51
|
Abstract
All higher organisms possess a sensory system that allows them to detect potentially tissue-damaging (or noxious) stimuli. The proper functioning of this system is essential to protect their bodies from tissue damage. However, under pathological conditions after severe tissue injury and in inflammatory or neuropathic diseases, this system can become sensitized, and pain can then turn into a disease. Such exaggerated pain sensation (or hyperalgesia) can arise at different levels of integration. It can originate from an increased responsiveness of primary nociceptors, specialized nerve cells, which sense noxious stimuli, or from changes in the central processing of nociceptive input. Like other sensory input, nociceptive signals are relayed in the central nervous system by neurons, which communicate with each other mainly through chemical synapses. Changes in the excitability of these neurons or in the strength of their synaptic coupling provide the cellular basis for many forms of pathological pain. This review focuses on the synaptic processing of pain-related signals in the spinal cord dorsal horn, the first site of synaptic integration in the pain pathway. Particular emphasis is paid to synaptic processes underlying the generation of pathological pain evoked by inflammation or neuropathic diseases.
Collapse
Affiliation(s)
- Hanns Ulrich Zeilhofer
- Universität Zürich, Institut für Pharmakologie und Toxikologie, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
52
|
Eybalin M, Caicedo A, Renard N, Ruel J, Puel JL. Transient Ca2+-permeable AMPA receptors in postnatal rat primary auditory neurons. Eur J Neurosci 2004; 20:2981-9. [PMID: 15579152 DOI: 10.1111/j.1460-9568.2004.03772.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fast excitatory transmission in the nervous system is mostly mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors whose subunit composition governs physiological characteristics such as ligand affinity and ion conductance properties. Here, we report that AMPA receptors at inner hair cell (IHC) synapses lack the GluR2 subunit and are transiently Ca2+-permeable before hearing onset as evidenced using agonist-induced Co2+ accumulation, Western blots and GluR2 confocal microscopy in the rat cochlea. AMPA (100 microM) induced Co2+ accumulation in primary auditory neurons until postnatal day (PND) 10. This accumulation was concentration-dependent, strengthened by cyclothiazide (50 microM) and blocked by GYKI 52466 (80 microM) and Joro spider toxin (1 microM). It was unaffected by D-AP5 (50 microM), and it could not be elicited by 56 mM K+ or 1 mM NMDA + 10 microM glycine. Western blots showed that GluR1 immunoreactivity, present in homogenates of immature cochleas, had disappeared by PND12. GluR2 immunoreactivity was not detected until PND10 and GluR3 and GluR4 immunoreactivities were detected at all the ages examined. Confocal microscopy confirmed that the GluR2 immunofluorescence was not located postsynaptically to IHCs before PND10. In conclusion, AMPA receptors on maturing primary auditory neurons differ from those on adult neurons. They are probably composed of GluR1, GluR3 and GluR4 subunits and have a high Ca2+ permeability. The postsynaptic expression of GluR2 subunits may be continuously regulated by the presynaptic activity allowing for variations in the Ca2+ permeability and physiological properties of the receptor.
Collapse
Affiliation(s)
- Michel Eybalin
- INSERM U583, Institut des Neurosciences, Hôpital St. Eloi, 80, Avenue Augustin Fliche, BP 74103, 34091 Montpellier cedex 5, France.
