51
|
Abdel-Dayem MA, Elmarakby AA, Abdel-Aziz AA, Pye C, Said SA, El-Mowafy AM. Valproate-induced liver injury: modulation by the omega-3 fatty acid DHA proposes a novel anticonvulsant regimen. Drugs R D 2015; 14:85-94. [PMID: 24733439 PMCID: PMC4070460 DOI: 10.1007/s40268-014-0042-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The polyunsaturated, ω-3 fatty acid, docosahexaenoic acid (DHA), claims diverse cytoprotective potentials, although via largely undefined triggers. Thus, we currently first tested the ability of DHA to ameliorate valproate (VPA)-evoked hepatotoxicity, to modulate its anticonvulsant effects, then sought the cellular and molecular basis of such actions. Lastly, we also verified whether DHA may kinetically alter plasma levels/clearance rate of VPA. Methods and Results VPA (500 mg/kg orally for 14 days in rats) evoked prominent hepatotoxicity that appeared as a marked rise (2- to 4-fold) in serum hepatic enzymes (γ-glutamyl transferase [γ-GT], alanine aminotransferase [ALT], and alkaline phosphatase [ALP]), increased hepatic lipid peroxide (LPO) and tumor necrosis factor-alpha (TNFα) levels, as well as myeloperoxidase (MPO) activity (3- to 5-fold), lowering of serum albumin (40 %), and depletion of liver reduced-glutathione (GSH, 35 %). Likewise, histopathologic examination revealed hepatocellular degeneration, replacement by inflammatory cells, focal pericentral necrosis, and micro/macrovesicular steatosis. Concurrent treatment with DHA (250 mg/kg) markedly blunted the elevated levels of liver enzymes, lipid peroxides, TNFα, and MPO activity, while raising serum albumin and hepatic GSH levels. DHA also alleviated most of the cytologic insults linked to VPA. Besides, in a pentylenetetrazole (PTZ) mouse convulsion model, DHA (250 mg/kg) markedly increased the latency in convulsion evoked by VPA, beyond their individual responses. Lastly, pharmacokinetic studies revealed that joint DHA administration did not alter serum VPA concentrations. Conclusions DHA substantially ameliorated liver injury induced by VPA, while also markedly boosted its pharmacologic effects. DHA manipulated definite cellular machinery to curb liver oxidative stress and inflammation, without affecting VPA plasma levels. Collectively, these protective and synergy profiles for DHA propose a superior VPA-drug combination regimen.
Collapse
Affiliation(s)
- Marwa A Abdel-Dayem
- Department of Pharmacology, Faculty of Pharmacy (FOP), Mansoura University, 35512, Mansoura, Egypt
| | | | | | | | | | | |
Collapse
|
52
|
Heidari R, Niknahad H, Jamshidzadeh A, Eghbal MA, Abdoli N. An overview on the proposed mechanisms of antithyroid drugs-induced liver injury. Adv Pharm Bull 2015; 5:1-11. [PMID: 25789213 DOI: 10.5681/apb.2015.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 01/21/2023] Open
Abstract
Drug-induced liver injury (DILI) is a major problem for pharmaceutical industry and drug development. Mechanisms of DILI are many and varied. Elucidating the mechanisms of DILI will allow clinicians to prevent liver failure, need for liver transplantation, and death induced by drugs. Methimazole and propylthiouracil (PTU) are two convenient antithyroid agents which their administration is accompanied by hepatotoxicity as a deleterious side effect. Although several cases of antithyroid drugs-induced liver injury are reported, there is no clear idea about the mechanism(s) of hepatotoxicity induced by these medications. Different mechanisms such as reactive metabolites formation, oxidative stress induction, intracellular targets dysfunction, and immune-mediated toxicity are postulated to be involved in antithyroid agents-induced hepatic damage. Due to the idiosyncratic nature of antithyroid drugs-induced hepatotoxicity, it is impossible to draw a specific conclusion about the mechanisms of liver injury. However, it seems that reactive metabolite formation and immune-mediated toxicity have a great role in antithyroids liver toxicity, especially those caused by methimazole. This review attempted to discuss different mechanisms proposed to be involved in the hepatic injury induced by antithyroid drugs.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. ; Gerash School of Paramedical Sciences,Shiraz University of Medical Sciences, Gerash, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. ; Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. ; Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Eghbal
- Drug Applied Research Center & Pharmacology and Toxicology Department, School of Pharmacy, Tbariz University of Medical Sciences, Tabriz, Iran
| | - Narges Abdoli
- Drug Applied Research Center & Pharmacology and Toxicology Department, School of Pharmacy, Tbariz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
53
|
Araújo AAS, de Melo MGD, Rabelo TK, Nunes PS, Santos SL, Serafini MR, Santos MRV, Quintans-Júnior LJ, Gelain DP. Review of the biological properties and toxicity of usnic acid. Nat Prod Res 2015; 29:2167-80. [DOI: 10.1080/14786419.2015.1007455] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
54
|
Teng CF, Hsieh WC, Yang CW, Su HM, Tsai TF, Sung WC, Huang W, Su IJ. A biphasic response pattern of lipid metabolomics in the stage progression of hepatitis B virus X tumorigenesis. Mol Carcinog 2015; 55:105-14. [PMID: 25594851 DOI: 10.1002/mc.22266] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metabolic syndrome has closely linked to the development of human hepatocellular carcinoma (HCC). By using the hepatitis B virus (HBV) X (HBx) transgenic mouse model, we studied the dynamic evolution of serum and liver profiles of lipids and global cDNA expression at different stages of HBx tumorigenesis. We observed that the lipid (triglycerides, cholesterol, and fatty acids) profiles revealed a biphasic response pattern during the progression of HBx tumorigenesis: a small peak at early phase and a large peak or terminal switch at the tumor phase. By analyzing cDNA microarray data, the early peak correlated to the oxidative stress and pro-inflammatory response, which then resolved at the middle phase and were followed by the terminal metabolic switch in the tumor tissues. Five lipid metabolism-related genes, the arachidonate 5-lipoxygenase, lipoprotein lipase, fatty acid binding protein 4, 1-acylglycerol-3-phosphate O-acyltransferase 9, and apolipoprotein A-IV were identified to be significantly activated in HBx transgenic HCCs and further validated in human HBV-related HCCs. Inhibition of these lipid genes could reverse the effect of HBx on lipid biosynthesis and suppress HBx-induced cell proliferation in vitro. Our results support the concept that metabolic syndrome plays an important role in HBV tumorigenesis. The dysregulation of lipid metabolic genes may predict the disease progression to HCC in chronic hepatitis B patients.
