51
|
Lee HN, Tian L, Bouladoux N, Davis J, Quinones M, Belkaid Y, Coligan JE, Krzewski K. Dendritic cells expressing immunoreceptor CD300f are critical for controlling chronic gut inflammation. J Clin Invest 2017; 127:1905-1917. [PMID: 28414292 DOI: 10.1172/jci89531] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/16/2017] [Indexed: 12/14/2022] Open
Abstract
Proinflammatory cytokine overproduction and excessive cell death, coupled with impaired clearance of apoptotic cells, have been implicated as causes of failure to resolve gut inflammation in inflammatory bowel diseases. Here we have found that dendritic cells expressing the apoptotic cell-recognizing receptor CD300f play a crucial role in regulating gut inflammatory responses in a murine model of colonic inflammation. CD300f-deficient mice failed to resolve dextran sulfate sodium-induced colonic inflammation as a result of defects in dendritic cell function that were associated with abnormal accumulation of apoptotic cells in the gut. CD300f-deficient dendritic cells displayed hyperactive phagocytosis of apoptotic cells, which stimulated excessive TNF-α secretion predominantly from dendritic cells. This, in turn, induced secondary IFN-γ overproduction by colonic T cells, leading to prolonged gut inflammation. Our data highlight a previously unappreciated role for dendritic cells in controlling gut homeostasis and show that CD300f-dependent regulation of apoptotic cell uptake is essential for suppressing overactive dendritic cell-mediated inflammatory responses, thereby controlling the development of chronic gut inflammation.
Collapse
|
52
|
López-Posadas R, Neurath MF, Atreya I. Molecular pathways driving disease-specific alterations of intestinal epithelial cells. Cell Mol Life Sci 2017; 74:803-826. [PMID: 27624395 PMCID: PMC11107577 DOI: 10.1007/s00018-016-2363-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022]
Abstract
Due to the fact that chronic inflammation as well as tumorigenesis in the gut is crucially impacted by the fate of intestinal epithelial cells, our article provides a comprehensive overview of the composition, function, regulation and homeostasis of the gut epithelium. In particular, we focus on those aspects which were found to be altered in the context of inflammatory bowel diseases or colorectal cancer and also discuss potential molecular targets for a disease-specific therapeutic intervention.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
53
|
Gultekin FA, Emre AU, Celik SK, Barut F, Tali U, Sumer D, Turkcu UO. Effects of humanin on experimental colitis induced by 2,4,6-trinitrobenzene sulphonic acid in rats. Saudi J Gastroenterol 2017; 23:105-111. [PMID: 28361841 PMCID: PMC5385712 DOI: 10.4103/sjg.sjg_318_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIM The excessive apoptosis of intestinal epithelial cells (IECs) partly accounts for the development of colonic inflammation and eventually results in ulcerative colitis (UC). Humanin, an endogenous anti-apoptotic peptide, has previously been shown to protect against Alzheimer's disease and a variety of cellular insults. The present study aimed to investigate the effects of glysin variant of humanin (HNG) on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. MATERIALS AND METHODS Rats were divided into four groups as follows: Group 1 (n = 8): control; isotonic saline solution 0.1 ml/rat rectally, Group 2 (n = 8): TNBS colitis; 0.1 ml of a 2.5% (w/v) TNBS solution in 50% ethanol rectally, Group 3 (n = 8): 10 μM HNG, and Group 4 (n = 8): 20 μM HNG intraperitoneal (ip) on day 2 and 6 after rectal TNBS administration. Rats were sacrificed 7 days after the induction of colitis. Blood and tissue samples were harvested for biochemical and histopathological analysis. RESULTS HNG treatment significantly ameliorated weight loss and macroscopic and microscopic scores. TNBS-induced colitis significantly increased the colonic mRNA expression of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and caspase-3 activities in group II in comparison to the group I. HNG treatment was associated with an inhibition of mRNA expression of TNF-α and IL-1β, and a decrease in caspase-3 activities in colon tissues in group III and IV when compared to group II. CONCLUSION The results of this study indicate that HNG treatment may exert beneficial effects in UC by decreasing inflammatory reactions and apoptosis.
Collapse
Affiliation(s)
- Fatma A. Gultekin
- Department of General Surgery, School of Medicine, Bulent Ecevit University, Zonguldak, Turkey,Address for correspondence: Dr. Fatma A. Gultekin, Department of General Surgery, School of Medicine, Bulent Ecevit University, Zonguldak - 67600, Turkey. E-mail:
| | - Ali U. Emre
- Department of General Surgery, School of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - Sevim K. Celik
- Department of Medical Biology, School of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - Figen Barut
- Department of Pathology, School of Medicine, Bulent Ecevit University, Zonguldak, Turkey
| | - Ufuk Tali
- Department of General Surgery, Can Goverment Hospital, Çanakkale, Turkey
| | - Demet Sumer
- Department of General Surgery, Nevsehir Goverment Hospital, Nevsehir, Turkey
| | - Ummuhani O. Turkcu
- Department of Medical Biochemistry, Mugla School of Health Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
54
|
Zou Y, Lin J, Li W, Wu Z, He Z, Huang G, Wang J, Ye C, Cheng X, Ding C, Zheng X, Chi H. Huangqin-tang ameliorates dextran sodium sulphate-induced colitis by regulating intestinal epithelial cell homeostasis, inflammation and immune response. Sci Rep 2016; 6:39299. [PMID: 27982094 PMCID: PMC5159883 DOI: 10.1038/srep39299] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
Huangqin-tang (HQT) is a traditional Chinese medicine (TCM) formula widely used for the treatment of inflammatory bowel disease in China. However, the molecular mechanisms by which HQT protects the colon are unclear. We studied the protective effects of HQT and the underlying mechanisms in an experimental mouse model and in vitro. In vivo, dextran sodium sulphate (DSS)-induced acute and chronic colitis were significantly ameliorated by HQT as gauged by phenotypic, histopathologic and inflammatory manifestations of the disease. Mechanistically, DSS-induced nuclear factor-κB (NF-κB) signalling was inhibited by HQT. Moreover, HQT-treated mice demonstrated significant changes in cell apoptosis, expression of apoptosis-associated genes such as caspase-3, bax, bcl-2, and intestinal permeability. HQT also increased occluding and zonula occludens-1 (ZO-1), inhibited cell proliferation (Ki67), and increased regulatory T cells numbers, protein expression of Foxp3 and IL-10 in the colonic tissue. In vitro, HQT down-regulated production of pro-inflammatory cytokines and supressed the NF-κB signalling pathway in lipopolysaccharides-induced RAW 264.7 macrophages. Our study suggests that HQT plays a critical role in regulating intestinal epithelial cell homeostasis, inflammation and immune response in colitis and offers novel therapeutic options in the management of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ying Zou
- Department of Traditional Chinese Medicine, Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan 523808, China.,Sino-American Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Jiantao Lin
- Traditional Chinese Medicine and New Drug Research Institute, Guangdong Medical University, Dongguan 523808, China
| | - Wenyang Li
- Department of Traditional Chinese Medicine, Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan 523808, China
| | - Zhuguo Wu
- The Second Clinical Medical College, Guangdong Medical University, Dongguan 523808, China
| | - Zhiwei He
- Sino-American Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Guoliang Huang
- Sino-American Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Jian Wang
- Sino-American Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Caiguo Ye
- Sino-American Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Xiaoyan Cheng
- Department of Traditional Chinese Medicine, Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan 523808, China
| | - Congcong Ding
- Sino-American Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Xuebao Zheng
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Honggang Chi
- Department of Traditional Chinese Medicine, Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
55
|
Inaba Y, Ueno N, Numata M, Zhu X, Messer JS, Boone DL, Fujiya M, Kohgo Y, Musch MW, Chang EB. Soluble bioactive microbial mediators regulate proteasomal degradation and autophagy to protect against inflammation-induced stress. Am J Physiol Gastrointest Liver Physiol 2016; 311:G634-G647. [PMID: 27514476 PMCID: PMC5142193 DOI: 10.1152/ajpgi.00092.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/07/2016] [Indexed: 01/31/2023]
Abstract
Bifidobacterium breve and other Gram-positive gut commensal microbes protect the gastrointestinal epithelium against inflammation-induced stress. However, the mechanisms whereby these bacteria accomplish this protection are poorly understood. In this study, we examined soluble factors derived from Bifidobacterium breve and their impact on the two major protein degradation systems within intestinal epithelial cells, proteasomes and autophagy. Conditioned media from gastrointestinal Gram-positive, but not Gram-negative, bacteria activated autophagy and increased expression of the autophagy proteins Atg5 and Atg7 along with the stress response protein heat shock protein 27. Specific examination of media conditioned by the Gram-positive bacterium Bifidobacterium breve (Bb-CM) showed that this microbe produces small molecules (<3 kDa) that increase expression of the autophagy proteins Atg5 and Atg7, activate autophagy, and inhibit proteasomal enzyme activity. Upregulation of autophagy by Bb-CM was mediated through MAP kinase signaling. In vitro studies using C2BBe1 cells silenced for Atg7 and in vivo studies using mice conditionally deficient in intestinal epithelial cell Atg7 showed that Bb-CM-induced cytoprotection is dependent on autophagy. Therefore, this work demonstrates that Gram-positive bacteria modify protein degradation programs within intestinal epithelial cells to promote their survival during stress. It also reveals the therapeutic potential of soluble molecules produced by these microbes for prevention and treatment of gastrointestinal disease.
Collapse
Affiliation(s)
- Yuhei Inaba
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuhiro Ueno
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masatsugu Numata
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois; Division of Life Style and Digestive Diseases, Kagoshima Medical University, Kagoshima, Japan
| | - Xiaorong Zhu
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois
| | - Jeannette S Messer
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois
| | - David L Boone
- Department of Microbiology and Immunology, Indiana University School of Medicine-South Bend, South Bend, Indiana
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Mark W Musch
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, Inflammatory Bowel Disease Research Center, The University of Chicago, Chicago, Illinois;
| |
Collapse
|
56
|
Seidelin JB. Regulation of antiapoptotic and cytoprotective pathways in colonic epithelial cells in ulcerative colitis. Scand J Gastroenterol 2016; 50 Suppl 1:1-29. [PMID: 26513451 DOI: 10.3109/00365521.2016.1101245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ulcerative colitis is an inflammatory bowel disease involving the colon resulting in bloody diarrhea and increased risk of colorectal cancer in certain patient subgroups. Increased apoptosis in the epithelial cell layer causes increased permeability, especially during flares; this leads to translocation of luminal pathogens resulting in a continued inflammatory drive. The present work investigates how epithelial apoptosis is regulated in ulcerative colitis. The main results are that Fas mediated apoptosis is inhibited during flares of ulcerative colitis, probably by an upregulation of cellular inhibitor of apoptosis protein 2 (cIAP2) and cellular FLICE-like inhibitory protein. cIAP2 is upregulated in regenerative epithelial cells both in ulcerative colitis and in experimental intestinal wounds. Inhibition of cIAP2 decreases wound healing in vitro possibly through inhibition of migration. Altogether, it is shown that epithelial cells in ulcerative colitis responds to the hostile microenvironment by activation of cytoprotective pathways that tend to counteract the cytotoxic effects of inflammation. However, the present studies also show that epithelial cells produce increased amounts of reactive oxygen species during stimulation with tumor necrosis factor-α and interferon-γ resulting in DNA instability. The combined effect of increased DNA-instability and decreased apoptosis responses could lead to neoplasia.
