51
|
Ma C, Storer CE, Chandran U, LaFramboise WA, Petrosko P, Frank M, Hartman DJ, Pantanowitz L, Haritunians T, Head RD, Liu TC. Crohn's disease-associated ATG16L1 T300A genotype is associated with improved survival in gastric cancer. EBioMedicine 2021; 67:103347. [PMID: 33906066 PMCID: PMC8099593 DOI: 10.1016/j.ebiom.2021.103347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND A non-synonymous single nucleotide polymorphism of the ATG16L1 gene, T300A, is a major Crohn's disease (CD) susceptibility allele, and is known to be associated with increased apoptosis induction in the small intestinal crypt base in CD subjects and mouse models. We hypothesized that ATG16L1 T300A genotype also correlates with increased tumor apoptosis and therefore could lead to superior clinical outcome in cancer subjects. METHODS T300A genotyping by Taqman assay was performed for gastric carcinoma subjects who underwent resection from two academic medical centers. Transcriptomic analysis was performed by RNA-seq on formalin-fixed paraffin-embedded cancerous tissue. Tumor apoptosis and autophagy were determined by cleaved caspase-3 and p62 immunohistochemistry, respectively. The subjects' genotypes were correlated with demographics, various histopathologic features, transcriptome, and clinical outcome. FINDINGS Of the 220 genotyped subjects, 163 (74%) subjects carried the T300A allele(s), including 55 (25%) homozygous and 108 (49%) heterozygous subjects. The T300A/T300A subjects had superior overall survival than the other groups. Their tumors were associated with increased CD-like lymphoid aggregates and increased tumor apoptosis without concurrent increase in tumor mitosis or defective autophagy. Transcriptomic analysis showed upregulation of WNT/β-catenin signaling and downregulation of PPAR, EGFR, and inflammatory chemokine pathways in tumors of T300A/T300A subjects. INTERPRETATION Gastric carcinoma of subjects with the T300A/T300A genotype is associated with repressed EGFR and PPAR pathways, increased tumor apoptosis, and improved overall survival. Genotyping gastric cancer subjects may provide additional insight for clinical stratification.
Collapse
Affiliation(s)
- Changqing Ma
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-610, Pittsburgh, PA 15213, United States.
| | - Chad E Storer
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | - William A LaFramboise
- UPMC Hillman Cancer Center, Cancer Genomics Facility, Pittsburgh, PA 15232, United States
| | - Patricia Petrosko
- UPMC Hillman Cancer Center, Cancer Genomics Facility, Pittsburgh, PA 15232, United States
| | - Madison Frank
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-610, Pittsburgh, PA 15213, United States
| | - Douglas J Hartman
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-610, Pittsburgh, PA 15213, United States
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-610, Pittsburgh, PA 15213, United States
| | - Talin Haritunians
- F. Widjaja Family Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, United States
| | - Ta-Chiang Liu
- Departments of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, Saint Louis, MO 63110, United States.
| |
Collapse
|
52
|
Vieira N, Rito T, Correia-Neves M, Sousa N. Sorting Out Sorting Nexins Functions in the Nervous System in Health and Disease. Mol Neurobiol 2021; 58:4070-4106. [PMID: 33931804 PMCID: PMC8280035 DOI: 10.1007/s12035-021-02388-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Endocytosis is a fundamental process that controls protein/lipid composition of the plasma membrane, thereby shaping cellular metabolism, sensing, adhesion, signaling, and nutrient uptake. Endocytosis is essential for the cell to adapt to its surrounding environment, and a tight regulation of the endocytic mechanisms is required to maintain cell function and survival. This is particularly significant in the central nervous system (CNS), where composition of neuronal cell surface is crucial for synaptic functioning. In fact, distinct pathologies of the CNS are tightly linked to abnormal endolysosomal function, and several genome wide association analysis (GWAS) and biochemical studies have identified intracellular trafficking regulators as genetic risk factors for such pathologies. The sorting nexins (SNXs) are a family of proteins involved in protein trafficking regulation and signaling. SNXs dysregulation occurs in patients with Alzheimer’s disease (AD), Down’s syndrome (DS), schizophrenia, ataxia and epilepsy, among others, establishing clear roles for this protein family in pathology. Interestingly, restoration of SNXs levels has been shown to trigger synaptic plasticity recovery in a DS mouse model. This review encompasses an historical and evolutionary overview of SNXs protein family, focusing on its organization, phyla conservation, and evolution throughout the development of the nervous system during speciation. We will also survey SNXs molecular interactions and highlight how defects on SNXs underlie distinct pathologies of the CNS. Ultimately, we discuss possible strategies of intervention, surveying how our knowledge about the fundamental processes regulated by SNXs can be applied to the identification of novel therapeutic avenues for SNXs-related disorders.
Collapse
Affiliation(s)
- Neide Vieira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Teresa Rito
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
53
|
Zhornitskiy A, Shen S, Le LB, Fung BM, Zhornitsky F, Liang T, Limketkai BN, Sauk JS, Tabibian JH. Rates of inflammatory bowel disease in Hispanics comparable to non-Hispanic Whites: results of a cohort study. Int J Colorectal Dis 2021; 36:1043-1051. [PMID: 33410997 DOI: 10.1007/s00384-020-03819-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE Previous studies have suggested that inflammatory bowel disease (IBD) occurs at higher rates among non-Hispanic Whites (NHWs) compared to other ethnicities; however, Hispanics as the largest minority in the United States remain underrepresented in IBD research and we hypothesize that they have similar rates of IBD. We examined the epidemiology, demographics, clinical presentation, and treatment of IBD in a predominantly Hispanic cohort in Los Angeles (LA) County. METHODS This was a retrospective cohort study based at Olive View-UCLA Medical Center, one of the three major safety-net hospitals in LA County. Electronic medical records from 2015 to 2018 were queried, and biopsy-proven cases of IBD (n = 170) were identified. Outcomes included the incidence and prevalence of IBD, disease distribution, treatment, and IBD-related surgery. RESULTS The incidence of IBD among Hispanics was 175 (95% confidence interval [CI] 127-240) and 113 (95% CI 62-200) for NHWs per 100,000 person-years. Prevalence of IBD per 100,000 people was 418 (95% CI 341-512) for Hispanics and 557 (95% CI 431-739) for NHWs. Notably, the proportion of Hispanic IBD patients with a history of smoking was 21.5% vs 50.8% in NHWs (p = 0.011). There were no significant differences between the two groups with regard to Montreal classification, pharmacotherapy, or IBD-related surgery. CONCLUSIONS In one of the largest US studies of Hispanics with IBD, and the only one to have both clinical and histopathologic confirmation as inclusion criteria, we found the incidence and prevalence of IBD among Hispanics to be higher than previously recognized and comparable to NHWs. Additionally, Hispanic IBD patients had lower rates of smoking compared to NHWs.
Collapse
Affiliation(s)
- Alex Zhornitskiy
- Department of Internal Medicine, Santa Monica UCLA Medical Center, Santa Monica, CA, 90404, USA.
| | - Stacy Shen
- Department of Gastroenterology and Hepatology, University of Vermont Medical Center, Burlington, VT, USA
| | - Long B Le
- Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA
| | - Brian M Fung
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Felicia Zhornitsky
- Department of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Tom Liang
- Department of Pathology, LAC-USC Medical Center, Los Angeles, CA, USA
| | - Berkeley N Limketkai
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jenny S Sauk
- Department of Pathology, LAC-USC Medical Center, Los Angeles, CA, USA
| | - James H Tabibian
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Division of Gastroenterology, Department of Medicine, Olive View-UCLA Medical Center, Sylmar, CA, USA
| |
Collapse
|
54
|
Khan N, Patel D, Pernes T, Patel M, Trivedi C, Medvedeva E, Xie D, Yang YX. The Efficacy and Safety of Switching From Originator Infliximab to Single or Double Switch Biosimilar Among a Nationwide Cohort of Inflammatory Bowel Disease Patients. CROHN'S & COLITIS 360 2021; 3:otab022. [PMID: 36778941 PMCID: PMC9802034 DOI: 10.1093/crocol/otab022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Data on safety and efficacy of switching to Renflexis (SB2) from originator Infliximab (IFX) (single switch) or from originator IFX to Inflectra (CT-P13) to Renflexis (double switch) are limited. METHODS We conducted a retrospective cohort study in a nationwide cohort of patient with inflammatory bowel disease (IBD) in remission who were switched to SB2. The main exposure was the treatment course of SB2. There are 2 levels in this variable: single switch (IFX to SB2) and double switch (IFX to CT-P13 to SB2). The outcome is SB2 drug discontinuation rate and/or not being in remission after 1 year. Logistic regression was used to estimate the adjusted and unadjusted odds ratios with 95% confidence intervals to study the efficacy difference between single switch and double switch. RESULTS A total of 271 IBD patients were started on SB2. Among them 52 (19.2%) patients did not achieve remission at 1 year and 14 (5.1%) patients had to discontinue SB2 due to adverse events). In logistic regression analysis after controlling for covariates, there was no statistically significant difference observed in regard to efficacy or safety of the single switch versus double switch to SB2 (adjusted odds ratio for double switch compared to single switch = 1.33 (95% confidence interval 0.74-2.41, P = 0.3432). CONCLUSIONS Among IBD patients in remission, double switch was equally effective as compared to a single switch. This will help reassure the gastroenterologists who have concerns regarding the safety and efficacy of switching between multiple biosimilars for treating IBD.
Collapse
Affiliation(s)
- Nabeel Khan
- Corporal Michael J Crescenz VA Medical Center, Department of Gastroenterology, Philadelphia, Pennsylvania, USA
- University of Pennsylvania, Perelman School of Medicine, Department of Medicine, Philadelphia, Pennsylvania, USA
| | - Dhruvan Patel
- University of Pennsylvania, Perelman School of Medicine, Department of Gastroenterology, Philadelphia, Pennsylvania, USA
| | - Tyler Pernes
- Corporal Michael J Crescenz VA Medical Center, Department of Gastroenterology, Philadelphia, Pennsylvania, USA
| | - Manthankumar Patel
- Corporal Michael J Crescenz VA Medical Center, Department of Gastroenterology, Philadelphia, Pennsylvania, USA
| | - Chinmay Trivedi
- Corporal Michael J Crescenz VA Medical Center, Department of Gastroenterology, Philadelphia, Pennsylvania, USA
| | - Elina Medvedeva
- Corporal Michael J Crescenz VA Medical Center, Department of Gastroenterology, Philadelphia, Pennsylvania, USA
| | - Dawei Xie
- Department of Epidemiology and Biostatistics, Center of Clinical Epidemiology and Biostatistics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yu-Xiao Yang
- Corporal Michael J Crescenz VA Medical Center, Department of Gastroenterology, Philadelphia, Pennsylvania, USA
- University of Pennsylvania, Perelman School of Medicine, Department of Medicine, Philadelphia, Pennsylvania, USA
- Department of Epidemiology and Biostatistics, Center of Clinical Epidemiology and Biostatistics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Epidemiology and Biostatistics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
55
|
Gettler K, Levantovsky R, Moscati A, Giri M, Wu Y, Hsu NY, Chuang LS, Sazonovs A, Venkateswaran S, Korie U, Chasteau C, Duerr RH, Silverberg MS, Snapper SB, Daly MJ, McGovern DP, Brant SR, Rioux JD, Kugathasan S, Anderson CA, Itan Y, Cho JH. Common and Rare Variant Prediction and Penetrance of IBD in a Large, Multi-ethnic, Health System-based Biobank Cohort. Gastroenterology 2021; 160:1546-1557. [PMID: 33359885 PMCID: PMC8237248 DOI: 10.1053/j.gastro.2020.12.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Polygenic risk scores (PRS) may soon be used to predict inflammatory bowel disease (IBD) risk in prevention efforts. We leveraged exome-sequence and single nucleotide polymorphism (SNP) array data from 29,358 individuals in the multiethnic, randomly ascertained health system-based BioMe biobank to define effects of common and rare IBD variants on disease prediction and pathophysiology. METHODS PRS were calculated from European, African American, and Ashkenazi Jewish (AJ) reference case-control studies, and a meta-GWAS run using all three association datasets. PRS were then combined using regression to assess which combination of scores best predicted IBD status in European, AJ, Hispanic, and African American cohorts in BioMe. Additionally, rare variants were assessed in genes associated with very early-onset IBD (VEO-IBD), by estimating genetic penetrance in each BioMe population. RESULTS Combining risk scores based on association data from distinct ancestral populations improved IBD prediction for every population in BioMe and significantly improved prediction among European ancestry UK Biobank individuals. Lower predictive power for non-Europeans was observed, reflecting in part substantially lower African IBD case-control reference sizes. We replicated associations for two VEO-IBD genes, ADAM17 and LRBA, with high dominant model penetrance in BioMe. Autosomal recessive LRBA risk alleles are associated with severe, early-onset autoimmunity; we show that heterozygous carriage of an African-predominant LRBA protein-altering allele is associated with significantly decreased LRBA and CTLA-4 expression with T-cell activation. CONCLUSIONS Greater genetic diversity in African populations improves prediction across populations, and generalizes some VEO-IBD genes. Increasing African American IBD case-collections should be prioritized to reduce health disparities and enhance pathophysiological insight.