Collapse
Affiliation(s)
- Chiao-Fang Teng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Wen-Chuan Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Ching-Wen Yang
- Institute of Basic Medical Research, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Hui-Min Su
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.,Institute of Basic Medical Research, National Cheng Kung University College of Medicine, Tainan, Taiwan
| |
Collapse
|
55
|
Chatterjee N, Das S, Bose D, Banerjee S, Jha T, Saha KD. Leishmanial lipid affords protection against oxidative stress induced hepatic injury by regulating inflammatory mediators and confining apoptosis progress. Toxicol Lett 2014; 232:499-512. [PMID: 25445725 DOI: 10.1016/j.toxlet.2014.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/15/2014] [Accepted: 11/21/2014] [Indexed: 02/07/2023]
Abstract
Persistence of liver injury alters the internal milieu, promotes deregulation of inflammatory factors, and leads to dysplastic lesions like fibrosis, cirrhosis to hepatocellular carcinoma. Our previous study revealed that leishmanial lipid (pLLD) exerts potential anti-inflammatory activity in sepsis associated hepatic injury. We now show that pLLD gives protection against chemical induced hepatotoxicity in murine system. The beneficial effect of treatment with pLLD on such hepatic injury in mice was analyzed using different assays including ELISA, FACS, western blot and immunohistochemical analysis. pLLD significantly suppressed serum enzymes and rectified the histopathological alteration to induce the antioxidant level in CCl4 intoxicated liver. Levels of several growth factors including TGF-β, HGF, and EGF were significantly improved in serum and hepatic tissue with consequent reduction of caspase activities and expressions of Bad, Bax, p53, and NF-κBp65. Moreover, pLLD modulated inflammatory responses by decreasing the production of several cytokines and chemokines, thus preventing the infiltration of immune cells to the damaged area. It accelerated the repair process in liver damage with modulation of signalling cascade via alteration of apoptotic factors. Our experimental approaches suggest that pLLD effectively prevents liver injury mainly through down regulation of oxidative stress and inflammatory response towards anti-apoptotic changes.
Collapse
Affiliation(s)
- Nabanita Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR - Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Subhadip Das
- Cancer Biology & Inflammatory Disorder Division, CSIR - Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Dipayan Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR - Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Somenath Banerjee
- Cancer Biology & Inflammatory Disorder Division, CSIR - Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Tarun Jha
- Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR - Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India.
| |
Collapse
|
56
|
Diethylcarbamazine reduces chronic inflammation and fibrosis in carbon tetrachloride- (CCl₄-) induced liver injury in mice. Mediators Inflamm 2014; 2014:696383. [PMID: 25374445 PMCID: PMC4211150 DOI: 10.1155/2014/696383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/15/2014] [Accepted: 08/27/2014] [Indexed: 02/07/2023] Open
Abstract
This study investigated the anti-inflammatory effects of DEC on the CCl4-induced hepatotoxicity in C57BL/6 mice. Chronic inflammation was induced by i.p. administration of CCl4 0.5 μL/g of body weight through two injections a week for 6 weeks. DEC (50 mg/kg) was administered by gavage for 12 days before finishing the CCl4 induction. Histological analyses of the DEC-treated group exhibited reduced inflammatory process and prevented liver necrosis and fibrosis. Immunohistochemical and immunofluorescence analyses of the DEC-treated group showed reduced COX-2, IL1β, MDA, TGF-β, and αSMA immunopositivity, besides exhibiting decreased IL1β, COX-2, NFκB, IFNγ, and TGFβ expressions in the western blot analysis. The DEC group enhanced significantly the IL-10 expression. The reduction of hepatic injury in the DEC-treated group was confirmed by the COX-2 and iNOS mRNA expression levels. Based on the results of the present study, DEC can be used as a potential anti-inflammatory drug for chronic hepatic inflammation.