| | | | | | | | | |
Collapse
|
53
|
Hartmann B, Ahmadi S, Heppenstall PA, Lewin GR, Schott C, Borchardt T, Seeburg PH, Zeilhofer HU, Sprengel R, Kuner R. The AMPA Receptor Subunits GluR-A and GluR-B Reciprocally Modulate Spinal Synaptic Plasticity and Inflammatory Pain. Neuron 2004; 44:637-50. [PMID: 15541312 DOI: 10.1016/j.neuron.2004.10.029] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 10/13/2004] [Accepted: 10/14/2004] [Indexed: 11/25/2022]
Abstract
Ca(2+)-permeable AMPA receptors are densely expressed in the spinal dorsal horn, but their functional significance in pain processing is not understood. By disrupting the genes encoding GluR-A or GluR-B, we generated mice exhibiting increased or decreased numbers of Ca(2+)-permeable AMPA receptors, respectively. Here, we demonstrate that AMPA receptors are critical determinants of nociceptive plasticity and inflammatory pain. A reduction in the number of Ca(2+)-permeable AMPA receptors and density of AMPA channel currents in spinal neurons of GluR-A-deficient mice is accompanied by a loss of nociceptive plasticity in vitro and a reduction in acute inflammatory hyperalgesia in vivo. In contrast, an increase in spinal Ca(2+)-permeable AMPA receptors in GluR-B-deficient mice facilitated nociceptive plasticity and enhanced long-lasting inflammatory hyperalgesia. Thus, AMPA receptors are not mere determinants of fast synaptic transmission underlying basal pain sensitivity as previously thought, but are critically involved in activity-dependent changes in synaptic processing of nociceptive inputs.
Collapse
Affiliation(s)
- Bettina Hartmann
- Institute for Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Graham BA, Brichta AM, Callister RJ. In vivo responses of mouse superficial dorsal horn neurones to both current injection and peripheral cutaneous stimulation. J Physiol 2004; 561:749-63. [PMID: 15604230 PMCID: PMC1665382 DOI: 10.1113/jphysiol.2004.072645] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the superficial dorsal horn (SDH) processing of noxious and innocuous stimuli is critically dependent on the input-output relationship of its component neurones. Such relationships are routinely examined by assessing neuronal responses to somatic current injection or activation of synaptic inputs. A more complete understanding of input-output relationships would be achieved by comparing, in the same neurone, how the two forms of activation contribute to neuronal output. Therefore, we examined how SDH neurones transform depolarizing current injections and synaptic excitation via peripheral cutaneous stimuli (brush and pinch of the hindpaw) into trains of action potentials, in an in vivo preparation of the adult mouse spinal cord. Under whole-cell current clamp recording conditions four action potential discharge patterns were observed during depolarizing current injection: tonic firing neurones (21/93) discharged spikes throughout the step; initial bursting neurones (35/93) discharged several spikes at step onset; single spiking neurones (16/93) discharged one or two spikes at step onset; and delayed firing neurones (21/93) discharged spikes delayed from the step onset. Four characteristic profiles were observed in response to application of noxious (pinch) and innocuous (brush) cutaneous stimuli: nociceptive neurones (20/37) responded maximally to pinch stimulation; light touch neurones (9/37) responded maximally to brush stimulation; subthreshold neurones (4/37) exhibited depolarizing responses without firing action potentials; and hyperpolarizing neurones (4/37) exhibited a sustained pinch-induced hyperpolarization. Comparisons of current-evoked discharge patterns with peripherally evoked responses indicate SDH neurones expressing each of the four discharge patterns could receive, and therefore participate in the processing of information concerning, either noxious or innocuous stimuli. These data suggest that a neurone's response to current injection does not necessarily help identify or predict how the same neurone will respond to physiologically or functionally relevant stimuli.
