51
|
Jeon KH, Lee E, Jun KY, Eom JE, Kwak SY, Na Y, Kwon Y. Neuroprotective effect of synthetic chalcone derivatives as competitive dual inhibitors against μ-calpain and cathepsin B through the downregulation of tau phosphorylation and insoluble Aβ peptide formation. Eur J Med Chem 2016; 121:433-444. [PMID: 27318120 DOI: 10.1016/j.ejmech.2016.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
A series of chalcone derivatives were synthesized and evaluated for their μ-calpain and cathepsin B inhibitory activities. Among the tested chalcone derivatives, two compounds, 7 and 11, showed potent inhibitory activities against μ-calpain and cathepsin B and were selected for further evaluation. Compounds 7 and 11 showed enzyme inhibitory activities at the cellular level and displayed neuroprotective effects against oxidative stress-induced apoptosis in SH-SY5Y cells, a human neuroblastoma cell line. Moreover, compounds 7 and 11 reduced p25 formation, tau phosphorylation and insoluble Aβ peptide formation. Enzyme kinetic experiments and docking studies revealed that compounds 7 and 11 competitively inhibited both μ-calpain and cathepsin B enzymes.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Eunyoung Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Ji-Eun Eom
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Soo Yeon Kwak
- College of Pharmacy, Cha University, 120 Haeryong-ro, Pochon-shi, Gyeongghi-do, 11160, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, Cha University, 120 Haeryong-ro, Pochon-shi, Gyeongghi-do, 11160, Republic of Korea.
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
52
|
Suparji NS, Chan G, Sapili H, Arshad NM, In LLA, Awang K, Hasima Nagoor N. Geranylated 4-Phenylcoumarins Exhibit Anticancer Effects against Human Prostate Cancer Cells through Caspase-Independent Mechanism. PLoS One 2016; 11:e0151472. [PMID: 26974436 PMCID: PMC4790937 DOI: 10.1371/journal.pone.0151472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 02/29/2016] [Indexed: 01/02/2023] Open
Abstract
Geranylated 4-phenylcoumarins, DMDP-1 & -2 isolated from Mesua elegans were investigated for anticancer potential against human prostate cancer cells. Treatment with DMDP-1 & -2 resulted in cell death in a time and dose dependent manner in an MTT assay on all cancer cell lines tested with the exception of lung adenocarcinoma cells. DMDP-1 showed highest cytotoxic efficacy in PC-3 cells while DMDP-2 was most potent in DU 145 cells. Flow cytometry indicated that both coumarins were successful to induce programmed cell death after 24 h treatment. Elucidation on the mode-of-action via protein arrays and western blotting demonstrated death induced without any significant expressions of caspases, Bcl-2 family proteins and cleaved PARP, thus suggesting the involvement of caspase-independent pathways. In identifying autophagy, analysis of GFP-LC3 showed increased punctate in PC-3 cells pre-treated with CQ and treated with DMDP-1. In these cells decreased expression of autophagosome protein, p62 and cathepsin B further confirmed autophagy. In contrary, the DU 145 cells pre-treated with CQ and treated with DMDP-2 has reduced GFP-LC3 punctate although the number of cells with obvious GFP-LC3 puncta was significantly increased in the inhibitor-treated cells. The increase level of p62 suggested leakage of cathepsin B into the cytosol to trigger potential downstream death mediators. This correlated with increased expression of cathepsin B and reduced expression after treatment with its inhibitor, CA074. Also auto-degradation of calpain-2 upon treatment with DMDP-1 &-2 and its inhibitor alone, calpeptin compared with the combination treatment, further confirmed involvement of calpain-2 in PC-3 and DU 145 cells. Treatment with DMDP-1 & -2 also showed up-regulation of total and phosphorylated p53 levels in a time dependent manner. Hence, DMDP-1 & -2 showed ability to activate multiple death pathways involving autophagy, lysosomal and endoplasmic reticulum death proteins which could potentially be manipulated to develop anti-cancer therapy in apoptosis resistant cells.
Collapse
Affiliation(s)
- Noor Shahirah Suparji
- Institute of Biological Science (Genetics & Molecular Biology), Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Gomathi Chan
- Centre for Natural Product Research and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Hani Sapili
- Institute of Biological Science (Genetics & Molecular Biology), Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Norhafiza M. Arshad
- Institute of Biological Science (Genetics & Molecular Biology), Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| | - Lionel L. A. In
- Institute of Biological Science (Genetics & Molecular Biology), Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Khalijah Awang
- Centre for Natural Product Research and Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hasima Nagoor
- Institute of Biological Science (Genetics & Molecular Biology), Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
53
|
Hoque A, Hossain MI, Ameen SS, Ang CS, Williamson N, Ng DCH, Chueh AC, Roulston C, Cheng HC. A beacon of hope in stroke therapy-Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies. Pharmacol Ther 2016; 160:159-79. [PMID: 26899498 DOI: 10.1016/j.pharmthera.2016.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excitotoxicity, a pathological process caused by over-stimulation of ionotropic glutamate receptors, is a major cause of neuronal loss in acute and chronic neurological conditions such as ischaemic stroke, Alzheimer's and Huntington's diseases. Effective neuroprotective drugs to reduce excitotoxic neuronal loss in patients suffering from these neurological conditions are urgently needed. One avenue to achieve this goal is to clearly define the intracellular events mediating the neurotoxic signals originating from the over-stimulated glutamate receptors in neurons. In this review, we first focus on the key cellular events directing neuronal death but not involved in normal physiological processes in the neurotoxic signalling pathways. These events, referred to as pathologically activated events, are potential targets for the development of neuroprotectant therapeutics. Inhibitors blocking some of the known pathologically activated cellular events have been proven to be effective in reducing stroke-induced brain damage in animal models. Notable examples are inhibitors suppressing the ion channel activity of neurotoxic glutamate receptors and those disrupting interactions of specific cellular proteins occurring only in neurons undergoing excitotoxic cell death. Among them, Tat-NR2B9c and memantine are clinically effective in reducing brain damage caused by some acute and chronic neurological conditions. Our second focus is evaluation of the suitability of the other inhibitors for use as neuroprotective therapeutics. We also discuss the experimental approaches suitable for bridging our knowledge gap in our current understanding of the excitotoxic signalling mechanism in neurons and discovery of new pathologically activated cellular events as potential targets for neuroprotection.
Collapse
Affiliation(s)
- Ashfaqul Hoque
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - M Iqbal Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - S Sadia Ameen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ching-Seng Ang
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Dominic C H Ng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Anderly C Chueh
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Carli Roulston
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
54
|
Yan M, Zhu W, Zheng X, Li Y, Tang L, Lu B, Chen W, Qiu P, Leng T, Lin S, Yan G, Yin W. Effect of glutamate on lysosomal membrane permeabilization in primary cultured cortical neurons. Mol Med Rep 2016; 13:2499-505. [PMID: 26821268 PMCID: PMC4768955 DOI: 10.3892/mmr.2016.4819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
Abstract
Glutamate is the principal neurotransmitter in the central nervous system. Glutamate-mediated excitotoxicity is the predominant cause of cerebral damage. Recent studies have shown that lysosomal membrane permeabilization (LMP) is involved in ischemia-associated neuronal death in non-human primates. This study was designed to investigate the effect of glutamate on lysosomal stability in primary cultured cortical neurons. Glutamate treatment for 30 min induced the permeabilization of lysosomal membranes as assessed by acridine orange redistribution and immunofluorescence of cathepsin B in the cytoplasm. Inhibition of glutamate excitotoxicity by the NMDA receptor antagonist MK-801 and the calcium chelator ethylene glycolbis (2-aminoethylether)-N, N, N′, N′-tetraacetic acid, rescued lysosomes from permeabilization. The role of calpain and reactive oxygen species (ROS) in inducing LMP was also investigated. Ca2+ overload following glutamate treatment induced the activation of calpain and the production of ROS, which are two major contributors to neuronal death. It has been reported that lysosomal-associated membrane protein 2 (LAMP2) and heat shock protein (HSP)70 are two calpain substrates that promote LMP in cancer cells; however, it was found that calpains were activated by glutamate, but only LAMP2 was subsequently degraded. Furthermore, LMP was not alleviated by treatment with the calpain inhibitors calpeptin and SJA6017, which blocked the cleavage of the calpain substrate α-fodrin. It was demonstrated that LMP was significantly alleviated by treatment with the antioxidant N-Acetyl-L-cysteine, indicating that LMP involvement in early glutamate excitotoxicity may be mediated partly by ROS rather than calpain activation. Overall, these data shed light on the role of ROS-mediated LMP in early glutamate excitotoxicity.
Collapse
Affiliation(s)
- Min Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoke Zheng
- Department of Pathology, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510089, P.R. China
| | - Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lipeng Tang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenli Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tiandong Leng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Suizhen Lin
- Guangzhou Cellprotek Pharmaceutical Co., Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
55
|
Xu Y, Wang J, Song X, Wei R, He F, Peng G, Luo B. Protective mechanisms of CA074-me (other than cathepsin-B inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats. Brain Res Bull 2016; 120:97-105. [PMID: 26562519 DOI: 10.1016/j.brainresbull.2015.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
Many studies have demonstrated the key role of lysosomes in ischemic cell death in the brain and have led to the "lysosomocentric" hypothesis. In this hypothesis, the release of cathepsin-B due to a change of lysosomal membrane permeabilization (LMP) or rupture is critical, and this can be prevented by its inhibitors CA074 and CA074-me. However, the role of CA074-me in neuronal death and its effect on the change of lysosomal membrane integrity after global cerebral ischemia/reperfusion (I/R) injury is not clear, so we investigated this here. Rat hippocampal CA1 neuronal death was evaluated after 20-min global cerebral I/R injury. CA074-me (1 μg, 10 μg) were given intracerebroventricularly 1h before ischemia or 1h post reperfusion. The changes of heat shock protein 70 (Hsp70), cathepsin-B, lysosomal-associated membrane protein 1 (LAMP-1), receptor-interacting protein 3 (RIP3), and the change of lysosomal pH were evaluated respectively. Hippocampal CA1 neuronal programmed necrosis induced by global cerebral I/R injury was prevented by CA074-me both pre-treatment and post-treatment. Diffuse cytoplasmic cathepsin-B and LAMP-1 immunostaining synchronized with the pyknotic nuclear changes 2 days post reperfusion, and a rise of lysosomal pH with the leakage of DND-153, a dye of lysosomes, after oxygen-glucose deprivation (OGD) was detected. Both of these changes demonstrated the rupture of lysosomal membrane and the leakage of cathepsin-B, and this was strongly inhibited by CA074-me pre-treatment. The overexpression and nuclear translocation of RIP3 and the reduction of NAD(+) level after I/R injury were also inhibited, while the upregulation of Hsp70 was strengthened by CA074-me pre-treatment. Delayed fulminant leakage of cathepsin-B due to lysosomal rupture is a critical harmful factor in neuronal programmed necrosis induced by 20-min global I/R injury. In addition to being an inhibitor of cathepsin-B, CA074-me may have an indirect neuroprotective effect by maintaining lysosomal membrane integrity and protecting against lysosomal rupture.