Collapse
|
57
|
Heidari R, Niknahad H, Jamshidzadeh A, Abdoli N. Factors affecting drug-induced liver injury: antithyroid drugs as instances. Clin Mol Hepatol 2014; 20:237-48. [PMID: 25320726 PMCID: PMC4197171 DOI: 10.3350/cmh.2014.20.3.237] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/03/2014] [Accepted: 05/12/2014] [Indexed: 12/22/2022] Open
Abstract
Methimazole and propylthiouracil have been used in the management of hyperthyroidism for more than half a century. However, hepatotoxicity is one of the most deleterious side effects associated with these medications. The mechanism(s) of hepatic injury induced by antithyroid agents is not fully recognized yet. Furthermore, there are no specific tools for predicting the occurrence of hepatotoxicity induced by these drugs. The purpose of this article is to give an overview on possible susceptibility factors in liver injury induced by antithyroid agents. Age, gender, metabolism characteristics, alcohol consumption, underlying diseases, immunologic mechanisms, and drug interactions are involved in enhancing antithyroid drugs-induced hepatic damage. An outline on the clinically used treatments for antithyroid drugs-induced hepatotoxicity and the potential therapeutic strategies found to be effective against this complication are also discussed.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. ; Pharmacology and Toxicology Department, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. ; Pharmacology and Toxicology Department, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Abdoli
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
58
|
Wu ZT, Qi XM, Sheng JJ, Ma LL, Ni X, Ren J, Huang CG, Pan GY. Timosaponin A3 induces hepatotoxicity in rats through inducing oxidative stress and down-regulating bile acid transporters. Acta Pharmacol Sin 2014; 35:1188-98. [PMID: 25087997 PMCID: PMC4155534 DOI: 10.1038/aps.2014.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/20/2014] [Indexed: 12/16/2022]
Abstract
Aim: To investigate the mechanisms underlying the hepatotoxicity of timosaponin A3 (TA3), a steroidal saponin from Anemarrhena asphodeloides, in rats. Methods: Male SD rats were administered TA3 (100 mg·kg−1·d−1, po) for 14 d, and the blood and bile samples were collected after the final administration. The viability of a sandwich configuration of cultured rat hepatocytes (SCRHs) was assessed using WST-1. Accumulation and biliary excretion index (BEI) of d8-TCA in SCRHs were determined with LC-MS/MS. RT-PCR and Western blot were used to analyze the expression of relevant genes and proteins. ROS and ATP levels, and mitochondrial membrane potential (MMP) were measured. F-actin cytoskeletal integrity was assessed under confocal microscopy. Results: TA3 administration in rats significantly elevated the total bile acid in serum, and decreased bile acid (BA) component concentrations in bile. TA3 inhibited the viability of the SCRHs with an IC50 value of 15.21±1.73 μmol/L. Treatment of the SCRHs with TA3 (1–10 μmol/L) for 2 and 24 h dose-dependently decreased the accumulation and BEI of d8-TCA. The TA3 treatment dose-dependently decreased the expression of BA transporters Ntcp, Bsep and Mrp2, and BA biosynthesis related Cyp7a1 in hepatocytes. Furthermore, the TA3 treatment dose-dependently increased ROS generation and HO-1 expression, decreased the ATP level and MMP, and disrupted F-actin in the SCRHs. NAC (5 mmol/L) significantly ameliorated TA3-induced effects in the SCRHs, whereas mangiferin (10–200 μg/mL) almost blocked TA3-induced ROS generation. Conclusion: TA3 triggers liver injury through inducing ROS generation and suppressing the expression of BA transporters. Mangiferin, an active component in Anemarrhena, may protect hepatocytes from TA3-induced hepatotoxicity.
Collapse
|
59
|
Hebels DGA, Jetten MJA, Aerts HJW, Herwig R, Theunissen DHJ, Gaj S, van Delft JH, Kleinjans JCS. Evaluation of database-derived pathway development for enabling biomarker discovery for hepatotoxicity. Biomark Med 2014; 8:185-200. [DOI: 10.2217/bmm.13.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Current testing models for predicting drug-induced liver injury are inadequate, as they basically under-report human health risks. We present here an approach towards developing pathways based on hepatotoxicity-associated gene groups derived from two types of publicly accessible hepatotoxicity databases, in order to develop drug-induced liver injury biomarker profiles. One human liver ‘omics-based and four text-mining-based databases were explored for hepatotoxicity-associated gene lists. Over-representation analysis of these gene lists with a hepatotoxicant-exposed primary human hepatocytes data set showed that human liver ‘omics gene lists performed better than text-mining gene lists and the results of the latter differed strongly between databases. However, both types of databases contained gene lists demonstrating biomarker potential. Visualizing those in pathway format may aid in interpreting the biomolecular background. We conclude that exploiting existing and openly accessible databases in a dedicated manner seems promising in providing venues for translational research in toxicology and biomarker development.
Collapse
Affiliation(s)
- Dennie GA Hebels
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Marlon JA Jetten
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Hugo JW Aerts
- Department or Biostatistics & Computational Biology, Dana–Farber Cancer Institute, Harvard School of Public Health, 44 Binney Street, Boston, MA 02115, USA
| | - Ralf Herwig
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Daniël HJ Theunissen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Stan Gaj
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Joost H van Delft
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jos CS Kleinjans
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
60
|
Movahedian A, Asgary S, Mansoorkhani HS, Keshvari M. Hepatotoxicity effect of some Iranian medicinal herbal formulation on rats. Adv Biomed Res 2014; 3:12. [PMID: 24592365 PMCID: PMC3928848 DOI: 10.4103/2277-9175.124641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/17/2013] [Indexed: 12/13/2022] Open
Abstract
Background: The public conviction that ‘herbal remedies are safe’ has led to an increased consumption of these products. This study was performed in view of the wide distribution of herbal remedies, the risks posed by self-treatment with these products, and the existing reports about the toxic effects of some medicinal herbs. Materials and Methods: In this study the effect of some of the most used herbal drops of A, B, C, and D on the liver function of rats was examined at different doses, namely minimum dose, maximum dose, and 2.5 times the maximum dose indicated in the brochures. The rats were administered the said doses via a feeding tube for 50 days. The liver function parameters including aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), total serum protein, albumin, and urea were measured using the spectrophotometric method. Results: The animals’ liver tissues were examined pathologically. The A drop did not change the liver function parameters significantly. The B drop increased the LDH by 34% compared to the controls, at the maximum administered dose. The C and D drops increased the ALT, AST, and LDH significantly compared to the controls. The histological findings suggest the possible effect of C and D drops on the function of hepatocytes. Conclusions: We recommend that the herbal formulations available in pharmaceutical markets be more closely controlled in terms of quality, as well as toxicity, especially with regard to the possible effects on the hepatic function.
