51
|
Hanke M, Farkas LM, Jakob M, Ries R, Pohl J, Sullivan AM. Heparin-binding epidermal growth factor-like growth factor: a component in chromaffin granules which promotes the survival of nigrostriatal dopaminergic neurones in vitro and in vivo. Neuroscience 2004; 124:757-66. [PMID: 15026116 DOI: 10.1016/j.neuroscience.2003.12.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2003] [Indexed: 11/19/2022]
Abstract
Chromaffin cells can restore function to the damaged nigrostriatal dopaminergic system in animal models of Parkinson's disease. It has been reported that a protein which is released from chromaffin granules can promote the survival of dopaminergic neurones in vitro and protect them against N-methylpyridinium ion toxicity. This neurotrophic effect has been found to be mediated by astroglial cells and blocked by inhibitors of the epidermal growth factor (EGF) receptor signal transduction pathway. Here we report the identification of bovine heparin-binding EGF-like growth factor (HB-EGF) in chromaffin granules and the cloning of the respective cDNA from bovine-derived adrenal gland. Protein extracts from bovine chromaffin granules were found to promote the survival of embryonic dopaminergic neurones in culture, to the same extent as recombinant human HB-EGF. Furthermore, the neurotrophic action of the chromaffin granule extract could be abolished by antiserum to recombinant human HB-EGF. We also show that intracerebral injection of recombinant human HB-EGF protected the nigrostriatal dopaminergic system in an in vivo adult rat model of Parkinson's disease. Intracerebral administration of this protein at the same time as a 6-hydroxydopamine lesion of the medial forebrain bundle was found to spare dopamine levels in the striatum and tyrosine hydroxylase-immunopositive neurones in the midbrain. This study has found that the main component in chromaffin granules responsible for their neurotrophic effect on dopaminergic neurones is HB-EGF. Furthermore, HB-EGF has significant protective effects on nigrostriatal dopaminergic neurones in vivo, making it a potential candidate for use in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- M Hanke
- Biopharm GmbH, Czernyring 22, D-69115 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
52
|
Green-Sadan T, Kinor N, Roth-Deri I, Geffen-Aricha R, Schindler CJ, Yadid G. Transplantation of glial cell line-derived neurotrophic factor-expressing cells into the striatum and nucleus accumbens attenuates acquisition of cocaine self-administration in rats. Eur J Neurosci 2003; 18:2093-8. [PMID: 14622243 DOI: 10.1046/j.1460-9568.2003.02943.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), may play a role in drug-induced biochemical and behavioural adaptations that characterize addiction. We found that GDNF mRNA levels are lower in the striatum of rats that chronically self-administered cocaine. Therefore, we examined the effect of transplanted cells used as a biodelivery system for GDNF on cocaine self-administration in rats. A human astrocyte-like cell line, which produces and excretes GDNF, was transplanted into the striatum and nucleus accumbens of rats. These rats showed a significantly lower number of active lever presses in the cocaine self-administration paradigm compared with control rats. Moreover, rats that received a chronic infusion of GDNF via a micro-osmotic pump also exhibited weak cocaine self-administration. Therefore, we conclude that exogenous augmentation of GDNF repositories may be useful in suppressing cocaine self-administration.
Collapse
Affiliation(s)
- Tamar Green-Sadan
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
53
|
Unsicker K, Krieglstein K. TGF-betas and their roles in the regulation of neuron survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:353-74. [PMID: 12575828 DOI: 10.1007/978-1-4615-0123-7_13] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Transforming growth factor-betas (TGF-betas) are a still growing superfamily of cytokines with widespread distribution and diverse biological functions. They fall into several subfamilies including the TGF-betas 1, 2, and 3, the bone morphogenetic proteins (BMPs), the growth/differentiation factors (GDFs), activins and inhibins, and the members of the glial cell line-derived neurotrophic factor family. Following a brief description of their general roles and signaling in development, maintenance of homeostasis, and disease, we shall focus on their distribution in the CNS and their involvement in regulating neuron survival and death.