Collapse
Affiliation(s)
- Yang Xu
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Jingye Wang
- Department of Neurology, First Affiliated Hospital, Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Xinghui Song
- Core Facilities, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ruili Wei
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Guoping Peng
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China
| | - Benyan Luo
- Department of Neurology, Brain Medical Centre, First Affiliated Hospital, Zhejiang University School of Medicine, 89 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
56
|
The Critical Role of Proteolytic Relay through Cathepsins B and E in the Phenotypic Change of Microglia/Macrophage. J Neurosci 2015; 35:12488-501. [PMID: 26354916 DOI: 10.1523/jneurosci.1599-15.2015] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Proteinase cascades are part of the basic machinery of neuronal death pathways. Neuronal cathepsin B (CatB), a typical cysteine lysosomal protease, plays a critical role in neuronal death through lysosomal leakage or excessive autophagy. On the other hand, much attention has been paid to microglial CatB in neuronal death. We herein show the critical role of proteolytic relay through microglial CatB and CatE in the polarization of microglia/macrophages in the neurotoxic phenotype, leading to hypoxia/ischemia (HI)-induced hippocampal neuronal damage in neonatal mice. HI caused extensive brain injury in neonatal wild-type mice, but not in CatB(-/-) mice. Furthermore, HI-induced polarization of microglia/macrophages in the neurotoxic phenotype followed by the neuroprotective phenotype in wild-type mice. On the other hand, microglia/macrophages exhibited only the early and transient polarization in the neuroprotective phenotype in CatB(-/-) mice. CA-074Me, a specific CatB inhibitor, significantly inhibited the neuronal death of primary cultured hippocampal neurons induced by the conditioned medium from cultured microglia polarized in the neurotoxic phenotype. Furthermore, CA-074Me prevented the activation of nuclear factor-κB (NF-κB) in cultured microglia by inhibiting autophagic inhibitor of κBα degradation following exposure to oxygen-glucose deprivation. Rather surprisingly, CatE increased the CatB expression after HI by the liberation of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) from microglia through the proteasomal pathway. A significant increase in CatB and CatE levels was found exclusively in microglia/macrophages after HI. Thus, a proteolytic relay through the early CatE/TRAIL-dependent proteosomal and late CatB-dependent autophagic pathways for NF-κB activation may play a critical role in the polarization of microglia/macrophages in the neurotoxic phenotype. Significance statement: Proteinase cascades are part of the basic machinery of neuronal death pathways. Cathepsin B, a typical cysteine lysosomal protease, plays a critical role in neuronal death through lysosomal leakage or excessive autophagy in neurons. On the other hand, much attention has been also paid to the role of microglial cathepsin B in neuronal death. In this study, using in vivo and in vitro models of relevance to brain ischemia, we found a critical role of proteolytic relay through cathepsin B and cathepsin E in the neurotoxic polarization of microglia/macrophages, which is responsible for aggravation of hypoxia/ischemia-induced neuronal injury. These findings suggest orally active selective inhibitors of cathepsin B or cathepsin E as promising pharmacological agents for the treatment of ischemic brain injury.
Collapse
|
57
|
Gu WW, Lu SQ, Ni Y, Liu ZH, Zhou XY, Zhu YM, Luo Y, Li X, Li LS, Sun WZ, Zhang HL, Ao GZ. 2-(3',5'-Dimethoxybenzylidene) cyclopentanone, a novel synthetic small-molecule compound, provides neuroprotective effects against ischemic stroke. Neuroscience 2015; 316:26-40. [PMID: 26656221 DOI: 10.1016/j.neuroscience.2015.11.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/22/2015] [Accepted: 11/22/2015] [Indexed: 11/25/2022]
Abstract
2-(3',5'-Dimethoxybenzylidene) cyclopentanone (DMBC) is a novel small-molecule compound synthesized by our group. Here, we found that in rat models of permanent middle cerebral artery occlusion (pMCAO), intraperitoneal injection (ip) of DMBC at 1h after ischemia reduced infarct volume, improved neurological deficits and increased the protein levels of microtubule-associated protein 2 (MAP 2) and glial fibrillary acid protein (GFAP) in the ischemic cortex. Post-treatment of DMBC still produced neuroprotective effects even when administered at 6h after ischemia. In the oxygen-glucose deprivation (OGD)-induced astrocytes or HT22 cell injury, DMBC treatment decreased the OGD-induced lactate dehydrogenase (LDH) leakage and increased the GFAP levels in astrocytes. In addition, Annexin-V-Fluos staining analysis revealed that DMBC treatment attenuated both OGD-induced apoptosis and necrosis in astrocytes. Western blotting analysis showed DMBC treatment inhibited the ischemia or OGD-induced increases in active cathepsin B in the ischemic cortex or in astrocytes or HT22 cells. Immunofluorescence analysis demonstrated that DMBC treatment blocked the ischemia or OGD-induced release of cathepsin B from the lysosomes into the cytoplasm in the ischemic cortex or in astrocytes or HT22 cells. Taken together, our results indicate that DMBC can offer neuroprotective effects against cerebral ischemia with an extended therapeutic window and its mechanism might be associated with inhibition of the cathepsin B activation.
Collapse
Affiliation(s)
- W W Gu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - S Q Lu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Y Ni
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Z H Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou 510220, China
| | - X Y Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Y M Zhu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - Y Luo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - X Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - L S Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China
| | - W Z Sun
- The Second High School Attached to Beijing Normal University, Beijing 100091, China
| | - H L Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China.
| | - G Z Ao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou 215123, China.
| |
Collapse
|
58
|
Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 2015; 5:506-19. [PMID: 26713267 PMCID: PMC4675809 DOI: 10.1016/j.apsb.2015.08.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 01/17/2023] Open
Abstract
Cysteine proteases continue to provide validated targets for treatment of human diseases. In neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein modification and low selectivity are anathema to therapeutic safety and efficacy.
Collapse
Key Words
- AD, Alzheimer׳s disease
- ALS, amyotrophic lateral sclerosis
- APP, amyloid precursor protein
- APP/PS1, Aβ overexpressing mice APP (K670N/M671L) and PS1 (M146L) mutants
- Ala, alanine
- Alzheimer׳s disease
- AppLon, London familial amyloid precursor protein mutation, APP (V717I)
- AppSwe, Swedish amyloid precursor protein mutation, APP (K670N/M671L)
- Arg, arginine
- Aβ, amyloid β
- Aβ1-42, amyloid β, 42 amino acid protein
- BACE-1, β-amyloid cleaving enzyme
- BBB, blood–brain barrier
- CANP, calcium-activated neutral protease
- CNS, central nervous system
- CREB, cyclic adenosine monophosphate response element binding protein
- CaMKII, Ca2+/calmodulin-dependent protein kinases II
- Calpain
- Cathepsin
- Cdk5/p35, activator of cyclin-dependent kinase 5
- Cysteine protease
- DTT, dithioerythritol
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase 1/2
- Enzyme inhibitors
- GSH, glutathione
- Gln, glutamine
- Glu, glutamic acid
- Gly, glutamine
- Hsp70.1, heat shock protein 70.1
- Ile, isoleucine
- KO, knockout
- Leu, leucine
- Lys, lysine
- MAP-2, microtubule-associated protein 2
- MMP-9, matrix metalloproteinase 9
- Met, methionine
- NFT, neurofibrilliary tangles
- Neurodegeneration
- Nle, norleucine
- PD, Parkinson׳s disease
- PK, pharmacokinetic
- PKC, protein kinase C
- PTP1B, protein-tyrosine phosphatase 1B
- Phe, phenylalanine
- Pro, proline
- SP, senile plaques
- TBI, traumatic brain injury
- TNF, tumor necrosis factor
- Thr, threonine
- Tyr, tyrosine
- Val, valine
- WRX, Trp-Arg containing epoxysuccinate cysteine protease inhibitor
- WT, wildtype
- isoAsp, isoaspartate
- pGlu, pyroglutamate
- pyroGluAβ, pyroglutamate-amyloid β
Collapse
|
59
|
Cathepsin L acutely alters microvessel integrity within the neurovascular unit during focal cerebral ischemia. J Cereb Blood Flow Metab 2015. [PMID: 26198177 PMCID: PMC4635247 DOI: 10.1038/jcbfm.2015.170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During focal cerebral ischemia, the degradation of microvessel basal lamina matrix occurs acutely and is associated with edema formation and microhemorrhage. These events have been attributed to matrix metalloproteinases (MMPs). However, both known protease generation and ligand specificities suggest other participants. Using cerebral tissues from a non-human primate focal ischemia model and primary murine brain endothelial cells, astrocytes, and microglia in culture, the effects of active cathepsin L have been defined. Within 2 hours of ischemia onset cathepsin L, but not cathepsin B, activity appears in the ischemic core, around microvessels, within regions of neuron injury and cathepsin L expression. In in vitro studies, cathepsin L activity is generated during experimental ischemia in microglia, but not astrocytes or endothelial cells. In the acidic ischemic core, cathepsin L release is significantly increased with time. A novel ex vivo assay showed that cathepsin L released from microglia during ischemia degrades microvessel matrix, and interacts with MMP activity. Hence, the loss of microvessel matrix during ischemia is explained by microglial cathepsin L release in the acidic core during injury evolution. The roles of cathepsin L and its interactions with specific MMP activities during ischemia are relevant to strategies to reduce microvessel injury and hemorrhage.