Collapse
Affiliation(s)
- Jakob B Seidelin
- a Department of Gastroenterology, Medical Section , Herlev Hospital, University of Copenhagen , Herlev , Denmark
| |
Collapse
|
57
|
Mitomi H, Okayasu I, Bronner MP, Kanazawa H, Nishiyama Y, Otani Y, Sada M, Tanabe S, Igarashi M, Katsumata T, Saigenji K. Comparative Histologic Assessment of Proctocolectomy Specimens from Japanese and American Patients with Ulcerative Colitis with or Without Dysplasia. Int J Surg Pathol 2016; 13:259-65. [PMID: 16086081 DOI: 10.1177/106689690501300305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There have been no reports of histologic differences in ulcerative colitis (UC) between Japanese and American patients. We therefore compared histology in proctocolectomy resection specimens between Japanese patients with UC (19 cases with and 21 without dysplasia) at the Kitasato University East Hospital and American patients with UC (21 cases with and 24 without dysplasia) at the University of Washington Medical Center. In cases of UC with, but not without dysplasia, cryptitis (p = 0.010) and epithelial apoptosis (p < 0.001) in the nondysplastic mucosa were more frequently observed in Japanese than in American cases, whereas lamina propria fibrosis was more prominent in American counterparts (p = 0.008). In patients with UC with dysplasia, the duration of disease was significantly longer in American than in Japanese patients (median, 17 vs 14 years, respectively; p = 0.038). This might, in part, explain the histologic variation. Another possibility for the differences is that the preoperative medications may have differed in the populations.
Collapse
Affiliation(s)
- Hiroyuki Mitomi
- Department of Clinical Research Laboratory, National Sagamihara Hospital, 18-1 Sakura-dai, Sagamihara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Blander JM. Death in the intestinal epithelium-basic biology and implications for inflammatory bowel disease. FEBS J 2016; 283:2720-30. [PMID: 27250564 PMCID: PMC4956528 DOI: 10.1111/febs.13771] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/06/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Every 4-5 days, intestinal epithelial cells (IEC) are terminated as they reach the end of their life. This process ensures that the epithelium is comprised of the fittest cells that maintain an impermeable barrier to luminal contents and the gut microbiota, as well as the most metabolically able cells that conduct functions in nutrient absorption, digestion, and secretion of antimicrobial peptides. IEC are terminated by apical extrusion-or shedding-from the intestinal epithelial monolayer into the gut lumen. Whether death by apoptosis signals extrusion or death follows expulsion by younger IEC has been a matter of debate. Seemingly a minor detail, IEC death before or after apical extrusion bears weight on the potential contribution of apoptotic IEC to intestinal homeostasis as a consequence of their recognition by intestinal lamina propria phagocytes. In inflammatory bowel disease (IBD), excessive death is observed in the ileal and colonic epithelium. The precise mode of IEC death in IBD is not defined. A highly inflammatory milieu within the intestinal lamina propria, rich in the proinflammatory cytokine, TNF-α, increases IEC shedding and compromises barrier integrity fueling more inflammation. A milestone in the treatment of IBD, anti-TNF-α therapy, may promote mucosal healing by reversing increased and inflammation-associated IEC death. Understanding the biology and consequences of cell death in the intestinal epithelium is critical to the design of new avenues for IBD therapy.
Collapse
Affiliation(s)
- J. Magarian Blander
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
59
|
Activation of the Renin-Angiotensin System Promotes Colitis Development. Sci Rep 2016; 6:27552. [PMID: 27271344 PMCID: PMC4897651 DOI: 10.1038/srep27552] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/20/2016] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) plays pathogenic roles in renal and cardiovascular disorders, but whether it is involved in colitis is unclear. Here we show that RenTgMK mice that overexpress active renin from the liver developed more severe colitis than wild-type controls. More than 50% RenTgMK mice died whereas all wild-type mice recovered. RenTgMK mice exhibited more robust mucosal TH17 and TH1/TH17 responses and more profound colonic epithelial cell apoptosis compared to wild-type controls. Treatment with aliskiren (a renin inhibitor), but not hydralazine (a smooth muscle relaxant), ameliorated colitis in RenTgMK mice, although both drugs normalized blood pressure. Chronic infusion of angiotensin II into wild-type mice mimicked the severe colitic phenotype of RenTgMK mice, and treatment with losartan [an angiotensin type 1 receptor blocker (ARB)] ameliorated colitis in wild-type mice, confirming a colitogenic role for the endogenous RAS. In human biopsies, pro-inflammatory cytokines were suppressed in patients with inflammatory bowel disease who were on ARB therapy compared to patients not receiving ARB therapy. These observations demonstrate that activation of the RAS promotes colitis in a blood pressure independent manner. Angiotensin II appears to drive colonic mucosal inflammation by promoting intestinal epithelial cell apoptosis and mucosal TH17 responses in colitis development.
Collapse
|
60
|
Chen T, Zheng F, Tao J, Tan S, Zeng L, Peng X, Wu B. Insulin-Like Growth Factor-1 Contributes to Mucosal Repair by β-Arrestin2-Mediated Extracellular Signal-Related Kinase Signaling in Experimental Colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2441-53. [PMID: 26362717 DOI: 10.1016/j.ajpath.2015.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/19/2015] [Accepted: 05/28/2015] [Indexed: 12/12/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) possesses the ability to attenuate intestinal damage and promote mucosal repair of colitis. β-Arrestins, as the scaffolding proteins of G protein-coupled receptors or non-G protein-coupled receptors signaling, can be involved in IGF-1-mediated signaling pathways. However, the interaction of IGF-1 and β-arrestin2 in the mucosal repair of experimental colitis remains unexplored. Ulcerative colitis was induced in β-arrestin2 wild-type mice and β-arrestin2 knockout littermates by using 3% dextran sulfate sodium for 5 days, followed by regular water consumption for 1, 2, 3, and 4 weeks to analyze the mucosal repair from experimental colitis. Disease activity index and histologic score analyses were performed. Apoptosis and proliferation were assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and Ki-67 staining, respectively. The expressions of β-arrestin2, phospho (p)-IGF-1R, and p-extracellular signal-regulated kinase (ERK)1/2 were examined. Furthermore, β-arrestin2 was overexpressed or altered in HCT116 cells by transfection before IGF-1 treatment in vitro. IGF-1 and β-arrestin2 expression was up-regulated in the repairing phase of experimental colitis. Targeted deletion of β-arrestin2 delayed the repair of colitis by inhibiting cell proliferation without affecting the levels of IGF-1 and p-IGF-1R. The β-arrestin2/ERK signaling pathway was involved in IGF-1-mediated mucosal repair through promoting epithelial cell and goblet cell regeneration from experimental colitis. These results indicate that IGF-1 contributes to the mucosal repair by β-arrestin2-mediated ERK signaling in experimental colitis.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fengping Zheng
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jin Tao
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lixian Zeng
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaojie Peng
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
61
|
Boosting Apoptotic Cell Clearance by Colonic Epithelial Cells Attenuates Inflammation In Vivo. Immunity 2016; 44:807-20. [PMID: 27037190 DOI: 10.1016/j.immuni.2016.02.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/03/2015] [Accepted: 02/03/2016] [Indexed: 12/30/2022]
Abstract
Few apoptotic corpses are seen even in tissues with high cellular turnover, leading to the notion that the capacity for engulfment in vivo is vast. Whether corpse clearance can be enhanced in vivo for potential benefit is not known. In a colonic inflammation model, we noted that the expression of the phagocytic receptor Bai1 was progressively downmodulated. Consistent with this, BAI1-deficient mice had more pronounced colitis and lower survival, with many uncleared apoptotic corpses and inflammatory cytokines within the colonic epithelium. When we engineered and tested transgenic mice overexpressing BAI1, these had fewer apoptotic cells, reduced inflammation, and attenuated disease. Boosting BAI1-mediated uptake by intestinal epithelial cells (rather than myeloid cells) was important in attenuating inflammation. A signaling-deficient BAI1 transgene could not provide a similar benefit. Collectively, these complementary genetic approaches showed that cell clearance could be boosted in vivo, with potential to regulate tissue inflammation in specific contexts.
Collapse
|
62
|
Deficiency of Group VIA Phospholipase A2 (iPLA2β) Renders Susceptibility for Chemical-Induced Colitis. Dig Dis Sci 2015; 60:3590-602. [PMID: 26182903 DOI: 10.1007/s10620-015-3807-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inflammatory bowel disease results from a combination of dysfunction of intestinal epithelial barrier and dysregulation of mucosal immune system. iPLA2β has multiple homeostatic functions and shown to play a role in membrane remodeling, cell proliferation, monocyte chemotaxis, and apoptosis. The latter may render chronic inflammation and susceptibility for acute injury. AIMS We aim to evaluate whether an inactivation of iPLA2β would enhance the pathogenesis of experimental colitis induced by dextran sodium sulfate. METHODS iPLA2β-null male mice were administered dextran sodium sulfate in drinking water for 7 days followed by normal water for 3 days. At day 10, mice were killed, and harvested colon and ileum were subjected for evaluation by histology, immunohistochemistry, and quantitative RT-PCR. RESULTS Dextran sodium sulfate administration caused a significant increase in histological scores and cleaved caspase 3 (+) apoptosis concomitant with a decrease in colon length and crypt cell Ki67 (+) proliferation in iPLA2β-null mice in a greater extent than in control littermates. This sensitization by iPLA2β deficiency was associated with an increase in accumulation of F4/80 (+) macrophages, and expression of proinflammatory cytokines and chemokines, while the number of mucin-containing goblet cells and mucus layer thickness was decreased. Some of these abnormalities were also observed in the ileum. CONCLUSIONS An inactivation of iPLA2β exacerbated pathogenesis of experimental colitis by promoting intestinal epithelial cell apoptosis, inhibiting crypt cell regeneration, and causing damage to mucus barrier allowing an activation of innate immune response. Thus, iPLA2β may represent a susceptible gene for the development of inflammatory bowel disease.
Collapse
|
63
|
Strong Upregulation of AIM2 and IFI16 Inflammasomes in the Mucosa of Patients with Active Inflammatory Bowel Disease. Inflamm Bowel Dis 2015; 21:2673-82. [PMID: 26313692 DOI: 10.1097/mib.0000000000000535] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the gut, partly driven by defects in the innate immune system. Considering the central role of inflammasome signaling in innate immunity, we studied inflammasome components in IBD mucosa. METHODS Expression of genes encoding inflammasome sensor subunits was investigated in colonic mucosal biopsies from 2 cohorts of patients with IBD and controls. RESULTS A significant upregulation (>2-fold change in expression, false discovery rate <0.05) of the PYHIN inflammasomes AIM2 and IFI16 in active IBD versus controls was found. Also IFI16 was significantly increased in inactive IBD versus controls. Moreover, responders to anti-tumor necrosis factor therapy showed decreased expression of these inflammasomes although IFI16 remained significantly increased in responders showing endoscopic healing versus controls. AIM2 was mainly expressed in epithelial cells, whereas IFI16 was expressed in both lymphocytes and epithelial cells. Functional activation of predominant AIM2/IFI16-mediated inflammasomes in active IBD colon was shown by the presence of the downstream effectors CASP1 and HMGB-1 in inflamed mucosa. CONCLUSIONS Our results highlight the importance of PYHIN inflammasome signaling in IBD and also link anti-tumor necrosis factor responsiveness to inflammasome signaling. Together, this points to the potential value of the inflammasome pathway as a new therapeutic target for IBD treatment.