Collapse
Affiliation(s)
- Klaus Unsicker
- Neuroanatomy and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 307, 2. OG, D-69120 Heidelberg, Germany
| | | |
Collapse
|
54
|
Abstract
The concept of replacing lost dopamine neurons in Parkinson's disease using mesencephalic brain cells from fetal cadavers has been supported by over 20 years of research in animals and over a decade of clinical studies. The ambitious goal of these studies was no less than a molecular and cellular "cure" for Parkinson's disease, other neurodegenerative diseases, and spinal cord injury. Much research has been done in rodents, and a few studies have been done in nonhuman primate models. Early uncontrolled clinical reports were enthusiastic, but the outcome of the first randomized, double blind, controlled study challenged the idea that dopamine replacement cells can cure Parkinson's disease, although there were some significant positive findings. Were the earlier animal studies and clinical reports wrong? Should we give up on the goal? Some aspects of the trial design and implantation methods may have led to lack of effects and to some side effects such as dyskinesias. But a detailed review of clinical neural transplants published to date still suggests that neural transplantation variably reverses some aspects of Parkinson's disease, although differing methods make exact comparisons difficult. While the randomized clinical studies have been in progress, new methods have shown promise for increasing transplant survival and distribution, reconstructing the circuits to provide dopamine to the appropriate targets and with normal regulation. Selected promising new strategies are reviewed that block apoptosis induced by tissue dissection, promote vascularization of grafts, reduce oxidant stress, provide key growth factors, and counteract adverse effects of increased age. New sources of replacement cells and stem cells may provide additional advantages for the future. Full recovery from parkinsonism appears not only to be possible, but a reliable cell replacement treatment may finally be near.
Collapse
Affiliation(s)
- D Eugene Redmond
- Department of Psychiatry, Yale University School of Medicine, USA.
| |
Collapse
|
55
|
Ostenfeld T, Tai YT, Martin P, Déglon N, Aebischer P, Svendsen CN. Neurospheres modified to produce glial cell line-derived neurotrophic factor increase the survival of transplanted dopamine neurons. J Neurosci Res 2002; 69:955-65. [PMID: 12205689 DOI: 10.1002/jnr.10396] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has been shown to increase the survival of dopamine neurons in a variety of in vitro and in vivo model systems. Therefore, it constitutes an important therapeutic protein with the potential to ameliorate dopamine neuronal degeneration in Parkinson's disease or to support dopamine neuronal replacement strategies. However, biophysical and practical considerations present obstacles for the direct delivery of the GDNF protein to CNS neurons. Here we show that rodent neural precursor cells isolated and expanded in culture as neurospheres (NS) can be genetically modified to express green fluorescent protein (GFP) or to release GDNF using lentiviral constructs. GDNF-NS increased the fibre outgrowth of primary embryonic dopamine neurons in cocultures, showing that the protein was released in biologically significant quantities. Furthermore, after transplantation into the 6-hydroxydopamine-lesioned rat striatum, GDNF-NS significantly increased the survival of cografted primary dopamine neurons. However, this was not reflected in behavioural recovery in these animals. We found that, by 6 weeks, few cells expressed GDNF or GFP, suggesting either that transgene expression was down-regulated over time or that the cells died. This may explain the initial effects on dopamine neuronal survival within the graft but the lack of long-term effect on subsequent fibre outgrowth and behaviour. Providing sustained levels of neural precursor-mediated transgene expression can be achieved following transplantation in the future; this approach may prove beneficial as an alternative therapeutic strategy in the cell-based management of Parkinson's disease.
Collapse
Affiliation(s)
- Thor Ostenfeld
- Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
56
|
|
57
|
Zurn AD, Widmer HR, Aebischer P. Sustained delivery of GDNF: towards a treatment for Parkinson's disease. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 36:222-9. [PMID: 11690619 DOI: 10.1016/s0165-0173(01)00098-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the progressive loss of nigral dopaminergic neurons. Although symptomatic therapies to substitute for the missing neurotransmitter dopamine are efficient at the early stages of the disease, the goal is to find alternative therapies which could protect dopaminergic neurons from the degenerative process. We have used two distinct gene therapy approaches to deliver the neuroprotective molecule glial cell line-derived neurotrophic factor (GDNF) in animal models of the disease: (i) an encapsulated genetically engineered cell line releasing GDNF (ex vivo gene therapy); and (ii) a lentiviral vector encoding the GDNF gene (in vivo gene therapy). Both approaches allowed protection of nigral dopaminergic neurons against lesion-induced cell death in rodent as well as monkey models of PD. Behavioral symptoms were also ameliorated in these animals. In addition, co-transplantation of embryonic dopaminergic neuronal grafts and a GDNF-releasing capsule allowed improvement of graft survival and differentiation, thereby accelerating behavioral recovery. These results should lead to clinical application in the near future.