Collapse
Affiliation(s)
- Kyle Gettler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Levantovsky
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mamta Giri
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yiming Wu
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nai-Yun Hsu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ling-Shiang Chuang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aleksejs Sazonovs
- Human Genetics, Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Emory University School of Medicine, Atlanta, Georgia
| | - Ujunwa Korie
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Colleen Chasteau
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Richard H Duerr
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark S Silverberg
- Division of Gastroenterology, Mount Sinai Hospital Inflammatory Bowel Disease Centre, Toronto, Ontario, Canada
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology & Nutrition, Boston Children's Hospital, Boston, Massachusetts
| | - Mark J Daly
- Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts; Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Dermot P McGovern
- Medicine and Biomedical Sciences, Cedars-Sinai, Los Angeles, California
| | - Steven R Brant
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, and Department of Genetics and The Human Genetics Institute of New Jersey, Rutgers University, New Brunswick, New Jersey; Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John D Rioux
- Montreal Heart Institute, University of Montreal, Montreal, Canada
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Hepatology & Nutrition, Emory University School of Medicine, Atlanta, Georgia; Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Carl A Anderson
- Human Genetics, Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Judy H Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
56
|
IBD risk prediction using multi-ethnic polygenic risk scores. Nat Rev Gastroenterol Hepatol 2021; 18:217-218. [PMID: 33547451 DOI: 10.1038/s41575-021-00425-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 12/08/2022]
|
57
|
Somineni HK, Nagpal S, Venkateswaran S, Cutler DJ, Okou DT, Haritunians T, Simpson CL, Begum F, Datta LW, Quiros AJ, Seminerio J, Mengesha E, Alexander JS, Baldassano RN, Dudley-Brown S, Cross RK, Dassopoulos T, Denson LA, Dhere TA, Iskandar H, Dryden GW, Hou JK, Hussain SZ, Hyams JS, Isaacs KL, Kader H, Kappelman MD, Katz J, Kellermayer R, Kuemmerle JF, Lazarev M, Li E, Mannon P, Moulton DE, Newberry RD, Patel AS, Pekow J, Saeed SA, Valentine JF, Wang MH, McCauley JL, Abreu MT, Jester T, Molle-Rios Z, Palle S, Scherl EJ, Kwon J, Rioux JD, Duerr RH, Silverberg MS, Zwick ME, Stevens C, Daly MJ, Cho JH, Gibson G, McGovern DPB, Brant SR, Kugathasan S. Whole-genome sequencing of African Americans implicates differential genetic architecture in inflammatory bowel disease. Am J Hum Genet 2021; 108:431-445. [PMID: 33600772 PMCID: PMC8008495 DOI: 10.1016/j.ajhg.2021.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Whether or not populations diverge with respect to the genetic contribution to risk of specific complex diseases is relevant to understanding the evolution of susceptibility and origins of health disparities. Here, we describe a large-scale whole-genome sequencing study of inflammatory bowel disease encompassing 1,774 affected individuals and 1,644 healthy control Americans with African ancestry (African Americans). Although no new loci for inflammatory bowel disease are discovered at genome-wide significance levels, we identify numerous instances of differential effect sizes in combination with divergent allele frequencies. For example, the major effect at PTGER4 fine maps to a single credible interval of 22 SNPs corresponding to one of four independent associations at the locus in European ancestry individuals but with an elevated odds ratio for Crohn disease in African Americans. A rare variant aggregate analysis implicates Ca2+-binding neuro-immunomodulator CALB2 in ulcerative colitis. Highly significant overall overlap of common variant risk for inflammatory bowel disease susceptibility between individuals with African and European ancestries was observed, with 41 of 241 previously known lead variants replicated and overall correlations in effect sizes of 0.68 for combined inflammatory bowel disease. Nevertheless, subtle differences influence the performance of polygenic risk scores, and we show that ancestry-appropriate weights significantly improve polygenic prediction in the highest percentiles of risk. The median amount of variance explained per locus remains the same in African and European cohorts, providing evidence for compensation of effect sizes as allele frequencies diverge, as expected under a highly polygenic model of disease.
Collapse
Affiliation(s)
- Hari K Somineni
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA 30322, USA; Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Sini Nagpal
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - David T Okou
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Talin Haritunians
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Claire L Simpson
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ferdouse Begum
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lisa W Datta
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Antonio J Quiros
- Department of Pediatrics, Medical University of South Carolina, Pediatric Center for Inflammatory Bowel Disorders, Summerville, SC 29485, USA
| | - Jenifer Seminerio
- Department of Gastroenterology, Medical University of South Carolina Digestive Disease Center, Charleston, SC 29425, USA
| | - Emebet Mengesha
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jonathan S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Robert N Baldassano
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sharon Dudley-Brown
- Department of Medicine, Johns Hopkins University Schools of Medicine & Nursing, Baltimore, MD 21205, USA
| | - Raymond K Cross
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Themistocles Dassopoulos
- Baylor Scott and White Center for Inflammatory Bowel Diseases, Texas A&M University, Dallas, TX 75202, USA
| | - Lee A Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tanvi A Dhere
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Heba Iskandar
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gerald W Dryden
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jason K Hou
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sunny Z Hussain
- Department of Pediatrics, Willis-Knighton Physician Network, Shreveport, LA 71101, USA
| | - Jeffrey S Hyams
- Connecticut Children's Medical Center, Hartford, CT 06106, USA
| | - Kim L Isaacs
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Howard Kader
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael D Kappelman
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jeffry Katz
- Case Western Reserve University, Cleveland, OH 44106, USA
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - John F Kuemmerle
- Division of Gastroenterology, Hepatology and Nutrition, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Mark Lazarev
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ellen Li
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Peter Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashish S Patel
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joel Pekow
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | | | - John F Valentine
- University of Utah, Health Sciences, Salt Lake City, UT 84132, USA
| | - Ming-Hsi Wang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacob L McCauley
- John P. Hussman Institute for Human Genomics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136 USA; The Dr. John T. Macdonald Foundation Department of Human Genetics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Maria T Abreu
- Division of Gastroenterology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Traci Jester
- Department of Pediatrics, UAB Medicine, Birmingham, AL 35233, USA
| | - Zarela Molle-Rios
- Pediatric Gastroenterology and Nutrition, Nemours duPont Hospital for Children, DE 19803, USA
| | - Sirish Palle
- Department of Pediatrics, Oklahoma University School of Medicine, Oklahoma City, OK 73104, USA
| | - Ellen J Scherl
- Gastroenterology and Hepatology, Jill Roberts Center for IBD, Weill Cornell Medicine, New York, NY 10065, USA
| | - John Kwon
- UT Southwestern Department of Internal Medicine, Dallas, TX 75390, USA
| | - John D Rioux
- Department of Medicine, Université de Montréal and the Montreal Heart Institute Research Center, Montreal, QC H1Y3N1, Canada
| | - Richard H Duerr
- Human Genetics, and Clinical and Translational Science, Pittsburgh, PA 15213, USA
| | - Mark S Silverberg
- Department of Medicine, Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, University of Toronto, Toronto, ON M5T3L9, Canada
| | - Michael E Zwick
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Christine Stevens
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Judy H Cho
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Dermot P B McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Steven R Brant
- The Human Genetics Institute of New Jersey, Rutgers University, New Brunswick and Piscataway, NJ 08854, USA
| | - Subra Kugathasan
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA 30322, USA; Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
58
|
Ansari MA, Marchi E, Ramamurthy N, Aschenbrenner D, Morgan S, Hackstein CP, Lin SK, Bowden R, Sharma E, Pedergnana V, Venkateswaran S, Kugathasan S, Mo A, Gibson G, Cooke GS, McLauchlan J, Baillie JK, Teichmann S, Mentzer A, Knight J, Todd JA, Hinks T, Barnes EJ, Uhlig HH, Klenerman P, STOP-HCV consortium, ISARIC-4C Investigators. In vivo negative regulation of SARS-CoV-2 receptor, ACE2, by interferons and its genetic control. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16559.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Angiotensin I converting enzyme 2 (ACE2) is a receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and differences in its expression may affect susceptibility to infection. Methods: We performed a genome-wide expression quantitative trait loci (eQTL) analysis using hepatitis C virus-infected liver tissue from 190 individuals. Results: We discovered that polymorphism in a type III interferon gene (IFNL4), which eliminates IFN-λ4 production, is associated with a two-fold increase in ACE2 RNA expression. Conversely, among genes negatively correlated with ACE2 expression, IFN-signalling pathways were highly enriched and ACE2 was downregulated after IFN-α treatment. Negative correlation was also found in the gastrointestinal tract where inflammation driven IFN-stimulated genes were negatively correlated with ACE2 expression and in lung tissue from a murine model of SARS-CoV-1 infection suggesting conserved regulation of ACE2 across tissue and species. Conclusions: We conclude that ACE2 is likely a negatively-regulated interferon-stimulated gene (ISG) and carriage of IFNL4 gene alleles which modulates ISGs expression in viral infection may play a role in SARS-CoV-2 pathogenesis with implications for therapeutic interventions.
Collapse
|
59
|
Barnes EL, Loftus EV, Kappelman MD. Effects of Race and Ethnicity on Diagnosis and Management of Inflammatory Bowel Diseases. Gastroenterology 2021; 160:677-689. [PMID: 33098884 DOI: 10.1053/j.gastro.2020.08.064] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
Abstract
Although Crohn's disease (CD) and ulcerative colitis (UC) have been considered as disorders that affect individuals of European ancestry, the epidemiology of the inflammatory bowel diseases (IBDs) is changing. Coupled with the increasing incidence of IBD in previously low-incidence areas, the population demographics of IBD in the United States are also changing, with increases among non-White races and ethnicities. It is therefore important to fully understand the epidemiology and progression of IBD in different racial and ethnic groups, and the effects of race and ethnicity on access to care, use of resources, and disease-related outcomes. We review differences in IBD development and progression among patients of different races and ethnicities, discussing the effects of factors such as access to care, delays in diagnosis, and health and disease perception on disparities in IBD care and outcomes. We identify research priorities for improving health equity among minority patients with IBD.
Collapse
Affiliation(s)
- Edward L Barnes
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Multidisciplinary Center for Inflammatory Bowel Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Edward V Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Michael D Kappelman
- Multidisciplinary Center for Inflammatory Bowel Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Division of Pediatric Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
60
|
Li F, Liu J, Liu W, Gao J, Lei Q, Han H, Yang J, Li H, Cao D, Zhou Y. Genome-wide association study of body size traits in Wenshang Barred chickens based on the specific-locus amplified fragment sequencing technology. Anim Sci J 2021; 92:e13506. [PMID: 33398896 DOI: 10.1111/asj.13506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Chicken body size (BS) is an economically important trait, which has been assessed in many studies for genetic selection. However, previous reports detected functional chromosome mutations or regions using gene chips. The present study used the specific-locus amplified fragment sequencing (SLAF-seq) technology to perform a genome-wide association study (GWAS) of purebred Wenshang Barred chickens. A total of 250 one-day-old male chickens were assessed in this study. Body size in individual birds was measured at 56 days. SLAF-seq was used to genotype and GWAS analysis was carried out using the general linear model (GLM) of the TASSEL program. A total of 1,286,715 single-nucleotide polymorphisms (SNPs) were detected, of which 175,211 were tested as candidate SNPs for genome-wide association analysis using the TASSEL general linear model. Three SNPs markers reached genome-wide significance. Of these, chrZ:81729634, chrZ:81841715, and chrZ:81954149 at 81,729,634, 81,841,715, and 81,954,149 bp of GGA Z were significantly associated with body diagonal length at 56 days (BDL56); and tibia length at 56 days (TL56). These SNPs were close to three genes, including ZCCHC7, PAX5, and MELK. These results open new horizons for studies on BS and should promote the use of Chinese chickens, especially Wenshang Barred chickens.