Collapse
|
64
|
Apoptosis, Necrosis, and Necroptosis in the Gut and Intestinal Homeostasis. Mediators Inflamm 2015; 2015:250762. [PMID: 26483605 PMCID: PMC4592906 DOI: 10.1155/2015/250762] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/08/2015] [Indexed: 12/13/2022] Open
Abstract
Intestinal epithelial cells (IECs) form a physiochemical barrier that separates the intestinal lumen from the host's internal milieu and is critical for electrolyte passage, nutrient absorption, and interaction with commensal microbiota. Moreover, IECs are strongly involved in the intestinal mucosal inflammatory response as well as in mucosal innate and adaptive immune responses. Cell death in the intestinal barrier is finely controlled, since alterations may lead to severe disorders, including inflammatory diseases. The emerging picture indicates that intestinal epithelial cell death is strictly related to the maintenance of tissue homeostasis. This review is focused on previous reports on different forms of cell death in intestinal epithelium.
Collapse
|
65
|
Wen YA, Li X, Goretsky T, Weiss HL, Barrett TA, Gao T. Loss of PHLPP protects against colitis by inhibiting intestinal epithelial cell apoptosis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2013-23. [PMID: 26187040 DOI: 10.1016/j.bbadis.2015.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/12/2022]
Abstract
A common feature of inflammatory bowel disease (IBD) is the loss of intestinal epithelial barrier function due to excessive apoptosis of intestinal epithelial cells (IECs). However, the molecular mechanism underlying increased IEC apoptosis remains unclear. Here, we investigated the role of PHLPP, a novel family of protein phosphatases, in regulating inflammation-induced IEC apoptosis in mouse models of colitis. Both Phlpp1 and Phlpp2 genes were deleted in mice. Compared with wild-type mice, PHLPP double knockout (DKO) mice were protected from colitis induced by DSS as demonstrated by lower histopathological scores, and this reduced susceptibility to colitis was associated with decreased apoptosis and increased Akt activity in IECs in vivo. In addition, epithelial organoids derived from PHLPP DKO mice were more resistant to inflammation-induced apoptosis while inhibition of Akt activity abolished the protective effect of PHLPP-loss. Furthermore, we found that PHLPP expression was significantly reduced in IECs following the induction of colitis by DSS and in human IBD patient samples. This inflammation-induced downregulation of PHLPP was partially blocked by treating cells with a proteasome inhibitor. Taken together, our results indicated that proteasome-mediated degradation of PHLPP at the onset of inflammation plays an important role in protecting IEC injury by inhibiting apoptosis.
Collapse
Affiliation(s)
- Yang-An Wen
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Xin Li
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Tatiana Goretsky
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Heidi L Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Terrence A Barrett
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0509, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536-0509, USA.
| |
Collapse
|
66
|
Heterogeneous Nuclear Ribonucleoprotein A1 Improves the Intestinal Injury by Regulating Apoptosis Through Trefoil Factor 2 in Mice with Anti-CD3-induced Enteritis. Inflamm Bowel Dis 2015; 21:1541-52. [PMID: 25901972 DOI: 10.1097/mib.0000000000000401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The role of hnRNP A1 in the onset of intestinal inflammation remains unclear. This study investigated the function of hnRNP A1 in mice enteritis models. METHODS C57Bl6/J mice were intraperitoneally injected with anti-CD3 antibodies to develop enteritis. In the DSS-induced colitis group, the mice were allowed free access to 3% DSS solution in their drinking water for 5 days. 3H-mannitol flux and complementary DNA array tests were used to assess the intestinal barrier function and messenger RNA (mRNA) expression, respectively. Real-time PCR was performed after immunoprecipitation with anti-hnRNP antibodies to determine the specific mRNA binding of hnRNP A1. RESULTS The hnRNP A1 expression was increased in the intestine of the mouse at 24 hours after treatment with anti-CD3 antibodies and 5 days after starting DSS administration. Small interfering RNA (siRNA) against hnRNP A1 exacerbated the intestinal injuries in both models. According to the microarray analysis, trefoil factor 2 (TFF2) was identified as a candidate molecule targeted by hnRNP A1 in the anti-CD3 antibody-induced enteritis group. Moreover, the binding between hnRNP A1 and TFF2 mRNA significantly increased in the enteritis mice, and the administration of siRNA against either hnRNP A1 or TFF2 exacerbated the degree of intestinal injury. In the DSS-induced colitis group, treatment with the siRNA of hnRNP A1 worsened the intestinal injury, while the expression of TFF3 did not change. CONCLUSIONS hnRNP A1 improves intestinal injury in anti-CD3 antibody-induced enteritis mice through the upregulation of TFF2, which regulates apoptosis and enhances epithelial restoration, whereas this molecule ameliorates DSS-induced colitis through a different pathway.
Collapse
|
67
|
Zhang Y, Brenner M, Yang WL, Wang P. Recombinant human MFG-E8 ameliorates colon damage in DSS- and TNBS-induced colitis in mice. J Transl Med 2015; 95:480-90. [PMID: 25751740 DOI: 10.1038/labinvest.2015.32] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/31/2014] [Accepted: 11/15/2014] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the digestive system and typically requires lifelong medical care. Recombinant human MFG-E8 (rhMFG-E8) is a 364-amino acid protein, which promotes apoptotic cell clearance and reduces inflammation. This study investigates the therapeutic effect of rhMFG-E8 on two well-established mouse models of IBD. Acute mucosal injury leading to colitis was caused by exposing C57BL/6 mice to 4% dextran sodium sulfate (DSS) in the drinking water over 7 days, and BALB/c mice to a single intrarectal dose of 2.75 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Upon clinical onset of colitis (day 2 in the DSS model and day 1 in the TNBS model), mice were treated with daily subcutaneous injections of rhMFG-E8 (60 or 120 μg/kg/day) or vehicle (saline) for 6 days. Treatment with rhMFG-E8 significantly attenuated colitis in both models in a dose-dependent way. Treatment of DSS-induced colitis with rhMFG-E8 (120 μg/kg/day) decreased weight loss by 59%, the colitis severity score by 71%, and colon shrinkage by 49% when compared with vehicle. Similarly, treatment of TNBS-induced colitis with rhMFG-E8 (120 μg/kg/day) decreased weight loss by 97%, the colitis severity score by 82%, and colon shrinkage by 62% when compared with vehicle. In both models, the colons of animals receiving rhMFG-E8 showed marked reduction in neutrophil infiltration, cytokine and chemokine expression, and apoptotic cell counts. In conclusion, rhMFG-E8 ameliorates DSS- and TNBS-induced colitis, suggesting that it has the potential to become a novel therapeutic agent for IBD.
Collapse
Affiliation(s)
- Yinzhong Zhang
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Max Brenner
- 1] Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY, USA [2] TheraSource LLC, Manhasset, NY, USA
| | - Weng-Lang Yang
- 1] Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY, USA [2] TheraSource LLC, Manhasset, NY, USA
| | - Ping Wang
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
68
|
Epithelial-specific ETS-1 (ESE1/ELF3) regulates apoptosis of intestinal epithelial cells in ulcerative colitis via accelerating NF-κB activation. Immunol Res 2015; 62:198-212. [PMID: 25926267 DOI: 10.1007/s12026-015-8651-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
69
|
Li YC, Chen Y, Du J. Critical roles of intestinal epithelial vitamin D receptor signaling in controlling gut mucosal inflammation. J Steroid Biochem Mol Biol 2015; 148:179-83. [PMID: 25603468 PMCID: PMC4361385 DOI: 10.1016/j.jsbmb.2015.01.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/27/2014] [Accepted: 01/16/2015] [Indexed: 12/13/2022]
Abstract
Although vitamin D receptor (VDR) is highly expressed in the intestine, the role of VDR signaling in the gut is not fully understood. Our recent studies unveil a regulatory circuit that centers gut epithelial VDR as a key molecule in the control of mucosal inflammation and colitis development. On the one hand, intestinal epithelial VDR signaling protects the integrity of the mucosal barrier by inhibiting inflammation-induced epithelial cell apoptosis. This barrier-protecting, anti-colitic activity is independent of the non-epithelial immune VDR actions. A healthy and intact mucosal barrier prevents bacterial invasion and thus reduces mucosal inflammation. On the other hand, inflammation in turn down-regulates epithelial VDR expression by inducing VDR-targeting microRNA-346, thus compromising mucosal barrier functions. Consistently, colonic epithelial VDR levels are markedly reduced in patients with inflammatory bowel diseases or in experimental colitis models, whereas vitamin D analog therapy that ameliorates colitis up-regulates epithelial VDR. Thus, gut epithelial VDR signaling appears to play an essential role in controlling mucosal inflammation and thus could be a useful therapeutic target in the management of inflammatory bowel diseases. This article is part of a special issue entitled '17th Vitamin D Workshop' .
Collapse
Affiliation(s)
- Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL 60637, USA.
| | - Yunzi Chen
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, IL 60637, USA; Laboratory of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110001, China
| | - Jie Du
- Laboratory of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
70
|
Günther C, Buchen B, He GW, Hornef M, Torow N, Neumann H, Wittkopf N, Martini E, Basic M, Bleich A, Watson AJM, Neurath MF, Becker C. Caspase-8 controls the gut response to microbial challenges by Tnf-α-dependent and independent pathways. Gut 2015; 64:601-10. [PMID: 25379949 PMCID: PMC4392221 DOI: 10.1136/gutjnl-2014-307226] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Intestinal epithelial cells (IEC) express toll-like receptors (TLR) that facilitate microbial recognition. Stimulation of TLR ligands induces a transient increase in epithelial cell shedding, a mechanism that serves the antibacterial and antiviral host defence of the epithelium and promotes elimination of intracellular pathogens. Although activation of the extrinsic apoptosis pathway has been described during inflammatory shedding, its functional involvement is currently unclear. DESIGN We investigated the functional involvement of caspase-8 signalling in microbial-induced intestinal cell shedding by injecting Lipopolysaccharide (LPS) to mimic bacterial pathogens and poly(I:C) as a probe for RNA viruses in vivo. RESULTS TLR stimulation of IEC was associated with a rapid activation of caspase-8 and increased epithelial cell shedding. In mice with an epithelial cell-specific deletion of caspase-8 TLR stimulation caused Rip3-dependent epithelial necroptosis instead of apoptosis. Mortality and tissue damage were more severe in mice in which IECs died by necroptosis than apoptosis. Inhibition of receptor-interacting protein (Rip) kinases rescued the epithelium from TLR-induced gut damage. TLR3-induced necroptosis was directly mediated via TRIF-dependent pathways, independent of Tnf-α and type III interferons, whereas TLR4-induced tissue damage was critically dependent on Tnf-α. CONCLUSIONS Together, our data demonstrate an essential role for caspase-8 in maintaining the gut barrier in response to mucosal pathogens by permitting inflammatory shedding and preventing necroptosis of infected cells. These data suggest that therapeutic strategies targeting the cell death machinery represent a promising new option for the treatment of inflammatory and infective enteropathies.