Collapse
Affiliation(s)
- A D Zurn
- Division of Surgical Research and Gene Therapy Center, Pavillon 4, CHUV, CH-1011, Lausanne, Switzerland.
| | | | | |
Collapse
|
58
|
Hurelbrink CB, Barker RA. Prospects for the treatment of Parkinson's disease using neurotrophic factors. Expert Opin Pharmacother 2001; 2:1531-43. [PMID: 11825297 DOI: 10.1517/14656566.2.10.1531] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative condition that is characterised by a progressive loss of dopaminergic neurones of the substantia nigra pars compacta (SNpc) and the presence of alpha-synuclein cytoplasmic inclusions (Lewy bodies). Cardinal symptoms include tremor, bradykinesia, and rigidity, although cognitive and autonomic disturbances are not uncommon. Pharmacological treatment targeting the dopaminergic network is relatively effective at ameliorating these symptoms, especially in the early stages of the disease, but none of these therapies are curative and they generate their own problems. As dopaminergic neuronal death in PD occurs in a gradual manner, it is amenable to treatments that can either protect remaining dopaminergic neurones or prevent death of those neurones that have begun to die. Use of neurotrophic factors is a potential candidate, as various factors have been shown to increase dopaminergic neuronal survival in culture and promote survival and axonal growth in animal models of PD. Glial cell line-derived neurotrophic factor (GDNF) is currently the most effective substance that has been intensively studied and shown to have a specific 'dopaminotrophic' effect. This review will therefore focus on studies that have investigated GDNF and discuss the potential for neurotrophic factor treatment in PD.
Collapse
Affiliation(s)
- C B Hurelbrink
- Cambridge Centre for Brain Repair, Addenbrooke's Hospital, Cambridge CB2 2PY, UK.
| | | |
Collapse
|
59
|
Hagell P, Brundin P. Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 2001; 60:741-52. [PMID: 11487048 DOI: 10.1093/jnen/60.8.741] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intrastriatal transplantation of embryonic dopaminergic neurons is currently explored as a restorative cell therapy for Parkinson disease (PD). Clinical results have varied, probably due to differences in transplantation methodology and patient selection. In this review, we assess clinical trials and autopsy findings in grafted PD patients and suggest that a minimum number of surviving dopaminergic neurons is required for a favorable outcome. Restoration of [18F]-fluorodopa uptake in the putamen to about 50% of the normal mean seems necessary for moderate to marked clinical benefit to occur. Some studies indicate that this may require mesencephalic tissue from 3-5 human embryos implanted into each hemisphere. The volume, density and pattern of fiber outgrowth and reinnervation, as well as functional integration and dopamine release. are postulated as additional important factors for an optimal clinical outcome. For neural transplantation to become a feasible therapeutic alternative in PD, graft survival must be increased and the need for multiple donors of human embryonic tissue substantially decreased or alternate sources of donor tissue developed. Donor cells derived from alternative sources should demonstrate features comparable to those associated with successful implantation of human embryonic tissue before clinical trials are considered.