Collapse
Affiliation(s)
- B A Graham
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
55
|
Minami T, Matsumura S, Nishizawa M, Sasaguri Y, Hamanaka N, Ito S. Acute and late effects on induction of allodynia by acromelic acid, a mushroom poison related structurally to kainic acid. Br J Pharmacol 2004; 142:679-88. [PMID: 15159282 PMCID: PMC1575046 DOI: 10.1038/sj.bjp.0705834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Ingestion of a poisonous mushroom Clitocybe acromelalga is known to cause severe tactile pain (allodynia) in the extremities for a month and acromelic acid (ACRO), a kainate analogue isolated from the mushroom, produces selective damage of interneurons of the rat lower spinal cord when injected either systemically or intrathecally. Since ACRO has two isomers, ACRO-A and ACRO-B, here we examined their acute and late effects on induction of allodynia. 2. Intrathecal administration of ACRO-A and ACRO-B provoked marked allodynia by the first stimulus 5 min after injection, which lasted over the 50-min experimental period. Dose-dependency of the acute effect of ACRO-A on induction of allodynia showed a bell-shaped pattern from 50 ag x kg(-1) to 0.5 pg x kg(-1) and the maximum effect was observed at 50 fg x kg(-1). On the other hand, ACRO-B induced allodynia in a dose-dependent manner from 50 pg x kg(-1) to 50 ng x kg(-1). 3. N-methyl-d-aspartate (NMDA) receptor antagonists and Joro spider toxin, a Ca(2+)-permeable AMPA receptor antagonist, inhibited the allodynia induced by ACRO-A, but not by ACRO-B. However, other AMPA/kainate antagonists did not affect the allodynia induced by ACRO. 4. Whereas no neuronal damage was observed in the spinal cord in ACRO-A-treated mice, induction of allodynia by ACRO-A (50 fg x kg(-1)) and ACRO-B (50 ng x kg(-1)) was selectively lost 1 week after i.t. injection of a sublethal dose of ACRO-A (50 ng x kg(-1)) or ACRO-B (250 ng x kg(-1)). Higher doses of ACRO-A, however, could evoke allodynia dose-dependently from 50 pg x kg(-1) to 500 ng x kg(-1) in the ACRO-A-treated mice. The allodynia induced by ACRO-A (500 ng x kg(-1)) was not inhibited by Joro spider toxin or NMDA receptor antagonists. These properties of the late allodynia induced by ACRO-A were quite similar to those of the acute allodynia induced by ACRO-B. 5. ACRO-A could increase [Ca(2+)](i) in the deeper laminae, rather than in the superficial laminae, of the spinal cord. This increase was not blocked by the AMPA-preferring antagonist GYKI52466 and Joro spider toxin. 6. Taken together, these results demonstrate the stereospecificity of ACRO for the induction of allodynia and suggest the presence of a receptor specific to ACRO.
Collapse
Affiliation(s)
- Toshiaki Minami
- Department of Anesthesiology, Osaka Medical College, Takatsuki 569-8686, Japan
| | - Shinji Matsumura
- Department of Medical Chemistry, Kansai Medical University, 10–15 Fumizono, Moriguchi 570-8506, Japan
| | - Mikio Nishizawa
- Department of Medical Chemistry, Kansai Medical University, 10–15 Fumizono, Moriguchi 570-8506, Japan
| | - Yasuyuki Sasaguri
- Department of Pathology, University of Occupational Environmental Health, Kitakyushu 807-8555, Japan
| | - Nobuyuki Hamanaka
- Minase Research Institute, Ono Pharmaceutical Ltd, Mishima-gun, Osaka 618-8585, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, 10–15 Fumizono, Moriguchi 570-8506, Japan
- Author for correspondence:
| |
Collapse
|
56
|
Vikman KS, Hill RH, Backström E, Robertson B, Kristensson K. Interferon-gamma induces characteristics of central sensitization in spinal dorsal horn neurons in vitro. Pain 2004; 106:241-251. [PMID: 14659507 DOI: 10.1016/s0304-3959(03)00262-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hyperexcitability of spinal dorsal horn neurons, also known as 'central sensitization', is a component of pain associated with pathological conditions in the nervous system. The aim of the present study was to analyze if the pro-inflammatory cytokine, interferon-gamma (IFN-gamma), which can be released for extended periods of time in the nervous system during inflammatory and infectious events, can alter synaptic activity in dorsal horn neurons and thereby contribute to such hyperexcitability. Treatment of cultured dorsal horn neurons with IFN-gamma for 2 weeks resulted in a significantly reduced clustering of alpha-amino-3-hydroxy-5-methylisoxazole (AMPA) receptor