Collapse
Affiliation(s)
- Claudia Günther
- Medical Clinic 1, Friedrich Alexander University, Erlangen, Germany
| | - Barbara Buchen
- Medical Clinic 1, Friedrich Alexander University, Erlangen, Germany
| | - Gui-Wei He
- Medical Clinic 1, Friedrich Alexander University, Erlangen, Germany
| | - Mathias Hornef
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Natalia Torow
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Helmut Neumann
- Medical Clinic 1, Friedrich Alexander University, Erlangen, Germany
| | - Nadine Wittkopf
- Medical Clinic 1, Friedrich Alexander University, Erlangen, Germany
| | - Eva Martini
- Medical Clinic 1, Friedrich Alexander University, Erlangen, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | | | - Markus F Neurath
- Medical Clinic 1, Friedrich Alexander University, Erlangen, Germany
| | - Christoph Becker
- Medical Clinic 1, Friedrich Alexander University, Erlangen, Germany
| |
Collapse
|
71
|
Huang LY, He Q, Liang SJ, Su YX, Xiong LX, Wu QQ, Wu QY, Tao J, Wang JP, Tang YB, Lv XF, Liu J, Guan YY, Pang RP, Zhou JG. ClC-3 chloride channel/antiporter defect contributes to inflammatory bowel disease in humans and mice. Gut 2014; 63:1587-95. [PMID: 24440986 DOI: 10.1136/gutjnl-2013-305168] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND ClC-3 channel/antiporter plays a critical role in a variety of cellular activities. ClC-3 has been detected in the ileum and colon. OBJECTIVE To determine the functions of ClC-3 in the gastrointestinal tract. DESIGN After administration of dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzenesulfonic acid (TNBS), intestines from ClC-3-/- and wild-type mice were examined by histological, cellular, molecular and biochemical approaches. ClC-3 expression was determined by western blot and immunostaining. RESULTS ClC-3 expression was reduced in intestinal tissues from patients with UC or Crohn's disease and from mice treated with DSS. Genetic deletion of ClC-3 increased the susceptibility of mice to DSS- or TNBS-induced experimental colitis and prevented intestinal recovery. ClC-3 deficiency promoted DSS-induced apoptosis of intestinal epithelial cells through the mitochondria pathway. ClC-3 interacts with voltage-dependent anion channel 1, a key player in regulation of mitochondria cytochrome c release, but DSS treatment decreased this interaction. In addition, lack of ClC-3 reduced the numbers of Paneth cells and impaired the expression of antimicrobial peptides. These alterations led to dysfunction of the epithelial barrier and invasion of commensal bacteria into the mucosa. CONCLUSIONS A defect in ClC-3 may contribute to the pathogenesis of IBD by promoting intestinal epithelial cell apoptosis and Paneth cell loss, suggesting that modulation of ClC-3 expression might be a new strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Lin-Yan Huang
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China School of Medical Technology, Xuzhou Medical College, Xuzhou, Jiagsu, China
| | - Qing He
- Gastrointestinal Institute, the 6th Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Si-Jia Liang
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ying-Xue Su
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Li-Xiong Xiong
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qian-Qian Wu
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qin-Yan Wu
- Gastrointestinal Institute, the 6th Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing Tao
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian-Ping Wang
- Department of Colorectal Surgery, The 6th Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yong-Bo Tang
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Fei Lv
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jie Liu
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rui-Ping Pang
- Department of Physiology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Zhongshan School of Medcine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
72
|
Nunes T, Bernardazzi C, de Souza HS. Cell death and inflammatory bowel diseases: apoptosis, necrosis, and autophagy in the intestinal epithelium. BIOMED RESEARCH INTERNATIONAL 2014; 2014:218493. [PMID: 25126549 PMCID: PMC4121991 DOI: 10.1155/2014/218493] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023]
Abstract
Cell death mechanisms have been associated with the development of inflammatory bowel diseases in humans and mice. Recent studies suggested that a complex crosstalk between autophagy/apoptosis, microbe sensing, and enhanced endoplasmic reticulum stress in the epithelium could play a critical role in these diseases. In addition, necroptosis, a relatively novel programmed necrosis-like pathway associated with TNF receptor activation, seems to be also present in the pathogenesis of Crohn's disease and in specific animal models for intestinal inflammation. This review attempts to cover new data related to cell death mechanisms and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Tiago Nunes
- Nutrition and Immunology Chair, ZIEL-Research Center for Nutrition and Food Sciences, Technical University of Munich, Weihenstephan, 85354 Freising, Germany
| | - Claudio Bernardazzi
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Hospital Universitario, Universidade Federal do Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco 255, Ilha do Fundão, 21941-913 Rio de Janeiro, RJ, Brazil
| | - Heitor S. de Souza
- Serviço de Gastroenterologia & Laboratório Multidisciplinar de Pesquisa, Hospital Universitario, Universidade Federal do Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco 255, Ilha do Fundão, 21941-913 Rio de Janeiro, RJ, Brazil
- D'Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, 22281-100 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
73
|
Inhibition of epithelial cell death by Bcl-2 improved chronic colitis in IL-10 KO mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 183:1936-1944. [PMID: 24266926 DOI: 10.1016/j.ajpath.2013.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022]
Abstract
IL-10-deficient mice spontaneously develop intestinal inflammation, which has many similarities to Crohn's disease. Several reports suggest that epithelial cell death may increase the severity of colitis; however, decisive evidence is lacking. In the present report, we addressed whether and how epithelial cell death plays a role in the development of chronic colitis. We first examined the morphological characteristics of intestines of IL-10-deficient mice and found two forms of epithelial cell death (typical apoptosis and necrosis-like cell death) in colitis. To elucidate the pathological roles of epithelial cell death, we crossbred IL-10-deficient knockout mice with Bcl-2 transgenic mice, in which the anti-apoptosis protein Bcl-2 was overexpressed in intestinal epithelial cells, but not in immune cells. Epithelial cell-specific Bcl-2 protected IL-10 deficiency-induced colitis and markedly reduced their symptoms. Interestingly, morphological analysis revealed that Bcl-2 suppressed apoptosis and necrosis-like cell death, and better maintained mucosal barrier in IL-10-deficient mice. From the immunological aspect, Bcl-2 did not alter the activation of T-helper cell 1 but inhibited the growth of T-helper cell 17, suggesting that mucosal integrity may control the immune responses. These results provide genetic evidence demonstrating that epithelial cell death is crucial for the development of chronic colitis.
Collapse
|
74
|
Chua ACG, Klopcic BRS, Ho DS, Fu SK, Forrest CH, Croft KD, Olynyk JK, Lawrance IC, Trinder D. Dietary iron enhances colonic inflammation and IL-6/IL-11-Stat3 signaling promoting colonic tumor development in mice. PLoS One 2013; 8:e78850. [PMID: 24223168 PMCID: PMC3819375 DOI: 10.1371/journal.pone.0078850] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/16/2013] [Indexed: 12/18/2022] Open
Abstract
Chronic intestinal inflammation and high dietary iron are associated with colorectal cancer development. The role of Stat3 activation in iron-induced colonic inflammation and tumorigenesis was investigated in a mouse model of inflammation-associated colorectal cancer. Mice, fed either an iron-supplemented or control diet, were treated with azoxymethane and dextran sodium sulfate (DSS). Intestinal inflammation and tumor development were assessed by endoscopy and histology, gene expression by real-time PCR, Stat3 phosphorylation by immunoblot, cytokines by ELISA and apoptosis by TUNEL assay. Colonic inflammation was more severe in mice fed an iron-supplemented compared with a control diet one week post-DSS treatment, with enhanced colonic IL-6 and IL-11 release and Stat3 phosphorylation. Both IL-6 and ferritin, the iron storage protein, co-localized with macrophages suggesting iron may act directly on IL-6 producing-macrophages. Iron increased DSS-induced colonic epithelial cell proliferation and apoptosis consistent with enhanced mucosal damage. DSS-treated mice developed anemia that was not alleviated by dietary iron supplementation. Six weeks post-DSS treatment, iron-supplemented mice developed more and larger colonic tumors compared with control mice. Intratumoral IL-6 and IL-11 expression increased in DSS-treated mice and IL-6, and possibly IL-11, were enhanced by dietary iron. Gene expression of iron importers, divalent metal transporter 1 and transferrin receptor 1, increased and iron exporter, ferroportin, decreased in colonic tumors suggesting increased iron uptake. Dietary iron and colonic inflammation synergistically activated colonic IL-6/IL-11-Stat3 signaling promoting tumorigenesis. Oral iron therapy may be detrimental in inflammatory bowel disease since it may exacerbate colonic inflammation and increase colorectal cancer risk.
Collapse
Affiliation(s)
- Anita C. G. Chua
- School of Medicine and Pharmacology, Fremantle Hospital, University of Western Australia, Fremantle, Western Australia, Australia
- Western Australian Institute for Medical Research, Perth, Western Australia, Australia
- * E-mail:
| | - Borut R. S. Klopcic
- School of Medicine and Pharmacology, Fremantle Hospital, University of Western Australia, Fremantle, Western Australia, Australia
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Desiree S. Ho
- School of Medicine and Pharmacology, Fremantle Hospital, University of Western Australia, Fremantle, Western Australia, Australia
- Western Australian Institute for Medical Research, Perth, Western Australia, Australia
| | - S. Kristine Fu
- School of Medicine and Pharmacology, Fremantle Hospital, University of Western Australia, Fremantle, Western Australia, Australia
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Cynthia H. Forrest
- Department of Histopathology, PathWest, Fremantle Hospital, Fremantle, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Kevin D. Croft
- School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, Perth, Western Australia, Australia
| | - John K. Olynyk
- Department of Gastroenterology, Fremantle Hospital, Fremantle, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Ian C. Lawrance
- School of Medicine and Pharmacology, Fremantle Hospital, University of Western Australia, Fremantle, Western Australia, Australia
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Debbie Trinder
- School of Medicine and Pharmacology, Fremantle Hospital, University of Western Australia, Fremantle, Western Australia, Australia
- Western Australian Institute for Medical Research, Perth, Western Australia, Australia
| |
Collapse
|
75
|
Leucht K, Fischbeck A, Caj M, Liebisch G, Hartlieb E, Benes P, Fried M, Humpf HU, Rogler G, Hausmann M. Sphingomyelin and phosphatidylcholine contrarily affect the induction of apoptosis in intestinal epithelial cells. Mol Nutr Food Res 2013; 58:782-98. [PMID: 24142587 DOI: 10.1002/mnfr.201300369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/14/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022]
Abstract
SCOPE The major alimentary sources for the plasma membrane lipid sphingomyelin (SM) are dairy products, eggs, and meat. We recently reported that the SM metabolite ceramide induces cathepsin D mediated apoptosis in murine intestinal epithelial cells (IECs) and increases inflammation in acute colitis. We investigated the impact of SM and phosphatidylcholine on apoptosis in human IECs and point out BH3-interacting death agonist (BID) as link between cathepsin D and apoptosis. METHODS AND RESULTS HT-29 and isolated human IECs were stimulated with SM or phosphatidylcholine. SM treatment resulted in increased apoptosis. Phosphatidylcholine showed contrary effects. Western revealed higher amounts of cathepsin D and BID activation upon lipid stimulation. Western blotting revealed BID activation through SM in both an induced and a spontaneous mouse model of colitis. CONCLUSION Dietary phospholipids may induce or abolish apoptosis in IECs and seem to play a role in the pathogenesis of inflammatory bowel diseases. This nutritional factor might be considered when evaluating the pathogenesis of inflammatory bowel diseases. Effects of SMase- and SM treatment on inflammation in dextran sulfate sodium induced animal models of colitis and in vitro experiments are discussed as controversial. Variable sources of SM, feeding techniques, and mouse strains might play a role.