Collapse
Affiliation(s)
- P Hagell
- Department of Clinical Neuroscience, University Hospital, Lund University, Sweden
| | | |
Collapse
|
60
|
Liu J, Wang CY, O'Brien JS. Prosaptide™D5, a retro‐inverso 11‐mer peptidomimetic, rescued dopaminergic neurons in a model of Parkinson's disease. FASEB J 2001. [DOI: 10.1096/fsb2fj000603fje] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Liu
- Department of Neurosciences School of Medicine, Center for Molecular Genetics, University of California San Diego La Jolla Calif
| | - Cui Ying Wang
- Department of Neurosciences School of Medicine, Center for Molecular Genetics, University of California San Diego La Jolla Calif
| | - John S. O'Brien
- Department of Neurosciences School of Medicine, Center for Molecular Genetics, University of California San Diego La Jolla Calif
| |
Collapse
|
61
|
Castilho RF, Hansson O, Brundin P. Improving the survival of grafted embryonic dopamine neurons in rodent models of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2001; 127:203-31. [PMID: 11142029 DOI: 10.1016/s0079-6123(00)27011-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- R F Castilho
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden
| | | | | |
Collapse
|
62
|
Costantini LC, Isacson O. Neuroimmunophilin ligand enhances neurite outgrowth and effect of fetal dopamine transplants. Neuroscience 2001; 100:515-20. [PMID: 11098114 DOI: 10.1016/s0306-4522(00)00312-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuroimmunophilin ligands have been shown to enhance neurite outgrowth in several neuronal systems in culture, including primary dopaminergic neurons from fetal ventral mesencephalon. We investigated the ability of neuroimmunophilin ligands to enhance outgrowth of transplanted fetal dopamine neurons in vivo. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal dopamine system were transplanted with rat embryonic day 14 ventral mesencephalon into the striatum, then treated orally with a neuroimmunophilin ligand (15mg/kg) or vehicle once per day for 14 days. All transplanted animals regained dopamine function over a 10 week behavioral test period, as indicated by decrease and reversal of amphetamine-induced rotation. In addition, neuroimmunophilin ligand-treated animals showed a more pronounced motor response during the first 10min after amphetamine injection, possibly reflecting increased striatal reinnervation or increased functional capacity. At post-mortem analyses, neuroimmunophilin ligand-treated rats showed a significantly higher density of tyrosine hydroxylase-positive fibers reinnervating the lesioned striatum, both immediately surrounding the transplant (92% of unlesioned density in neuroimmunophilin-treated rats vs 67% of unlesioned levels in vehicle-treated rats) and at some distance from the transplant/host interface. The number of tyrosine hydroxylase-positive cells within the transplants was not different between groups. This study demonstrates that short-term oral administration of a neuroimmunophilin ligand can enhance neurite outgrowth from fetal dopamine neuronal transplants.
Collapse
Affiliation(s)
- L C Costantini
- Neuroregeneration Laboratory, Harvard Medical School/McLean Hospital, Belmont, MA 02178, USA
| | | |
Collapse
|
63
|
Rickert M, Jung M, Adiyaman M, Richter W, Simank HG. A growth and differentiation factor-5 (GDF-5)-coated suture stimulates tendon healing in an Achilles tendon model in rats. Growth Factors 2001; 19:115-26. [PMID: 11769971 DOI: 10.3109/08977190109001080] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Growth and differentiation factor-5 (GDF-5) is essential for normal skeletal development and induces tendon-and ligament-like structures at ectopic sites. Therefore, we investigated the influence of a GDF-5-coated suture on the healing Achilles tendon in rats. The right Achilles tendon in 80 rats was transected and sutured with an absorbable polyglactin suture. Animals were randomized to an uncoated-suture control and a GDF-5-coated suture group. At 1, 2, 4 and 8 weeks after surgery the repair tissue was evaluated biomechanically and histologically. Biomechanical testing revealed significantly thicker tendons, which were stiffer at 1, 2, and 4 weeks, in the experimental group than in the control group. The maximum tensile strength was significantly increased at 2 weeks after surgery. Histologically we found cartilage-like cell nests 4 weeks after tendon repair, which were positive for type II collagen. In conclusion, local growth factor delivery by a coated suture material showed a promising beneficial effect on tendon repair. The appearance of cartilage-like structures may demonstrate the chondroinductive capacity of GDF-5, which in these circumstances, however, might be overcome by modifications of the GDF-5 dose and/or the suture material.