Collapse
Affiliation(s)
- Ahmad Movahedian
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran
| | - Sedigheh Asgary
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran ; Department of Clinical Biochemistry, Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan, Iran
| | - Hossein Sadeghi Mansoorkhani
- Department of Clinical Biochemistry, Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan, Iran
| | - Mahtab Keshvari
- Department of Clinical Biochemistry, Physiology Research Center, Isfahan, Iran
| |
Collapse
|
61
|
Bektur NE, Sahin E, Baycu C, Unver G. Protective effects of silymarin against acetaminophen-induced hepatotoxicity and nephrotoxicity in mice. Toxicol Ind Health 2013; 32:589-600. [DOI: 10.1177/0748233713502841] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study was designed to estimate protective effects of silymarin on acetaminophen ( N-acetyl- p-aminophenol, paracetamol; APAP)-induced hepatotoxicity and nephrotoxicity in mice. Treatment of mice with overdose of APAP resulted in the elevation of aspartate aminotransferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), and serum creatinine (SCr) levels in serum, liver, and kidney nitric oxide (NO) levels and significant histological changes including decreased body weight, swelling of hepatocytes, cell infiltration, dilatation and congestion, necrosis and apoptosis in liver, and dilatation of Bowman’s capsular space and glomerular capillaries, pale-stained tubules epithelium, cell infiltration, and apoptosis in kidney. Posttreatment with silymarin 1 h after APAP injectionfor 7 days, however, significantly normalized the body weight, histological damage, serum ALT, AST, BUN, SCr, and tissue NO levels. Our observation suggested that silymarin ameliorated the toxic effects of APAP-induced hepatotoxicity and nephrotoxicity in mice. The protective role of silymarin against APAP-induced damages might result from its antioxidative and anti-inflammatory effects.
Collapse
Affiliation(s)
- Nuriye Ezgi Bektur
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Erhan Sahin
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Cengiz Baycu
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gonul Unver
- Department of Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
62
|
Verheij J, Schouten JNL, Komuta M, Nevens F, Hansen BE, Janssen HLA, Roskams T. Histological features in western patients with idiopathic non-cirrhotic portal hypertension. Histopathology 2013; 62:1083-91. [PMID: 23600724 DOI: 10.1111/his.12114] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/17/2013] [Indexed: 12/13/2022]
Abstract
AIMS In the western world, idiopathic non-cirrhotic portal hypertension (INCPH) is a rare disease. This study aimed to investigate the histopathological features in western INCPH patients and to assess pathological differences between liver specimens of INCPH with and without HIV. METHODS AND RESULTS Biopsies of 70 INCPH patients (of which 15 were HIV-infected) were compared to 23 patients with non-cirrhotic portal vein thrombosis (PVT), which served as a control group for non-cirrhotic portal hypertension. Phlebosclerosis, nodular regeneration (NR), sinusoidal dilatation, paraportal shunting vessels, perisinusoidal fibrosis and portal tract remnants were the most prevalent morphological features of INCPH. There were significant (P < 0.01) morphological differences between INCPH and PVT liver specimens with regard to portal tract remnants (46% versus 0%), phlebosclerosis (95% versus 65%), portal vein dilatation (34% versus 78%) and NR (56% versus 22%). The degree of NR correlated with the severity of phlebosclerosis (P < 0.01). NR was seen more frequently in the HIV-INCPH group, compared to the non-HIV-infected patients (P < 0.001). CONCLUSION Portal tract remnants, phlebosclerosis and nodular regeneration are typical features of INCPH. Sinusoidal dilatation, paraportal shunting vessels and increased portal and parenchymal vessels might represent pressure-related morphological signs of portal hypertension. Finally, more nodular regeneration was observed in HIV-associated INCPH.
Collapse
Affiliation(s)
- Joanne Verheij
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
63
|
Drug-Induced Liver Injury Throughout the Drug Development Life Cycle: Where We Have Been, Where We are Now, and Where We are Headed. Perspectives of a Clinical Hepatologist. Pharmaceut Med 2013. [DOI: 10.1007/s40290-013-0015-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
64
|
Chao J, Liao JW, Peng WH, Lee MS, Pao LH, Cheng HY. Antioxidant, Analgesic, Anti-Inflammatory, and Hepatoprotective Effects of the Ethanol Extract of Mahonia oiwakensis Stem. Int J Mol Sci 2013; 14:2928-45. [PMID: 23364614 PMCID: PMC3588023 DOI: 10.3390/ijms14022928] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate pharmacological properties of ethanol extracted from Mahonia oiwakensis Hayata stems (MOS(EtOH)). The pharmacological properties included antioxidant, analgesic, anti-inflammatory and hepatoprotective effects. The protoberberine alkaloid content of the MOS(EtOH) was analyzed by high-performance liquid chromatography (HPLC). The results revealed that three alkaloids, berberine, palmatine and jatrorrhizine, could be identified. Moreover, the MOS(EtOH) exhibited antioxidative activity using the DPPH assay (IC(50), 0.743 mg/mL). The DPPH radical scavenging activity of MOS(EtOH) was five times higher that that of vitamin C. MOS(EtOH) was also found to inhibit pain induced by acetic acid, formalin, and carrageenan inflammation. Treatment with MOS(EtOH) (100 and 500 mg/kg) or silymarin (200 mg/kg) decreased the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels compared with the CCl(4)-treated group. Histological evaluation showed that MOS(EtOH) reduced the degree of liver injury, including vacuolization, inflammation and necrosis of hepatocytes. The anti-inflammatory and hepatoprotective effect of MOS(EtOH) were found to be related to the modulation of antioxidant enzyme activity in the liver and decreases in malondialdehyde (MDA) level and nitric oxide (NO) contents. Our findings suggest that MOS(EtOH) has analgesic, anti-inflammatory and hepatoprotective effects. These effects support the use of MOS(EtOH) for relieving pain and inflammation in folk medicine.