Collapse
Affiliation(s)
- Katharina Leucht
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Topcu-Tarladacalisir Y, Akpolat M, Uz YH, Kizilay G, Sapmaz-Metin M, Cerkezkayabekir A, Omurlu IK. Effects of curcumin on apoptosis and oxidoinflammatory regulation in a rat model of acetic acid-induced colitis: the roles of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. J Med Food 2013; 16:296-305. [PMID: 23566056 DOI: 10.1089/jmf.2012.2550] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The present study evaluated the effects of curcumin on epithelial cell apoptosis, the immunoreactivity of the phospho-c-Jun N-terminal kinase (JNK) and phospho-p38 mitogen-activated protein kinases (MAPKs) in inflamed colon mucosa, and oxidative stress in a rat model of ulcerative colitis induced by acetic acid. Rats were randomly divided into three groups: control, acetic acid, and acetic acid+curcumin. Curcumin (100 mg/kg per day, intragastrically) was administered 10 days before the induction of colitis and was continued for two additional days. Acetic acid-induced colitis caused a significant increase in the macroscopic and microscopic tissue ranking scores as well as an elevation in colonic myeloperoxidase (MPO) activity, malondialdehyde (MDA) levels, and the number of apoptotic epithelial cells in colon tissue compared to controls. In the rat colon, immunoreactivity of phospho-p38 MAPK was increased, whereas the phospho-JNK activity was decreased following the induction of colitis. Curcumin treatment was associated with amelioration of macroscopic and microscopic colitis sores, decreased MPO activity, and decreased MDA levels in acetic acid-induced colitis. Furthermore, oral curcumin supplementation clearly prevented programmed cell death and restored immunreactivity of MAPKs in the colons of colitic rats. The results of this study suggest that oral curcumin treatment decreases colon injury and is associated with decreased inflammatory reactions, lipid peroxidation, apoptotic cell death, and modulating p38- and JNK-MAPK pathways.
Collapse
|
77
|
Liu W, Chen Y, Golan MA, Annunziata ML, Du J, Dougherty U, Kong J, Musch M, Huang Y, Pekow J, Zheng C, Bissonnette M, Hanauer SB, Li YC. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. J Clin Invest 2013; 123:3983-96. [PMID: 23945234 DOI: 10.1172/jci65842] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/21/2013] [Indexed: 12/11/2022] Open
Abstract
The inhibitory effects of vitamin D on colitis have been previously documented. Global vitamin D receptor (VDR) deletion exaggerates colitis, but the relative anticolitic contribution of epithelial and nonepithelial VDR signaling is unknown. Here, we showed that colonic epithelial VDR expression was substantially reduced in patients with Crohn's disease or ulcerative colitis. Moreover, targeted expression of human VDR (hVDR) in intestinal epithelial cells (IECs) protected mice from developing colitis. In experimental colitis models induced by 2,4,6-trinitrobenzenesulfonic acid, dextran sulfate sodium, or CD4(+)CD45RB(hi) T cell transfer, transgenic mice expressing hVDR in IECs were highly resistant to colitis, as manifested by marked reductions in clinical colitis scores, colonic histological damage, and colonic inflammation compared with WT mice. Reconstitution of Vdr-deficient IECs with the hVDR transgene completely rescued Vdr-null mice from severe colitis and death, even though the mice still maintained a hyperresponsive Vdr-deficient immune system. Mechanistically, VDR signaling attenuated PUMA induction in IECs by blocking NF-κB activation, leading to a reduction in IEC apoptosis. Together, these results demonstrate that gut epithelial VDR signaling inhibits colitis by protecting the mucosal epithelial barrier, and this anticolitic activity is independent of nonepithelial immune VDR actions.
Collapse
Affiliation(s)
- Weicheng Liu
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Jirkof P, Leucht K, Cesarovic N, Caj M, Nicholls F, Rogler G, Arras M, Hausmann M. Burrowing is a sensitive behavioural assay for monitoring general wellbeing during dextran sulfate sodium colitis in laboratory mice. Lab Anim 2013; 47:274-83. [PMID: 23828853 DOI: 10.1177/0023677213493409] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An impaired intestinal epithelial barrier is thought to be a major factor in the pathogenesis of human inflammatory bowel disease (IBD). IBD is frequently investigated by inducing a damaged barrier in murine models of colitis. This can be done by feeding mice with dextran sulfate sodium (DSS) polymers in their drinking water. Refinement measures should focus on alleviating unnecessary suffering during this probably painful condition. Appropriate parameters are needed to decide when to terminate the experiments. Our aim was to investigate whether a change in burrowing behaviour is a sensitive measure of animal welfare in murine models of colitis. Acute colitis was induced in C57BL/6 mice with 2.0% DSS over nine days. The burrowing test is based on the species-typical behaviour of mice to spontaneously displace items from tubes within their home cage. As a burrowing apparatus, a water bottle (250 mL, 150 mm length, 55 mm diameter) filled with 138-142 g of pellets of the animal's diet was used. The presence of intestinal inflammation as a result of acute DSS-induced colitis was confirmed by a decrease in body weight, colon length and an increase of murine endoscopic index of colitis severity, histological score and spleen weight in the group receiving DSS as compared with the control group. An onset of intestinal inflammation correlated with a significant decrease in burrowing behaviour (P < 0.05). Altered adrenal gland histology indicated stress as a result of acute colitis. Our findings provide evidence that changes of spontaneous burrowing behaviour correlate with the onset of inflammation in acute DSS-induced colitis.
Collapse
Affiliation(s)
- P Jirkof
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Günther C, Neumann H, Neurath MF, Becker C. Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut 2013; 62:1062-71. [PMID: 22689519 DOI: 10.1136/gutjnl-2011-301364] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal epithelial cells (IEC) are organised as a single cell layer which covers the intestine. Their primary task is to absorb nutrients present in the intestinal lumen. However, IEC also play an important role in the immune defence of our body by building a barrier that separates the bowel wall from potentially hazardous bacteria present in the gut lumen. The life cycle of IEC is determined by the time span in which cells migrate from their place of origin at the crypt base to the villus tip, from where they are shed into the lumen. Cell death in the intestinal epithelium has to be tightly regulated and irregularities might cause pathologies. Excessive cell death has been associated with chronic inflammation as seen in patients with Crohn's disease and ulcerative colitis. While until recently apoptosis was discussed as being essential for epithelial turnover and tissue homeostasis in the intestinal epithelium, recent data using gene deficient mice have challenged this concept. Moreover, an apoptosis-independent mode of programmed cell death, termed necroptosis, has been identified and described in the intestinal epithelium. The following article reviews previous studies on cell death regulation in IEC and a potential role of necroptosis for gut homeostasis.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine, University of Erlangen-Nuremberg, Hartmannstrasse 14, 91 054 Erlangen, Germany
| | | | | | | |
Collapse
|
80
|
Chen Y, Xiao Y, Ge W, Zhou K, Wen J, Yan W, Wang Y, Wang B, Qu C, Wu J, Xu L, Cai W. miR-200b inhibits TGF-β1-induced epithelial-mesenchymal transition and promotes growth of intestinal epithelial cells. Cell Death Dis 2013; 4:e541. [PMID: 23492772 PMCID: PMC3613822 DOI: 10.1038/cddis.2013.22] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD), which consists of Crohn's disease (CD) and ulcerative colitis (UC), is a chronic, inflammatory disorder of the gastro-intestinal tract with unknown etiology. Current evidence suggests that intestinal epithelial cells (IECs) is prominently linked to the pathogenesis of IBD. Therefore, maintaining the intact of epithelium has potential roles in improving pathophysiology and clinical outcomes of IBD. MicroRNAs (miRNAs) act as post-transcriptional gene regulators and regulate many biological processes, including embryonal development, cell differentiation, apoptosis and proliferation. In this study, we found that miR-200b decreased significantly in inflamed mucosa of IBD, especially for UC, when compared with their adjacent normal tissue. Simultaneously, we also found that the genes of E-cadherin and cyclin D1 were reduced significantly and correlated positively to the miR-200b. In addition, the upregulation of transforming growth factor-beta 1 (TGF-β1) was inversely correlated to the miR-200b in IBD. To investigate the possible roles of miR-200b in IECs maintaining, we used TGF-β1 to induce epithelial-mesenchymal transition (EMT) in IEC-6 initially. After sustained over-expressing miR-200b in IEC-6, the EMT was inhibited significantly that was characterized by downregulation of vimentin and upregulation of E-cadherin. Furthermore, we found that miR-200b enhanced E-cadherin expression through targeting of ZEB1, which encode transcriptional repressors of E-cadherin. SMAD2 was found to act as a target of miR-200b with direct evidence that miR-200b binding to the 3′ UTR of SAMD2 and the ability of miR-200b to repress SMAD2 protein expression. With SMAD2 depletion, the expression of vimentin decreased correspondingly, which suggested miR-200b might reduce vimentin through regulating the SMAD2. With endogenous over-expression of miR-200b, the proliferation of IEC-6 cells increased significantly by increasing S-phase entry and promoting expression of the protein cyclin D1. Summarily, our study suggested a potential role for mir-200b in maintaining intact of intestinal epithelium through inhibiting EMT and promoting proliferation of IECs.
Collapse
Affiliation(s)
- Y Chen
- Department of Gastroenterology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Becker C, Watson AJ, Neurath MF. Complex roles of caspases in the pathogenesis of inflammatory bowel disease. Gastroenterology 2013; 144:283-293. [PMID: 23219999 DOI: 10.1053/j.gastro.2012.11.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 12/16/2022]
Abstract
Caspases are cysteine proteases that regulate embryonic development, cell differentiation, tissue homoeostasis, and removal of damaged and harmful cells from the intestine and other parts of the body. Caspase activity is mainly regulated at the posttranslational level, which allows their rapid activation and response to cellular stress and pathogenic stimuli. In most cell types, caspases are initially expressed as inactive proenzymes, which undergo proteolytic cleavage to become functional enzymes. Caspase dysfunction has been associated with intestinal diseases, including inflammatory bowel disease (IBD) and colorectal cancer. Although the roles of caspases have been studied extensively in regulation of apoptosis, recent discoveries have highlighted cell death-independent functions of this protein family. In particular, caspase-1, caspase-4, caspase-5, and caspase-12 are activated during innate immune responses and participate in the formation of the inflammasome. Caspase-8 controls necroptosis of Paneth cells and potentially the death of intestinal epithelial cells in patients with Crohn's disease and appears to be involved in mucosal inflammation. Regulators of caspase-8 might therefore be used to prevent cell death in patients with IBD. Improving our understanding of the regulation and function of caspases in the intestine might lead to new therapeutics for chronic intestinal inflammation and inflammation-associated cancer.