Collapse
Affiliation(s)
- M Rickert
- Department of Orthopedics, University Hospital of Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
64
|
Sortwell CE, Pitzer MR, Collier TJ. Time course of apoptotic cell death within mesencephalic cell suspension grafts: implications for improving grafted dopamine neuron survival. Exp Neurol 2000; 165:268-77. [PMID: 10993687 DOI: 10.1006/exnr.2000.7476] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vast majority ( congruent with 90%) of embryonic mesencephalic dopamine (DA) neurons die following transplantation to the striatum. Recent reports indicate that at least a subpopulation of grafted cells undergo apoptotic cell death at early times following implantation. This study examines the temporal pattern and magnitude of apoptotic cell death following the implantation of mesencephalic cell suspension grafts. Two techniques, a modified terminal deoxynucleotide-mediated nucleotide end labeling (TUNEL) technique and cresyl violet staining, are used to assess apoptotic cell death by detection of its biochemical and morphological identifiers, respectively. Male, Fischer 344 rats were examined at 1, 4, 7, and 28 days following implantation of embryonic day 14 (E14) ventral mesencephalic cells to the DA-denervated striatum. Results indicate that the overwhelming majority of apoptotic cell death occurs within the first 7 days after transplantation. However, the impact of the apoptosis that occurs over the first week following grafting only appears to limit grafted tyrosine hydroxylase-immunoreactive (THir) neuron survival during the first 4 days. No significant differences between the survival rates of THir neurons at 4 days after grafting and at 28 days after grafting were found. Therefore, it appears that the critical interval during which an estimated 90% of grafted DA neurons die is during the first 4 days postimplantation and that a major contributor to this cell death is apoptosis.
Collapse
Affiliation(s)
- C E Sortwell
- Department of Neurological Sciences, Research Center for Brain Repair, Rush-Presbyterian-St. Luke's Medical Center, Suite 200, 2242 West Harrison Street, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
65
|
Heidaran MA, Daverman R, Thompson A, Ng CK, Pohl J, Poser JW, Spiro RC. Extracellular Matrix Modulation of rhGDF-5-Induced Cellular Differentiation. ACTA ACUST UNITED AC 2000. [DOI: 10.1089/152489000420294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
66
|
Petersen A, Hansson O, Emgård M, Brundin P. Grafting of nigral tissue hibernated with tirilazad mesylate and glial cell line-derived neurotrophic factor. Cell Transplant 2000; 9:577-84. [PMID: 11144955 DOI: 10.1177/096368970000900503] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transplantation of embryonic ventral mesencephalon is a potential therapy for patients with Parkinson's disease. As only around 5-10% of embryonic dopaminergic neurons survive grafting into the adult striatum, it is considered necessary to use multiple donor embryos. To increase the survival of the grafted dopaminergic neurons, the clinical transplantation program in Lund currently employs the lipid peroxidation inhibitor, tirilazad mesylate, in all solutions used during tissue storage, preparation, and transplantation. However, the difficulty in obtaining a sufficient number of donor embryos still remains an important limiting factor for the clinical application of neural transplantation. In many clinical transplantation programs, it would be a great advantage if human nigral donor tissue could be stored for at least 1 week. This study was performed in order to investigate whether storage of embryonic tissue at 4 degrees C for 8 days can be applied clinically without creating a need to increase the number of donors. We compared the survival of freshly grafted rat nigral tissue, prepared according to the clinical protocol, with tissue transplanted after hibernation. Thus, in all groups tirilazad mesylate was omnipresent. One group of rats was implanted with fresh tissue and three groups with hibernated tissue with or without addition of glial cell line-derived neurotrophic factor (GDNF) in the hibernation medium and/or the final cell suspension. Earlier studies have suggested that GDNF improves the survival of hibernated nigral transplants. We found no statistically significant difference between the groups regarding graft survival after 3 weeks. However, there was a nonsignificant trend for fewer surviving dopaminergic neurons in grafts from hibernated tissue compared to fresh controls. Furthermore, we show that the addition of GDNF to the hibernation medium and/or to the final cell suspension does not significantly increase the survival of the dopaminergic neurons.
Collapse
Affiliation(s)
- A Petersen
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, Sweden.
| | | | | | | |
Collapse
|
67
|
Abstract
In our present genetic study to map Quantitative Trait Loci (QTLs) for alcohol-related behaviors, we used 44 B6.C and 36 B6.I inbred congenic Recombinant QTL Introgression (RQI) mouse strains of the b5i7 series carrying genes of BALB/cJ (C) or CXBI (I) origin on C57BL/6ByJ (B6) genetic background. Ethyl alcohol consumption (EAC) was measured in adult males, and chromosomes 1, 2, 3, 9, and 15 were scanned with polymorphic microsatellite markers. In the B6.C set of strains, multiple regression analysis yielded a model with three microsatellite markers, which explained 32% of the genetic variance (p=0.0006). The two markers with the highest significance levels in the model, D1Mit167 and D2Mit74, have been mapped to chromosome regions close to the gene opioid receptor kappa 1 (chr. 1) and opioid receptor kappa 3 (chr. 2), respectively. The results of this gene-mapping study suggest that genetic polymorphisms in kappa opioid receptors may contribute to genetic predisposition to voluntary alcohol-drinking behavior.