Collapse
Affiliation(s)
- Jung Chao
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan; E-Mail:
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan; E-Mail:
| | - Wen-Huang Peng
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan; E-Mails: (W.-H.P.); (M.-S.L.)
| | - Meng-Shiou Lee
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung 404, Taiwan; E-Mails: (W.-H.P.); (M.-S.L.)
| | - Li-Heng Pao
- Department of biotechnology, Trans World University, Yunlin 640, Taiwan; E-Mail:
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | - Hao-Yuan Cheng
- Department of Nursing, Chung-Jen College of Nursing, Health Sciences and Management, Chiayi 600, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-5-2658880 (ext. 227); Fax: +886-5-2658913
| |
Collapse
|
65
|
Sistanizad M, Peterson GM. Drug-induced liver injury in the Australian setting. J Clin Pharm Ther 2013; 38:115-20. [PMID: 23350857 DOI: 10.1111/jcpt.12039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 12/05/2012] [Indexed: 12/13/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE The causes of drug-induced liver injury vary worldwide, with limited data regarding drug-induced hepatotoxicity in Australia. This study sought to provide information about the incidence, causes and clinical manifestations of drug-induced hepatotoxicity. METHODS A retrospective study was performed on all adult inpatients with abnormal liver function tests, defined as an increase of more than twice the upper limit of the normal range in either serum alanine aminotransferase or alkaline phosphatase, over a 12-month period at the major hospital in Tasmania, Australia. A random sample of individual medical records was reviewed and clinical data extracted. The causality of suspected drug-induced liver injury cases was assessed using the Roussel Uclaf Causality Assessment Method. RESULTS A total of 264 cases were included. Drug-induced liver injury with at least a possible causal relationship was found in 24 cases (9·1%). The mean age at presentation in the 17 patients with possible or probable hepatotoxicity not related to paracetamol or cancer chemotherapy was 60 ± 20·0 years, and 9 (53%) were men. The frequencies of cholestatic, hepatocellular and mixed patterns of liver damage were 9 (53%), 2 (12%) and 6 (35%) respectively. The most common cause was antibiotics (11 of 17; 65%), while flucloxacillin (4 of 17; 24%) was the single agent most often implicated. WHAT IS NEW AND CONCLUSION Nearly 10% of cases of abnormal liver function could be associated with adverse effects of drugs. The possibility of drug-induced liver injury should always be considered when there is an absence of other apparent hepatic disease.
Collapse
Affiliation(s)
- M Sistanizad
- Department of Pharmacotherapy, School of Pharmacy, Shahid Beheshti Medical University, Iran
| | | |
Collapse
|
66
|
Abstract
Drug-induced liver injury continues to have a significant impact. With over 1000 drugs now registered as causing DILI, this form of liver injury is the most cited reason for withdrawal of a drug from the marketplace. Despite this, the diagnosis of DILI continues to rely on subjective measures and expert opinion with results that are both difficult to verify and reproduce. However, recent developments in DILI research may provide new insights to improve diagnosis and treatment in the future.
Collapse
|
67
|
Mrzljak A, Kosuta I, Skrtic A, Kanizaj TF, Vrhovac R. Drug-Induced Liver Injury Associated with Noni (Morinda citrifolia) Juice and Phenobarbital. Case Rep Gastroenterol 2013; 7:19-24. [PMID: 23467452 PMCID: PMC3573787 DOI: 10.1159/000343651] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Noni (Morinda citrifolia) juice is a popular herbal dietary supplement globally used for preventive or therapeutic purposes in a variety of ailments, claiming to exhibit hepatoprotective properties as well. Herein we present the case of a 38-year-old woman who developed acute liver injury associated with noni juice consumption on a long-term (9 months) anticonvulsant therapy. Clinical presentation and liver biopsy were consistent with severe, predominantly hepatocellular type of injury. Both agents were stopped and corticosteroids were initiated. Five months later the patient had fully recovered. Although in the literature the hepatotoxicity of noni juice remains speculative, sporadic but emerging cases of noni juice-associated liver injury address the need to clarify and investigate potential harmful effects associated with this supplement.
Collapse
Affiliation(s)
- Anna Mrzljak
- Department of Medicine, University Hospital Merkur, Zagreb, Croatia
- Department of School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Iva Kosuta
- Department of Medicine, University Hospital Merkur, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology and Cytology, University Hospital Merkur, Zagreb, Croatia
- Department of School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tajana Filipec Kanizaj
- Department of Medicine, University Hospital Merkur, Zagreb, Croatia
- Department of School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Radovan Vrhovac
- Department of Medicine, University Hospital Center Zagreb, Zagreb, Croatia
- Department of School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
68
|
Yang F, Xu Y, Xiong A, He Y, Yang L, Wan YJY, Wang Z. Evaluation of the protective effect of Rhei Radix et Rhizoma against α-naphthylisothiocyanate induced liver injury based on metabolic profile of bile acids. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:599-604. [PMID: 23058990 PMCID: PMC7232858 DOI: 10.1016/j.jep.2012.09.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 09/09/2012] [Accepted: 09/28/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE To evaluate the hepatoprotective effect of the root and rhizome of Rhubarb (Rhei Radix et Rhizoma) against α-naphthylisothiocyanate (ANIT)-induced liver injury using metabolic profile of bile acids (BAs) along with biochemical parameters and histological alterations. MATERIALS AND METHODS Ultra-performance liquid chromatography coupled with quadrupole mass spectrometry (UPLC-MS) was applied to determinate the concentration of BAs, which was followed by multivariate statistical analysis of Principal Component Analysis (PCA) and Partial Least Squares Discriminate Analysis (PLS-DA). RESULTS Based on PCA results, three groups (Vehicle group, ANIT group and RhO+ANIT group) were clearly distinguished. Tauro-cholic acid (TCA), tauro-hyodesoxycholic acid (THDCA), glyco-cholic acid (GCA), and glyco-chenodeoxycholic acid (GCDCA) were proved to be the most important markers corresponding to ANIT-induced liver injury and protection provided by Rhubarb, which is further confirmed by PLS-DA. A correlation was found between the foregoing BAs and biochemical parameters including serum aspartate aminotransferase (ALT) and aspartate aminotransferase (AST), which confirmed that TCA, THDAC, GCA, and GCDCA could be considered as sensitive biomarkers. CONCLUSION The variance of the BAs contents can be used to evaluate ANIT-induced hepatotoxicity caused by ANIT and protective effects of Rhubarb. It also lays the foundation for the further research on the mechanisms of cholestasis as well as the therapeutic effect of Rhubarb.