Collapse
Affiliation(s)
- Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Jinbo Gao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Ji'nan, P. R. China
| | - Huimin Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, Ji'nan, P. R. China.,Poultry Breeding Engineering Technology Center of Shandong Province, Ji'nan, P. R. China.,The Key Lab of Poultry Disease Diagnosis and Immunology of Shandong Province, Ji'nan, P. R. China
| |
Collapse
|
61
|
Gao Y, Du L, Li F, Ding J, Li G, Cao Q, Li N, Su G, Kijlstra A, Yang P. The haplotypes of various TNF related genes associated with scleritis in Chinese Han. Hum Genomics 2020; 14:46. [PMID: 33287909 PMCID: PMC7720609 DOI: 10.1186/s40246-020-00296-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background Several studies have stated that TNF-α participates in the pathogenesis of scleritis, but also in several systemic autoimmune diseases and vasculitis, of which some are associated with scleritis. Earlier GWAS and SNP studies have confirmed that multiple SNPs of TNF related genes are associated with many immune-mediated disorders. The purpose of this study was to examine the association of TNF related gene polymorphisms with scleritis in Chinese Han. A case-control study was carried out in 556 non-infectious scleritis cases and 742 normal controls. A total of 28 single-nucleotide polymorphisms (SNPs) were genotyped by the iPLEXGold genotyping assay. Results No significant correlations were seen between the individual SNPs in the TNF related genes and scleritis. Haplotype analysis showed a significantly decreased frequency of a TNFAIP3 TGT haplotype (order of SNPs: rs9494885, rs3799491, rs2230926) (Pc = 0.021, OR = 0.717, 95% CI = 0.563–0.913) and a significantly increased frequency of a TNFSF4 GT haplotype (order of SNPs: rs3850641, rs704840) (Pc = 0.004, OR = 1.691, 95% CI = 1.205–2.372) and TNFSF15 CCC haplotype (order of SNPs: rs6478106, rs3810936, rs7865494) (Pc = 0.012, OR = 1.662, 95% CI = 1.168–2.363) in patients with scleritis as compared with healthy volunteers. Conclusions This study reveals that a TGT haplotype in TNFAIP3 may be a protective factor for the development of scleritis and that a GT haplotype in TNFSF4 and a CCC haplotype in TNFSF15 may be risk factors for scleritis in Chinese Han.
Collapse
Affiliation(s)
- Yingnan Gao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China
| | - Fuzhen Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China
| | - Jiadong Ding
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China.,The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Geng Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Youyi Road 1, Chongqing, 400016, People's Republic of China
| | - Na Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Youyi Road 1, Chongqing, 400016, People's Republic of China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, Limburg, the Netherlands
| | - Peizeng Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Jianshe East Road 1, Zhengzhou, 450052, People's Republic of China. .,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Youyi Road 1, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
62
|
Hodges P, Kelly P. Inflammatory bowel disease in Africa: what is the current state of knowledge? Int Health 2020; 12:222-230. [PMID: 32133502 PMCID: PMC7320423 DOI: 10.1093/inthealth/ihaa005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/16/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is increasingly recognized as a global disease in the twenty-first century; however, little is known about its epidemiology in Africa. We conducted a literature review in order to assess what is currently known on this subject, the results of which are reported here. Based on available observational studies, it appears that the incidence of IBD in Africa is rising, although comprehensive epidemiological data are lacking. This is likely due to multiple factors, including shifting trends in diet and exposure to environmental pathogens. Many challenges relating to IBD exist for healthcare systems in Africa, including the need for improved access to diagnostic facilities such as endoscopy and histopathology, and the potential economic burden of treatment. Intestinal TB also represents a significant confounding factor in the diagnosis of IBD in Africa.
Collapse
Affiliation(s)
- Phoebe Hodges
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paul Kelly
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Tropical Gastroenterology and Nutrition Group, University of Zambia School of Medicine, University Teaching Hospital Nationalist Road, Lusaka, Zambia
| |
Collapse
|
63
|
Fan L, Li L, Huang C, Huang S, Deng J, Xiong J. Increased SNX20 and PD-L1 Levels Can Predict the Clinical Response to PD-1 Inhibitors in Lung Adenocarcinoma. Onco Targets Ther 2020; 13:10075-10085. [PMID: 33116590 PMCID: PMC7555289 DOI: 10.2147/ott.s262909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Programmed death ligand 1 (PD-L1) is widely used for predicting immune checkpoint inhibitors but has a limited effect on predicting clinical response. The aim of this study was to examine the prognostic value and PD-1 inhibitor therapeutic efficiency of SNX20 in lung adenocarcinoma. Methods We evaluated the mRNA and protein expression levels of SNX20 and PD-L1 and confirmed their predictive role in clinical response to anti-PD-1 therapy in 56 patients with advanced, refractory lung adenocarcinoma treated with PD-1 inhibitors. The expression of SNX family in different cancer types and the relationship between SNX20 and immune cells were evaluated in TCGA. The protein expression levels of SNX20, PD-L1 in 56 lung adenocarcinoma tissues were evaluated by immunohistochemistry. Results SNX20 mRNA expression has the strongest relationship with CD8a of the sorting nexin (SNX) family in lung adenocarcinoma and is strongly correlated with immune infiltration levels in 30 cancer types, especially in lung adenocarcinoma. A positive correlation between SNX20 and PD-L1 was found based on immunohistochemical data (Pearson’s r=0.3731 and p=0.0466). SNX20 and PD-L1 were also observed to have a significant positive correlation at the mRNA level. According to the receiver operating characteristic (ROC) curve, the best expression differentiation score of SNX20 and PD-L1 between responder versus non-responders in patients with lung adenocarcinoma using PD-1 inhibitors is 5. In univariate logistic regression analysis, both SNX20 (odds ratio [OR]=3.778, p=0.019) and PD-L1 (OR=5.727, p=0.004) expression levels are significant predictors of clinical response in the PD-1 inhibitor responder group, and SNX20 (OR=3.575, p=0.038) and PD-L1 (OR=5.484, p=0.007) are also predictors of the response to PD-1 inhibitors in the multivariate analysis. High SNX20/high PD-L1 expression group had longer overall survival than patients with high SNX20/low PD-L1 expression group or low SNX20/high PD-L1 expression group (p=0.013) and patients with low SNX20/low PD-L1 expression group (p=0.01). Conclusion SNX20 expression can be a promising predictor for therapeutic decision-making and treatment response assessment regarding PD-1 inhibitors, and special attention is required for the subgroup of patients with lung adenocarcinoma whose tumors express both high SNX20 and PD-L1.
Collapse
Affiliation(s)
- Linwei Fan
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| |
Collapse
|
64
|
Guo L, Huang W, Tong F, Chen X, Cao S, Xu H, Luo W, Li Z, Nie Q. Whole Transcriptome Analysis of Chicken Bursa Reveals Candidate Gene That Enhances the Host's Immune Response to Coccidiosis. Front Physiol 2020; 11:573676. [PMID: 33192575 PMCID: PMC7662072 DOI: 10.3389/fphys.2020.573676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Coccidiosis is a major hazard to the chicken industry, but the host’s immune response to coccidiosis remains unclear. Here, we performed Eimeria coccidia challenge in 28-day-old ROSS 308 broilers and selected the bursa from the three most severely affected individuals and three healthy individuals for RNA sequencing. We obtained 347 DEGs from RNA-seq and found that 7 upregulated DEGs were enriched in Cytokine-cytokine receptor interaction pathway. As the DEGs with the highest expression abundance in these 7 genes, TNFRSF6B was speculated to participate in the process of host’s immune response to coccidiosis. It is showed that TNFRSF6B can polarize macrophages to M1 subtype and promote inflammatory cytokines expression. In addition, the expression of TNFRSF6B suppressed HD11 cells apoptosis by downregulating Fas signal pathway. Besides, TNFRSF6B-mediated macrophages immunity activation can be reversed by apoptosis. Overall, our study indicates that TNFRSF6B upregulated in BAE, is capable of aggravating the inflammatory response by inhibiting macrophages apoptosis via downregulating Fas signal pathway, which may participate in host’s immune response to coccidiosis.
Collapse
Affiliation(s)
- Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Weiling Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Feng Tong
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Xiaolan Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Sen Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Wei Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
65
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
66
|
Epigenome-metabolome-microbiome axis in health and IBD. Curr Opin Microbiol 2020; 56:97-108. [PMID: 32920333 DOI: 10.1016/j.mib.2020.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Environmental triggers in the context of genetic susceptibility drive phenotypes of complex immune disorders such as Inflammatory bowel disease (IBD). One such trigger of IBD is perturbations in enteric commensal bacteria, fungi or viruses that shape both immune and neuronal state. The epigenome acts as an interface between microbiota and context-specific gene expression and is thus emerging as a third key contributor to IBD. Here we review evidence that the host epigenome plays a significant role in orchestrating the bidirectional crosstalk between mammals and their commensal microorganisms. We discuss disruption of chromatin regulatory regions and epigenetic enzyme mutants as a causative factor in IBD patients and mouse models of intestinal inflammation and consider the possible translation of this knowledge. Furthermore, we present emerging insights into the intricate connection between the microbiome and epigenetic enzyme activity via host or bacterial metabolites and how these interactions fine-tune the microorganism-host relationship.
Collapse
|
67
|
Miyoshi J, Lee STM, Kennedy M, Puertolas M, Frith M, Koval JC, Miyoshi S, Antonopoulos DA, Leone V, Chang EB. Metagenomic Alterations in Gut Microbiota Precede and Predict Onset of Colitis in the IL10 Gene-Deficient Murine Model. Cell Mol Gastroenterol Hepatol 2020; 11:491-502. [PMID: 32835897 PMCID: PMC7797374 DOI: 10.1016/j.jcmgh.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Inflammatory bowel diseases (IBD) are chronic inflammatory disorders where predictive biomarkers for the disease development and clinical course are sorely needed for development of prevention and early intervention strategies that can be implemented to improve clinical outcomes. Since gut microbiome alterations can reflect and/or contribute to impending host health changes, we examined whether gut microbiota metagenomic profiles would provide more robust measures for predicting disease outcomes in colitis-prone hosts. METHODS Using the interleukin (IL) 10 gene-deficient (IL10 KO) murine model where early life dysbiosis from antibiotic (cefoperozone [CPZ]) treated dams vertically transferred to pups increases risk for colitis later in life, we investigated temporal metagenomic profiles in the gut microbiota of post-weaning offspring and determined their relationship to eventual clinical outcomes. RESULTS Compared to controls, offspring acquiring maternal CPZ-induced dysbiosis exhibited a restructuring of intestinal microbial membership in both bacteriome and mycobiome that was associated with alterations in specific functional subsystems. Furthermore, among IL10 KO offspring from CPZ-treated dams, several functional subsystems, particularly nitrogen metabolism, diverged between mice that developed spontaneous colitis (CPZ-colitis) versus those that did not (CPZ-no-colitis) at a time point prior to eventual clinical outcome. CONCLUSIONS Our findings provide support that functional metagenomic profiling of gut microbes has potential and promise meriting further study for development of tools to assess risk and manage human IBD.