Collapse
|
60
|
Hook G, Jacobsen JS, Grabstein K, Kindy M, Hook V. Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate. Front Neurol 2015; 6:178. [PMID: 26388830 PMCID: PMC4557097 DOI: 10.3389/fneur.2015.00178] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022] Open
Abstract
There is currently no therapeutic drug treatment for traumatic brain injury (TBI) despite decades of experimental clinical trials. This may be because the mechanistic pathways for improving TBI outcomes have yet to be identified and exploited. As such, there remains a need to seek out new molecular targets and their drug candidates to find new treatments for TBI. This review presents supporting evidence for cathepsin B, a cysteine protease, as a potentially important drug target for TBI. Cathepsin B expression is greatly up-regulated in TBI animal models, as well as in trauma patients. Importantly, knockout of the cathepsin B gene in TBI mice results in substantial improvements of TBI-caused deficits in behavior, pathology, and biomarkers, as well as improvements in related injury models. During the process of TBI-induced injury, cathepsin B likely escapes the lysosome, its normal subcellular location, into the cytoplasm or extracellular matrix (ECM) where the unleashed proteolytic power causes destruction via necrotic, apoptotic, autophagic, and activated glia-induced cell death, together with ECM breakdown and inflammation. Significantly, chemical inhibitors of cathepsin B are effective for improving deficits in TBI and related injuries including ischemia, cerebral bleeding, cerebral aneurysm, edema, pain, infection, rheumatoid arthritis, epilepsy, Huntington's disease, multiple sclerosis, and Alzheimer's disease. The inhibitor E64d is unique among cathepsin B inhibitors in being the only compound to have demonstrated oral efficacy in a TBI model and prior safe use in man and as such it is an excellent tool compound for preclinical testing and clinical compound development. These data support the conclusion that drug development of cathepsin B inhibitors for TBI treatment should be accelerated.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, Inc. , San Diego, CA , USA
| | | | - Kenneth Grabstein
- Department of Chemical Engineering, University of Washington , Seattle, WA , USA
| | - Mark Kindy
- Department of Neurosciences, Medical University of South Carolina , Charleston, SC , USA ; Ralph H. Johnson Veterans Administration Medical Center , Charleston, SC , USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, CA , USA ; Department of Neurosciences, Department of Pharmacology, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
61
|
Balmer J, Zulliger R, Roberti S, Enzmann V. Retinal Cell Death Caused by Sodium Iodate Involves Multiple Caspase-Dependent and Caspase-Independent Cell-Death Pathways. Int J Mol Sci 2015; 16:15086-103. [PMID: 26151844 PMCID: PMC4519888 DOI: 10.3390/ijms160715086] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 01/09/2023] Open
Abstract
Herein, we have investigated retinal cell-death pathways in response to the retina toxin sodium iodate (NaIO3) both in vivo and in vitro. C57/BL6 mice were treated with a single intravenous injection of NaIO3 (35 mg/kg). Morphological changes in the retina post NaIO3 injection in comparison to untreated controls were assessed using electron microscopy. Cell death was determined by TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining. The activation of caspases and calpain was measured using immunohistochemistry. Additionally, cytotoxicity and apoptosis in retinal pigment epithelial (RPE) cells, primary retinal cells, and the cone photoreceptor (PRC) cell line 661W were assessed in vitro after NaIO3 treatment using the ApoToxGlo™ assay. The 7-AAD/Annexin-V staining was performed and necrostatin (Nec-1) was administered to the NaIO3-treated cells to confirm the results. In vivo, degenerating RPE cells displayed a rounded shape and retracted microvilli, whereas PRCs featured apoptotic nuclei. Caspase and calpain activity was significantly upregulated in retinal sections and protein samples from NaIO3-treated animals. In vitro, NaIO3 induced necrosis in RPE cells and apoptosis in PRCs. Furthermore, Nec-1 significantly decreased NaIO3-induced RPE cell death, but had no rescue effect on treated PRCs. In summary, several different cell-death pathways are activated in retinal cells as a result of NaIO3.
Collapse
Affiliation(s)
- Jasmin Balmer
- Department of Ophthalmology, Inselspital, University of Bern, Bern 3010, Switzerland.
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Rahel Zulliger
- Department of Cell Biology, the University of Oklahoma Health Sciences Center, University of Oklahoma, Oklahoma City, OK 73104, USA.
| | - Stefano Roberti
- Department of Ophthalmology, Inselspital, University of Bern, Bern 3010, Switzerland.
| | - Volker Enzmann
- Department of Ophthalmology, Inselspital, University of Bern, Bern 3010, Switzerland.
- Department for Clinical Research, University of Bern, Bern 3010, Switzerland.
| |
Collapse
|
62
|
Urbizu A, Canet-Pons J, Munoz-Marmol AM, Aldecoa I, Lopez MT, Compta Y, Alvarez R, Ispierto L, Tolosa E, Ariza A, Beyer K. Cystatin C is differentially involved in multiple system atrophy phenotypes. Neuropathol Appl Neurobiol 2015; 41:507-19. [DOI: 10.1111/nan.12134] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/04/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Aintzane Urbizu
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Julia Canet-Pons
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Ana M. Munoz-Marmol
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Iban Aldecoa
- Pathology Department; Hospital Clínic Barcelona; Universitat de Barcelona; Barcelona Spain
| | - Maria T. Lopez
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Yaroslau Compta
- Unitat de Parkinson i Trastorns del Moviment; Servicio de Neurología; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED); Hospital Clínic/IDIBAPS; Universitat de Barcelona; Barcelona Spain
| | - Ramiro Alvarez
- Servicio de Neurología; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Lourdes Ispierto
- Servicio de Neurología; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| | - Eduardo Tolosa
- Unitat de Parkinson i Trastorns del Moviment; Servicio de Neurología; Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED); Hospital Clínic/IDIBAPS; Universitat de Barcelona; Barcelona Spain
| | - Aurelio Ariza
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
- Universidad Autónoma de Barcelona; Barcelona Spain
| | - Katrin Beyer
- Servicio de Anatomía Patológica; Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol; Hospital Universitario Germans Trias i Pujol; Barcelona Spain
| |
Collapse
|
63
|
Mrschtik M, Ryan KM. Lysosomal proteins in cell death and autophagy. FEBS J 2015; 282:1858-70. [PMID: 25735653 DOI: 10.1111/febs.13253] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/17/2015] [Accepted: 02/23/2015] [Indexed: 12/29/2022]
Abstract
Nearly 60 years ago, lysosomes were first described in the laboratory of Christian de Duve, a discovery that significantly contributed to him being awarded a share of the 1974 Nobel Prize in Physiology or Medicine for elucidating 'the structural and functional organization of the cell'. Initially thought of as a simple waste degradation facility of the cell, these organelles recently emerged as signalling centres with connections to major cellular processes. This review provides an overview of the many roles of lysosomal proteins in two of these processes: cell death and autophagy. We discuss both resident lysosomal proteins as well those that temporarily associate with lysosomes to influence autophagy and cell death pathways. Particular focus is given to studies in mammalian cells and in vivo systems.
Collapse
Affiliation(s)
- Michaela Mrschtik
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| |
Collapse
|
64
|
Fujikawa DG. The role of excitotoxic programmed necrosis in acute brain injury. Comput Struct Biotechnol J 2015; 13:212-21. [PMID: 25893083 PMCID: PMC4398818 DOI: 10.1016/j.csbj.2015.03.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 12/20/2022] Open
Abstract
Excitotoxicity involves the excessive release of glutamate from presynaptic nerve terminals and from reversal of astrocytic glutamate uptake, when there is excessive neuronal depolarization. N-methyl-d-aspartate (NMDA) receptors, a subtype of glutamate receptor, are activated in postsynaptic neurons, opening their receptor-operated cation channels to allow Ca2 + influx. The Ca2 + influx activates two enzymes, calpain I and neuronal nitric oxide synthase (nNOS). Calpain I activation produces mitochondrial release of cytochrome c (cyt c), truncated apoptosis-inducing factor (tAIF) and endonuclease G (endoG), the lysosomal release of cathepsins B and D and DNase II, and inactivation of the plasma membrane Na+–Ca2 + exchanger, which add to the buildup of intracellular Ca2 +. tAIF is involved in large-scale DNA cleavage and cyt c may be involved in chromatin condensation; endoG produces internucleosomal DNA cleavage. The nuclear actions of the other proteins have not been determined. nNOS forms nitric oxide (NO), which reacts with superoxide (O2−) to form peroxynitrite (ONOO−). These free radicals damage cellular membranes, intracellular proteins and DNA. DNA damage activates poly(ADP-ribose) polymerase-1 (PARP-1), which produces poly(ADP-ribose) (PAR) polymers that exit nuclei and translocate to mitochondrial membranes, also releasing AIF. Poly(ADP-ribose) glycohydrolase hydrolyzes PAR polymers into ADP-ribose molecules, which translocate to plasma membranes, activating melastatin-like transient receptor potential 2 (TRPM-2) channels, which open, allowing Ca2 + influx into neurons. NADPH oxidase (NOX1) transfers electrons across cellular membranes, producing O2−. The result of these processes is neuronal necrosis, which is a programmed cell death that is the basis of all acute neuronal injury in the adult brain.
Collapse
|
65
|
Fan K, Li D, Zhang Y, Han C, Liang J, Hou C, Xiao H, Ikenaka K, Ma J. The induction of neuronal death by up-regulated microglial cathepsin H in LPS-induced neuroinflammation. J Neuroinflammation 2015; 12:54. [PMID: 25889123 PMCID: PMC4379721 DOI: 10.1186/s12974-015-0268-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroinflammation is a hallmark that leads to selective neuronal loss and/or dysfunction in neurodegenerative disorders. Microglia-derived lysosomal cathepsins are increasingly recognized as important inflammatory mediators to trigger signaling pathways that aggravate neuroinflammation. However, cathepsin H (Cat H), a cysteine protease, has been far less studied in neuroinflammation, compared to cathepsins B, D, L, and S. The expression patterns and functional roles of Cat H in the brain in neuroinflammation remain unknown. METHODS C57BL/6J mice were intraperitoneally injected with either 0.9% saline or lipopolysaccharide (LPS, 5 mg/kg). Immunohistochemistry (IHC) and in situ hybridization (ISH) were used to analyze expression and localization of Cat H in the brain. Nitrite assay was used to examine microglial activation in vitro; ELISA was used to determine the release of Cat H and proinflammatory cytokines (TNF-α, IL-1β, IL-6, IFN-γ). Cat H activity was analyzed by cellular Cat H assay kit. Flow cytometry and in situ cell death detection were used to investigate neuronal death. Data were evaluated for statistical significance with one-way ANOVA and t test. RESULTS Cat H mRNA was only present in perivascular microglia and non-parenchymal sites under normal conditions. After LPS injection, Cat H mRNA expression in activated microglia in different brain regions was increased. Twenty-four hours after LPS injection, Cat H mRNA expression was maximal in SNr; 72 h later, it peaked in cerebral cortex and hippocampus then decreased and maintained at a low level. The expression of Cat H protein exhibited the similar alterations after LPS injection. In vitro, inflammatory stimulation (LPS, TNF-α, IL-1β, IL-6, and IFN-γ) increased the release and activity of Cat H in microglia. Conversely, addition of Cat H to microglia promoted the production and release of NO, IL-1β, and IFN-γ which could be prevented by neutralizing antibody. Further, addition of Cat H to Neuro2a cells induced neuronal death. CONCLUSIONS Taken together, these data indicate that the up-regulated microglial Cat H expression, release, and activity in the brain lead to neuronal death in neuroinflammation. The functional link of Cat H with microglial activation might contribute to the initiation and maintenance of microglia-driven chronic neuroinflammation.
