm.2012.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diarrhoea in neonatal and early-weaned piglets due to enterotoxigenic Escherichia coli-F4 (ETEC-F4) is an important problem in the pig farming industry. There is substantial evidence for a genetic basis for susceptibility to ETEC-F4 since not all pigs suffer from diarrhoea after an ETEC-F4 infection. A region on SSC13 has been found to be in close linkage to the susceptibility of piglets for ETEC-F4ab,ac. Potential candidate genes on SSC13 have been examined and although some polymorphisms were found to be in linkage disequilibrium with the phenotype, the causative mutation has not yet been found. In this study we are looking at the expression of porcine genes in relation to ETEC-F4ab,ac. With the aid of the Affymetrix GeneChip Porcine Genome Array we were able to find differentially expressed genes between ETEC-F4ab,ac receptor positive (Fab,acR(+)) piglets without diarrhoea and F4ab,acR(+) piglets with diarrhoea or F4ab,acR(-) animals. Since the susceptibility to ETEC-F4ab,ac was described as a Mendelian trait, it is not so surprisingly that only two differentially expressed genes, transferrin receptor (TFRC) and trefoil factor 1 (TFF1), came out of the analysis. Although both genes could pass for functional candidate genes only TFRC also mapped to the region on SSC13 associated with susceptibility for ETEC-F4, which makes TFRC a positional functional candidate gene. Validation by qRT-PCR confirmed the differential expression of TFRC and TFF1. In piglets without diarrhoea, the expression of both genes was higher in F4ab,acR(+) than in F4ab,acR(-) piglets. Similarly, TFRC and TFF1 expression in F4ab,acR(+) piglets without diarrhoea was also higher than in F4ab,acR(+) piglets with diarrhoea. Consequently, although both genes might not play a role as receptor for F4 fimbriae, they could be of great importance during an ETEC-F4 outbreak. An upregulation of TFRC can be a consequence of the piglets ability to raise an effective immune response. An elevation of TFF1, a protein involved in mucin formation, may also affect the piglet's capability to cope with ETEC bacteria, rather than being a receptor for its fimbriae.
Collapse
Affiliation(s)
- M Schroyen
- Department Biosystems, K.U. Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Hanisch FG, Ragge H, Kalinski T, Meyer F, Kalbacher H, Hoffmann W. Human gastric TFF2 peptide contains an N-linked fucosylated N,N'-diacetyllactosediamine (LacdiNAc) oligosaccharide. Glycobiology 2012; 23:2-11. [PMID: 22997242 DOI: 10.1093/glycob/cws131] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the human stomach, the peptide trefoil factor family 2 (TFF2) is secreted together with the mucin MUC6 by mucous neck cells (MNCs) and antral gland cells. TFF2 is strongly associated with the gastric mucus and promotes gastric restitution. Here, TFF2 was purified from the human corpus and antrum, respectively, by size-exclusion chromatography, and the N-linked glycan structure at N-15 of the mature peptide was determined. As a hallmark, the unusual monofucosylated N,N'-diacetylhexosediamine (tentatively assigned as GalNAcβ1 → 4GlcNAc, LacdiNAc) modification was detected as the terminal structure of a bi-antennary complex type N-glycan exhibiting also core fucosylation. Replicate analyses did not show microheterogeneities in the fraction of peptide-N-glycosidase F cleaved and permethylated N-glycans when analyzed by matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). On the glycopeptide level, a minor glycan microheterogeneity was evident in liquid chromatography-electrospray ionization (ESI)-MS, demonstrating the presence of underfucosylated species. The tryptic TFF2 N-glycopeptide p34-39 (LSPHNR N-glycosylated with Fuc3Hex3HexNAc6) was identified by both ESI-tandem mass spectrometry and MALDI-post-source decay analysis. Lectin analyses with the Wisteria floribunda agglutinin indicated the potential presence of LacdiNAc terminating glycans and revealed minor differences between TFF2 from fundic units, i.e. MNCs, and antral units, i.e. antral gland cells. Strikingly, on the level of the primary structure, there was no indication that the formation of the proposed LacdiNAc structure is cis-controlled by a peptidic determinant related to the published sequences.