Collapse
Affiliation(s)
- Fan Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Ying Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201210, China
| | - Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
| | - Yugi He
- Department of Pathology and Laboratory Medicine, University of California, Davis, Medical Center, Room 3400B, 4645 2nd Ave, Sacramento, CA 95817, USA
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201210, China
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Medical Center, Room 3400B, 4645 2nd Ave, Sacramento, CA 95817, USA
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201210, China
| |
Collapse
|
69
|
Gandhi A, Guo T, Shah P, Moorthy B, Ghose R. Chlorpromazine-induced hepatotoxicity during inflammation is mediated by TIRAP-dependent signaling pathway in mice. Toxicol Appl Pharmacol 2012; 266:430-8. [PMID: 23238562 DOI: 10.1016/j.taap.2012.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/14/2012] [Accepted: 11/17/2012] [Indexed: 12/11/2022]
Abstract
Inflammation is a major component of idiosyncratic adverse drug reactions (IADRs). To understand the molecular mechanism of inflammation-mediated IADRs, we determined the role of the Toll-like receptor (TLR) signaling pathway in idiosyncratic hepatotoxicity of the anti-psychotic drug, chlorpromazine (CPZ). Activation of TLRs recruits the first adaptor protein, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) to the TIR domain of TLRs leading to the activation of the downstream kinase, c-Jun-N-terminal kinase (JNK). Prolonged activation of JNK leads to cell-death. We hypothesized that activation of TLR2 by lipoteichoic acid (LTA) or TLR4 by lipopolysaccharide (LPS) will augment the hepatotoxicity of CPZ by TIRAP-dependent mechanism involving prolonged activation of JNK. Adult male C57BL/6, TIRAP(+/+) and TIRAP(-/-) mice were pretreated with saline, LPS (2 mg/kg) or LTA (6 mg/kg) for 30 min or 16 h followed by CPZ (5 mg/kg) or saline (vehicle) up to 24h. We found that treatment of mice with CPZ in presence of LPS or LTA leads to ~3-4 fold increase in serum ALT levels, a marked reduction in hepatic glycogen content, significant induction of serum tumor necrosis factor (TNF) α and prolonged JNK activation, compared to LPS or LTA alone. Similar results were observed in TIRAP(+/+) mice, whereas the effects of LPS or LTA on CPZ-induced hepatotoxicity were attenuated in TIRAP(-/-) mice. For the first time, we show that inflammation-mediated hepatotoxicity of CPZ is dependent on TIRAP, and involves prolonged JNK activation in vivo. Thus, TIRAP-dependent pathways may be targeted to predict and prevent inflammation-mediated IADRs.
Collapse
Affiliation(s)
- Adarsh Gandhi
- University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
70
|
Le TT, Ziemba A, Urasaki Y, Brotman S, Pizzorno G. Label-free evaluation of hepatic microvesicular steatosis with multimodal coherent anti-Stokes Raman scattering microscopy. PLoS One 2012; 7:e51092. [PMID: 23226469 PMCID: PMC3511365 DOI: 10.1371/journal.pone.0051092] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/29/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatic microvesicular steatosis is a hallmark of drug-induced hepatotoxicity and early-stage fatty liver disease. Current histopathology techniques are inadequate for the clinical evaluation of hepatic microvesicular steatosis. In this paper, we explore the use of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the detection and characterization of hepatic microvesicular steatosis. We show that CARS microscopy is more sensitive than Oil Red O histology for the detection of microvesicular steatosis. Computer-assisted analysis of liver lipid level based on CARS signal intensity is consistent with triglyceride measurement using a standard biochemical assay. Most importantly, in a single measurement procedure on unprocessed and unstained liver tissues, multimodal CARS imaging provides a wealth of critical information including the detection of microvesicular steatosis and quantitation of liver lipid content, number and size of lipid droplets, and lipid unsaturation and packing order of lipid droplets. Such information can only be assessed by multiple different methods on processed and stained liver tissues or tissue extracts using current standard analytical techniques. Multimodal CARS microscopy also permits label-free identification of lipid-rich non-parenchymal cells. In addition, label-free and non-perturbative CARS imaging allow rapid screening of mitochondrial toxins-induced microvesicular steatosis in primary hepatocyte cultures. With its sensitivity and versatility, multimodal CARS microscopy should be a powerful tool for the clinical evaluation of hepatic microvesicular steatosis.