Collapse
Affiliation(s)
- Kai Fan
- Department of Anatomy, Dalian Medical University, West Section No. 9, South Road, Lvshun, Dalian, 116044, , Liaoning, China.
| | - Daobo Li
- Clinical Medicine of Seven-year Education, Dalian Medical University, Dalian, 116044, , Liaoning, China.
| | - Yanli Zhang
- Department of Anatomy, Dalian Medical University, West Section No. 9, South Road, Lvshun, Dalian, 116044, , Liaoning, China.
| | - Chao Han
- Regenerative Medicine Center, the First Affiliated Hospital, Dalian Medical University, Dalian, 116011, , Liaoning, China.
| | - Junjie Liang
- Graduate School, Dalian Medical University, Dalian, 116044, , Liaoning, China.
| | - Changyi Hou
- Graduate School, Dalian Medical University, Dalian, 116044, , Liaoning, China.
| | - Hongliang Xiao
- Graduate School, Dalian Medical University, Dalian, 116044, , Liaoning, China.
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, 444-8787, , Aichi, Japan.
| | - Jianmei Ma
- Department of Anatomy, Dalian Medical University, West Section No. 9, South Road, Lvshun, Dalian, 116044, , Liaoning, China.
| |
Collapse
|
66
|
Hook G, Yu J, Toneff T, Kindy M, Hook V. Brain pyroglutamate amyloid-β is produced by cathepsin B and is reduced by the cysteine protease inhibitor E64d, representing a potential Alzheimer's disease therapeutic. J Alzheimers Dis 2015; 41:129-49. [PMID: 24595198 DOI: 10.3233/jad-131370] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyroglutamate amyloid-β peptides (pGlu-Aβ) are particularly pernicious forms of amyloid-β peptides (Aβ) present in Alzheimer's disease (AD) brains. pGlu-Aβ peptides are N-terminally truncated forms of full-length Aβ peptides (flAβ(1-40/42)) in which the N-terminal glutamate is cyclized to pyroglutamate to generate pGlu-Aβ(3-40/42). β-secretase cleavage of amyloid-β precursor protein (AβPP) produces flAβ(1-40/42), but it is not yet known whether the β-secretase BACE1 or the alternative β-secretase cathepsin B (CatB) participate in the production of pGlu-Aβ. Therefore, this study examined the effects of gene knockout of these proteases on brain pGlu-Aβ levels in transgenic AβPPLon mice, which express AβPP isoform 695 and have the wild-type (wt) β-secretase activity found in most AD patients. Knockout or overexpression of the CatB gene reduced or increased, respectively, pGlu-Aβ(3-40/42), flAβ(1-40/42), and pGlu-Aβ plaque load, but knockout of the BACE1 gene had no effect on those parameters in the transgenic mice. Treatment of AβPPLon mice with E64d, a cysteine protease inhibitor of CatB, also reduced brain pGlu-Aβ(3-42), flAβ(1-40/42), and pGlu-Aβ plaque load. Treatment of neuronal-like chromaffin cells with CA074Me, an inhibitor of CatB, resulted in reduced levels of pGlu-Aβ(3-40) released from the activity-dependent, regulated secretory pathway. Moreover, CatB knockout and E64d treatment has been previously shown to improve memory deficits in the AβPPLon mice. These data illustrate the role of CatB in producing pGlu-Aβ and flAβ that participate as key factors in the development of AD. The advantages of CatB inhibitors, especially E64d and its derivatives, as alternatives to BACE1 inhibitors in treating AD patients are discussed.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, La Jolla, CA, USA
| | - Jin Yu
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Neurosciences and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mark Kindy
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Neurosciences and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
67
|
Zenón F, Segarra AC, Gonzalez M, Meléndez LM. Cocaine potentiates cathepsin B secretion and neuronal apoptosis from HIV-infected macrophages. J Neuroimmune Pharmacol 2014; 9:703-15. [PMID: 25209871 PMCID: PMC4209444 DOI: 10.1007/s11481-014-9563-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/17/2014] [Indexed: 12/16/2022]
Abstract
Substance abuse is a risk factor for HIV infection and progression to AIDS. Recent evidence establishes that cocaine use promotes brain perivascular macrophage infiltration and microglia activation. The lysosomal protease cathepsin B is increased in monocytes from patients with HIV dementia and its secretion induces 10-15% of neurotoxicity. Here we asked if cocaine potentiates cathepsin B secretion from HIV-infected monocyte-derived macrophages (MDM) and its effect in neuronal apoptosis. Samples of plasma, CSF, and post-mortem brain tissue from HIV positive patients that used cocaine were tested for cathepsin B and its inhibitors to determine the in vivo relevance of these findings. MDM were inoculated with HIV-1ADA, exposed to cocaine, and the levels of secreted and bioactive cathepsin B and its inhibitors were measured at different time-points. Cathepsin B expression (p < 0.001) and activity (p < 0.05) increased in supernatants from HIV-infected cocaine treated MDM compared with HIV-infected cocaine negative controls. Increased levels of cystatin B expression was also found in supernatants from HIV-cocaine treated MDM (p < 0.05). A significant increase in 30% of apoptotic neurons was obtained that decreased to 5% with the specific cathepsin B inhibitor (CA-074) or with cathepsin B antibody. Cathepsin B was significantly increased in the plasma and post-mortem brain tissue of HIV/cocaine users over non-drug users. Our results demonstrated that cocaine potentiates cathepsin B secretion in HIV-infected MDM and increase neuronal apoptosis. These findings provide new evidence that cocaine synergize with HIV-1 infection in increasing cathepsin B secretion and neurotoxicity.
Collapse
Affiliation(s)
- Frances Zenón
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico
- NeuroAIDS Program, Medical Sciences Campus, San Juan PR
| | | | | | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico
- NeuroAIDS Program, Medical Sciences Campus, San Juan PR
| |
Collapse
|
68
|
TDP-43 toxicity proceeds via calcium dysregulation and necrosis in aging Caenorhabditis elegans motor neurons. J Neurosci 2014; 34:12093-103. [PMID: 25186754 DOI: 10.1523/jneurosci.2495-13.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with either sporadic or genetic origins characterized by the progressive degeneration of motor neurons. At the cellular level, ALS neurons show protein misfolding and aggregation phenotypes. Transactive response DNA-binding protein 43 (TDP-43) has recently been shown to be associated with ALS, but the early pathophysiological deficits causing impairment in motor function are unknown. Here we used Caenorhabditis elegans expressing mutant TDP-43(A315T) in motor neurons and explored the potential influences of calcium (Ca(2+)). Using chemical and genetic approaches to manipulate the release of endoplasmic reticulum (ER) Ca(2+)stores, we observed that the reduction of intracellular Ca(2+) ([Ca(2+)]i) rescued age-dependent paralysis and prevented the neurodegeneration of GABAergic motor neurons. Our data implicate elevated [Ca(2+)]i as a driver of TDP-43-mediated neuronal toxicity. Furthermore, we discovered that neuronal degeneration is independent of the executioner caspase CED-3, but instead requires the activity of the Ca(2+)-regulated calpain protease TRA-3, and the aspartyl protease ASP-4. Finally, chemically blocking protease activity protected against mutant TDP-43(A315T)-associated neuronal toxicity. This work both underscores the potential of the C. elegans system to identify key targets for therapeutic intervention and suggests that a focused effort to regulate ER Ca(2+) release and necrosis-like degeneration consequent to neuronal injury may be of clinical importance.
Collapse
|
69
|
Increased levels and activity of cathepsins B and D in kainate-induced toxicity. Neuroscience 2014; 284:360-373. [PMID: 25307300 DOI: 10.1016/j.neuroscience.2014.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/21/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022]
Abstract
Administration of kainic acid induces acute seizures that result in the loss of neurons, gliosis and reorganization of mossy fiber pathways in the hippocampus resembling those observed in human temporal lobe epilepsy. Although these structural changes have been well characterized, the mechanisms underlying the degeneration of neurons following administration of kainic acid remain unclear. Since the lysosomal enzymes, cathepsins B and D, are known to be involved in the loss of neurons and clearance of degenerative materials in a variety of experimental conditions, we evaluated their potential roles in kainic acid-treated rats. In parallel, we also measured the levels and expression of insulin-like growth factor-II/mannose 6-phosphate (IGF-II/M6P) receptors, which mediate the intracellular trafficking of these enzymes, in kainic acid-treated rats. Our results showed that systemic administration of kainic acid evoked severe loss of neurons along with hypertrophy of astrocytes and microglia in the hippocampus of the adult rat brain. The levels and activity of cathepsins B and D increased with time in the hippocampus of kainic acid-treated rats compared to the saline-injected control animals. The expression of both cathepsins B and D, as evident by immunolabeling studies, was also markedly increased in activated astrocytes and microglia of the kainic acid-treated rats. Additionally, cytosolic levels of the cathepsins were enhanced along with cytochrome c and to some extent Bax in the hippocampus in kainic acid-treated rats. These changes were accompanied by appearance of cleaved caspase-3-positive neurons in the hippocampus of kainic acid-treated animals. The levels of IGF-II/M6P receptors, on the other hand, were not significantly altered, but these receptors were found to be present in a subset of reactive astrocytes following administration of kainic acid. These results, taken together, suggest that enhanced levels/expression and activity of lysosomal enzymes may have a role in the loss of neurons and/or clearance of degenerative materials observed in kainic acid-treated rats.