Collapse
Affiliation(s)
- Franz-Georg Hanisch
- Institute of Biochemistry II, Medical Faculty, and Central Bioanalytics, Center for Molecular Medicine Cologne, University Köln, Germany
| | | | | | | | | | | |
Collapse
|
92
|
Chaiyarit P, Chayasadom A, Wara-Aswapati N, Hormdee D, Sittisomwong S, Nakaresisoon S, Samson MH, Pitiphat W, Giraud AS. Trefoil Factors in Saliva and Gingival Tissues of Patients With Chronic Periodontitis. J Periodontol 2012; 83:1129-38. [DOI: 10.1902/jop.2011.110431] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
93
|
Bergström A, Kristensen MB, Bahl MI, Metzdorff SB, Fink LN, Frøkiaer H, Licht TR. Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life. BMC Res Notes 2012; 5:402. [PMID: 22857743 PMCID: PMC3465226 DOI: 10.1186/1756-0500-5-402] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 07/12/2012] [Indexed: 12/29/2022] Open
Abstract
Background Postnatal regulation of the small intestinal mucus layer is potentially important in the development of adult gut functionality. We hypothesized that the nature of bacterial colonization affects mucus gene regulation in early life. We thus analyzed the influence of the presence of a conventional microbiota as well as two selected monocolonizing bacterial strains on the transcription of murine genes involved in mucus layer development during the first week of life. Mouse pups (N = 8/group) from differently colonized dams: Germ-free (GF), conventional specific pathogen free (SPF), monocolonized with either Lactobacillus acidophilus NCFM (Lb) or Escherichia coli Nissle (Ec) were analyzed by qPCR on isolated ileal tissue sections from postnatal days 1 and 6 (PND1, PND6) after birth with respect to: (i) transcription of specific genes involved in mucus production (Muc1-4, Tff3) and (ii) amounts of 16S rRNA of Lactobacillus and E. coli. Quantification of 16S rRNA genes was performed to obtain a measure for amounts of colonized bacteria. Results We found a microbiota-independent transcriptional increase of all five mucus genes from PND1 to PND6. Furthermore, the relative level of transcription of certain mucus genes on PND1 was increased by the presence of bacteria. This was observed for Tff3 in the SPF, Ec, and Lb groups; for Muc2 in SPF; and for Muc3 and Muc4 in Ec and Lb, respectively. Detection of bacterial 16S rRNA genes levels above the qPCR detection level occurred only on PND6 and only for some of the colonized animals. On PND6, we found significantly lower levels of Muc1, Muc2 and Muc4 gene transcription for Lb animals with detectable Lactobacillus levels as compared to animals with Lactobacillus levels below the detection limit. Conclusions In summary, our data show that development of the expression of genes encoding secreted (Muc2/Tff3) and membrane-bound (Muc1/Muc3/Muc4) mucus regulatory proteins, respectively, is distinct and that the onset of this development may be accelerated by specific groups of bacteria present or absent at the mucosal site.
Collapse
Affiliation(s)
- Anders Bergström
- Gut Ecology Group, Department of Food Microbiology, National Food Institute, Technical University of Denmark, Søborg, Denmark.
| | | | | | | | | | | | | |
Collapse
|
94
|
Schulze U, Hampel U, Sel S, Goecke TW, Thäle V, Garreis F, Paulsen F. Fresh and cryopreserved amniotic membrane secrete the trefoil factor family peptide 3 that is well known to promote wound healing. Histochem Cell Biol 2012; 138:243-50. [DOI: 10.1007/s00418-012-0943-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2012] [Indexed: 01/28/2023]
|
95
|
Wills-Karp M, Rani R, Dienger K, Lewkowich I, Fox JG, Perkins C, Lewis L, Finkelman FD, Smith DE, Bryce PJ, Kurt-Jones EA, Wang TC, Sivaprasad U, Hershey GK, Herbert DR. Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection. ACTA ACUST UNITED AC 2012; 209:607-22. [PMID: 22329990 PMCID: PMC3302229 DOI: 10.1084/jem.20110079] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The repair protein trefoil factor 2 promotes Th2 responses to helminth infection and allergens in part by inducing IL-33. The molecular mechanisms that drive mucosal T helper type 2 (TH2) responses against parasitic helminths and allergens remain unclear. In this study, we demonstrate in mice that TFF2 (trefoil factor 2), an epithelial cell–derived repair molecule, is needed for the control of lung injury caused by the hookworm parasite Nippostrongylus brasiliensis and for type 2 immunity after infection. TFF2 is also necessary for the rapid production of IL-33, a TH2-promoting cytokine, by lung epithelia, alveolar macrophages, and inflammatory dendritic cells in infected mice. TFF2 also increases the severity of allergic lung disease caused by house dust mite antigens or IL-13. Moreover, TFF2 messenger RNA expression is significantly increased in nasal mucosal brushings during asthma exacerbations in children. These experiments extend the biological functions of TFF2 from tissue repair to the initiation and maintenance of mucosal TH2 responses.
Collapse
Affiliation(s)
- Marsha Wills-Karp
- Division of Immunobiology and 2 Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Kelly CJ, Colgan SP. Targeting Hypoxia to Augment Mucosal Barrier Function. JOURNAL OF EPITHELIAL BIOLOGY & PHARMACOLOGY 2012; 5:67-76. [PMID: 28824735 PMCID: PMC5560425 DOI: 10.2174/1875044301205010067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sites of inflammation are associated with profound changes in tissue metabolism. Studies in vitro and in vivo have shown that the activation of the hypoxia-inducible factor (HIF) serves as an adaptive pathway for the resolution of inflammation associated with various murine disease models. The resolution of disease occurs, at least in part, through transcriptional regulation of non-classical epithelial barrier genes. There is significant recent interest in harnessing hypoxia-inducible pathways, including targeting the HIF and the proyl-hydroxylase (PHD) enzymes that stabilize HIF, to promote mucosal healing. Here, we review the signaling pathways involved and define how hypoxia-associated signaling provides mechanistic insight into augmenting barrier function in mucosal inflammatory disease.