Collapse
Affiliation(s)
- Thuc T. Le
- Desert Research Institute, Las Vegas, Nevada, United States of America
- Nevada Cancer Institute, One Breakthrough Way, Las Vegas, Nevada, United States of America
- * E-mail: (TTL); (GP)
| | - Amy Ziemba
- Nevada Cancer Institute, One Breakthrough Way, Las Vegas, Nevada, United States of America
| | - Yasuyo Urasaki
- Desert Research Institute, Las Vegas, Nevada, United States of America
- Nevada Cancer Institute, One Breakthrough Way, Las Vegas, Nevada, United States of America
| | - Steven Brotman
- Nevada Cancer Institute, One Breakthrough Way, Las Vegas, Nevada, United States of America
| | - Giuseppe Pizzorno
- Desert Research Institute, Las Vegas, Nevada, United States of America
- Nevada Cancer Institute, One Breakthrough Way, Las Vegas, Nevada, United States of America
- * E-mail: (TTL); (GP)
| |
Collapse
|
71
|
Loko MA, Bani-Sadr F, Valantin MA, Lascoux-Combe C, Fontaine H, Bonnard P, Gervais A, Bouchaud O, Garipuy D, Quertainmont Y, Vittecoq D, Tehrani MS, Winnock M, Dabis F, Salmon D. Antiretroviral therapy and sustained virological response to HCV therapy are associated with slower liver fibrosis progression in HIV-HCV-coinfected patients: study from the ANRS CO 13 HEPAVIH cohort. Antivir Ther 2012; 17:1335-43. [PMID: 23052829 DOI: 10.3851/imp2419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2012] [Indexed: 01/30/2023]
Abstract
BACKGROUND The aim of this study was to describe changes in repeated liver stiffness (LS) measurements and to assess the determinants of increase in LS in HIV-HCV-coinfected patients. METHODS HIV-HCV-coinfected adults enrolled in the ANRS CO 13 HEPAVIH cohort, for whom two results of LS, evaluated over ≥24 months, were available. Patients with unreliable LS results were not included. LS was measured at baseline and every year thereafter. Determinants of LS increase were assessed using linear (primary outcome: last LS minus first LS value) and logistic (secondary outcome: ≥30% increase in the initial LS value) regression analyses. RESULTS A total of 313 patients (mean age 45 years, 67.4% male) were included. Overall, 93.9% were receiving antiretroviral treatment (ART). The mean baseline CD4(+) T-cell count was 471 cells/mm(3) and 72.2% of patients had undetectable plasma HIV RNA. The mean interval between the first and last LS measurements was 33.5 months. No significant difference was found between baseline and follow-up mean LS values (P=0.39). However, a decrease of ≥30% in LS was observed in 48 (15.3%) patients and an increase of ≥30% in 64 (20.5%) patients. In multivariate linear and logistic analyses, excessive alcohol intake (β coefficient 6.8; P=0.0006) and high HCV viral load (OR 1.7, 95% CI 1.1, 2.5; P=0.01) were independently associated with an increase in LS, whereas time on ART>114.5 months (OR 0.5, 95% CI 0.3, 0.9; P=0.03) and achievement of sustained virological response (OR 0.1, 95% CI 0.01, 0.9; P=0.04) were independently associated with no increase in LS. CONCLUSIONS Our findings show that long-term ART and achieving sustained virological response in HIV-HCV-coinfected patients are both significantly associated with lack of increase in LS over a 33-month period.
Collapse
Affiliation(s)
- Marc-Arthur Loko
- Université Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
|
73
|
Senior JR. Alanine aminotransferase: a clinical and regulatory tool for detecting liver injury-past, present, and future. Clin Pharmacol Ther 2012; 92:332-9. [PMID: 22871997 DOI: 10.1038/clpt.2012.108] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Assay of the serum activity of the enzyme alanine aminotransferase (ALT) has become the primary screening tool for detecting acute liver injury. But what does an elevated value mean? Not what it is too often mistakenly believed to indicate. It is not a test of liver function. It does not necessarily predict worse effects to come (in a given person). It is not a valid measure of severity of liver injury or dysfunction. It is too unspecific to be reliable in screening for relatively rare effects on the liver. Although these are substantial limitations, ALT is a very useful biomarker if understood and used properly. It is important to consider how and why these erroneous concepts came to have such wide acceptance, and how elevations of ALT activity for evaluating patients and subjects under study might be interpreted better.
Collapse
Affiliation(s)
- J R Senior
- Office of Pharmacovigilance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Federal Research Center at White Oak, Silver Spring, Maryland, USA.
| |
Collapse
|
74
|
Zhang L, Rowe A, Braet F, Ramzan I. Macrophage depletion ameliorates kavalactone damage in the isolated perfused rat liver. J Toxicol Sci 2012; 37:447-53. [PMID: 22467036 DOI: 10.2131/jts.37.447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Liver toxicity is a side effect observed with some herbal treatments, including Piper methysticum. The possible mechanisms responsible include inflammation subsequent to activation of liver macrophages and oxidative damage. Hepatotoxicity of the pharmacologically active component of Piper methysticum (kavalactones) was tested in isolated, perfused livers from rats which were pretreated with the macrophage intoxicant gadolinium chloride. Perfusions without kavalactones in gadolinium chloride pretreated and untreated livers were included as negative controls. Serial liver lobe biopsies were collected to measure temporal changes in available (reduced) hepatic glutathione. There were no statistically significant changes in reduced glutathione over the course of perfusion in any experimental group. Liver damage was observed using electron microscopy. Hepatic sinusoids displayed extensive damage to the endothelium in kavalactone-perfused, rat livers. This damage was significantly reduced by pre-treatment with gadolinium chloride. Hence liver macrophages may be a factor in liver injury induced by Piper methysticum. Characterisation and modulation of the liver macrophage response may enable the development of strategies to avoid these hepatic side effects.