Collapse
Affiliation(s)
- Jun Miyoshi
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois; Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Tokyo, Japan
| | - Sonny T M Lee
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois; Division of Biology, Kansas State University, Manhattan, Kansas
| | - Megan Kennedy
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois; Medical Scientist Training Program, Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Mora Puertolas
- Department of Pediatrics, University of Chicago Knapp Center for Biomedical Discovery, Chicago, Illinois
| | - Mary Frith
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois; Medical Scientist Training Program, Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Jason C Koval
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois
| | - Sawako Miyoshi
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois; Department of General Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Dionysios A Antonopoulos
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois; Biosciences Division, Argonne National Laboratory, Lemont, Illinois
| | - Vanessa Leone
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois
| | - Eugene B Chang
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, Chicago, Illinois.
| |
Collapse
|
68
|
Singh M, Singh V, Schurman JV, Colombo JM, Friesen CA. The relationship between mucosal inflammatory cells, specific symptoms, and psychological functioning in youth with irritable bowel syndrome. Sci Rep 2020; 10:11988. [PMID: 32686762 PMCID: PMC7371888 DOI: 10.1038/s41598-020-68961-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Both mucosal inflammation and psychologic dysfunction have been implicated in irritable bowel syndrome (IBS). While some relationships between inflammation (mast cells and eosinophils) and depression have been reported in adults with IBS, relationships between inflammation and psychologic function have not been studied in children and adolescents. The aims of the current study were to: (1) assess densities of colonic mast cells, eosinophils, and TH17 cells in youth with IBS; and, (2) explore relationships between these cells and specific IBS symptoms and psychologic functioning. Utilizing previously obtained biopsies from the descending and rectosigmoid colons, densities were determined for mast cells, eosinophils, and TH17 cells, respectively, in 37 youth with IBS and 10 controls. In IBS patients, densities were assessed in relation to specific IBS symptoms and in relation to self-report anxiety and depression scores. In both the descending and rectosigmoid colons, densities of mast cells, eosinophils, and TH17 cells were higher in IBS patients as compared to controls. In IBS patients, rectosigmoid mast cell density was higher in those reporting pain relief with defecation. Also, in IBS patients, rectosigmoid eosinophilia was associated with higher anxiety scores and eosinophil density correlated with depression scores. In the descending colon, eosinophil and mast cell densities both correlated with depression scores. In conclusion, mucosal inflammation (mast cells and eosinophils) is associated with pain relief with defecation and with anxiety and depression in youth with IBS.
Collapse
Affiliation(s)
- Meenal Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Vivekanand Singh
- Department of Pathology, The University of Texas Southwestern Medical Center, 1935 Medical District Drive, Dallas, TX, 75235, USA
| | - Jennifer V Schurman
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Jennifer M Colombo
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Craig A Friesen
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO, 64108, USA.
| |
Collapse
|
69
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
70
|
Zhong Z, Su G, Kijlstra A, Yang P. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis. Prog Retin Eye Res 2020; 80:100866. [PMID: 32422390 DOI: 10.1016/j.preteyeres.2020.100866] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Uveitis is a group of diseases characterized by intraocular inflammation, of which some are driven by autoinflammatory or autoimmune responses, such as Vogt-Koyanagi-Harada disease, Behçet's disease, uveitis associated with spondyloarthritis, ocular sarcoidosis, sympathetic ophthalmia and birdshot chorioretinopathy. These entities have various clinical forms, but genetic and biomarker data suggest that they share a common molecular basis, activation of the Interleukin (IL)-23/IL-17 pathway. Multiple factors including genetic predisposition, various cytokine imbalances, infectious agents and gut alterations are found to trigger an aberrant response of this pathway. The enhanced activity of the IL-23/IL-17 pathway is committed to the expansion and pathogenicity of Th17 cells. Evidence from animal models demonstrates that the development of pathogenic Th17 cells is responsible for the induction of experimental autoimmune uveitis. Further findings indicate that retinal pigment epithelium (RPE) cells may be a target of IL-17. IL-17 triggers downstream inflammatory cascades and causes dysfunction of RPE cells, which may affect retinal barrier function and thereby promote intraocular inflammation. Currently, several emerging drugs blocking the IL-23/IL-17 pathway have been assessed for the treatment of uveitis in pilot studies. The purpose of this is to summarize updated biological knowledge and preliminary clinical data, providing the rationale for further development and evaluation of novel drugs targeting the IL-23/IL-17 pathway in autoinflammatory and autoimmune uveitis. Future studies may focus on translational medicine targeting the IL-23/IL-17 pathway for the improvement of diagnosis and treatment of uveitis. In conclusion, activation of the IL-23/IL-17 pathway is a critical biological event and can be an important target for the treatment of autoinflammatory and autoimmune uveitis.
Collapse
Affiliation(s)
- Zhenyu Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, the Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China.
| |
Collapse
|
71
|
Barnes EL, Bauer CM, Sandler RS, Kappelman MD, Long MD. Black and White Patients With Inflammatory Bowel Disease Show Similar Biologic Use Patterns With Medicaid Insurance. Inflamm Bowel Dis 2020; 27:364-370. [PMID: 32405642 PMCID: PMC7885313 DOI: 10.1093/ibd/izaa090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Prior studies have identified racial disparities in the treatment and outcomes of inflammatory bowel disease (IBD). These disparities could be secondary to differences in biology, care delivery, or access to appropriate therapy. The primary aim of this study was to compare medication use among Medicaid-insured black and white patients with IBD, given uniform access to gastroenterologists and therapies. METHODS We analyzed Medicaid Analytic eXtract data from 4 states (California, Georgia, North Carolina, and Texas) between 2006 and 2011. We compared the use of IBD-specific therapies, including analyses of postoperative therapy among patients with Crohn disease (CD). We performed bivariate analyses and multivariable logistic regression, adjusting for potential confounders. RESULTS We identified 14,735 patients with IBD (4672 black [32%], 8277 with CD [58%]). In multivariable analysis, there was no significant difference in the odds of anti-tumor necrosis factor use by race for CD (adjusted odds ratio [aOR] = 1.13; 95% confidence interval [CI], 0.99-1.28] or ulcerative colitis (aOR = 1.12; 95% CI, 0.96-1.32). Black patients with CD were more likely than white patients to receive combination therapy (aOR = 1.50; 95% CI, 1.15-1.96), and black patients were more likely than white patients to receive immunomodulator monotherapy after surgery for CD (31% vs 18%; P = 0.004). CONCLUSIONS In patients with Medicaid insurance, where access to IBD-specific therapy should be similar for all individuals, there was no significant disparity by race in the utilization of IBD-specific therapies. Disparities in IBD treatment discussed in prior literature seem to be driven by socioeconomic or other issues affecting access to care.
Collapse
Affiliation(s)
- Edward L Barnes
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Multidisciplinary Center for Inflammatory Bowel Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Address correspondence to: Edward L. Barnes, MD, MPH, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Campus Box #7080, 130 Mason Farm Road, Chapel Hill, NC 27599-7080 ()
| | - Christina M Bauer
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Multidisciplinary Center for Inflammatory Bowel Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert S Sandler
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael D Kappelman
- Multidisciplinary Center for Inflammatory Bowel Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Division of Pediatric Gastroenterology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Millie D Long
- Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Multidisciplinary Center for Inflammatory Bowel Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
72
|
Luo R, Yang Y, Cheng YC, Chang D, Liu TT, Li YQ, Dai W, Zuo MY, Xu YL, Zhang CX, Ge SW, Xu G. Plasma chemokine CXC motif-ligand 16 as a predictor of renal prognosis in immunoglobulin A nephropathy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:381. [PMID: 32355825 PMCID: PMC7186753 DOI: 10.21037/atm.2020.02.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background There are few non-invasive biomarkers that have been identified to improve the risk stratification of patients with IgA nephropathy (IgAN). CXCL16 has been shown to play a key role as a chemoattractant, adhesion, and fibrosis factor in inflammatory disease. This study evaluated the potential for CXCL16 plasma as a potential biomarker in patients with IgAN. Methods Plasma CXCL16 was measured in 230 patients with renal biopsied IgAN enrolled from 2012 to 2014. The patients were followed for 41.3 months, with a 50% reduction in estimated glomerular filtration rate or end-stage renal disease as endpoints. Results The plasma CXCL16 levels in IgAN patients were strongly correlated with the uric acid, estimated glomerular filtration rate and tubular atrophy/interstitial fibrosis score in multivariate analysis. Furthermore, counts of CD4+ T cells, CD8+ T cells, and CD20+ B cells in renal biopsies of IgAN patients were significantly correlated with the plasma CXCL16 levels, but not CD68+ macrophage. Lastly, we concluded that patients with higher levels of plasma CXCL16 had an increased risk of poor renal outcome compared to those with lower levels. There was no association between the polymorphisms and clinical parameters of CXCL16, including the levels and prognosis of plasma CXCL16. Conclusions Plasma CXCL16 levels were associated with clinical parameters; pathological damage; CD4+ T cell, CD8+ T cell, and CD20+ B cell infiltration in renal tissue; and renal outcome in IgAN patients. Plasma CXCL16 might be a potential prognosis predictor in Chinese IgAN patients.
Collapse
Affiliation(s)
- Ran Luo
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Yang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi-Chun Cheng
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Chang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting-Ting Liu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue-Qiang Li
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Dai
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mei-Ying Zuo
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu-Lin Xu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chun-Xiu Zhang
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shu-Wang Ge
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Xu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
73
|
Mehrjoo Z, Kahrizi K, Mohseni M, Akbari M, Arzhangi S, Jalalvand K, Najmabadi H, Farhadi M, Mohseni M, Asghari A, Mohebbi S, Daneshi A. Limbic System Associated Membrane Protein Mutation in an Iranian Family Diagnosed with Ménière's Disease. ARCHIVES OF IRANIAN MEDICINE 2020; 23:319-325. [PMID: 32383616 DOI: 10.34172/aim.2020.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/26/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ménière's disease (MD) is a common inner ear disorder which is characterized by recurrent attacks of vertigo, fluctuating sensorineural hearing loss (SNHL), tinnitus, and a sense of fullness in the affected ear. MD is a complex disorder; although six genes have been linked to familial autosomal dominant form of the disease, in many cases, the exact genetic etiology remains elusive. METHODS To elucidate the genetic causes of MD in an Iranian family, we performed exome sequencing on all members of the family: consanguineous parents and four children (two affected and two unaffected). Variant filtering was completed using a customized workflow keeping variants based on segregation with MD in autosomal recessive (AR) inheritance pattern, minor allele frequency (MAF), and in-silico prediction of pathogenicity. RESULTS Analysis revealed that in this family, 970 variants co-segregated with MD in AR pattern, out of which eight variants (one intergenic, four intronic, and three exonic) were extremely rare. The exonic variants included a synonymous substitution in USP3 gene, an in-frame deletion in ZBED2 gene, and a rare, highly conserved deleterious missense alteration in LSAMP gene. CONCLUSION The phenotype observed in the proband described here, i.e. vertigo, poor sense of smell, tinnitus, and borderline hearing ability, may originate from aberrant changes in the cerebellum and limbic system due to a deleterious mutation in the LSAMP gene; hence, LSAMP mutation is a possible candidate for the etiology of MD in this family.
Collapse
Affiliation(s)
- Zohreh Mehrjoo
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojdeh Akbari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Khadijeh Jalalvand
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mohseni
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Saleh Mohebbi
- Skull Base Research Center, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Daneshi
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Hospital, The Five Senses Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
74
|
Chyuan IT, Lai JH. New insights into the IL-12 and IL-23: From a molecular basis to clinical application in immune-mediated inflammation and cancers. Biochem Pharmacol 2020; 175:113928. [PMID: 32217101 DOI: 10.1016/j.bcp.2020.113928] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022]
Abstract
The cytokines interleukin-12 (IL-12) and IL-23 share a common IL-12/IL-23p40 subunit in structure and play a central role in T cell-mediated responses in inflammation. Over-activated IL-12 and IL-23 signaling drives aberrant T helper (Th) 1 and Th17 immune responses and contributes to immune-mediated diseases. Evidence from genome-wide association studies has shown that genetic alterations in the IL-12/IL-23 signaling pathways have significant links with chronic inflammation. In addition, accumulating evidence from animal models and clinical trials has provided insights into the effectiveness of blocking the IL-12/IL-23 pathways in immune regulation, broadening the clinical indications of IL-12/IL-23 pathway effectors in immune-mediated diseases. More recently, it has been addressed that the balance between IL and 12 and IL-23 is also critical in carcinogenesis. IL-12- and IL-23-driven T cell cytokines are especially important in controlling tumor initiation, growth, and metastasis, and thus, the IL-12/IL-23 pathway may be a promising target for immunotherapy. This review focuses on IL-12/IL-23 signal transduction and biological functionality in autoimmunity and oncoimmunology. We discuss the therapeutic rationale for targeting these cytokines to treat immune-mediated diseases and issues regarding their inadvertent consequences in the balance of host defense and tumor surveillance and summarize their recent clinical applications in immune-mediated diseases.