Collapse
Affiliation(s)
- C Vadasz
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, 10962, Orangeburg, NY, USA.
| | | | | | | | | |
Collapse
|
68
|
Brundin P, Karlsson J, Emgård M, Schierle GS, Hansson O, Petersén A, Castilho RF. Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant 2000; 9:179-95. [PMID: 10811392 DOI: 10.1177/096368970000900205] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neural transplantation is developing into a therapeutic alternative in Parkinson's disease. A major limiting factor is that only 3-20% of grafted dopamine neurons survive the procedure. Recent advances regarding how and when the neurons die indicate that events preceding actual tissue implantation and during the first week thereafter are crucial, and that apoptosis plays a pivotal role. Triggers that may initiate neuronal death in grafts include donor tissue hypoxia and hypoglycemia, mechanical trauma, free radicals, growth factor deprivation, and excessive extracellular concentrations of excitatory amino acids in the host brain. Four distinct phases during grafting that can involve cell death have been identified: retrieval of the embryo; dissection and preparation of the donor tissue; implantation procedure followed by the immediate period after graft injection; and later stages of graft maturation. During these phases, cell death processes involving free radicals and caspase activation (leading to apoptosis) may be triggered, possibly involving an increase in intracellular calcium. We review different approaches that reduce cell death and increase survival of grafted neurons, typically by a factor of 2-4. For example, changes in transplantation procedure such as improved media and implantation technique can be beneficial. Calcium channel antagonists such as nimodipine and flunarizine improve nigral graft survival. Agents that counteract oxidative stress and its consequences, such as superoxide dismutase overexpression, and lazaroids can significantly increase the survival of transplanted dopamine neurons. Also, the inhibition of apoptosis by a caspase inhibitor has marked positive effects. Finally, basic fibroblast growth factor and members of the transforming growth factor-beta superfamily, such as glial cell line-derived neurotrophic factor, significantly improve the outcome of nigral transplants. These recent advances provide hope for improved survival of transplanted neurons in patients with Parkinson's disease, reducing the need for human embryonic donor tissue and increasing the likelihood of a successful outcome.
Collapse
Affiliation(s)
- P Brundin
- Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
69
|
Espejo M, Cutillas B, Arenas TE, Ambrosio S. Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line-derived neurotrophic factor. Cell Transplant 2000; 9:45-53. [PMID: 10784066 DOI: 10.1177/096368970000900107] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The transplantation of fetal mesencephalic cell suspensions into the brain striatal system is an emerging treatment for Parkinson's disease. However, one objection to this procedure is the relatively poor survival of implanted cells. The ability of neurotrophic factors to regulate developmental neuron survival and differentiation suggests they could be used to enhance the success of cerebral grafts. We studied the effects of neurotrophin-3 (NT-3) or glial cell line-derived neurotrophic factor (GDNF) on the survival of dopaminergic neurons from rat fetal ventral mesencephalic cells (FMCs) implanted into the rat striatum. Two conditions were tested: (a) incubation of FMCs in media containing NT-3 and GDNF, prior to grafting, and (b) co-grafting of FMCs with cells engineered to overexpress high levels of NT-3 or GDNF. One week after grafting into the rat striatum, the survival of TH+ neurons was significantly increased by pretreatment of ventral mesencephalic cells with NT-3 or GDNF. Similarly, co-graft of ventral mesencephalic cells with NT-3- or GDNF-overexpressing cells, but not the mock-transfected control cell line, increased the survival of graft-derived dopaminergic neurons. Interestingly, we also found that co-grafting of GDNF-overexpressing cells was less effective than NT-3 at improving the survival of fetal dopaminergic neurons in the grafts, and that only GDNF induced intense TH immunostaining in fibers and nerve endings of the host tissue surrounding the implant. Thus, our results suggest that NT-3, by strongly enhancing survival, and GDNF, by promoting both survival and sprouting, may improve the efficiency of fetal transplants in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- M Espejo