subunit 1 (GluR1) that was dependent on nitric oxide. The neurons displayed an increased frequency and amplitude of excitatory postsynaptic currents (EPSCs) upon IFN-gamma treatment. Treated dorsal horn neurons also exhibited increased responsiveness to stimulation of dorsal root ganglia (DRG) axons in a two-compartment model. Furthermore, disinhibition by the GABA(A) receptor antagonist picrotoxin (PTX) significantly increased EPSC frequency and induced bursting in untreated cultures but did not significantly increase the frequency in treated neurons, which displayed bursting even without PTX. GABA(A) agonists reduced activity more strongly in treated cultures and immunochemical staining for GABA(A) receptors showed no difference from controls. Since GluR1-containing AMPA receptors (AMPARs) occur predominantly on inhibitory neurons in the dorsal horn, we suggest that the IFN-gamma-mediated increase in spontaneous activity and responsiveness to DRG axon stimulation, decrease in sensitivity to PTX and tendency for EPSC bursting result from a reduced expression of GluR1 on these neurons and not from a reduction in active GABA(A) receptors in the network. IFN-gamma thereby likely causes disinhibition of synaptic activity and primary afferent input in the dorsal horn, which consequently results in central sensitization.
Collapse
Affiliation(s)
- Kristina S Vikman
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
57
|
Abstract
Dendritic spines receive excitatory synapses and serve as calcium compartments, which appear to be necessary for input-specific synaptic plasticity. Dendrites of GABAergic interneurons have few or no spines and thus do not possess a clear morphological basis for synapse-specific compartmentalization. We demonstrate using two-photon calcium imaging that activation of single synapses on aspiny dendrites of neocortical fast spiking (FS) interneurons creates highly localized calcium microdomains, often restricted to less than 1 microm of dendritic space. We confirm using ultrastructural reconstruction of imaged dendrites the absence of any morphological basis for this compartmentalization and show that it is dependent on the fast kinetics of calcium-permeable (CP) AMPA receptors and fast local extrusion via the Na+/Ca2+ exchanger. Because aspiny dendrites throughout the CNS express CP-AMPA receptors, we propose that CP-AMPA receptors mediate a spine-free mechanism of input-specific calcium compartmentalization.
Collapse
Affiliation(s)
- Jesse H Goldberg
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | | | | | |
Collapse
|
58
|
|
59
|
Merighi A, Carmignoto G, Gobbo S, Lossi L, Salio C, Vergnano AM, Zonta M. Neurotrophins in spinal cord nociceptive pathways. PROGRESS IN BRAIN RESEARCH 2004; 146:291-321. [PMID: 14699971 DOI: 10.1016/s0079-6123(03)46019-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurotrophins are a well-known family of growth factors for the central and peripheral nervous systems. In the course of the last years, several lines of evidence converged to indicate that some members of the family, particularly NGF and BDNF, also participate in structural and functional plasticity of nociceptive pathways within the dorsal root ganglia and spinal cord. A subpopulation of small-sized dorsal root ganglion neurons is sensitive to NGF and responds to peripheral NGF stimulation with upregulation of BDNF synthesis and increased anterograde transport to the dorsal horn. In the latter, release of BDNF appears to modulate or even mediate nociceptive sensory inputs and pain hypersensitivity. We summarize here the status of the art on the role of neurotrophins in nociceptive pathways, with special emphasis on short-term synaptic and intracellular events that are mediated by this novel class of neuromessengers in the dorsal horn. Under this perspective we review the findings obtained through an array of techniques in naïve and transgenic animals that provide insight into the modulatory mechanisms of BDNF at central synapses. We also report on the results obtained after immunocytochemistry, in situ hybridization, and monitoring intracellular calcium levels by confocal microscopy, that led to hypothesize that also NGF might have a direct central effect in pain modulation. Although it is unclear whether or not NGF may be released at dorsal horn endings of certain nociceptors in vivo, we believe that these findings offer a clue for further studies aiming to elucidate the putative central effects of NGF and other neurotrophins in nociceptive pathways.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Morphophysiology, Rita Levi-Montalcini Center for Brain Repair, Via Leonardo da Vinci 44, 10095 Grugliasco, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