Collapse
Affiliation(s)
- I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan; Department of Medical Research, Cathay General Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
75
|
Cohen M, Lamparello AJ, Schimunek L, El-Dehaibi F, Namas RA, Xu Y, Kaynar AM, Billiar TR, Vodovotz Y. Quality Control Measures and Validation in Gene Association Studies: Lessons for Acute Illness. Shock 2020; 53:256-268. [PMID: 31365490 PMCID: PMC6989353 DOI: 10.1097/shk.0000000000001409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Acute illness is a complex constellation of responses involving dysregulated inflammatory and immune responses, which are ultimately associated with multiple organ dysfunction. Gene association studies have associated single-nucleotide polymorphisms (SNPs) with clinical and pharmacological outcomes in a variety of disease states, including acute illness. With approximately 4 to 5 million SNPs in the human genome and recent studies suggesting that a large portion of SNP studies are not reproducible, we suggest that the ultimate clinical utility of SNPs in acute illness depends on validation and quality control measures. To investigate this issue, in December 2018 and January 2019 we searched the literature for peer-reviewed studies reporting data on associations between SNPs and clinical outcomes and between SNPs and pharmaceuticals (i.e., pharmacogenomics) published between January 2011 to February 2019. We review key methodologies and results from a variety of clinical and pharmacological gene association studies, including trauma and sepsis studies, as illustrative examples on current SNP association studies. In this review article, we have found three key points which strengthen the potential accuracy of SNP association studies in acute illness and other diseases: providing evidence of following a protocol quality control method such as the one in Nature Protocols or the OncoArray QC Guidelines; enrolling enough patients to have large cohort groups; and validating the SNPs using an independent technique such as a second study using the same SNPs with new patient cohorts. Our survey suggests the need to standardize validation methods and SNP quality control measures in medicine in general, and specifically in the context of complex disease states such as acute illness.
Collapse
Affiliation(s)
- Maria Cohen
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
| | | | - Lukas Schimunek
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yan Xu
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
| | - A Murat Kaynar
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh PA 15213
- Clinical Research, Investigation, and Systems Modeling of Acute Illness (CRISMA) Laboratory, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15261
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
76
|
Mo A, Krishnakumar C, Arafat D, Dhere T, Iskandar H, Dodd A, Prince J, Kugathasan S, Gibson G. African Ancestry Proportion Influences Ileal Gene Expression in Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2020; 10:203-205. [PMID: 32058087 PMCID: PMC7296223 DOI: 10.1016/j.jcmgh.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022]
Affiliation(s)
- A Mo
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, Georgia
| | - C Krishnakumar
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - D Arafat
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, Georgia
| | - T Dhere
- Division of Digestive Diseases, Emory University School of Medicine Adult Gastroenterology Program, Atlanta, Georgia
| | - H Iskandar
- Division of Digestive Diseases, Emory University School of Medicine Adult Gastroenterology Program, Atlanta, Georgia
| | - A Dodd
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - J Prince
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - S Kugathasan
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, Georgia.
| | - G Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
77
|
Degenhardt F, Wendorff M, Wittig M, Ellinghaus E, Datta LW, Schembri J, Ng SC, Rosati E, Hübenthal M, Ellinghaus D, Jung ES, Lieb W, Abedian S, Malekzadeh R, Cheon JH, Ellul P, Sood A, Midha V, Thelma BK, Wong SH, Schreiber S, Yamazaki K, Kubo M, Boucher G, Rioux JD, Lenz TL, Brant SR, Franke A. Construction and benchmarking of a multi-ethnic reference panel for the imputation of HLA class I and II alleles. Hum Mol Genet 2020; 28:2078-2092. [PMID: 30590525 PMCID: PMC6548229 DOI: 10.1093/hmg/ddy443] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Genotype imputation of the human leukocyte antigen (HLA) region is a cost-effective means to infer classical HLA alleles from inexpensive and dense SNP array data. In the research setting, imputation helps avoid costs for wet lab-based HLA typing and thus renders association analyses of the HLA in large cohorts feasible. Yet, most HLA imputation reference panels target Caucasian ethnicities and multi-ethnic panels are scarce. We compiled a high-quality multi-ethnic reference panel based on genotypes measured with Illumina’s Immunochip genotyping array and HLA types established using a high-resolution next generation sequencing approach. Our reference panel includes more than 1,300 samples from Germany, Malta, China, India, Iran, Japan and Korea and samples of African American ancestry for all classical HLA class I and II alleles including HLA-DRB3/4/5. Applying extensive cross-validation, we benchmarked the imputation using the HLA imputation tool HIBAG, our multi-ethnic reference and an independent, previously published data set compiled of subpopulations of the 1000 Genomes project. We achieved average imputation accuracies higher than 0.924 for the commonly studied HLA-A, -B, -C, -DQB1 and -DRB1 genes across all ethnicities. We investigated allele-specific imputation challenges in regard to geographic origin of the samples using sensitivity and specificity measurements as well as allele frequencies and identified HLA alleles that are challenging to impute for each of the populations separately. In conclusion, our new multi-ethnic reference data set allows for high resolution HLA imputation of genotypes at all classical HLA class I and II genes including the HLA-DRB3/4/5 loci based on diverse ancestry populations.
Collapse
Affiliation(s)
- Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eva Ellinghaus
- K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Lisa W Datta
- Department of Medicine, Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Schembri
- Division of Gastroenterology, Mater Dei Hospital, Msida MSD, Malta
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eun Suk Jung
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.,Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wolfgang Lieb
- Biobank PopGen and Institute of Epidemiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Shifteh Abedian
- Department of Epidemiology, University Medical Center Groningen, RB Groningen, The Netherlands.,Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Pierre Ellul
- Division of Gastroenterology, Mater Dei Hospital, Msida MSD, Malta
| | - Ajit Sood
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Vandana Midha
- Department of Gastroenterology, Dayanand Medical College and Hospital, Ludhiana, Punjab, India.,Department of Medicine, Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Sunny H Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.,Department of Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Keiko Yamazaki
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, Japan.,Division of Genomic Epidemiology and Clinical Trials, Clinical Trials Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - John D Rioux
- Montreal Heart Institute, Research Center, Montréal, Québec, Canada.,Université de Montréal Department of Medicine, Montréal, Québec, Canada
| | - Tobias L Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Steven R Brant
- Department of Medicine, Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School and Department of Genetics, Rutgers University, New Brunswick and Piscataway, NJ, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
78
|
Qi D, Shi W, Black AR, Kuss MA, Pang X, He Y, Liu B, Duan B. Repair and regeneration of small intestine: A review of current engineering approaches. Biomaterials 2020; 240:119832. [PMID: 32113114 DOI: 10.1016/j.biomaterials.2020.119832] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023]
Abstract
The small intestine (SI) is difficult to regenerate or reconstruct due to its complex structure and functions. Recent developments in stem cell research, advanced engineering technologies, and regenerative medicine strategies bring new hope of solving clinical problems of the SI. This review will first summarize the structure, function, development, cell types, and matrix components of the SI. Then, the major cell sources for SI regeneration are introduced, and state-of-the-art biofabrication technologies for generating engineered SI tissues or models are overviewed. Furthermore, in vitro models and in vivo transplantation, based on intestinal organoids and tissue engineering, are highlighted. Finally, current challenges and future perspectives are discussed to help direct future applications for SI repair and regeneration.
Collapse
Affiliation(s)
- Dianjun Qi
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xining Pang
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Academician Expert Workstation and Liaoning Province Human Amniotic Membrane Dressings Stem Cells and Regenerative Medicine Engineering Research Center, Shenyang Amnion Biological Engineering Technology Research and Development Center Co., Ltd, Shenyang, Liaoning, China
| | - Yini He
- Department of General Practice, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bing Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
79
|
Sun L, Liu G, Su L, Wang R. HS-MMGKG: A Fast Multi-objective Harmony Search Algorithm for Two-locus Model Detection in GWAS. Curr Bioinform 2019. [DOI: 10.2174/1574893614666190409110843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background::
Genome-Wide Association Study (GWAS) plays a very important role in
identifying the causes of a disease. Because most of the existing methods for genetic-interaction
detection in GWAS are designed for a single-correlation model, their performances vary
considerably for different disease models. These methods usually have high computation cost and
low accuracy.
Method::
We present a new multi-objective heuristic optimization methodology named HSMMGKG
for detecting genetic interactions. In HS-MMGKG, we use harmony search with five
objective functions to improve the efficiency and accuracy. A new strategy based on p-value and
MDR is adopted to generate more reasonable results. The Boolean representation in BOOST is
modified to calculate the five functions rapidly. These strategies take less time complexity and
have higher accuracy while detecting the potential models.
Results::
We compared HS-MMGKG with CSE, MACOED and FHSA-SED using 26 simulated
datasets. The experimental results demonstrate that our method outperforms others in accuracy and
computation time. Our method has identified many two-locus SNP combinations that are
associated with seven diseases in WTCCC dataset. Some of the SNPs have direct evidence in CTD
database. The results may be helpful to further explain the pathogenesis.
Conclusion::
It is anticipated that our proposed algorithm could be used in GWAS which is helpful
in understanding disease mechanism, diagnosis and prognosis.
Collapse
Affiliation(s)
- Liyan Sun
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Guixia Liu
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Lingtao Su
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Rongquan Wang
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
80
|
Tenascin-C Is Increased in Inflammatory Bowel Disease and Is Associated with response to Infliximab Therapy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1475705. [PMID: 31886172 PMCID: PMC6893280 DOI: 10.1155/2019/1475705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Tenascin-C (TNC) is an extracellular matrix glycoprotein expressed in response to inflammation and tissue damage. The role of TNC in patients with inflammatory bowel disease (IBD) is not well understood. In this study, we analyzed the expression of TNC in the inflamed mucosa of patients with ulcerative colitis (UC) and Crohn's disease (CD). Serum TNC levels were determined by the enzyme-linked immunosorbent assay (ELISA), and the levels of TNC in patients with different disease activities were compared. The expression of TNC was derived from a GEO dataset. THP-1 cells were stimulated with TNC to evaluate the proinflammatory role of TNC. We found higher TNC expression in the inflamed mucosa of patients with UC and CD compared with normal controls (NCs). TNC was mainly expressed in the stromal area of the intestinal mucosa. The median serum levels of TNC were significantly higher in UC (median 74.1 ng/ml, range 42.6–102.1 ng/ml) and CD (median 59.2 ng/ml, range 44.0–80.9 ng/ml). We also found that serum TNC levels were correlated with Mayo scores in UC and Crohn's disease activity index (CDAI) in CD. Through GSE14580, we demonstrated that patients who were nonresponsive to infliximab treatment had higher mucosal TNC mRNA expression. High TNC mRNA expression in the inflamed intestinal mucosa was associated with poor response to infliximab therapy in patients with UC. Furthermore, THP-1 cells stimulated with TNC showed increased expression of IL-6, but not TNF-α, IL-8, MCP-1, or IL-1β. Thus, increased TNC levels may participate in the pathogenesis of IBD and may serve as a biomarker for disease activity and response to treatment with infliximab.
Collapse
|
81
|
Zhu S, Wang B, Jia Q, Duan L. Candidate single nucleotide polymorphisms of irritable bowel syndrome: a systemic review and meta-analysis. BMC Gastroenterol 2019; 19:165. [PMID: 31615448 PMCID: PMC6792237 DOI: 10.1186/s12876-019-1084-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Background Genetic factors increase the risk of irritable bowel syndrome (IBS). Analysis of single nucleotide polymorphisms (SNPs) has been used in IBS patients, but the findings are inconsistent. The goal of this review was to synthesize all the published SNPs studies of IBS through meta-analysis to objectively evaluate the relevance of SNPs to IBS risks. Methods IBS - related polymorphisms studies from 2000 to 2018 were searched. Pooled odds ratios with a 95% confidence interval for each SNP were evaluated through five genetic models. Ethnicity, ROME criteria and IBS subtypes were defined for subgroup analyze. Results Ten relevant genes were evaluated. SNPs rs4263839 and rs6478108 of TNFSF15 associated with an increased risk of IBS; IL6 rs1800795 increased the risk for Caucasian IBS patients which diagnosed by Rome III criteria; and IL23R rs11465804 increased the risk for IBS-C patients. IL10 rs1800896 GG genotype associated with a decreased risk of IBS. No evidence supported the association of GNβ3 rs5443, TNFα rs1800629, and IL10 rs1800871 to IBS in this study. Conclusions This meta-analysis presents an in-depth overview for IBS SNPs analysis. It was confirmed that polymorphisms of TNFSF15 associated with increased IBS risk, while IL10 rs1800896 associated with decreased IBS risk. It might offer some insights into polymorphisms of inflammation factors which might affect IBS susceptibility. Moreover, the analysis also emphasizes the importance of diagnostic criteria and phenotype homogeneity in IBS genetic studies.