Collapse
Affiliation(s)
- Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Alastair J Watson
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, England
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
82
|
Yuan H, Wang HM, Zhao XM. Treatment with diammonium glycyrrhizinate down-regulates M30 expression in ulcerative colitis in rats. Shijie Huaren Xiaohua Zazhi 2012; 20:3439-3444. [DOI: 10.11569/wcjd.v20.i35.3439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the therapeutic effect of diammonium glycyrrhizinate (DG) on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis in rats and to explore the underlying mechanisms by detecting the expression of M30 and Fas/FasL.
METHODS: Thirty Wistar rats were equally randomized into a normal control group, a model group and a DG group. Ulcerative colitis was induced in the DG group and model group with TNBS by enema. After ten days, all rats were killed. Disease activity index (DAI), colon macroscopic damage score (CMDS) and histological damage score were calculated, and the expression of M30 and Fas/FasL in the colonic mucosa was detected by immunohistochemistry.
RESULTS: Compared to normal controls, the DAI, CMDS and histological damage score significantly increased in model rats (7.06 ± 0.80 vs 0.32 ± 0.14; 6.03 ± 0.61 vs 0.19 ± 0.16; 5.84 ± 0.53 vs 0.22 ± 0.11, P < 0.01). Compared to the model group, the above parameters were significantly improved in the DG group (3.33 ± 0.27 vs 7.06 ± 0.80; 3.29 ± 0.36 vs 6.03 ± 0.61; 2.98 ± 0.24 vs 5.84 ± 0.53, P < 0.05). Compared to the normal control group, the expression of M30 and Fas/FasL was up-regulated in the model group and DG group (5.76 ± 0.66 vs 0.42 ± 0.18; 26.62 ± 4.20 vs 10.81 ± 2.20; 17.11 ± 3.12 vs 6.02 ± 1.02, P < 0.01). Compared to the model group, the expression of M30 and Fas/FasL was remarkably decreased in the DG group (2.24 ± 0.48 vs 5.76 ± 0.66; 17.23 ± 3.20 vs 26.62 ± 4.20; 11.02 ± 2.12 vs 17.11 ± 3.12, P < 0.05).
CONCLUSION: Treatment with DG could reduce inflammatory injury in rats with experimental ulcerative colitis possibly by reducing the expression Fas/FasL and inhibiting apoptosis of cells in the colonic mucosa.
Collapse
|
83
|
Probiotic-induced apoptosis and its potential relevance to mucosal inflammation of gastrointestinal tract. Adv Med Sci 2012; 57:175-82. [PMID: 22968339 DOI: 10.2478/v10039-012-0025-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this short review we attempt to establish and/or strengthen connections between probiotics administration and apoptotic pathway in gastrointestinal tract. The disturbance of apoptosis is mainly deliberated in the framework of insufficient removal of immuno-effector cells that may cause autoimmunity. In the context of the inflammatory bowel disease (IBD) and necrotizing enterocolitis (NEC), the commensal bacteria and their products effect on gut and immune cell survival are illustrated. The multitude of mechanisms of probiotics to induce cell death is shortly summarized and some aspects of it are being discussed in greater detail. The mechanism of intestinal cell death induced by probiotic administration and its influence on the immune system and potential benefits of apoptosis induction during probiotic therapy is indicated.
Collapse
|
84
|
Goretsky T, Dirisina R, Sinh P, Mittal N, Managlia E, Williams DB, Posca D, Ryu H, Katzman RB, Barrett TA. p53 mediates TNF-induced epithelial cell apoptosis in IBD. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1306-15. [PMID: 22863952 DOI: 10.1016/j.ajpath.2012.06.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 06/07/2012] [Accepted: 06/27/2012] [Indexed: 12/12/2022]
Abstract
Chronic ulcerative colitis (CUC) is characterized by increased intestinal epithelial cell (IEC) apoptosis associated with elevated tumor necrosis factor (TNF), inducible nitric oxide synthase (iNOS), and p53. We previously showed that p53 is increased in crypt IECs in human colitis and is needed for IEC apoptosis in chronic dextran sulfate sodium-colitis. Herein, we examined the roles of TNF and iNOS in regulating p53-induced IEC apoptosis in CUC. The IEC TUNEL staining, caspases 3, 8, and 9, and p53 protein levels, induced by anti-CD3 monoclonal antibody (mAb) activation of T cells, were markedly reduced in TNF receptor 1 and 2 gene knockout mice. Induction of IEC apoptosis correlated with increased p53, which was attenuated in iNOS(-/-) mice. IEC p53 levels and apoptosis were reduced in IL-10(-/-) colitic mice treated with neutralizing TNF mAb and the iNOS inhibitor, aminoguanidine, further suggesting that TNF and iNOS are upstream of p53 during colitis-induced IEC apoptosis. IEC apoptosis and p53 levels were assessed in control versus untreated or anti-TNF-treated CUC patients with equivalent levels of inflammation. Data indicated that IEC apoptosis and p53 levels were clearly higher in untreated CUC but markedly reduced in patients treated with anti-TNF mAb. Therefore, TNF-induced iNOS activates a p53-dependent pathway of IEC apoptosis in CUC. The inhibition of IEC apoptosis may be an important mechanism for mucosal healing in anti-TNF-treated CUC patients.
Collapse
Affiliation(s)
- Tatiana Goretsky
- Division of Gastroenterology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Kim HJ, Lee EK, Park MH, Ha YM, Jung KJ, Kim MS, Kim MK, Yu BP, Chung HY. Ferulate Protects the Epithelial Barrier by Maintaining Tight Junction Protein Expression and Preventing Apoptosis in Tert
-Butyl Hydroperoxide-Induced Caco-2 Cells. Phytother Res 2012; 27:362-7. [DOI: 10.1002/ptr.4717] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Hyun Jung Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA); Pusan National University; Busan Korea
- College of Pharmacy; Pusan National University; Busan 609-735 Korea
| | - Eun Kyeong Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA); Pusan National University; Busan Korea
- College of Pharmacy; Pusan National University; Busan 609-735 Korea
- Research Center; Dongnam Institute of Radiological and Medical Sciences; Busan 619-953 Korea
| | - Min Hi Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA); Pusan National University; Busan Korea
- College of Pharmacy; Pusan National University; Busan 609-735 Korea
| | - Young Mi Ha
- Molecular Inflammation Research Center for Aging Intervention (MRCA); Pusan National University; Busan Korea
- College of Pharmacy; Pusan National University; Busan 609-735 Korea
| | - Kyung Jin Jung
- Biologics Center; Korea Institute of Toxicology; Daejeon 305-343 Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy; College of Pharmacy, Sunchon National University; Sunchon 540-742 Republic of Korea
| | - Mi Kyung Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA); Pusan National University; Busan Korea
- College of Pharmacy; Pusan National University; Busan 609-735 Korea
| | - Byung Pal Yu
- Department of Physiology; The University of Texas Health Science Center at San Antonio; San Antonio TX 78229-3900 USA
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA); Pusan National University; Busan Korea
- College of Pharmacy; Pusan National University; Busan 609-735 Korea
| |
Collapse
|
86
|
Zhao QJ, Yu YB, Zuo XL, Dong YY, Li YQ. Milk fat globule-epidermal growth factor 8 is decreased in intestinal epithelium of ulcerative colitis patients and thereby causes increased apoptosis and impaired wound healing. Mol Med 2012; 18:497-506. [PMID: 22204000 PMCID: PMC3356429 DOI: 10.2119/molmed.2011.00369] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/20/2011] [Indexed: 12/19/2022] Open
Abstract
Milk fat globule-epidermal growth factor 8 (MFG-E8) plays an important role in maintaining intestinal barrier homeostasis and accelerating intestinal restitution. However, studies of MFG-E8 expression in humans with ulcerative colitis are lacking. We examined MFG-E8 expression in colonic mucosal biopsies from ulcerative colitis patients and healthy controls (n = 26 each) by real-time quantitative polymerase chain reaction (PCR), Western blot analysis and immunohistochemistry. MFG-E8 mRNA and protein expression was lower in ulcerative colitis patients than in controls. MFG-E8 expression was inversely correlated with mucosal inflammatory activity and clinical disease activity in patients. MFG-E8 was present in human intestinal epithelial cells both in vivo and in vitro. Apoptosis induction was also detected in the intestinal epithelium of ulcerative colitis patients by terminal-deoxynucleoitidyl transferase mediated nick-end labeling assay. We used lentiviral vectors encoding human MFG-E8 targeting short hairpin RNA to obtain MFG-E8 knockdown intestinal epithelia cell clones. MFG-E8 knockdown could promote apoptosis in intestinal epithelial cell lines, accompanied by a decrease in level of the antiapoptotic protein B-cell lymphoma 2 (BCL-2) and induction of the proapoptotic protein BCL2-associated protein X (BAX). The addition of recombinant human MFG-E8 led to decreased BAX and cleaved caspase-3 levels and induction of BCL-2 level in intestinal epithelia cells. MFG-E8 knockdown also attenuated wound healing on scratch assay of intestinal epithelial cells. The mRNA level of intestinal trefoid factor 3, a pivotal factor in intestinal epithelial cell migration and restitution, was downregulated with MFG-E8 knockdown. In conclusion, we demonstrated that decreased colonic MFG-E8 expression in patients with ulcerative colitis may be associated with mucosal inflammatory activity and clinical disease activity through basal cell apoptosis and preventing tissue healing in the pathogenesis of ulcerative colitis.