60
|
Malva JO, Vieira AP, Ambrósio AF, Oliveira CR. Cobalt staining of hippocampal neurons mediated by non-desensitizing activation of AMPA but not kainate receptors. Neuroreport 2003; 14:847-50. [PMID: 12858045 DOI: 10.1097/00001756-200305060-00014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Activation of calcium permeable glutamate receptors is likely to be important for neuronal death associated with brain trauma, stroke and neurodegenerative diseases. Cobalt uptake can be used to identify cells containing Ca2+-permeable non-NMDA ionotropic glutamate receptors. However, the relative contribution of AMPA and kainate receptors, and also the role of receptor desensitization on the influx of Co2+, remain to be established. We found that the selective non-desensitizing activation of AMPA receptors was efficient in promoting Co2+ staining. However, the selective activation of kainate receptors, even under non-desensitizing conditions, did not result in Co2+ staining. Taken together, our results show that non-desensitizing stimulation of AMPA, but not of kainate receptors, mediates the influx of Co2+ in cultured rat hippocampal neurons.
Collapse
Affiliation(s)
- João Oliveira Malva
- Center for Neuroscience and Cell Biology of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| | | | | | | |
Collapse
|
61
|
Rideout HJ, Dietrich P, Savalle M, Dauer WT, Stefanis L. Regulation of alpha-synuclein by bFGF in cultured ventral midbrain dopaminergic neurons. J Neurochem 2003; 84:803-13. [PMID: 12562524 DOI: 10.1046/j.1471-4159.2003.01574.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alpha-synuclein is a neuronal protein that is implicated in the control of synaptic vesicle function and in Parkinson's disease (PD). Consequently, alterations of alpha-synuclein levels may play a role in neurotransmission and in PD pathogenesis. However, the factors that regulate alpha-synuclein levels are unknown. Growth factors mediate neurotrophic and plasticity effects in CNS neurons, and may play a role in disease states. Here we examine the regulation of alpha-synuclein levels in primary CNS neurons, with particular emphasis on dopaminergic neurons. E18 rat cortical neurons and dopaminergic neurons of E14 rat ventral midbrain showed an induction of alpha-synuclein protein levels with maturation in culture. Application of basic Fibroblast growth factor (bFGF) promoted alpha-synuclein expression selectively within dopaminergic, and not GABAergic or cortical neurons. This induction was blocked by actinomycin D, but not by inhibition of bFGF-induced glial proliferation. alpha-Synuclein levels were not altered by glial-derived neurotrophic factor (GDNF), or by apoptotic stimuli. We conclude that bFGF promotes alpha-synuclein expression in cultured ventral midbrain dopaminergic neurons through a direct transcriptional effect. These results suggest that distinct growth factors may thus mediate plasticity responses or influence disease states in ventral midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Hardy J Rideout
- Department of Neurology, Columbia University, Black Building Room 326, 650 W. 168th Street, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
62
|
Fischer W, Franke H, Scheibler P, Allgaier C, Illes P. AMPA-induced Ca(2+) influx in cultured rat cortical nonpyramidal neurones: pharmacological characterization using fura-2 microfluorimetry. Eur J Pharmacol 2002; 438:53-62. [PMID: 11906710 DOI: 10.1016/s0014-2999(02)01296-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Immunocytochemical and Co(2+) uptake studies revealed that in primary cultures of rat cortical neurones, the majority of neurones are gamma-aminobutyric acid (GABA) immunopositive and can express Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors. By fura-2 microfluorimetry, it was shown that the stimulation with the selective agonist (S)-AMPA (0.3-300 microM) induced a concentration-dependent but cell-variable increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) (EC(50) value 