Collapse
Affiliation(s)
- Shiwei Zhu
- Department of Gastroenterology, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Ben Wang
- Department of Gastroenterology, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Qiong Jia
- Department of Gastroenterology, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, No.49 North Garden Rd., Haidian District, Beijing, 100191, China.
| |
Collapse
|
82
|
Kobayashi Y, Ohfuji S, Kondo K, Fukushima W, Sasaki S, Kamata N, Yamagami H, Fujiwara Y, Suzuki Y, Hirota Y. Association between dietary iron and zinc intake and development of ulcerative colitis: A case-control study in Japan. J Gastroenterol Hepatol 2019; 34:1703-1710. [PMID: 30821862 DOI: 10.1111/jgh.14642] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM The prevalence of ulcerative colitis (UC) has been increasing in Japan. Trace elements, such as iron, zinc, magnesium, and copper, can cause digestive symptoms where there is a deficiency or excess. We focused on the dietary intake of trace elements and their associations with UC development. METHODS A multicenter, hospital-based case-control study was conducted in Japan. Cases were 127 newly diagnosed UC patients, and 171 age-matched and sex-matched hospital controls were recruited. We considered that UC patients had potentially changed their dietary habits due to disease symptoms. The dietary habits were investigated using a self-administered diet history questionnaire to analyze the dietary intakes and frequencies at two points, the previous 1 month and 1 year before. RESULTS In the assessment of dietary habits 1 year before, the highest intake of iron showed an increased odds ratio (OR) for UC on multivariate analysis (OR = 4.05, 95% confidence interval, 1.46-11.2, P < 0.01). The highest intake of zinc 1 year before showed a decreased OR for UC (OR = 0.39, 95% confidence interval, 0.18-0.85, P = 0.01). Intakes of magnesium and copper had no significant association with UC. Because most UC cases had experienced the first symptom of UC within the previous 11 months, these intakes at 1 year before represented an association with pre-illness dietary habits. CONCLUSION A high intake of iron has some effect on the development of UC. In contrast, a high intake of zinc has a protective effect on the development of UC.
Collapse
Affiliation(s)
- Yumie Kobayashi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoko Ohfuji
- Department of Public Health, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kyoko Kondo
- Osaka City University Hospital Administration Division, Osaka, Japan
| | - Wakaba Fukushima
- Department of Public Health, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Sasaki
- Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Noriko Kamata
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hirokazu Yamagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuo Suzuki
- Department of Internal Medicine, Sakura Medical Center, Toho University, Chiba, Japan
| | - Yoshio Hirota
- Department of Public Health, Osaka City University Graduate School of Medicine, Osaka, Japan.,College of Healthcare Management, Fukuoka, Japan
| | | |
Collapse
|
83
|
Ashton JJ, Latham K, Beattie RM, Ennis S. Review article: the genetics of the human leucocyte antigen region in inflammatory bowel disease. Aliment Pharmacol Ther 2019; 50:885-900. [PMID: 31518029 DOI: 10.1111/apt.15485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/05/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The human leucocyte antigen (HLA) complex, located at chromosome 6p21.3 is a highly polymorphic region containing the classical class I and II HLA genes. The region is highly associated with inflammatory bowel disease (IBD), largely through genome-wide association studies (GWAS). AIMS To review the role of HLA in immune function, summarise data on risk/protective HLA genotypes for IBD, discuss the role of HLA in IBD pathogenesis, treatment and examine limitations that might be addressed by future research. METHODS An organised search strategy was used to collate articles describing HLA genes in IBD, including Crohn's disease and ulcerative colitis. RESULTS All classical HLA genes with variation (including HLA-A, B, C, DRB1, DQA1, DQB1, DPA1 and DPB1) harbour IBD-associated genotypes. The most implicated gene is HLA-DRB1, with HLA-DRB1*03:01 the most associated risk allele in both Crohn's disease and ulcerative colitis. Elucidating precise disease associations is challenging due to high linkage disequilibrium between HLA genotypes. The mechanisms by which risk alleles cause disease are multifactorial, with the best evidence indicating structural and electrostatic alteration impacting antigen binding and downstream signalling. Adverse medication events have been associated with HLA genotypes including with thiopurines (pancreatitis) and anti-TNF agents (antibody formation). CONCLUSIONS The HLA complex is associated with multiple risk/protective alleles for IBD. Future research utilising long-read technology, ascertainment of zygosity and integration in disease modelling will improve the functional understanding and clinical translation of genetic findings.
Collapse
Affiliation(s)
- James J Ashton
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - Katy Latham
- Anthony Nolan Research Institute, University College London, London, UK
| | - Robert Mark Beattie
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
84
|
Abstract
Inflammatory bowel disease (IBD) defines a spectrum of complex disorders. Understanding how environmental risk factors, alterations of the intestinal microbiota, and polygenetic and epigenetic susceptibility impact on immune pathways is key for developing targeted therapies. Mechanistic understanding of polygenic IBD is complemented by Mendelian disorders that present with IBD, pharmacological interventions that cause colitis, autoimmunity, and multiple animal models. Collectively, this multifactorial pathogenesis supports a concept of immune checkpoints that control microbial-host interactions in the gut by modulating innate and adaptive immunity, as well as epithelial and mesenchymal cell responses. In addition to classical immunosuppressive strategies, we discuss how resetting the microbiota and restoring innate immune responses, in particular autophagy and epithelial barrier function, might be key for maintaining remission or preventing IBD. Targeting checkpoints in genetically stratified subgroups of patients with Mendelian disorder-associated IBD increasingly directs treatment strategies as part of personalized medicine.
Collapse
Affiliation(s)
- Holm H Uhlig
- Department of Pediatrics, University of Oxford, Oxford OX3 9DU, United Kingdom; .,Translational Gastroenterology Unit, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom; .,Translational Gastroenterology Unit, University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
85
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
86
|
Ince MN, Elliott DE. Effective Use of the Laboratory in the Management of Patients with Inflammatory Bowel Diseases. Gastroenterol Clin North Am 2019; 48:237-258. [PMID: 31046973 DOI: 10.1016/j.gtc.2019.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) comprises a group of chronic, intestinal inflammatory disorders, including ulcerative colitis and Crohn's disease. IBD is characterized by periods of relapse and remission. Long-term progressive intestinal inflammation can result in severe and devastating complications, such as intestinal strictures and/or fistulae. Immune suppressive medications with potent side effects are often used to control inflammation and limit disease activity. Laboratory tests guide various decisions in clinical management of IBD. We discuss tests used to diagnose IBD, assess for relapse or remission, monitor the effectiveness of therapeutic regimen, screen for the maintenance of health, and diagnose or prevent complications.
Collapse
Affiliation(s)
- M Nedim Ince
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa, Carver College of Medicine, University of Iowa Hospitals and Clinics, 4546 JCP, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | - David E Elliott
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa, Carver College of Medicine, University of Iowa Hospitals and Clinics, 4607 JCP, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
87
|
Zhang N, Heruth DP, Wu W, Zhang LQ, Nsumu MN, Shortt K, Li K, Jiang X, Wang B, Friesen C, Li DY, Ye SQ. Functional characterization of SLC26A3 c.392C>G (p.P131R) mutation in intestinal barrier function using CRISPR/CAS9-created cell models. Cell Biosci 2019; 9:40. [PMID: 31114672 PMCID: PMC6518688 DOI: 10.1186/s13578-019-0303-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background Congenital chloride diarrhea (CCD) in a newborn is a rare autosomal recessive disorder with life-threatening complications, requiring early diagnostics and treatment to prevent severe dehydration and infant mortality. SLC26A3 rs386833481 (c.392C>G; p.P131R) gene polymorphism is an important genetic determinant of CCD. Here, we report the influence of the non-synonymous SLC26A3 variant rs386833481 gene polymorphism on the function of the epithelial barrier and the potential mechanisms of these effects. Results We found that P131R-SLC26A3 increased dysfunction of the epithelial barrier compared with wild type SLC26A3 in human colonic Caco-2 and mouse colonic CMT-93 cells. When P131R-SLC26A3 was subsequently reverted to wild type, the epithelial barrier function was restored similar to wild type cells. Further study demonstrated that variant P131R-SLC26A3 disrupts function of epithelial barrier through two distinct molecular mechanisms: (a) decreasing SLC26A3 expression through a ubiquitination pathway and (b) disrupting a key interaction with its partner ZO-1/CFTR, thereby increasing the epithelial permeability. Conclusion Our study provides an important insight of SLC26A3 SNPs in the regulation of the epithelial permeability and indicates that SLC26A3 rs386833481 is likely a causative mutation in the dysfunction of epithelial barrier of CCD, and correction of this SNP or increasing SLC26A3 function could be therapeutically beneficial for chronic diarrhea diseases.
Collapse
Affiliation(s)
- Nini Zhang
- 1Division of Gastroenterology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA.,4Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi China
| | - Daniel P Heruth
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA
| | - Weibin Wu
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA.,8Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Qin Zhang
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,5Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO USA
| | - Marianne N Nsumu
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA
| | - Katherine Shortt
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,6Division of Cell Biology & Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, MO USA
| | - Kelvin Li
- 7Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA USA
| | - Xun Jiang
- 4Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi China
| | - Baoxi Wang
- 4Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi China
| | - Craig Friesen
- 1Division of Gastroenterology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA
| | - Ding-You Li
- 1Division of Gastroenterology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA
| | - Shui Qing Ye
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA.,6Division of Cell Biology & Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, MO USA
| |
Collapse
|
88
|
Dovrolis N, Filidou E, Kolios G. Systems biology in inflammatory bowel diseases: on the way to precision medicine. Ann Gastroenterol 2019; 32:233-246. [PMID: 31040620 PMCID: PMC6479645 DOI: 10.20524/aog.2019.0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic and recurrent inflammatory disorders of the gastrointestinal tract. The elucidation of their etiopathology requires complex and multiple approaches. Systems biology has come to fulfill this need in approaching the pathogenetic mechanisms of IBD and its etiopathology, in a comprehensive way, by combining data from different scientific sources. In combination with bioinformatics and network medicine, it uses principles from computer science, mathematics, physics, chemistry, biology, medicine and computational tools to achieve its purposes. Systems biology utilizes scientific sources that provide data from omics studies (e.g., genomics, transcriptomics, etc.) and clinical observations, whose combined analysis leads to network formation and ultimately to a more integrative image of disease etiopathogenesis. In this review, we analyze the current literature on the methods and the tools utilized by systems biology in order to cover an innovative and exciting field: IBD-omics.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Correspondence to: Prof. George Kolios, MD PhD, Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, 68100, Greece, e-mail:
| |
Collapse
|
89
|
Cheng B, Liang X, Wen Y, Li P, Zhang L, Ma M, Cheng S, Du Y, Liu L, Ding M, Zhao Y, Zhang F. Integrative analysis of transcriptome‐wide association study data and messenger RNA expression profiles identified candidate genes and pathways for inflammatory bowel disease. J Cell Biochem 2019; 120:14831-14837. [DOI: 10.1002/jcb.28744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/17/2019] [Accepted: 03/22/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China
| | - Xiao Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China
| | - Ping Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China
| | - Lu Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China
| | - Mei Ma
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China
| | - Yanan Du
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China
| | - Miao Ding
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China
| | - Yan Zhao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region, School of Public Health, Health Science Center Xi'an Jiaotong University Xi'an Shaanxi P.R. China
| |
Collapse
|
90
|
Kawamura T, Yamamoto M, Suzuki K, Suzuki Y, Kamishima M, Sakata M, Kurachi K, Setoh M, Konno H, Takeuchi H. Tenascin-C Produced by Intestinal Myofibroblasts Promotes Colitis-associated Cancer Development Through Angiogenesis. Inflamm Bowel Dis 2019; 25:732-741. [PMID: 30517646 DOI: 10.1093/ibd/izy368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Colitis-associated cancer (CAC) is one of the prognostic factors in inflammatory bowel disease (IBD), and prevention of CAC is a critical concern for patients with IBD. Component cells of the microenvironment, especially myofibroblasts, are known to affect tumor development, but the role of intestinal myofibroblasts (IMFs) in CAC has not been clarified. Here, we explored the role of IMFs in CAC and sought to identify candidate genes as novel therapeutic targets for the prevention of CAC. METHODS We used the azoxymethane (AOM)/dextran sodium sulfate (DSS) model for dysplasia and CAC. Flow cytometry and RNA sequencing (RNA-seq) were performed to obtain an unbiased gene expression profile of IMFs. The transcriptome of significantly differentially expressed genes was analyzed by RNA-seq, quantitative reverse transcriptase polymerase chain reaction, and immunohistochemistry. RESULTS Comparison of normal intestinal fibroblasts and IMFs revealed 1045 genes with significantly differential expression. Among them, we focused on tenascin-C (TNC; q = 0.00232, Log2(Fold Change) = 3.87). Tenascin-C gene expression was markedly increased in the dysplasia model compared with control and CAC model (P < 0.05). Tenascin-C protein was barely expressed in normal and nondysplastic mucosa but strongly expressed in the stroma around dysplastic lesions. Moreover, TNC surrounded and enclosed integrin αvβ3-positive microvessels. Administration of ATN-161, an antagonist of αvβ3-integrin, significantly suppressed tumorigenesis of CAC through inhibition of angiogenesis (P < 0.05). CONCLUSIONS In the early stages of CAC, TNC produced by IMFs affects tumor development via integrin αvβ3-mediated angiogenesis. Intestinal myofibroblasts might be a novel therapeutic target for preventing CAC.