Collapse
|
70
|
Zhu H, Yoshimoto T, Yamashima T. Heat shock protein 70.1 (Hsp70.1) affects neuronal cell fate by regulating lysosomal acid sphingomyelinase. J Biol Chem 2014; 289:27432-43. [PMID: 25074941 PMCID: PMC4183783 DOI: 10.1074/jbc.m114.560334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/18/2014] [Indexed: 12/17/2022] Open
Abstract
The inducible expression of heat shock protein 70.1 (Hsp70.1) plays cytoprotective roles in its molecular chaperone function. Binding of Hsp70 to an endolysosomal phospholipid, bis(monoacylglycero)phosphate (BMP), has been recently shown to stabilize lysosomal membranes by enhancing acid sphingomyelinase (ASM) activity in cancer cells. Using the monkey experimental paradigm, we have reported that calpain-mediated cleavage of oxidized Hsp70.1 causes neurodegeneration in the hippocampal cornu ammonis 1 (CA1), whereas expression of Hsp70.1 in the motor cortex without calpain activation contributes to neuroprotection. However, the molecular mechanisms of the lysosomal destabilization/stabilization determining neuronal cell fate have not been elucidated. To elucidate whether regulation of lysosomal ASM could affect the neuronal fate, we analyzed Hsp70.1-BMP binding and ASM activity by comparing the motor cortex and the CA1. We show that Hsp70.1 being localized at the lysosomal membrane, lysosomal lipid BMP levels, and the lipid binding domain of Hsp70.1 are crucial for Hsp70.1-BMP binding. In the postischemic motor cortex, Hsp70.1 being localized at the lysosomal membrane could bind to BMP without calpain activation and decreased BMP levels, resulting in increasing ASM activity and lysosomal stability. However, in the postischemic CA1, calpain activation and a concomitant decrease in the lysosomal membrane localization of Hsp70.1 and BMP levels may diminish Hsp70.1-BMP binding, resulting in decreased ASM activity and lysosomal rupture with leakage of cathepsin B into the cytosol. A TUNEL assay revealed the differential neuronal vulnerability between the CA1 and the motor cortex. These results suggest that regulation of ASM activation in vivo by Hsp70.1-BMP affects lysosomal stability and neuronal survival or death after ischemia/reperfusion.
Collapse
Affiliation(s)
- Hong Zhu
- From the Departments of Restorative Neurosurgery, Molecular Pharmacology, and
| | | | - Tetsumori Yamashima
- From the Departments of Restorative Neurosurgery, Psychiatry and Neurobiology, Kanazawa University Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa, Japan
| |
Collapse
|
71
|
Abstract
On average, every four minutes an individual dies from a stroke, accounting for 1 out of every 18 deaths in the United States. Approximately 795,000 Americans have a new or recurrent stroke each year, with just over 600,000 of these being first attack [1]. There have been multiple animal models of stroke demonstrating that novel therapeutics can help improve the clinical outcome. However, these results have failed to show the same outcomes when tested in human clinical trials. This review will discuss the current in vivo animal models of stroke, advantages and limitations, and the rationale for employing these animal models to satisfy translational gating items for examination of neuroprotective, as well as neurorestorative strategies in stroke patients. An emphasis in the present discussion of therapeutics development is given to stem cell therapy for stroke.
Collapse
|
72
|
Zhang SQ, Wang W, Ma XL, Xia YY, Liu AJ. Anticoagulation therapy is harmful to large-sized cerebellar infarction. CNS Neurosci Ther 2014; 20:867-73. [PMID: 24954500 DOI: 10.1111/cns.12299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/24/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022] Open
Abstract
AIM Anticoagulants are commonly used to treat ischemic stroke. Its impact on cerebellar infarction has not been fully understood. METHODS In the clinical study, we reviewed a consecutive series of patients with large-sized cerebellar infarction (diameter > 3 cm, n = 30) treated with or without anticoagulation. In animal study, cerebellar infarction operation was performed in 12 Cynomolgus monkeys. Then the animals were administrated with low molecular weight heparin (LMWH) or vehicle for 14 days. RESULTS Six patients died during the following treatment. All the subjects that died received anticoagulation therapy, while nobody in the survival group received such a therapy. Compared with sham-operated animals, all monkeys with cerebellar infarction have obvious neurological deficits. The number and size of the Purkinje cells in the cerebellar area were also reduced. Two animals in the LMWH group (33%) died, while all animals in the vehicle control group survived. Compared with the vehicle group, the neurological score in the LMWH group was significantly increased (P < 0.05). The water content in the cerebella was also significantly higher (P < 0.05). Edema, hemorrhage, and subarachnoid hemorrhage occurred in the cerebella as well as brainstem of all the LMWH treated animals. CONCLUSIONS These results indicated the harmful effects of anticoagulation therapy on large-sized cerebellar infarction.
Collapse
Affiliation(s)
- She-Qing Zhang
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | |
Collapse
|
73
|
Koriyama Y, Sugitani K, Ogai K, Kato S. Heat shock protein 70 induction by valproic acid delays photoreceptor cell death by N-methyl-N-nitrosourea in mice. J Neurochem 2014; 130:707-19. [PMID: 24773621 DOI: 10.1111/jnc.12750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/18/2014] [Accepted: 04/28/2014] [Indexed: 12/28/2022]
Abstract
Retinal degenerative diseases (RDs) are a group of inherited diseases characterized by the loss of photoreceptor cells. Selective photoreceptor loss can be induced in mice by an intraperitoneal injection of N-methyl-N-nitrosourea (MNU) and, because of its selectivity, this model is widely used to study the mechanism of RDs. Although it is known that calcium-calpain activation and lipid peroxidation are involved in the initiation of cell death, the precise mechanisms of this process remain unknown. Heat shock protein 70 (HSP70) has been shown to function as a chaperone molecule to protect cells against environmental and physiological stresses. In this study, we investigated the role of HSP70 on photoreceptor cell death in mice. HSP70 induction by valproic acid, a histone deacetylase inhibitor, attenuated the photoreceptor cell death by MNU through inhibition of apoptotic caspase signals. Furthermore, HSP70 itself was rapidly and calpain-dependently cleaved after MNU treatment. Therefore, HSP70 induction by valproic acid was dually effective against MNU-induced photoreceptor cell loss as a result of its anti-apoptotic actions and its ability to prevent HSP70 degradation. These findings might help lead us to a better understanding of the pathogenic mechanism of RDs. Retinal degenerative diseases are characterized by the loss of photoreceptor cells. We proposed the following cascade for N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell death: MNU gives rise to cleavage of heat shock protein 70 (HSP70); HSP70 induction by valproic acid (VPA) is dually effective against MNU-induced photoreceptor cell loss because of its anti-apoptotic actions and its ability to prevent HSP70 degradation. We hope that the present study heralds a new era in developing therapeutic tools against retinal degenerative diseases.
Collapse
Affiliation(s)
- Yoshiki Koriyama
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan; Graduate School and Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | | | | | | |
Collapse
|
74
|
Ingemann L, Kirkegaard T. Lysosomal storage diseases and the heat shock response: convergences and therapeutic opportunities. J Lipid Res 2014; 55:2198-210. [PMID: 24837749 DOI: 10.1194/jlr.r048090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysosomes play a vital role in the maintenance of cellular homeostasis through the recycling of cell constituents, a key metabolic function which is highly dependent on the correct function of the lysosomal hydrolases and membrane proteins, as well as correct membrane lipid stoichiometry and composition. The critical role of lysosomal functionality is evident from the severity of the diseases in which the primary lesion is a genetically defined loss-of-function of lysosomal hydrolases or membrane proteins. This group of diseases, known as lysosomal storage diseases (LSDs), number more than 50 and are associated with severe neurodegeneration, systemic disease, and early death, with only a handful of the diseases having a therapeutic option. Another key homeostatic system is the metabolic stress response or heat shock response (HSR), which is induced in response to a number of physiological and pathological stresses, such as protein misfolding and aggregation, endoplasmic reticulum stress, oxidative stress, nutrient deprivation, elevated temperature, viral infections, and various acute traumas. Importantly, the HSR and its cardinal members of the heat shock protein 70 family has been shown to protect against a number of degenerative diseases, including severe diseases of the nervous system. The cytoprotective actions of the HSR also include processes involving the lysosomal system, such as cell death, autophagy, and protection against lysosomal membrane permeabilization, and have shown promise in a number of LSDs. This review seeks to describe the emerging understanding of the interplay between these two essential metabolic systems, the lysosomes and the HSR, with a particular focus on their potential as a therapeutic target for LSDs.
Collapse
|
75
|
Cystatin C has a dual role in post-traumatic brain injury recovery. Int J Mol Sci 2014; 15:5807-20. [PMID: 24714089 PMCID: PMC4013597 DOI: 10.3390/ijms15045807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/13/2014] [Accepted: 03/25/2014] [Indexed: 11/17/2022] Open
Abstract
Cathepsin B is one of the major lysosomal cysteine proteases involved in neuronal protein catabolism. This cathepsin is released after traumatic injury and increases neuronal death; however, release of cystatin C, a cathepsin inhibitor, appears to be a self-protective brain response. Here we describe the effect of cystatin C intracerebroventricular administration in rats prior to inducing a traumatic brain injury. We observed that cystatin C injection caused a dual response in post-traumatic brain injury recovery: higher doses (350 fmoles) increased bleeding and mortality, whereas lower doses (3.5 to 35 fmoles) decreased bleeding, neuronal damage and mortality. We also analyzed the expression of cathepsin B and cystatin C in the brains of control rats and of rats after a traumatic brain injury. Cathepsin B was detected in the brain stem, cerebellum, hippocampus and cerebral cortex of control rats. Cystatin C was localized to the choroid plexus, brain stem and cerebellum of control rats. Twenty-four hours after traumatic brain injury, we observed changes in both the expression and localization of both proteins in the cerebral cortex, hippocampus and brain stem. An early increase and intralysosomal expression of cystatin C after brain injury was associated with reduced neuronal damage.