Collapse
Affiliation(s)
- Qiu-jie Zhao
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan-bo Yu
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiu-li Zuo
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan-yan Dong
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan-qing Li
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
87
|
Li X, Akhtar S, Choudhry MA. Alteration in intestine tight junction protein phosphorylation and apoptosis is associated with increase in IL-18 levels following alcohol intoxication and burn injury. Biochim Biophys Acta Mol Basis Dis 2011; 1822:196-203. [PMID: 22001439 DOI: 10.1016/j.bbadis.2011.09.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/08/2011] [Accepted: 09/29/2011] [Indexed: 12/14/2022]
Abstract
Intestinal mucosal barrier is the first line of defense against bacteria and their products originating from the intestinal lumen. We have shown a role for IL-18 in impaired gut barrier function following acute alcohol (EtOH) intoxication combined with burn injury. To further delineate the mechanism, this study examined whether IL-18 alters intestine tight junction proteins or induces mucosal apoptosis under these conditions. To accomplish this, rats were gavaged with EtOH (3.2g/kg) prior to ~12.5% total body surface area burn or sham injury. One day after injury, EtOH combined with burn injury resulted in a significant decrease in total occludin protein and its phosphorylation in small intestine compared to either EtOH or burn injury alone. There was no change in claudin-1 protein content but its phosphorylation on tyrosine was decreased following EtOH and burn injury. This was accompanied with an increase in mucosal apoptosis (p<0.05). The treatment of rats with anti-IL-18 antibody at the time of burn injury prevented intestine apoptosis and normalized tight junction proteins following EtOH and burn injury. Altogether, these findings suggest that IL-18 modulates tight junction proteins and cause apoptosis leading to impaired intestinal mucosal integrity following EtOH intoxication combined with burn injury.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, 2160 South First Ave, Maywood, IL 60153, USA
| | | | | |
Collapse
|
88
|
Hilliard VC, Frey MR, Dempsey PJ, Peek RM, Polk DB. TNF-α converting enzyme-mediated ErbB4 transactivation by TNF promotes colonic epithelial cell survival. Am J Physiol Gastrointest Liver Physiol 2011; 301:G338-46. [PMID: 21617117 PMCID: PMC3154600 DOI: 10.1152/ajpgi.00057.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Disruption of intestinal epithelial homeostasis, including enhanced apoptosis, is a hallmark of inflammatory bowel disease (IBD). We have recently shown that tumor necrosis factor (TNF) increases the kinase activity of ErbB4, a member of the epidermal growth factor receptor family that is elevated in mucosa of IBD patients and that promotes colon epithelial cell survival. In this study, we tested the hypothesis that TNF transactivates ErbB4 through TNF-α converting enzyme (TACE)-mediated ligand release and that this transactivation is necessary to protect colonic epithelial cells from cytokine-induced apoptosis. Using neutralizing antibodies, we show that heparin-binding EGF-like growth factor (HB-EGF) is required for ErbB4 phosphorylation in response to TNF. Pharmacological or genetic inhibition of the metalloprotease TACE, which mediates HB-EGF release from cells, blocked TNF-induced ErbB4 activation. MEK, but not Src or p38, was also required for transactivation. TACE activity and ligand binding were required for ErbB4-mediated antiapoptotic signaling; whereas mouse colon epithelial cells expressing ErbB4 were resistant to TNF-induced apoptosis, TACE inhibition or blockade of ErbB4 ligand binding reversed the survival advantage. We conclude that TNF transactivates ErbB4 through TACE-dependent HB-EGF release, thus protecting colon epithelial cells from cytokine-induced apoptosis. These findings have important implications for understanding how ErbB4 protects the colon from apoptosis-induced tissue injury in inflammatory conditions such as IBD.
Collapse
Affiliation(s)
| | - Mark R. Frey
- Departments of 2Pediatrics and ,6Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California; and
| | - Peter J. Dempsey
- 3Department of Pediatrics and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Richard M. Peek
- 4Medicine, and ,5Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - D. Brent Polk
- Departments of 2Pediatrics and ,6Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California; and
| |
Collapse
|
89
|
Protective role of Akt2 in Salmonella enterica serovar typhimurium-induced gastroenterocolitis. Infect Immun 2011; 79:2554-66. [PMID: 21555401 DOI: 10.1128/iai.01235-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Salmonella effector protein SopB has previously been shown to induce activation of Akt and protect epithelial cells from apoptosis in vitro. To characterize the role of Akt2 in host defense against Salmonella enterica serovar Typhimurium infection, wild-type (WT) mice and mice lacking Akt2 (Akt2 knockout [KO] mice) were infected using a Salmonella acute gastroenteritis model. Infected Akt2 KO mice showed a more pronounced morbidity and mortality associated with higher bacterial loads in the intestines and elevated levels of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), and MCP-1, in the colons at 1 day postinfection compared to those shown in WT mice. Histopathological assessment and immunohistochemical analysis of cecal sections at 1 day postinfection revealed more severe inflammation and higher levels of neutrophil infiltration in the ceca of Akt2 KO mice. Flow cytometry analysis further confirmed an increase in the recruitment of Gr-1(+) CD11b(+) neutrophils and F4/80(+) CD11b(+) macrophages in the intestines of infected Akt2 KO mice. Additionally, enhanced levels of annexin V(+) and terminal transferase dUTP nick end labeling-positive (TUNEL(+)) apoptotic cells in the intestines of infected Akt2 KO mice were also observed, indicating that Akt2 plays an essential role in protection against apoptosis. Finally, the differences in bacterial loads and cecal inflammation in WT and Akt2 KO mice infected with WT Salmonella were abolished when these mice were infected with the sopB deletion mutant, indicating that SopB may play a role in protecting the mice from Salmonella infection through the activation of Akt2. These data demonstrate a definitive phenotypic abnormality in the innate response in mice lacking Akt2, underscoring the important protective role of Akt2 in Salmonella infection.
Collapse
|
90
|
Qiu W, Wu B, Wang X, Buchanan ME, Regueiro MD, Hartman DJ, Schoen RE, Yu J, Zhang L. PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice. J Clin Invest 2011; 121:1722-32. [PMID: 21490394 DOI: 10.1172/jci42917] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/26/2011] [Indexed: 12/24/2022] Open
Abstract
Intestinal epithelial cell (IEC) apoptosis contributes to the development of ulcerative colitis (UC), an inflammatory bowel disease (IBD) that affects the colon and rectum. Therapies that target the inflammatory cytokine TNF have been found to inhibit IEC apoptosis in patients with IBD, although the mechanism of IEC apoptosis remains unclear. We therefore investigated the role of p53-upregulated modulator of apoptosis (PUMA), a p53 target and proapoptotic BH3-only protein, in colitis and IEC apoptosis, using patient samples and mouse models of UC. In UC patient samples, PUMA expression was elevated in colitis tissues relative to that in uninvolved tissues, and the degree of elevation of PUMA expression correlated with the severity of colitis and the degree of apoptosis induction. In mice, PUMA was markedly induced in colonic epithelial cells following induction of colitis by either dextran sulfate sodium salt (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS). The induction of PUMA was p53-independent but required NF-κB. Absence of PUMA, but neither absence of p53 nor that of another BH3-only protein (Bid), relieved DSS- and TNBS-induced colitis and inhibited IEC apoptosis. Furthermore, treating mice with infliximab (Remicade), a clinically used TNF-specific antibody, suppressed DSS- and TNBS-induced PUMA expression and colitis. These results indicate that PUMA induction contributes to the pathogenesis of colitis by promoting IEC apoptosis and suggest that PUMA inhibition may be an effective strategy to promote mucosal healing in patients with UC.
Collapse
Affiliation(s)
- Wei Qiu
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Qiu W, Wu B, Wang X, Buchanan ME, Regueiro MD, Hartman DJ, Schoen RE, Yu J, Zhang L. PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice. J Clin Invest 2011. [PMID: 21490394 DOI: 10.1171/jci42917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intestinal epithelial cell (IEC) apoptosis contributes to the development of ulcerative colitis (UC), an inflammatory bowel disease (IBD) that affects the colon and rectum. Therapies that target the inflammatory cytokine TNF have been found to inhibit IEC apoptosis in patients with IBD, although the mechanism of IEC apoptosis remains unclear. We therefore investigated the role of p53-upregulated modulator of apoptosis (PUMA), a p53 target and proapoptotic BH3-only protein, in colitis and IEC apoptosis, using patient samples and mouse models of UC. In UC patient samples, PUMA expression was elevated in colitis tissues relative to that in uninvolved tissues, and the degree of elevation of PUMA expression correlated with the severity of colitis and the degree of apoptosis induction. In mice, PUMA was markedly induced in colonic epithelial cells following induction of colitis by either dextran sulfate sodium salt (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS). The induction of PUMA was p53-independent but required NF-κB. Absence of PUMA, but neither absence of p53 nor that of another BH3-only protein (Bid), relieved DSS- and TNBS-induced colitis and inhibited IEC apoptosis. Furthermore, treating mice with infliximab (Remicade), a clinically used TNF-specific antibody, suppressed DSS- and TNBS-induced PUMA expression and colitis. These results indicate that PUMA induction contributes to the pathogenesis of colitis by promoting IEC apoptosis and suggest that PUMA inhibition may be an effective strategy to promote mucosal healing in patients with UC.
Collapse
Affiliation(s)
- Wei Qiu
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Non-cirrhotic intrahepatic portal hypertension: associated gut diseases and prognostic factors. Dig Dis Sci 2011; 56:227-35. [PMID: 20499175 DOI: 10.1007/s10620-010-1278-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/30/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS Non-cirrhotic intrahepatic portal hypertension (NCIPH) is generally regarded to have a benign prognosis. We have studied a cohort followed-up at a tertiary referral center and postulate that gut-derived prothrombotic factors may contribute to the pathogenesis and prognosis of NCIPH. METHODS We retrospectively analyzed prognostic indicators in 34 NCIPH patients. We also searched for associated gut diseases. RESULTS Transplant-free survival in NCIPH patients from first presentation with NCIPH at 1, 5, and 10 years was 94% (SE: 4.2%), 84% (6.6%), and 69% (9.8%), respectively. Decompensated liver disease occurred in 53% of patients. Three (9%) patients had ulcerative colitis while five of 31 (16%) tested had celiac disease and on Kaplan-Meier analysis, celiac disease predicted reduced transplant-free survival (p=0.018). On multivariable Cox regression analysis, independent predictors of reduced transplant-free survival were older age at first presentation with NCIPH, hepatic encephalopathy, and portal vein thrombosis. Prevalence of elevated initial serum IgA anticardiolipin antibody (CLPA) was significantly higher in NCIPH (36% of patients tested), compared to Budd-Chiari syndrome (6%) (p=0.032, Fisher's exact test) and celiac disease without concomitant liver disease (0%) (p=0.007). CONCLUSIONS We have identified prognostic factors and report progression to liver failure in 53% of NCIPH patients followed-up at our center. Our data supports a role for intestinal disease in the pathogenesis of intrahepatic portal vein occlusion leading to NCIPH.
Collapse
|
93
|
Zhang R, Shi Y, Guan X. Regulatory role of the GH-SOCS2-IGF-1 axis in the pathogenesis of intestinal mucosal barrier dysfunction in ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2010; 18:2442-2447. [DOI: 10.11569/wcjd.v18.i23.2442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, nonspecific inflammatory bowel disease usually associated with recurrent attacks. Intestinal bacterial translocation induced by intestinal mucosal barrier dysfunction may mediate abnormal immune response and chronic intestinal inflammation and therefore play an important role in the development and progression of UC. The GH-SOCS2-IGF1 axis, consisting of growth hormone (GH), suppressors of cytokine signaling 2 (SOCS2), and insulin-like growth factor-1 (IGF-1), is involved in the injury and repair of intestinal mucosal barrier. The research on the abnormal regulation of the GH-SOCS2-IGF1 axis in the pathogenesis of intestinal mucosal barrier dysfunction in UC has attracted increasing attention. This paper will briefly summarize the respective role of GH, SOCS2, and IGF-1, and discuss the regulatory role of the GH-SOCS2-IGF1 axis in the pathogenesis of intestinal mucosal barrier dysfunction in UC.