Collapse
Affiliation(s)
- Takafumi Kawamura
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayoshi Yamamoto
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsunori Suzuki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuhi Suzuki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Megumu Kamishima
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mayu Sakata
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyotaka Kurachi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setoh
- Department of Cellular and Molecular Anatomy, International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Konno
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
91
|
Denson LA, Jurickova I, Karns R, Shaw KA, Cutler DJ, Okou D, Valencia CA, Dodd A, Mondal K, Aronow BJ, Haberman Y, Linn A, Price A, Bezold R, Lake K, Jackson K, Walters TD, Griffiths A, Baldassano RN, Noe JD, Hyams JS, Crandall WV, Kirschner BS, Heyman MB, Snapper S, Guthery SL, Dubinsky MC, Leleiko NS, Otley AR, Xavier RJ, Stevens C, Daly MJ, Zwick ME, Kugathasan S. Genetic and Transcriptomic Variation Linked to Neutrophil Granulocyte-Macrophage Colony-Stimulating Factor Signaling in Pediatric Crohn's Disease. Inflamm Bowel Dis 2019; 25:547-560. [PMID: 30124884 PMCID: PMC6391846 DOI: 10.1093/ibd/izy265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Granulocyte-macrophage colony-stimulating factor auto-antibodies (GMAbs) suppress neutrophil-extrinsic GM-CSF signaling and increase risk for stricturing behavior in Crohn's disease (CD). We aimed to define clinical, genomic, and functional associations with neutrophil-intrinsic GM-CSF signaling. METHODS Missense mutations in CSF2RA, CSF2RB, JAK2, STAT5A, and STAT5B were identified using whole-exome sequencing in 543 pediatric inflammatory bowel disease (IBD) patients. Neutrophil-intrinsic GM-CSF signaling was defined using the GM-CSF-induced STAT5 stimulation index (GMSI) in 180 pediatric IBD patients and 26 non-IBD controls. Reduced GM-CSF signaling (GMSI-Lo) was defined as the 20th percentile within the control group. Variation in neutrophil phospho-protein abundance, bacterial killing, and the global pattern of gene expression with the GMSI was determined. RESULTS We validated 18 potentially damaging missense mutations in CSF2RA and CSF2RB. CSF2RA A17G carriage increased from 10% in those with intact neutrophil GMSI to 32% in those with low GMSI (P = 0.02). The frequency of reduced Staphylococcus aureus killing increased from 17% in those with intact neutrophil GMSI to 35% in GMSI-Lo neutrophils (P = 0.043). Crohn's disease neutrophils with low GMSI exhibited specific alterations in phospho-protein networks and genes regulating cytokine production, wound healing, and cell survival and proliferation. Stricturing behavior increased from 7% in patients with both low GMAb and intact GMSI to 64% in patients with both elevated GMAb and low GMSI (P < 0.0001). CONCLUSIONS Low/normal neutrophil-intrinsic GM-CSF signaling is associated with CSF2RA missense mutations, alterations in gene expression networks, and higher rates of disease complications in pediatric CD.
Collapse
Affiliation(s)
- Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Address correspondence to: Lee A. Denson, MD, MLC 2010, 3333 Burnet Avenue, Cincinnati, OH ()
| | - Ingrid Jurickova
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Rebekah Karns
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kelly A Shaw
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | - David Okou
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - C Alexander Valencia
- Program and Division of Human Genetics, Molecular Genetics Laboratory, Cincinnati, Ohio
| | - Anne Dodd
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Kajari Mondal
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Yael Haberman
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Aaron Linn
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Adam Price
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ramona Bezold
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kathleen Lake
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Kimberly Jackson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Thomas D Walters
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Anne Griffiths
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Robert N Baldassano
- Department of Pediatrics, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joshua D Noe
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, Hartford, Connecticut
| | - Wallace V Crandall
- Department of Pediatric Gastroenterology, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | | | - Melvin B Heyman
- Department of Pediatrics, University of California at San Francisco, San Francisco, California
| | - Scott Snapper
- Department of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts
| | | | - Marla C Dubinsky
- Department of Pediatrics, Mount Sinai Hospital, New York, New York
| | - Neal S Leleiko
- Department of Pediatrics, Hasbro Children’s Hospital, Providence, Rhode Island
| | - Anthony R Otley
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Mark J Daly
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael E Zwick
- Department of Human Genetics, Emory University, Atlanta, Georgia
| | | |
Collapse
|
92
|
Hu X, Deng J, Yu T, Chen S, Ge Y, Zhou Z, Guo Y, Ying H, Zhai Q, Chen Y, Yuan F, Niu Y, Shu W, Chen H, Ma C, Liu Z, Guo F. ATF4 Deficiency Promotes Intestinal Inflammation in Mice by Reducing Uptake of Glutamine and Expression of Antimicrobial Peptides. Gastroenterology 2019; 156:1098-1111. [PMID: 30452920 DOI: 10.1053/j.gastro.2018.11.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Activating transcription factor 4 (ATF4) regulates genes involved in the inflammatory response, amino acid metabolism, autophagy, and endoplasmic reticulum stress. We investigated whether its activity is altered in patients with inflammatory bowel diseases (IBDs) and mice with enterocolitis. METHODS We obtained biopsy samples during endoscopy from inflamed and/or uninflamed regions of the colon from 21 patients with active Crohn's disease (CD), 22 patients with active ulcerative colitis (UC), and 38 control individuals without IBD and of the ileum from 19 patients with active CD and 8 individuals without IBD in China. Mice with disruption of Atf4 specifically in intestinal epithelial cells (Atf4ΔIEC mice) and Atf4-floxed mice (controls) were given dextran sodium sulfate (DSS) to induce colitis. Some mice were given injections of recombinant defensin α1 (DEFA1) and supplementation of l-alanyl-glutamine or glutamine in drinking water. Human and mouse ileal and colon tissues were analyzed by quantitative real-time polymerase chain reaction, immunoblots, and immunohistochemistry. Serum and intestinal epithelial cell (IEC) amino acids were measured by high-performance liquid chromatography-tandem mass spectrometry. Levels of ATF4 were knocked down in IEC-18 cells with small interfering RNAs. Microbiomes were analyzed in ileal feces from mice by using 16S ribosomal DNA sequencing. RESULTS Levels of ATF4 were significantly decreased in inflamed intestinal mucosa from patients with active CD or active UC compared with those from uninflamed regions or intestinal mucosa from control individuals. ATF4 was also decreased in colonic epithelia from mice with colitis vs mice without colitis. Atf4ΔIEC mice developed spontaneous enterocolitis and colitis of greater severity than control mice after administration of DSS. Atf4ΔIEC mice had decreased serum levels of glutamine and reduced levels of antimicrobial peptides, such as Defa1, Defa4, Defa5, Camp, and Lyz1, in ileal Paneth cells. Atf4ΔIEC mice had alterations in ileal microbiomes compared with control mice; these changes were reversed by administration of glutamine. Injections of DEFA1 reduced the severity of spontaneous enteritis and DSS-induced colitis in Atf4ΔIEC mice. We found that expression of solute carrier family 1 member 5 (SLC1A5), a glutamine transporter, was directly regulated by ATF4 in cell lines. Overexpression of SLC1A5 in IEC-18 or primary IEC cells increased glutamine uptake and expression of antimicrobial peptides. Knockdown of ATF4 in IEC-18 cells increased expression of inflammatory cytokines, whereas overexpression of SLC1A5 in the knockdown cells reduced cytokine expression. Levels of SLC1A5 were decreased in inflamed intestinal mucosa of patients with CD and UC and correlated with levels of ATF4. CONCLUSIONS Levels of ATF4 are decreased in inflamed intestinal mucosa from patients with active CD or UC. In mice, ATF4 deficiency reduces glutamine uptake by intestinal epithelial cells and expression of antimicrobial peptides by decreasing transcription of Slc1a5. ATF4 might therefore be a target for the treatment of IBD.
Collapse
Affiliation(s)
- Xiaoming Hu
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiali Deng
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tianming Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Shanghai Chen
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yadong Ge
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ziheng Zhou
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajie Guo
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Ying
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Feixiang Yuan
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuguo Niu
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weigang Shu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Huimin Chen
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Caiyun Ma
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Feifan Guo
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
93
|
Modeling Heterogeneity in the Genetic Architecture of Ethnically Diverse Groups Using Random Effect Interaction Models. Genetics 2019; 211:1395-1407. [PMID: 30796011 PMCID: PMC6456318 DOI: 10.1534/genetics.119.301909] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
In humans, most genome-wide association studies have been conducted using data from Caucasians and many of the reported findings have not replicated in other populations. This lack of replication may be due to statistical issues (small sample sizes or confounding) or perhaps more fundamentally to differences in the genetic architecture of traits between ethnically diverse subpopulations. What aspects of the genetic architecture of traits vary between subpopulations and how can this be quantified? We consider studying effect heterogeneity using Bayesian random effect interaction models. The proposed methodology can be applied using shrinkage and variable selection methods, and produces useful information about effect heterogeneity in the form of whole-genome summaries (e.g., the proportions of variance of a complex trait explained by a set of SNPs and the average correlation of effects) as well as SNP-specific attributes. Using simulations, we show that the proposed methodology yields (nearly) unbiased estimates when the sample size is not too small relative to the number of SNPs used. Subsequently, we used the methodology for the analyses of four complex human traits (standing height, high-density lipoprotein, low-density lipoprotein, and serum urate levels) in European-Americans (EAs) and African-Americans (AAs). The estimated correlations of effects between the two subpopulations were well below unity for all the traits, ranging from 0.73 to 0.50. The extent of effect heterogeneity varied between traits and SNP sets. Height showed less differences in SNP effects between AAs and EAs whereas HDL, a trait highly influenced by lifestyle, exhibited a greater extent of effect heterogeneity. For all the traits, we observed substantial variability in effect heterogeneity across SNPs, suggesting that effect heterogeneity varies between regions of the genome.