Collapse
|
76
|
Oikawa S, Kobayashi H, Kitamura Y, Zhu H, Obata K, Minabe Y, Dazortsava M, Ohashi K, Tada-Oikawa S, Takahashi H, Yata K, Murata M, Yamashima T. Proteomic analysis of carbonylated proteins in the monkey substantia nigra after ischemia-reperfusion. Free Radic Res 2014; 48:694-705. [DOI: 10.3109/10715762.2014.901509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Yuki Kitamura
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hong Zhu
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Kumi Obata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Yoshio Minabe
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Maryia Dazortsava
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| | - Kyoko Ohashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Saeko Tada-Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata,
Niigata, Japan
| | - Kenichiro Yata
- Department of Neurology, Mie University Graduate School of Medicine,
Mie, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine,
Mie, Japan
| | - Tetsumori Yamashima
- Departments of Restorative Neurosurgery and Psychiatry, Kanazawa University Graduate School of Medical Science,
Kanazawa, Japan
| |
Collapse
|
77
|
Xu M, Yang L, Rong JG, Ni Y, Gu WW, Luo Y, Ishidoh K, Katunuma N, Li ZS, Zhang HL. Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway. Glia 2014; 62:855-80. [PMID: 24616078 DOI: 10.1002/glia.22645] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 11/08/2022]
Abstract
The roles of cathepsins in the ischemic astrocytic injury remain unclear. Here, we test the hypothesis that activation of cathepsin B and L contributes to the ischemic astrocyte injury via the tBid-mitochondrial apoptotic signaling pathways. In the rat models of pMCAO, CA-074Me or Clik148, a selective inhibitor of cathepsin B or cathepsin L, reduced the infarct volume, improved the neurological deficits and increased the MAP2 and GFAP levels. In OGD-induced astrocyte injury, CA-074Me or Clik148 decreased the LDH leakage and increased the GFAP levels. In the ischemic cortex or OGD-induced astrocytes injury, Clik148 or CA-074Me reversed pMCAO or OGD-induced increase in active cathepsin L or cathepsin B at 3 h or 6 h, increase in tBid, reduction in mitochondrial cytochrome-c (Cyt-c) and increase in cytoplastic Cyt-c and active caspase-3 at 12-24 h of the late stage of pMCAO or OGD. CA-074Me or Clik148 also reduced cytosolic and mitochondrial tBid, increased mitochondrial Cyt-c and decreased cytoplastic Cyt-c and active caspase-3 at 6 h of the early stage of Bid activation. CA-074Me or Clik148 blocked the pMCAO-induced release of cathepsin B or L from the lysosomes into the cytoplasm and activation of caspase-3 in ischemic astrocytes at 12 h after ischemia. Concurrent inhibition of cathepsin B and cathepsin L provided better protection on the OGD-induced astrocytic apoptosis than obtained with separate use of each inhibitor. These results suggest that inhibition of the cysteine cathepsin B and cathepsin L activation in ischemic astrocytes contributes to neuroprotection via blocking the tBid-mitochondrial apoptotic signaling pathway.
Collapse
Affiliation(s)
- Min Xu
- Department of Pharmacology and Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Rivera LE, Colon K, Cantres-Rosario YM, Zenon FM, Melendez LM. Macrophage derived cystatin B/cathepsin B in HIV replication and neuropathogenesis. Curr HIV Res 2014; 12:111-20. [PMID: 24862331 PMCID: PMC4122617 DOI: 10.2174/1570162x12666140526120249] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 11/22/2022]
Abstract
Mononuclear phagocytes including monocytes and macrophages, are important defense components of innate immunity, but can be detrimental in HIV-1 infection by serving as the principal reservoirs of virus in brain and triggering a strong immune response. These viral reservoirs represent a challenge to HIV-1 eradication since they continue producing virus in tissue despite antiretroviral therapy. HIV-1 associated neurocognitive disorders (HAND) involve alterations to the blood-brain barrier and migration of activated HIV-1 infected monocytes to the brain with subsequent induced immune activation response. Our group recently showed that HIV replication in monocyte-derived macrophages is associated with increased cystatin B. This cysteine protease inhibitor also inhibits the interferon-induced antiviral response by decreasing levels of tyrosine phosphorylated STAT-1. These recent discoveries reveal novel mechanisms of HIV persistence that could be targeted by new therapeutic approaches to eliminate HIV in macrophage reservoirs. However, cystatin B has been also associated with neuroprotection. Cystatin B is an inhibitor of the cysteine protease cathepsin B, a potent neurotoxin. During HIV-1 infection cystatin B and cathepsin B are upregulated in macrophages. Reduction in cystatin/cathepsin interactions in infected macrophages leads to increased cathepsin B secretion and activity which contributes to neuronal apoptosis. Increased intracellular expression of both proteins was recently found in monocytes from Hispanic women with HAND. These findings provide new evidence for the role of cathepsin /cystatin system in the neuropathogenesis induced by HIV-infected macrophages. We summarize recent research on cystatin B and one of its substrates, cathepsin B, in HIV replication in macrophages and neuropathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Loyda M Melendez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, 00935, Puerto Rico.
| |
Collapse
|
79
|
Lipton P. Lysosomal membrane permeabilization as a key player in brain ischemic cell death: a "lysosomocentric" hypothesis for ischemic brain damage. Transl Stroke Res 2013; 4:672-84. [PMID: 24323421 DOI: 10.1007/s12975-013-0301-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 12/13/2022]
Abstract
This is a speculative review of the role of the lysosome in ischemic cell death in the mammalian brain. In particular, it focuses on the role of the permeabilization of the lysosomal membrane to proteins (LMP) as a major mechanism of cell death in mild, but lethal, ischemic insults. The first section of the review outlines the evidence that this is the case, using the relatively few extant studies of mammalian brain. In the second section of the review, the mechanism by which an ischemic insult might lead to LMP is discussed. A metabolic sequence including NMDA receptor activation, activation of phospholipase A2 and production of free radicals, and also the activation of calpain are shown to be critical. The remainder of the section speculates on the actual agent(s) which may be causing the lysosomal membrane change, based on extensive literature references. There is currently no knowledge of the actual mechanism. The third section considers potential targets of the released lysosomal proteases and other proteins that might mediate the lethal effects of LMP, focusing largely on the mitochondria as the target. Again, this is speculative as the targets are not known. Finally, the fourth section addresses the level of importance that LMP has in the process of ischemic cell death and concludes that it may well play the major role during mild but lethal ischemic insults. This novel, so-called "lysosomocentric," hypothesis is briefly critiqued. The therapeutic potential of this conclusion is then discussed.
Collapse
Affiliation(s)
- Peter Lipton
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA,
| |
Collapse
|
80
|
Villalpando Rodriguez GE, Torriglia A. Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2244-53. [DOI: 10.1016/j.bbamcr.2013.05.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 12/17/2022]
|
81
|
Fann DYW, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 2013; 12:941-66. [PMID: 24103368 DOI: 10.1016/j.arr.2013.09.004] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/20/2022]
Abstract
Inflammation is an innate immune response to infection or tissue damage that is designed to limit harm to the host, but contributes significantly to ischemic brain injury following stroke. The inflammatory response is initiated by the detection of acute damage via extracellular and intracellular pattern recognition receptors, which respond to conserved microbial structures, termed pathogen-associated molecular patterns or host-derived danger signals termed damage-associated molecular patterns. Multi-protein complexes known as inflammasomes (e.g. containing NLRP1, NLRP2, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4, AIM2 and/or Pyrin), then process these signals to trigger an effector response. Briefly, signaling through NLRP1 and NLRP3 inflammasomes produces cleaved caspase-1, which cleaves both pro-IL-1β and pro-IL-18 into their biologically active mature pro-inflammatory cytokines that are released into the extracellular environment. This review will describe the molecular structure, cellular signaling pathways and current evidence for inflammasome activation following cerebral ischemia, and the potential for future treatments for stroke that may involve targeting inflammasome formation or its products in the ischemic brain.
Collapse
|
82
|
Abstract
Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream mechanisms that lead to lysosomal membrane permeabilization.
Collapse
Affiliation(s)
- Sonja Aits
- Danish Cancer Society Research Center, Cell Death and Metabolism, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
83
|
Yamashima T. Reconsider Alzheimer's disease by the 'calpain-cathepsin hypothesis'--a perspective review. Prog Neurobiol 2013; 105:1-23. [PMID: 23499711 DOI: 10.1016/j.pneurobio.2013.02.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/28/2013] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is characterized by slowly progressive neuronal death, but its molecular cascade remains elusive for over 100 years. Since accumulation of autophagic vacuoles (also called granulo-vacuolar degenerations) represents one of the pathologic hallmarks of degenerating neurons in AD, a causative connection between autophagy failure and neuronal death should be present. The aim of this perspective review is at considering such underlying mechanism of AD that age-dependent oxidative stresses may affect the autophagic-lysosomal system via carbonylation and cleavage of heat-shock protein 70.1 (Hsp70.1). AD brains exhibit gradual but continual ischemic insults that cause perturbed Ca(2+) homeostasis, calpain activation, amyloid β deposition, and oxidative stresses. Membrane lipids such as linoleic and arachidonic acids are vulnerable to the cumulative oxidative stresses, generating a toxic peroxidation product 'hydroxynonenal' that can carbonylate Hsp70.1. Recent data advocate for dual roles of Hsp70.1 as a molecular chaperone for damaged proteins and a guardian of lysosomal integrity. Accordingly, impairments of lysosomal autophagy and stabilization may be driven by the calpain-mediated cleavage of carbonylated Hsp70.1, and this causes lysosomal permeabilization and/or rupture with the resultant release of the cell degradation enzyme, cathepsins (calpain-cathepsin hypothesis). Here, the author discusses three topics; (1) how age-related decrease in lysosomal and autophagic activities has a causal connection to programmed neuronal necrosis in sporadic AD, (2) how genetic factors such as apolipoprotein E and presenilin 1 can facilitate lysosomal destabilization in the sequential molecular events, and (3) whether a single cascade can simultaneously account for implications of all players previously reported. In conclusion, Alzheimer neuronal death conceivably occurs by the similar 'calpain-hydroxynonenal-Hsp70.1-cathepsin cascade' with ischemic neuronal death. Blockade of calpain and/or extra-lysosomal cathepsins as well as scavenging of hydroxynonenal would become effective AD therapeutic approaches.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
84
|
Cathepsin B and cystatin B in HIV-seropositive women are associated with infection and HIV-1-associated neurocognitive disorders. AIDS 2013; 27:347-56. [PMID: 23291538 DOI: 10.1097/qad.0b013e32835b3e47] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE HIV-1-associated neurocognitive disorders (HAND) is triggered by immune activation of brain cells and remain prevalent during progressive viral infection despite antiretroviral therapy. Cathepsins and cystatins are lysosomal proteins secreted by macrophages and microglia, and may play important roles in neuroregulatory responses. Our laboratory has shown increased secretion and neurotoxicity of cathepsin B from in-vitro HIV-infected monocyte-derived macrophages, and increased expression in postmortem brain tissue with HIV encephalitis and HAND. We hypothesized that cystatin B and cathepsin B could represent potential biomarkers for HAND. METHODS Monocytes, plasma, and cerebrospinal fluid (CSF) from retrospective samples from 63 HIV-seropositive Hispanic women were selected for this study. These were stratified as 27 normal, 14 asymptomatic, and 22 HIV dementia, and as 14 progressors and 17 nonprogressors. Samples were evaluated for cystatins B and C and cathepsin B expression and activity. RESULTS Increased cathepsin B and cystatins B and C were found in plasma of HIV-seropositive women. Higher intracellular expression of cathepsin B and cystatin B were found in monocytes from women with HIV-associated dementia (P < 0.05). Significant increase in cystatin B concentration in CSF was found in women with dementia compared with HIV-seropositive asymptomatic women. CONCLUSION These results demonstrate that dysregulation of cystatin B-cathepsin B system is operative in HIV-associated neurocognitive impairment and suggests that intracellular expression of cystatin B and cathepsin B in monocytes could be potential candidate biomarkers for HIV dementia, whereas increased cathepsin B and cystatins B and C in plasma are potential candidate markers of chronic HIV-1 activation.