Collapse
Affiliation(s)
- Caleb J Kelly
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Health Sciences Center, Aurora, CO USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Health Sciences Center, Aurora, CO USA
| |
Collapse
|
97
|
Ham M, Akiba Y, Takeuchi K, Montrose MH, Kaunitz JD. Gastroduodenal Mucosal Defense. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2012:1169-1208. [DOI: 10.1016/b978-0-12-382026-6.00043-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
98
|
Kubota S, Yamauchi K, Sugano M, Kawasaki K, Sugiyama A, Matsuzawa K, Akamatsu T, Ohmoto Y, Ota H. Pathophysiological investigation of the gastric surface mucous gel layer of patients with Helicobacter pylori infection by using immunoassays for trefoil factor family 2 and gastric gland mucous cell-type mucin in gastric juice. Dig Dis Sci 2011; 56:3498-506. [PMID: 21559742 DOI: 10.1007/s10620-011-1724-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/15/2011] [Indexed: 12/29/2022]
Abstract
BACKGROUND The trefoil factor family (TFF) 2 protein is produced by gastric gland mucous cells (GMCs), and the secreted TFF2 shares a mucosal barrier function with GMC-type mucin. Recently, we presented an enzyme-linked immunosorbent assay (ELISA) method for measurement of GMC-type mucin in the gastric juice. AIMS We aimed to develop an ELISA for TFF2 and to assess pathophysiological changes in the gastric surface mucous gel layer (SMGL) of patients with Helicobacter pylori infection. METHODS The distribution of TFF2 and GMC-type mucin in the SMGL was immunohistochemically determined. The ELISA for TFF2 was based on a polyclonal goat antibody. Recombinant TFF2 was employed to prepare the calibrators. TFF2 and GMC-type mucin in the gastric juice in healthy individuals (n = 33) and patients with gastritis (n = 37), gastric ulcer (n = 16), and duodenal ulcer (n = 10) were assayed using ELISA. RESULTS TFF2 and GMC-type mucin were immunohistochemically co-localized in the gastric SMGL and GMCs. The TFF2 levels in the patients were significantly higher than those in the healthy individuals. Further, the TFF2 levels in the H. pylori-positive patients were significantly higher than those in the H. pylori-negative patients, and decreased after the eradication of the infection. GMC-type mucin levels showed a tendency similar to that of TFF2 levels. CONCLUSIONS The upregulation of TFF2 and GMC-type mucin secretion may reflect the response of the gastric mucosa to H. pylori-induced injuries. TFF2 and GMC-type mucin secreted into the SMGL may protect the gastric mucosa against H. pylori.
Collapse
Affiliation(s)
- Seiko Kubota
- Department of Laboratory Medicine, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Verey F, Nexo E, Greenwood R, Berry M, Corfield AP. Trefoil factor family peptides are increased in the saliva of children with mucositis. Clin Chem Lab Med 2011; 49:2051-5. [PMID: 21793798 DOI: 10.1515/cclm.2011.667] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mucositis is a painful ulcerative condition of the oral cavity and gastrointestinal tract, occurring in association with chemotherapy and radiotherapy regimes. Trefoil factor family peptides (TFF, trefoil peptides), present in saliva, contribute to epithelial restitution and repair and are therefore potentially important in the healing phase of mucositis. This study aimed to assess any changes in the levels of trefoil peptides in oncology patients with and without mucositis. METHODS Saliva was collected from healthy children, pretreatment oncology patients, neutropenic patients on treatment with no oral disease and mucositic patients. TFF1, 2 and 3 were quantified using ELISA. RESULTS In healthy children TFF2 and 3 were positively correlated with age (r = 0.454, p = 0.01 for TFF2; r = 0.410, p = 0.05 for TFF3 Spearman rank correlation). TFF3 was higher in mucositis compared to all other groups. A linear regression prediction model indicated that TFF3, but not TFF1 and TFF2, was significantly different in mucositic and healthy controls, suggesting an altered pattern of trefoil peptide secretion (p = 0.021). CONCLUSIONS This study is the first to focus on trefoil peptides in paediatric saliva. It shows the correlation between TFF2, TFF3 and age in healthy children. Paediatric mucositis disease occurs in the presence of increased concentrations and an altered pattern of trefoil peptides.
Collapse
Affiliation(s)
- Fran Verey
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | | | | | | | | |
Collapse
|
100
|
Nordgård CT, Draget KI. Oligosaccharides As Modulators of Rheology in Complex Mucous Systems. Biomacromolecules 2011; 12:3084-90. [DOI: 10.1021/bm200727c] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Catherine Taylor Nordgård
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, NTNU, 7491 Trondheim, Norway
| | - Kurt I. Draget
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology, NTNU, 7491 Trondheim, Norway
| |
Collapse
|