7.4 microM) in more than 80% of the medium-sized multipolar neurones studied. The AMPA-induced rise in [Ca(2+)](i) seems to be due to Ca(2+) entry through AMPA receptor channels, because the response was abolished in Ca(2+)-free solution and by AMPA receptor selective antagonists, but was not significantly influenced by cyclopiazonic acid, an inhibitor of the endoplasmatic Ca(2+)-ATPase, by selective N-methyl-D-aspartic acid (NMDA) receptor antagonists, as well as the Na(+) channel blocker tetrodotoxin and the majority of tested Ca(2+) channel blockers. In conclusion, the results indicate that the cerebral cortical neurones in culture represent mostly GABAergic interneurone-like cells and the majority of them possess Ca(2+)-permeable AMPA receptors, important for intracellular signal transduction and neuronal plasticity.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
63
|
König N, Poluch S, Estabel J, Durand M, Drian MJ, Exbrayat JM. Synaptic and non-synaptic AMPA receptors permeable to calcium. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 86:1-17. [PMID: 11430460 DOI: 10.1254/jjp.86.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
For a long time, alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors permeable to calcium have been considered to be either non-existent or as "atypical". There is now ample evidence that these receptors exist in numerous regions of the nervous system and in many neuronal as well as non-neuronal cell populations. This evidence has been accumulated by several methods, including electrophysiological recording, calcium imaging and cobalt-loading. Functional AMPA receptors permeable to calcium are already expressed at very early stages of embryonic development, well before the onset of synaptogenesis. They are probably involved in the paracrine signaling necessary for construction of the nervous system before becoming involved in synaptic transmission. In immature cells, cyclothiazide strongly increases the steady-state level of responses not only to AMPA, but also to kainate. Ingestion, during pregnancy, of food or drug substances that can cross the placental barrier and act upon the embryonic receptors may constitute a risk for normal development. In the adult nervous system, synaptic as well as non-synaptic (paracrine) AMPA receptors permeable to calcium are probably widely expressed in both glial and neuronal cells. They may also participate in controlling some aspects related to adult neurogenesis, in particular the migration of newly formed neurons.
Collapse
Affiliation(s)
- N König
- EPHE Quantitative Cell Biology and INSERM U 336, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
64
|
Zhou QQ, Imbe H, Zou S, Dubner R, Ren K. Selective upregulation of the flip-flop splice variants of AMPA receptor subunits in the rat spinal cord after hindpaw inflammation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 88:186-93. [PMID: 11295247 DOI: 10.1016/s0169-328x(01)00041-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glutamate receptors are involved in spinal nociceptive transmission and the development of persistent inflammatory hyperalgesia. It is unclear, however, whether there are changes in glutamate receptor gene expression associated with tissue injury. In the present study, we used reverse transcription-polymerase chain reaction (RT-PCR) to examine the modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor gene expression in the rat spinal cord by inflammation. Inflammation was introduced into the hindpaw by intraplantar injection of 0.2 ml of complete Freund's adjuvant (CFA). At 2 h-14 d after inflammation, total RNAs from L4,5 spinal cord were used for RT-PCR with primers targeted at eight flip-flop splice variants of the AMPA receptor subunits. It was found that the GluR1-flop mRNA was up-regulated at 2 h-5 h (P<0.05), down-regulated at 3 d (P=0.05), and returned to control levels at 7 d following inflammation. The GluR2-flip and GluR3-flop mRNAs were up-regulated at 5 h-1 d (P<0.05) and returned to control levels at 3 d after inflammation. The GluR1-flip mRNA was not detected in the samples and the mRNAs for other splice variants did not exhibit significant changes. Immunocytochemical analysis of GluR1 and GluR2 subunits indicate that the protein translation products of these subunits were also increased in the spinal cord. These results demonstrate an increased expression of AMPA receptor subunits that correlates with the acute phase of CFA-induced inflammation and hyperalgesia. Selective changes in the expression of the flip-flop splice variants of the AMPA receptor suggest a reorganization of the composition of the AMPA receptor complex and its involvement in the development of inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Q Q Zhou