Collapse
|
85
|
Amritraj A, Wang Y, Revett TJ, Vergote D, Westaway D, Kar S. Role of cathepsin D in U18666A-induced neuronal cell death: potential implication in Niemann-Pick type C disease pathogenesis. J Biol Chem 2012; 288:3136-52. [PMID: 23250759 DOI: 10.1074/jbc.m112.412460] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cathepsin D is an aspartyl protease that plays a crucial role in normal cellular functions and in a variety of neurodegenerative disorders, including Niemann-Pick type C (NPC) disease, which is characterized by intracellular accumulation of cholesterol and glycosphingolipids in many tissues, including the brain. There is evidence that the level and activity of cathepsin D increased markedly in vulnerable neurons in NPC pathology, but its involvement in neurodegeneration remains unclear. In the present study, using mouse hippocampal cultured neurons, we evaluated the significance of cathepsin D in toxicity induced by U18666A, a class II amphiphile, which triggers cell death by impairing the trafficking of cholesterol, as observed in NPC pathology. Our results showed that U18666A-mediated toxicity is accompanied by an increase in cathepsin D mRNA and enzyme activity but a decrease in the total peptide content. The cytosolic level of cathepsin D, on the other hand, was increased along with cytochrome c and activated caspase-3 in U18666A-treated neurons. The cathepsin D inhibitor, pepstatin A, partially protected neurons against toxicity by attenuating these signaling mechanisms. Additionally, down-regulation of cathepsin D level prevented, whereas overexpression of the protease increased, vulnerability of cultured N2a cells to U18666A-induced toxicity. We also showed that extracellular cathepsin D from U18666A-treated neurons or application of exogenous enzyme can induce neurotoxicity by activating the autophagic pathway. These results suggest that increased release/activation of cathepsin D can trigger neurodegeneration and possibly development of NPC pathology. Thus, targeting cathepsin D level/activity may provide a new therapeutic opportunity for the treatment of NPC pathology.
Collapse
Affiliation(s)
- Asha Amritraj
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | | | | | | | | | | |
Collapse
|
86
|
Földi I, Tóth AM, Szabó Z, Mózes E, Berkecz R, Datki ZL, Penke B, Janáky T. Proteome-wide study of endoplasmic reticulum stress induced by thapsigargin in N2a neuroblastoma cells. Neurochem Int 2012; 62:58-69. [PMID: 23153458 DOI: 10.1016/j.neuint.2012.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/19/2012] [Accepted: 11/02/2012] [Indexed: 11/19/2022]
Abstract
Disturbances in intraluminal endoplasmic reticulum (ER) Ca(2+) concentration leads to the accumulation of unfolded proteins and perturbation of intracellular Ca(2+) homeostasis, which has a huge impact on mitochondrial functioning under normal and stress conditions and can trigger cell death. Thapsigargin (TG) is widely used to model cellular ER stress as it is a selective and powerful inhibitor of sarcoplasmic/endoplasmic reticulum Ca(2+) ATPases. Here we provide a representative proteome-wide picture of ER stress induced by TG in N2a neuroblastoma cells. Our proteomics study revealed numerous significant protein expression changes in TG-treated N2a cell lysates analysed by two-dimensional electrophoresis followed by mass spectrometric protein identification. The proteomic signature supports the evidence of increased bioenergetic activity of mitochondria as several mitochondrial enzymes with roles in ATP-production, tricarboxylic acid cycle and other mitochondrial metabolic processes were upregulated. In addition, the upregulation of the main ER resident proteins confirmed the onset of ER stress during TG treatment. It has become widely accepted that metabolic activity of mitochondria is induced in the early phases in ER stress, which can trigger mitochondrial collapse and subsequent cell death. Further investigations of this cellular stress response in different neuronal model systems like N2a cells could help to elucidate several neurodegenerative disorders in which ER stress is implicated.
Collapse
Affiliation(s)
- István Földi
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Changes in expression and secretion levels of cystatin C (CysC) in the brain in various neurological disorders and in animal models of neurodegeneration underscore a role for CysC in these conditions. A polymorphism in the CysC gene (CST3) is linked to increased risk for Alzheimer's disease (AD). AD pathology is characterized by deposition of oligomeric and fibrillar forms of amyloid β (Aβ) in the neuropil and cerebral vessel walls, neurofibrillary tangles composed mainly of hyperphosphorylated tau, and neurodegeneration. The implication of CysC in AD was initially suggested by its co-localization with Aβ in amyloid-laden vascular walls, and in senile plaque cores of amyloid in the brains of patients with AD, Down's syndrome, hereditary cerebral hemorrhage with amyloidosis, Dutch type (HCHWA-D), and cerebral infarction. CysC also co-localizes with Aβ amyloid deposits in the brains of non-demented aged individuals. Multiple lines of research show that CysC plays protective roles in AD. In vitro studies have shown that CysC binds Aβ and inhibits Aβ oligomerization and fibril formation. In vivo results from the brains and plasma of Aβ-depositing transgenic mice confirmed the association of CysC with the soluble, non-pathological form of Aβ and the inhibition of Aβ plaques formation. The association of CysC with Aβ was also found in brain and in cerebrospinal fluid (CSF) from AD patients and non-demented control individuals. Moreover, in vitro results showed that CysC protects neuronal cells from a variety of insults that may cause cell death, including cell death induced by oligomeric and fibrillar Aβ. These data suggest that the reduced levels of CysC manifested in AD contribute to increased neuronal vulnerability and impaired neuronal ability to prevent neurodegeneration. This review elaborates on the neuroprotective roles of CysC in AD and the clinical relevance of this protein as a therapeutic agent.
Collapse
Affiliation(s)
- Gurjinder Kaur
- Departments of Psychiatry, Biochemistry, and Molecular Pharmacology, Center for Dementia Research, Nathan S. Kline Institute, New York University School of Medicine, Orangeburg NY, USA
| | | |
Collapse
|
88
|
Zhu H, Yoshimoto T, Imajo-Ohmi S, Dazortsava M, Mathivanan A, Yamashima T. Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia? J Neurochem 2012; 120:574-85. [DOI: 10.1111/j.1471-4159.2011.07550.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
89
|
|
90
|
Shi R, Weng J, Szelemej P, Kong J. Caspase-Independent Stroke Targets. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
91
|
de Azevedo-Pereira RL, Lima APCA, Rodrigues DDC, Rondinelli E, Medei EH, Goldenberg RC, de Carvalho ACCC, Mendez-Otero R. Cysteine proteases in differentiation of embryonic stem cells into neural cells. Stem Cells Dev 2011; 20:1859-1872. [PMID: 21417836 DOI: 10.1089/scd.2010.0186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glycosylated mouse cystatin C (mCysC), an endogenous inhibitor of cysteine cathepsin proteases (CP), has been suggested as a cofactor of β-FGF to induce the differentiation of mouse embryonic stem cells into neural progenitor cells (NPCs). To investigate the possible role of CP in neural differentiation, we treated embryoid bodies (EBs) with (i) E64, an inhibitor of papain-like CP and of calpains, (ii) an inhibitor of cathepsin L (iCatL), (iii) an inhibitor of calpains (iCalp), or (iv) cystatins, and their ability to differentiate into neural cells was assessed. We show that the inhibition of CP induces a significant increase in Pax6 expression in EBs, leading to an increase in the number of nestin-positive cells after 3 days. Fourteen days after E64 treatment, we observed increased numbers of β-III-tubulin-positive cells, showing greater percentage of immature neurons, and this feature persisted up to 24 days. At this point, we encountered higher numbers of neurons with inward Na(+) current compared with untreated EBs. Further, we show that mCysC and iCatL, but not unglycosylated egg white cystatin or iCalp, increased the numbers of NPCs. In contrast to E64 and iCatL, mCysC did not inhibit CP in EBs and its neural-inducing activity required β-FGF. We propose that the inhibition of CP induces the differentiation of mouse embryonic stem cells into NPCs and neurons through a mechanism that is distinct from CysC-induced neural differentiation.
Collapse
|
92
|
Kritis A, Pourzitaki C, Klagas I, Chourdakis M, Albani M. Proteases inhibition assessment on PC12 and NGF treated cells after oxygen and glucose deprivation reveals a distinct role for aspartyl proteases. PLoS One 2011; 6:e25950. [PMID: 22028798 PMCID: PMC3196512 DOI: 10.1371/journal.pone.0025950] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/14/2011] [Indexed: 11/24/2022] Open
Abstract
Hypoxia is a severe stressful condition and induces cell death leading to neuronal loss both to the developing and adult nervous system. Central theme to cellular death is the activation of different classes of proteases such as caspases calpains and cathepsins. In the present study we investigated the involvement of these proteases, in the hypoxia-induced PC12 cell death. Rat PC12 is a model cell line for experimentation relevant to the nervous system and several protocols have been developed for either lethal hypoxia (oxygen and glucose deprivation OGD) or ischemic preconditioning (IPS). Nerve Growth Factor (NGF) treated PC12 differentiate to a sympathetic phenotype, expressing neurites and excitability. Lethal hypoxia was established by exposing undifferentiated and NGF-treated PC12 cells to a mixture of N2/CO2 (93:5%) in DMEM depleted of glucose and sodium pyruvate for 16 h. The involvement of caspases, calpains and lysosomal cathepsins D and E to the cell death induced by lethal OGD was investigated employing protease specific inhibitors such as z-VAD-fmk for the caspases, MDL28170 for the calpains and pepstatin A for the cathepsins D and E. Our findings show that pepstatin A provides statistically significant protection from cell death of both naive and NGF treated PC12 cells exposed to lethal OGD. We propose that apart from the established processes of apoptosis and necrosis that are integral components of lethal OGD, the activation of cathepsins D and E launches additional cell death pathways in which these proteases are key partners.