Collapse
|
94
|
Gettler K, Giri M, Kenigsberg E, Martin J, Chuang LS, Hsu NY, Denson LA, Hyams JS, Griffiths A, Noe JD, Crandall WV, Mack DR, Kellermayer R, Abraham C, Hoffman G, Kugathasan S, Cho JH. Prioritizing Crohn's disease genes by integrating association signals with gene expression implicates monocyte subsets. Genes Immun 2019; 20:577-588. [PMID: 30692607 DOI: 10.1038/s41435-019-0059-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/27/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have identified ~170 loci associated with Crohn's disease (CD) and defining which genes drive these association signals is a major challenge. The primary aim of this study was to define which CD locus genes are most likely to be disease related. We developed a gene prioritization regression model (GPRM) by integrating complementary mRNA expression datasets, including bulk RNA-Seq from the terminal ileum of 302 newly diagnosed, untreated CD patients and controls, and in stimulated monocytes. Transcriptome-wide association and co-expression network analyses were performed on the ileal RNA-Seq datasets, identifying 40 genome-wide significant genes. Co-expression network analysis identified a single gene module, which was substantially enriched for CD locus genes and most highly expressed in monocytes. By including expression-based and epigenetic information, we refined likely CD genes to 2.5 prioritized genes per locus from an average of 7.8 total genes. We validated our model structure using cross-validation and our prioritization results by protein-association network analyses, which demonstrated significantly higher CD gene interactions for prioritized compared with non-prioritized genes. Although individual datasets cannot convey all of the information relevant to a disease, combining data from multiple relevant expression-based datasets improves prediction of disease genes and helps to further understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Kyle Gettler
- Department of Genetics, Yale University, New Haven, Connecticut, 06510, USA
| | - Mamta Giri
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Ephraim Kenigsberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Jerome Martin
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Ling-Shiang Chuang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Nai-Yun Hsu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Oio, USA
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, Connecticut, USA
| | - Anne Griffiths
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Joshua D Noe
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Wallace V Crandall
- Department of Pediatric Gastroenterology, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - David R Mack
- Department of Pediatrics, Children's Hospital of Eastern Ontario IBD Centre and University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Clara Abraham
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut, 06510, USA
| | - Gabriel Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, Georgia, USA.,Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Judy H Cho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA. .,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
| |
Collapse
|
95
|
Falloon K, Lazarev M. A Primer on IBD: Phenotypes, Diagnosis, Treatment, and Clinical Challenges. MOLECULAR GENETICS OF INFLAMMATORY BOWEL DISEASE 2019:3-24. [DOI: 10.1007/978-3-030-28703-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
96
|
Danson CM, Pearson N, Heesom KJ, Cullen PJ. Sorting nexin-21 is a scaffold for the endosomal recruitment of huntingtin. J Cell Sci 2018; 131:jcs.211672. [PMID: 30072438 PMCID: PMC6140323 DOI: 10.1242/jcs.211672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
The endo-lysosomal network serves an essential role in determining the fate of endocytosed transmembrane proteins and their associated proteins and lipids. Sorting nexins (SNXs) play a central role in the functional organisation of this network. Comprising over 30 proteins in humans, SNXs are classified into sub-groups based on the presence of additional functional domains. Sorting nexin-20 (SNX20) and sorting nexin-21 (SNX21) comprise the SNX-PXB proteins. The presence of a predicted protein-protein interaction domain, termed the PX-associated B (PXB) domain, has led to the proposal that they function as endosome-associated scaffolds. Here, we used unbiased quantitative proteomics to define the SNX21 interactome. We reveal that the N-terminal extension of SNX21 interacts with huntingtin (Htt) whereas the PXB domain appears to associate with septins, a family of cytoskeletal- and membrane-associated proteins. In establishing that these interactions are sufficient for SNX21 to recruit Htt and septins on to an endosomal population, we reveal a scaffolding function for this sorting nexin. Our work paves the way for a more-detailed mechanistic analysis of the role(s) of the SNX-PXB proteins in endosomal biology. Summary: A potential scaffolding function for SNX21 paves the way for a more-detailed mechanistic analysis of the role(s) of this protein in endosomal biology.
Collapse
Affiliation(s)
- Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Neil Pearson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
97
|
Targeted Gene Sequencing in Children with Crohn's Disease and Their Parents: Implications for Missing Heritability. G3-GENES GENOMES GENETICS 2018; 8:2881-2888. [PMID: 30166421 PMCID: PMC6118318 DOI: 10.1534/g3.118.200404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Crohn’s disease is a complex genetic trait characterized by chronic relapsing intestinal inflammation. Genome wide association studies (GWAS) have identified more than 170 loci associated with the disease, accounting for ∼14% of the disease variance. We hypothesized that rare genetic variation in GWAS positional candidates also contribute to disease pathogenesis. We performed targeted, massively-parallel sequencing of 101 genes in 205 children with Crohn’s disease, including 179 parent-child trios and 200 controls, both of European ancestry. We used the gene burden test implemented in VAAST and estimated effect sizes using logistic regression and meta-analyses. We identified three genes with nominally significant p-values: NOD2, RTKN2, and MGAT3. Only NOD2 was significant after correcting for multiple comparisons. We identified eight novel rare variants in NOD2 that are likely disease-associated. Incorporation of rare variation and compound heterozygosity nominally increased the proportion of variance explained from 0.074 to 0.089. We estimated the population attributable risk and total heritability of variation in NOD2 to be 32.9% and 3.4%, respectively, with 3.7% and 0.25% accounted for by rare putatively functional variants. Sequencing probands (as opposed to genotyping) to identify rare variants and incorporating phase by sequencing parents can recover a portion of the missing heritability of Crohn’s disease.
Collapse
|
98
|
Genotype-Corrector: improved genotype calls for genetic mapping in F 2 and RIL populations. Sci Rep 2018; 8:10088. [PMID: 29973633 PMCID: PMC6031647 DOI: 10.1038/s41598-018-28294-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022] Open
Abstract
F2 and recombinant inbred lines (RILs) populations are very commonly used in plant genetic mapping studies. Although genome-wide genetic markers like single nucleotide polymorphisms (SNPs) can be readily identified by a wide array of methods, accurate genotype calling remains challenging, especially for heterozygous loci and missing data due to low sequencing coverage per individual. Therefore, we developed Genotype-Corrector, a program that corrects genotype calls and imputes missing data to improve the accuracy of genetic mapping. Genotype-Corrector can be applied in a wide variety of genetic mapping studies that are based on low coverage whole genome sequencing (WGS) or Genotyping-by-Sequencing (GBS) related techniques. Our results show that Genotype-Corrector achieves high accuracy when applied to both synthetic and real genotype data. Compared with using raw or only imputed genotype calls, the linkage groups built by corrected genotype data show much less noise and significant distortions can be corrected. Additionally, Genotype-Corrector compares favorably to the popular imputation software LinkImpute and Beagle in both F2 and RIL populations. Genotype-Corrector is publicly available on GitHub at https://github.com/freemao/Genotype-Corrector .
Collapse
|
99
|
Li F, Han H, Lei Q, Gao J, Liu J, Liu W, Zhou Y, Li H, Cao D. Genome-wide association study of body weight in Wenshang Barred chicken based on the SLAF-seq technology. J Appl Genet 2018; 59:305-312. [PMID: 29946990 DOI: 10.1007/s13353-018-0452-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Chicken body weight (BW) is an economically important trait, and many studies have been conducted on genetic selection for BW. However, previous studies have detected functional chromosome mutations or regions using gene chips. The present study used the specific-locus amplified fragment sequencing (SLAF-seq) technology to perform a genome-wide association study (GWAS) on purebred Wengshang Barred chicken. A total of 1,286,715 single-nucleotide polymorphisms (SNPs) were detected, and 175,211 SNPs were selected as candidate SNPs for genome-wide association analysis using TASSEL general linear models. Six SNP markers reached genome-wide significance. Of these, rs732048524, rs735522839, rs738991545, and rs15837818 were significantly associated with body weight at 28 days (BW28), while rs314086457 and rs315694878 were significantly associated with BW120. These SNPs are close to seven genes (PRSS23, ME3, FAM181B, NABP1, SDPR, TSSK6L2, and RBBP8). Moreover, 24 BW-associated SNPs reached "suggestive" genome-wide significance. Of these, 6, 13, 1, and 4 SNPs were associated with BW28, BW56, BW80, and BW120, respectively. These results would enrich the studies on BW and promote the use of Chinese chicken, especially the Wenshang Barred chicken.
Collapse
Affiliation(s)
- Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Jinbo Gao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Huimin Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China.,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, 250023, People's Republic of China. .,Poultry Breeding Engineering Technology Center of Shandong Province, Jinan, 250023, Shandong, China.
| |
Collapse
|
100
|
Denson LA, Jurickova I, Karns R, Shaw KA, Cutler DJ, Okou D, Dodd A, Quinn K, Mondal K, Aronow BJ, Haberman Y, Linn A, Price A, Bezold R, Lake K, Jackson K, Walters TD, Griffiths A, Baldassano RN, Noe JD, Hyams JS, Crandall WV, Kirschner BS, Heyman MB, Snapper S, Guthery SL, Dubinsky MC, Leleiko NS, Otley AR, Xavier RJ, Stevens C, Daly MJ, Zwick ME, Kugathasan S. Clinical and Genomic Correlates of Neutrophil Reactive Oxygen Species Production in Pediatric Patients With Crohn's Disease. Gastroenterology 2018; 154:2097-2110. [PMID: 29454792 PMCID: PMC5985211 DOI: 10.1053/j.gastro.2018.02.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Individuals with monogenic disorders of phagocyte function develop chronic colitis that resembles Crohn's disease (CD). We tested for associations between mutations in genes encoding reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, neutrophil function, and phenotypes of CD in pediatric patients. METHODS We performed whole-exome sequence analysis to identify mutations in genes encoding NADPH oxidases (such as CYBA, CYBB, NCF1, NCF2, NCF4, RAC1, and RAC2) using DNA from 543 pediatric patients with inflammatory bowel diseases. Blood samples were collected from an additional 129 pediatric patients with CD and 26 children without IBD (controls); we performed assays for neutrophil activation, reactive oxygen species (ROS) production, and bacteria uptake and killing. Whole-exome sequence analysis was performed using DNA from 46 of the children with CD to examine associations with NADPH gene mutations; RNA sequence analyses were performed using blood cells from 46 children with CD to test for variations in neutrophil gene expression associated with ROS production. RESULTS We identified 26 missense mutations in CYBA, CYBB, NCF1, NCF2, and NCF4. Patients with CD who carried mutations in these genes were 3-fold more likely to have perianal disease (P = .0008) and stricturing complications (P = .002) than children with CD without these mutations. Among patients with CD with none of these mutations, 9% had undergone abdominal surgery; among patients with mutations in these NADPH oxidase genes, 31% had undergone abdominal surgery (P = .0004). A higher proportion of neutrophils from children with CD had low ROS production (47%) than from controls (15%) among the 129 patients tested for ROS (P = .002). Minor alleles of the NADPH genes were detected in 7% of children with CD whose neutrophils produced normal levels of ROS vs 38% of children whose neutrophils produced low levels of ROS (P = .009). Neutrophils that produced low levels of ROS had specific alterations in genes that regulate glucose metabolism and antimicrobial responses. CONCLUSIONS We identified missense mutations in genes that encode NADPH oxidases in children with CD; these were associated with a more aggressive disease course and reduced ROS production by neutrophils from the patients.
Collapse
Affiliation(s)
- Lee A. Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA,to whom correspondence should be addressed: MLC 2010, 3333 Burnet Avenue, Cincinnati, OH 45229, Tel: 513-636-7575, Fax: 513-636-5581,
| | - Ingrid Jurickova
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rebekah Karns
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelly A. Shaw
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - David J. Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - David Okou
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Anne Dodd
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Kathryn Quinn
- Cancer and Blood Disease Institute, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kajari Mondal
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Bruce J. Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yael Haberman
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aaron Linn
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adam Price
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ramona Bezold
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen Lake
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kimberly Jackson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Cincinnati College of Medicine and the Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thomas D. Walters
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Anne Griffiths
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Robert N. Baldassano
- Department of Pediatrics, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joshua D. Noe
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey S. Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, Hartford, CT, USA
| | - Wallace V. Crandall
- Department of Pediatric Gastroenterology, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Melvin B. Heyman
- Department of Pediatrics, University of California at San Francisco, San Francisco, CA, USA
| | - Scott Snapper
- Department of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Neal S. Leleiko
- Department of Pediatrics, Hasbro Children’s Hospital, Providence, RI, USA
| | - Anthony R. Otley
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | - Mark J. Daly
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael E. Zwick
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | |
Collapse
|