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, Hospitalet del Llobregat, Spain
| | | | | | | |
Collapse
|
70
|
Yadid G, Fitoussi N, Kinor N, Geffen R, Gispan I. Astrocyte line SVG-TH grafted in a rat model of Parkinson's disease. Prog Neurobiol 1999; 59:635-61. [PMID: 10845756 DOI: 10.1016/s0301-0082(99)00013-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present review describes gene transfer into the brain using extraneuronal cells with an ex vivo approach. The mild immunological reactions in the central nervous system to grafts provided the rationale and empirical basis for brain-transplantation, to replace dying cells, of potential clinical relevance. Fetal human astrocytes were genetically engineered to express tyrosine hydroxylase, the rate-limiting enzyme for the synthesis of catecholamines. These cells were also found to produce constitutively and secrete GDNF and interleukins. Therefore, these cells may prove as a drug-delivery system for the treatment of neurological degenerative conditions such as Parkinson's disease (PD). The field of neuronal reconstruction has reached a critical threshold and there is a need to evaluate the variables that will become critical as the field matures. One of the needs is to characterize the neurochemical alterations in the microenvironment in the context of grafted-host connectivity. This review discusses the functional effects of the pharmacologically-active construct, which consists of astrocytes producing L-DOPA and GDNF. The striatum in PD that lacks the dopaminergic projection from the substantia nigra metabolizes and releases dopamine differently from normal tissue and may react to different factors released by the grafted cells. Moreover, neurochemicals of the host tissue may effect grafted cells as well. An understanding of the way in which these neurochemicals are abnormal in PD and their role in the grafted brain is critical to the improvement of reconstructive strategies using cellular therapeutic strategies.
Collapse
Affiliation(s)
- G Yadid
- Faculty of Life Sciences, Neuropharmacology Section, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
71
|
Petersén A, Emgård M, Brundin P. Impact of a preceding striatal excitotoxic lesion and treatment with ciliary neurotrophic factor on striatal graft survival. Brain Res Bull 1999; 50:275-81. [PMID: 10582525 DOI: 10.1016/s0361-9230(99)00202-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The survival of grafted embryonic striatal tissue, dissected from the lateral ganglionic eminence, depends on the status of the host striatum. We found significantly larger volumes of surviving graft tissue and of striatal-like tissue (P-zone) within the graft, when the host striatum had been subjected to an excitotoxic lesion prior to transplantation surgery. Concomitantly the numbers of surviving grafted cells, assessed in both cresyl violet-stained sections and in sections stained with an immunohistochemical marker for striatal neurons, increased as compared to when graft tissue was placed in an intact unlesioned striatum. Finally, we examined the impact of treatment of the donor tissue with ciliary neurotrophic factor (CNTF) on graft survival. CNTF has previously been shown to protect striatal neurons against excitotoxic insults both in vitro and in vivo, but it did not improve striatal graft survival when added to the cell suspension prior to implantation.
Collapse
Affiliation(s)
- A Petersén
- Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, Sweden.
| | | | | |
Collapse
|
72
|
Sullivan AM, Opacka-Juffry J, Pohl J, Blunt SB. Neuroprotective effects of growth/differentiation factor 5 depend on the site of administration. Brain Res 1999; 818:176-9. [PMID: 9914454 DOI: 10.1016/s0006-8993(98)01275-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Growth/differentiation factor 5 (GDF5) is a neurotrophin which protects the rat nigrostriatal dopaminergic pathway from 6-hydroxydopamine-induced damage. Here we used amphetamine-induced rotational testing, high-performance liquid chromatography and immunocytochemistry to investigate the minimum effective dose of GDF5. We also compared the effectiveness of injecting GDF5 into either the substantia nigra pars compacta (SNpc), the lateral ventricle (LV) or the striatum (or combinations of these sites).
Collapse
Affiliation(s)
- A M Sullivan
- Department of Neurodegenerative Disorders and MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| | | | | | | |
Collapse
|