- Department of Oral and Craniofacial Biological Sciences, University of Maryland Dental School, Baltimore, MD 21201-1586, USA
| | | | | | | | | |
Collapse
|
65
|
Vikman KS, Backström E, Kristensson K, Hill RH. A two-compartment in vitro model for studies of modulation of nociceptive transmission. J Neurosci Methods 2001; 105:175-84. [PMID: 11275274 DOI: 10.1016/s0165-0270(00)00360-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Here we present a two-compartment in vitro model in which embryonic rat dorsal root ganglia (DRG) neurons are cultured separately from their target dorsal horn neurons. Although separated, synaptic contact can be established between the peripheral and central neurons since the system allows the DRG axons to project into the other compartment, which contains a network of dorsal horn neurons. The efficacy of the model was evaluated by immunocytochemical, calcium imaging and electrophysiological experiments. The results showed that a subpopulation of the DRG neurons had nociceptor characteristics and that these made synaptic contact with the dorsal horn network. Application of current pulses, according to the stimulus paradigm used, evoked action potentials in DRG axons selectively. This in turn gave rise to increased postsynaptic activity in the network of dorsal horn neurons. The model offers a high degree of efficiency since large numbers of DRG axons can be stimulated simultaneously, thus permitting recording of strong output responses from the dorsal horn neurons. This in vitro model provides a means for studying the mechanisms by which modulatory factors, such as immunoregulatory molecules, applied at either the PNS or the CNS level, can affect synaptic activity and nociceptive transmission in single neurons or network of neurons in the dorsal horn.
Collapse
Affiliation(s)
- K S Vikman
- Department of Neuroscience, Karolinska Institutet, Berzelius väg 3, Stockholm, Sweden
| | | | | | | |
Collapse
|
66
|
Abstract
AMPA receptor-mediated excitotoxicity is proposed to play a major pathogenic role in the selective motoneuron death of amyotrophic lateral sclerosis. Motoneurons have been shown in various models to be more susceptible to AMPA receptor-mediated injury than other spinal neurons. It has been hypothesized that this selective vulnerability of motoneurons is caused by the expression of highly Ca(2+)-permeable AMPA receptors and a complete or relative lack of the AMPA receptor subunit Glu receptor 2 (GluR2). The aim of this study was to quantify the relative Ca(2+) permeability of AMPA receptors and the fractional expression of GluR2 in motoneurons by combining whole-cell patch-clamp electrophysiology and single-cell RT-PCR and to compare these properties with those of dorsal horn neurons. Spinal motoneurons and dorsal horn neurons were isolated from embryonic rats and cultured on spinal astrocytes. As in previous studies, motoneurons were significantly more vulnerable to AMPA and kainate than dorsal horn neurons. However, all motoneurons expressed GluR2 mRNA ( approximately 40% of total AMPA receptor subunit mRNA), and their AMPA receptors had intermediate whole-cell relative Ca(2+) permeability (P(Ca(2+))/P(Cs(+)) approximately 0. 4). AMPA receptor P(Ca(2+))/P(Cs(+)) and the relative abundance of GluR2 varied more widely in dorsal horn neurons than in motoneurons, but the mean values did not differ significantly between the two cell populations. GluR2 was virtually completely edited at the Q/R site both in motoneurons and dorsal horn neurons. These results indicate that the selective vulnerability of motoneurons to AMPA receptor agonists is not determined solely by whole-cell relative Ca(2+) permeability of AMPA receptors.
Collapse
|
67
|
Wisden W, Seeburg P, Monyer H. Chapter IV AMPA, kainate and NMDA ionotropic glutamate receptor expression—an in situ hybridization atlas. GLUTAMATE 2000. [DOI: 10.1016/s0924-8196(00)80045-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|