Collapse
|
94
|
Hausmann M. How bacteria-induced apoptosis of intestinal epithelial cells contributes to mucosal inflammation. Int J Inflam 2010; 2010:574568. [PMID: 21188215 PMCID: PMC3003958 DOI: 10.4061/2010/574568] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/26/2010] [Indexed: 12/14/2022] Open
Abstract
The life cycle of an intestinal epithelial cell is terminated by apoptosis and/or cell shedding. Apoptotic deletion of epithelial cells from the intact intestinal mucosa is not accompanied by detectable inflammatory response or loss of barrier function. But increased permeability of the epithelial barrier and increased apoptotic rates of epithelial cells have been reported for patients suffering from inflammatory bowel disease. Microbiota can both induce or inhibit apoptosis of intestinal epithelial cells thus contribute to mucosal inflammation or support epithelial integrity respectively. Bacteria-mediated cytokine secretion and altered cell signalling are central to epithelial injury. Tumor necrosis factor (TNF) secreted after exposure to invasive bacteria induces both apoptosis and cell shedding. TNF is the major target gene of the transcription factor nuclear factor-kappa B with both pro- and anti-apoptotic effects. Autophagy promotes both cell survival and “autophagic” cell death. If autophagy is directed against microbes it is termed xenophagy. Inhibition of xenophagy has been shown to decrease cell survival. Endoplasmic reticulum (ER) stress causes misfolded proteins to accumulate in the ER lumen. It was suggested that ER stress and autophagy may interact within intestinal epithelial cells. Apoptosis in response to infection may be well proposed by the host to delete infected epithelial cells or could be a strategy of microbial pathogens to escape from exhausted cells to invade deeper mucosal layers for a prolonged bacterial colonization.
Collapse
Affiliation(s)
- Martin Hausmann
- Division of Gastroenterology and Hepatology, Clinic of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
95
|
Eren F, Akkiprik M, Atuğ O, Sönmez O, Tahan G, Ozdemir F, Hamzaoğlu HO, Celikel CA, Imeryüz N, Avşar E, Ozer A. R72P polymorphism of TP53 in ulcerative colitis patients is associated with the incidence of colectomy, use of steroids and the presence of a positive family history. Pathol Oncol Res 2010; 16:563-8. [PMID: 20309662 DOI: 10.1007/s12253-010-9255-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 02/24/2010] [Indexed: 12/14/2022]
Abstract
P53 tumor suppressor protein is one of the pivotal regulators for genome integrity, cell cycle and apoptosis. The most commonly and extensively studied single nucleotide polymorphism (SNP) of p53 is Arg>Pro substitution on codon 72 (R72P). Although we know that the SNP has unique functional effects on the protein, its clinical significance is not clearly identified yet. Aim of the study was to access the relationship between R72P genotype distribution and clinical variables in patients with ulcerative colitis (UC) and colorectal cancer (CRC). Genomic DNA samples were extracted from 95 UC, 50 CRC, and 219 healthy controls. R72P genotype analysis was carried out with polymerase chain reaction following by restriction enzyme digestion. We observed that Pro allele carriage is a strong risk factor for CRC (OR = 3.03; 95%CI = 1.91-2.40; p = 0.003), but only modest association with UC (OR = 1.61; 95%CI = 0.98-2.65; p = 0.059) (Pro/Pro and Pro/Arg genotypes vs. Arg/Arg genotype). We did not find any correlation between genotype distribution of the polymorphism and clinical parameters of CRC, but in UC, Pro/Pro genotype was significantly related to an inflammatory bowel disease family history (OR = 8.0; 95%CI = 1.68-38.08, p = 0.015), and Arg/Pro genotype was significantly associated with the history of disease-related colectomy (OR = 17.77; 95%CI = 0.98-323.34, p = 0.012) and steroid use (OR = 10.14; 95%CI = 2.63-39.12, p = 0.0002). Our data suggest that R72P variant seems to be associated with high risk for development of CRC but carries low risk for development of UC. R72P genotypes might be a useful predictive marker for surgical and medical treatment of UC.
Collapse
Affiliation(s)
- Fatih Eren
- School of Medicine, Department of Medical Biology, Marmara University, Tibbiye Cad, No 49, Haydarpasa, 34668 Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Becker SM, Cho KN, Guo X, Fendig K, Oosman MN, Whitehead R, Cohn SM, Houpt ER. Epithelial cell apoptosis facilitates Entamoeba histolytica infection in the gut. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1316-22. [PMID: 20093500 DOI: 10.2353/ajpath.2010.090740] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Entamoeba histolytica is the protozoan parasite that causes amebic colitis. The parasite triggers apoptosis on contact with host cells; however, the biological significance of this event during intestinal infection is unclear. We examined the role of apoptosis in a mouse model of intestinal amebiasis. Histopathology revealed that abundant epithelial cell apoptosis occurred in the vicinity of amoeba in histological specimens. Epithelial cell apoptosis occurred rapidly on co-culture with amoeba in vitro as measured by annexin positivity, DNA degradation, and mitochondrial dysfunction. Administration of the pan caspase inhibitor ZVAD decreased the rate and severity of amebic infection in CBA mice by all measures (cecal culture positivity, parasite enzyme-linked immunosorbent assay, and histological scores). Similarly, caspase 3 knockout mice on the resistant C57BL/6 background exhibited even lower cecal parasite antigen burden and culture positive rates than wild type mice. The permissive effect of apoptosis on infection could be tracked to the epithelium, in that transgenic mice that overexpressed Bcl-2 in epithelial cells were more resistant to infection as measured by cecal parasite enzyme-linked immunosorbent assay and histological scores. We concluded that epithelial cell apoptosis in the intestine facilitates amebic infection in this mouse model. The parasite's strategy for inducing apoptosis may point to key virulence factors, and therapeutic maneuvers to diminish epithelial apoptosis may be useful in amebic colitis.
Collapse
Affiliation(s)
- Stephen M Becker
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Hofmann C, Lippert E, Falk W, Schölmerich J, Rogler G, Obermeier F. Primary human colonic epithelial cells are transiently protected from anoikis by a Src-dependent mechanism. Biochem Biophys Res Commun 2009; 390:908-14. [PMID: 19852943 DOI: 10.1016/j.bbrc.2009.10.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/16/2009] [Indexed: 12/19/2022]
Abstract
Complete loss of cell anchorage triggers apoptosis in primary human colonic epithelial cells (CEC), a phenomenon known as anoikis. Besides the induction of pro-apoptotic events, activation of survival pathways was observed in detached intestinal epithelial cell lines, providing a transient apoptosis protection. However, nothing is known about molecular mechanisms protecting primary CEC from anoikis. In this study intact CEC crypts were isolated and kept in suspension, a condition which leads to the loss of cell-cell anchorage and induces anoikis. To reconstitute cell-cell contacts, cells were centrifuged to form cell aggregates. Induction of apoptosis was assessed by caspase-3 activity assay; activation of survival pathways was analyzed by Western blot. Immediately after loss of cell anchorage a rapid activation of survival proteins was observed before active caspase-3 could be detected. Src hyperactivation significantly contributed to transient protection from anoikis in CEC because its inhibition reversed the protecting effect of re-establishment of cell contacts. Basal levels of active Src in CEC from patients with inflammatory bowel disease were markedly reduced compared to control patients. These results demonstrate that loss of cell anchorage activates survival pathways in primary human CEC providing transient anoikis protection. Src is an important mediator of this mechanism and therefore constitutes a key regulatory molecule coordinating survival signals mediated by cell adhesion in primary human CEC.
Collapse
Affiliation(s)
- Claudia Hofmann
- Department of Internal Medicine I, Regensburg University Medical Center, 93042 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
98
|
Mennigen R, Nolte K, Rijcken E, Utech M, Loeffler B, Senninger N, Bruewer M. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol 2009; 296:G1140-9. [PMID: 19221015 DOI: 10.1152/ajpgi.90534.2008] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Changes in epithelial tight junction protein expression and apoptosis increase epithelial permeability in inflammatory bowel diseases. The effect of the probiotic mixture VSL#3 on the epithelial barrier was studied in dextran sodium sulfate (DSS)-induced colitis in mice. Acute colitis was induced in BALB/c mice (3.5% DSS for 7 days). Mice were treated with either 15 mg VSL#3 or placebo via gastric tube once daily during induction of colitis. Inflammation was assessed by clinical and histological scores. Colonic permeability to Evans blue was measured in vivo. Tight junction protein expression and epithelial apoptotic ratio were studied by immunofluorescence and Western blot. VSL#3 treatment reduced inflammation (histological colitis scores: healthy control 0.94 +/- 0.28, DSS + placebo 14.64 +/- 2.55, DSS + VSL#3 8.43 +/- 1.82; P = 0.011). A pronounced increase in epithelial permeability in acute colitis was completely prevented by VSL#3 therapy [healthy control 0.4 +/- 0.07 (extinction/g), DSS + placebo 5.75 +/- 1.67, DSS + VSL#3 0.26 +/- 0.08; P = 0.003]. In acute colitis, decreased expression and redistribution of the tight junction proteins occludin, zonula occludens-1, and claudin-1, -3, -4, and -5 were observed, whereas VSL#3 therapy prevented these changes. VSL#3 completely prevented the increase of epithelial apoptotic ratio in acute colitis [healthy control 1.58 +/- 0.01 (apoptotic cells/1,000 epithelial cells), DSS + placebo 13.33 +/- 1.29, DSS + VSL#3 1.72 +/- 0.1; P = 0.012]. Probiotic therapy protects the epithelial barrier in acute colitis by preventing 1) decreased tight junction protein expression and 2) increased apoptotic ratio.
Collapse
Affiliation(s)
- Rudolf Mennigen
- University Hospital Muenster, Department of General and Visceral Surgery, Muenster, Germany.
| | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Intestinal mucosal barrier, which mainly contains epithalial cells and mucus layer, keeps physiological function of immune cells in intestine. During the process of inflammatory bowel disease (IBD), mucosal integrity and barrier function are broken, which leads to translocation of luminal contents such as bacterial antigens, thus inducing expression of proinflammatory cytokines and triggering immune response. Meanwhile, the produced proinflammatory cytokines influence epithelial and mucosal barrier function by inducing apoptosis of intestinal epithelia, altering the expression and cellular distribution of tight junction proteins, and reducing the production of mucus.
Collapse
|
100
|
Wang Y, Srinivasan K, Siddiqui MR, George SP, Tomar A, Khurana S. A novel role for villin in intestinal epithelial cell survival and homeostasis. J Biol Chem 2008; 283:9454-64. [PMID: 18198174 DOI: 10.1074/jbc.m707962200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Apoptosis is a key regulator for the normal turnover of the intestinal mucosa, and abnormalities associated with this function have been linked to inflammatory bowel disease and colorectal cancer. Despite this, little is known about the mechanism(s) mediating intestinal epithelial cell apoptosis. Villin is an actin regulatory protein that is expressed in every cell of the intestinal epithelium as well as in exocrine glands associated with the gastrointestinal tract. In this study we demonstrate for the first time that villin is an epithelial cell-specific anti-apoptotic protein. Absence of villin predisposes mice to dextran sodium sulfate-induced colitis by promoting apoptosis. To better understand the cellular and molecular mechanisms of the anti-apoptotic function of villin, we overexpressed villin in the Madin-Darby canine kidney Tet-Off epithelial cell line to demonstrate that expression of villin protects cells from apoptosis by maintaining mitochondrial integrity thus inhibiting the activation of caspase-9 and caspase-3. Furthermore, we report that the anti-apoptotic response of villin depends on activation of the pro-survival proteins, phosphatidylinositol 3-kinase and phosphorylated Akt. The results of our studies shed new light on the previously unrecognized function of villin in the regulation of apoptosis in the gastrointestinal epithelium.
Collapse
Affiliation(s)
- Yaohong Wang
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|