Collapse
Affiliation(s)
- Aristidis Kritis
- Laboratory of Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
93
|
Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, Pfister HW, Fontana A, Hammerschmidt S, Koedel U. The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. THE JOURNAL OF IMMUNOLOGY 2011; 187:5440-51. [PMID: 22003197 DOI: 10.4049/jimmunol.1100790] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Streptococcus pneumoniae meningitis causes brain damage through inflammation-related pathways whose identity and mechanisms of action are yet unclear. We previously identified caspase-1, which activates precursor IL-1 type cytokines, as a central mediator of inflammation in pneumococcal meningitis. In this study, we demonstrate that lack of the inflammasome components ASC or NLRP3 that are centrally involved in caspase-1 activation decreases scores of clinical and histological disease severity as well as brain inflammation in murine pneumococcal meningitis. Using specific inhibitors (anakinra and rIL-18-binding protein), we further show that ASC- and NLRP3-dependent pathologic alterations are solely related to secretion of both IL-1β and IL-18. Moreover, using differentiated human THP-1 cells, we demonstrate that the pneumococcal pore-forming toxin pneumolysin is a key inducer of IL-1β expression and inflammasome activation upon pneumococcal challenge. The latter depends on the release of ATP, lysosomal destabilization (but not disruption), and cathepsin B activation. The in vivo importance of this pathway is supported by our observation that the lack of pneumolysin and cathepsin B inhibition is associated with a better clinical course and less brain inflammation in murine pneumococcal meningitis. Collectively, our study indicates a central role of the NLRP3 inflammasome in the pathology of pneumococcal meningitis. Thus, interference with inflammasome activation might be a promising target for adjunctive therapy of this disease.
Collapse
Affiliation(s)
- Tobias Hoegen
- Department of Neurology, Clinic of the University of Munich, D-81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Death and survival of neuronal and astrocytic cells in ischemic brain injury: a role of autophagy. Acta Pharmacol Sin 2011; 32:1089-99. [PMID: 21804578 DOI: 10.1038/aps.2011.50] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autophagy is a highly regulated cellular mechanism that leads to degradation of long-lived proteins and dysfunctional organelles. The process has been implicated in a variety of physiological and pathological conditions relevant to neurological diseases. Recent studies show the existence of autophagy in cerebral ischemia, but no consensus has yet been reached regarding the functions of autophagy in this condition. This article highlights the activation of autophagy during cerebral ischemia and/or reperfusion, especially in neurons and astrocytes, as well as the role of autophagy in neuronal or astrocytic cell death and survival. We propose that physiological levels of autophagy, presumably caused by mild to modest hypoxia or ischemia, appear to be protective. However, high levels of autophagy caused by severe hypoxia or ischemia and/or reperfusion may cause self-digestion and eventual neuronal and astrocytic cell death. We also discuss that oxidative and endoplasmic reticulum (ER) stresses in cerebral hypoxia or ischemia and/or reperfusion are potent stimuli of autophagy in neurons and astrocytes. In addition, we review the evidence suggesting a considerable overlap between autophagy on one hand, and apoptosis, necrosis and necroptosis on the other hand, in determining the outcomes and final morphology of damaged neurons and astrocytes.
Collapse
|
95
|
Abstract
It is well known that apoptosis is an actively mediated cell suicide process. In contrast, necrosis, a morphologically distinct form of cell death, has traditionally been regarded as passive and unregulated. Over the past decade, however, experiments in Caenorhabditis elegans and mammalian cells have revealed that a significant proportion of necrotic death is, in fact, actively mediated by the doomed cell. Although a comprehensive understanding of necrosis is still lacking, some key molecular events have come into focus. Cardiac myocyte apoptosis and necrosis are prominent features of the major cardiac syndromes. Accordingly, the recognition of necrosis as a regulated process mandates a reexamination of cell death in the heart. This review discusses pathways that mediate programmed necrosis, how they intersect with apoptotic pathways, roles of necrosis in heart disease, and new therapeutic opportunities that the regulated nature of necrosis presents.
Collapse
Affiliation(s)
- Gloria Kung
- Wilf Family Cardiovascular Research Institute, Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
96
|
Boneva NB, Yamashima T. New insights into "GPR40-CREB interaction in adult neurogenesis" specific for primates. Hippocampus 2011; 22:896-905. [PMID: 21594949 DOI: 10.1002/hipo.20951] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2011] [Indexed: 12/26/2022]
Abstract
Polyunsaturated fatty acids (PUFA), such as docosahexaenoic (DHA) and arachidonic acids (ARA) are known to be closely related to the brain development and also have beneficial effects on adult neurogenesis, learning, and mental disorders. Although PUFA were demonstrated as ligands for G protein-coupled receptor 40 (GPR40), their signaling mechanism in the brain, especially in the neurogenic niche, remains unknown. Using a monkey model of ischemia-enhanced hippocampal neurogenesis, we studied the spatial correlation between GPR40 and the phosphorylated cAMP response element-binding protein (pCREB), a transcription factor involved in adult neurogenesis, learning and memory. Furthermore, the brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB), both being downstream gene transcripts of pCREB, were studied. Similar to the dynamic change of GPR40 as the authors reported previously, pCREB was up-regulated significantly after transient global brain ischemia on Western blots, and this was associated with an enhanced hippocampal neurogenesis. Immunofluorescence microscopic analysis showed that GPR40 and pCREB expression patterns were completely identical, and they were coexpressed in both mature and newborn neurons as well as in the astrocytes residing in the subgranular zone (SGZ). GPR40/pCREB double-positive cells significantly increased in the SGZ on day 15 after ischemia. The mature form of BDNF (mBDNF) and TrkB receptor showed no remarkable changes on Western blots, although proBDNF (precursor of mBDNF) was maximal on day 9. Immunofluorescence microscopy showed that the newborn neurons expressed BDNF, but not TrkB. These results altogether suggest that PUFA, GPR40, pCREB, and BDNF may be engaged in the same signaling pathway to promote neurogenesis in the adult primate hippocampus.
Collapse
Affiliation(s)
- Nadezhda B Boneva
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | |
Collapse
|
97
|
Boneva NB, Kaplamadzhiev DB, Sahara S, Kikuchi H, Pyko IV, Kikuchi M, Tonchev AB, Yamashima T. Expression of fatty acid-binding proteins in adult hippocampal neurogenic niche of postischemic monkeys. Hippocampus 2011; 21:162-71. [PMID: 20014382 DOI: 10.1002/hipo.20732] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Intracellular fatty acid (FA) chaperones known as FA-binding proteins (FABPs) are a group of molecules known to participate in cellular metabolic processes such as lipid storage, membrane synthesis, and β-oxidation or to coordinate transcriptional programs. However, their role in adult neurogenesis still remains obscure. The FABPs expressed in the central nervous system (CNS) are heart-type (FABP3), epidermal-type (FABP5), and brain-type (FABP7). These three FABPs possess a differential affinity for polyunsaturated fatty acids (PUFAs). Recently, we reported that GPR40, a receptor for free FAs and particularly for PUFAs, is expressed in the CNS of adult monkeys and upregulated after transient global brain ischemia in the hippocampal subgranular zone (SGZ), a neurogenic niche in adulthood. The SGZ showed a peak proliferation of progenitor cells and maximal expression of GPR40 during the second week after ischemia. As both FABPs and GPR40 might be closely related to the adult neurogenesis, here, we studied the expression of FABP 3, 5, and 7 in the SGZ, comparing normal and postischemic adult monkeys. Immunoblotting revealed that FABP5 and FABP7, but not FABP3, were significantly increased on day 15 after ischemia when compared with the nonischemic control. Immunohistochemistry showed that FABP5 was almost undetectable in the control SGZ but was abundant on day 15 after ischemia. FABP 3, 5, and 7 were expressed in S-100β-positive astrocytes and nestin-positive neural progenitors. However, only FABP 5 and 7 were found in bromodeoxyuridine (BrdU)-positive newly generated cells. FABPs were most frequently coexpressed with the S-100β-positive astrocytes, whereas βIII-tubulin-or polysialylated neural cell-adhesion molecule (PSA-NCAM)-positive newborn neurons in the vicinity of the astrocytes expressed none of the three FABPs. These results support a role of astrocyte- and/or neural progenitor-derived FABPs as components of the molecular machine regulating the progenitor cell niche in the adult primate brain.
Collapse
Affiliation(s)
- Nadezhda B Boneva
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Severe Global Cerebral Ischemia-Induced Programmed Necrosis of Hippocampal CA1 Neurons in Rat Is Prevented by 3-Methyladenine: A Widely Used Inhibitor of Autophagy. J Neuropathol Exp Neurol 2011; 70:314-22. [DOI: 10.1097/nen.0b013e31821352bd] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
99
|
Chen MJ, Peng ZF, Manikandan J, Melendez AJ, Tan GS, Chung CM, Li QT, Tan TM, Deng LW, Whiteman M, Beart PM, Moore PK, Cheung NS. Gene profiling reveals hydrogen sulphide recruits death signaling via the N-methyl-D-aspartate receptor identifying commonalities with excitotoxicity. J Cell Physiol 2011; 226:1308-22. [DOI: 10.1002/jcp.22459] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
100
|
Kuramoto N, Seko K, Sugiyama C, Shuto M, Ogita K. Trimethyltin initially activates the caspase 8/caspase 3 pathway for damaging the primary cultured cortical neurons derived from embryonic mice. J Neurosci Res 2011; 89:552-61. [PMID: 21290413 DOI: 10.1002/jnr.22588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/06/2010] [Accepted: 11/29/2010] [Indexed: 01/05/2023]
Abstract
The organotin trimethyltin (TMT) is well known to cause neuronal damage in the central nervous system. To elucidate the mechanisms underlying the toxicity of TMT toward neurons, we prepared primary cultures of neurons from the neocortex of mouse embryos. A continuous exposure to TMT produced a decrease in cell viability as well as an increase in the number of cells with nuclear condensation/shrinkage at the exposure time window up to 24 hr. In addition to the events at the early time window, lactate dehydrogenase released was significantly elevated at the later exposure time from 36 to 48 hr. With a 3-hr exposure to TMT, a significant increase was observed in the activity of caspase 8, but not in that of caspase 9. TMT exposure produced no elevation in the level of cytochrome c released from mitochondria until 12 hr of exposure, with a significant facilitation of cytochrome c release at the exposure times of 16 and 24 hr. After the activation of caspase 8 by TMT exposure, caspase 3 activation and nuclear translocation of caspase-activated DNase were caused by exposure for 6 hr or longer. However, nuclear DNase II was elevated at the later time window of exposure. A caspase inhibitor completely prevented TMT from damaging the cells in any time window. Taken together, our data are the first demonstration that TMT toxicity is initially caused by activation of the caspase 8/caspase 3 pathway for nuclear translocation of DNases in cortical neurons in primary culture.
Collapse
Affiliation(s)
- Nobuyuki Kuramoto
- Department of Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences, Hirakata, Osaka, Japan
| | | | | | | | | |
Collapse
|