Collapse
|
75
|
Dash A, Blackman BR, Wamhoff BR. Organotypic systems in drug metabolism and toxicity: challenges and opportunities. Expert Opin Drug Metab Toxicol 2012; 8:999-1014. [DOI: 10.1517/17425255.2012.693161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
76
|
Xue T, Luo P, Zhu H, Zhao Y, Wu H, Gai R, Wu Y, Yang B, Yang X, He Q. Oxidative stress is involved in Dasatinib-induced apoptosis in rat primary hepatocytes. Toxicol Appl Pharmacol 2012; 261:280-91. [PMID: 22538170 DOI: 10.1016/j.taap.2012.04.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 04/06/2012] [Accepted: 04/07/2012] [Indexed: 01/23/2023]
Abstract
Dasatinib, a multitargeted inhibitor of BCR-ABL and SRC kinases, exhibits antitumor activity and extends the survival of patients with chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (ALL). However, some patients suffer from hepatotoxicity, which occurs through an unknown mechanism. In the present study, we found that Dasatinib could induce hepatotoxicity both in vitro and in vivo. Dasatinib reduced the cell viability of rat primary hepatocytes, induced the release of alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in vitro, and triggered the ballooning degeneration of hepatocytes in Sprague-Dawley rats in vivo. Apoptotic markers (chromatin condensation, cleaved caspase-3 and cleaved PARP) were detected to indicate that the injury induced by Dasatinib in hepatocytes in vitro was mediated by apoptosis. This result was further validated in vivo using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays. Here we found that Dasatinib dramatically increased the level of reactive oxygen species (ROS) in hepatocytes, reduced the intracellular glutathione (GSH) content, attenuated the activity of superoxide dismutase (SOD), generated malondialdehyde (MDA), a product of lipid peroxidation, decreased the mitochondrial membrane potential, and activated nuclear factor erythroid 2-related factor 2 (Nrf2) and mitogen-activated protein kinases (MAPK) related to oxidative stress and survival. These results confirm that oxidative stress plays a pivotal role in Dasatinib-mediated hepatotoxicity. N-acetylcysteine (NAC), a typical antioxidant, can scavenge free radicals, attenuate oxidative stress, and protect hepatocytes against Dasatinib-induced injury. Thus, relieving oxidative stress is a viable strategy for reducing Dasatinib-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tao Xue
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Cho YE, Singh TSK, Lee HC, Moon PG, Lee JE, Lee MH, Choi EC, Chen YJ, Kim SH, Baek MC. In-depth identification of pathways related to cisplatin-induced hepatotoxicity through an integrative method based on an informatics-assisted label-free protein quantitation and microarray gene expression approach. Mol Cell Proteomics 2011; 11:M111.010884. [PMID: 22023808 DOI: 10.1074/mcp.m111.010884] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cisplatin is used widely for treatment of a variety of cancer diseases. Recently, however, the use of cisplatin is restricted because of its adverse effects such as hepatotoxicity. There is no study with current proteomics technology to evaluate cisplatin-induced hepatotoxicity, even if some studies have reported on the hepatotoxicity. In this study, proteomic as well as genomic analyses have been used for identification of proteins and genes that respond to cisplatin treatment in rat primary hepatocytes. To investigate the hepatotoxic effects of cisplatin, rat primary hepatocytes were treated with an IC(20) concentration for 24 h. From proteomic analysis based on label-free quantitation strategy, cisplatin induced 76 up-regulated and 19 down-regulated proteins among 325 distinct proteins. In the mRNA level, genomic analysis revealed 72 up-regulated and 385 down-regulated genes in the cisplatin-treated group. Based on these two analyses, 19 pathways were commonly altered, whereas seven pathways were identified only by proteomic analysis, and 19 pathways were identified only by genomic analysis. Overall, this study explained the mechanism of cisplatin-induced hepatotoxicity with two points of view: well known pathways including drug metabolism, fatty acid metabolism, and glycolysis/TCA cycle and little known pathways including urea cycle and inflammation metabolism, for hepatotoxicity of other toxic agents. Up-regulated proteins detected by proteomic analysis in the cisplatin-treated group: FBP1 (fructose 1,6-bisphosphatase 1), FASN (fatty acid synthase), CAT (catalase), PRDX1 (peroxiredoxin-1), HSPD1 (60-kDa heat shock protein), MDH2 (malate dehydrogenase 2), and ARG1 (arginase 1), and also down-regulated proteins in the cisplatin-treated group: TPM1 (tropomyosin 1), TPM3 (tropomyosin 3), and CTSB (cathepsin B), were confirmed by Western blot analysis. In addition, up-regulated mRNAs detected by microarray analysis in the cisplatin-treated group: GSTA2, GSTT2, YC2, TXNRD1, CYP2E1, CYP2C13, CYP2D1, ALDH17, ARG1, ARG2, and IL-6, and also down-regulated mRNAs: CYP2C12, CYP26B1, TPM1, and TPM3, were confirmed by RT-PCR analysis. In case of PRDX1, FASN, and ARG1, they were further confirmed by immunofluorescence analysis. Through the integrated proteomic and genomic approaches, the present study provides the first pathway map related to cisplatin-induced hepatotoxicity, which may provide new insight into the mechanism of hepatotoxicity.
Collapse
Affiliation(s)
- Young-Eun Cho
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Thoudam S K Singh
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Hyun-Chul Lee
- D & P Biotech, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Pyong-Gon Moon
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Jeong-Eun Lee
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Myung-Hoon Lee
- D & P Biotech, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Eung-Chil Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea.
| |
Collapse
|
78
|
Suppression of beta-naphthoflavone induced CYP1A expression and lipid-peroxidation by berberine. Fitoterapia 2011; 82:889-95. [DOI: 10.1016/j.fitote.2011.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/02/2011] [Accepted: 05/06/2011] [Indexed: 02/07/2023]
|
79
|
El-Mowafy A, Abdel-Dayem M, Abdel-Aziz A, El-Azab M, Said S. Eicosapentaenoic acid ablates valproate-induced liver oxidative stress and cellular derangement without altering its clearance rate: Dynamic synergy and therapeutic utility. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:460-7. [DOI: 10.1016/j.bbalip.2011.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 04/23/2011] [Accepted: 04/27/2011] [Indexed: 11/25/2022]
|
80
|
Luís PBM, Ruiter JPN, Ijlst L, Tavares de Almeida I, Duran M, Mohsen AW, Vockley J, Wanders RJA, Silva MFB. Role of isovaleryl-CoA dehydrogenase and short branched-chain acyl-CoA dehydrogenase in the metabolism of valproic acid: implications for the branched-chain amino acid oxidation pathway. Drug Metab Dispos 2011; 39:1155-60. [PMID: 21430231 PMCID: PMC3127238 DOI: 10.1124/dmd.110.037606] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/14/2011] [Indexed: 01/27/2023] Open
Abstract
Many biological systems including the oxidative catabolic pathway for branched-chain amino acids (BCAAs) are affected in vivo by valproate therapy. In this study, we investigated the potential effect of valproic acid (VPA) and some of its metabolites on the metabolism of BCAAs. In vitro studies were performed using isovaleryl-CoA dehydrogenase (IVD), isobutyryl-CoA dehydrogenase (IBD), and short branched-chain acyl-CoA dehydrogenase (SBCAD), enzymes involved in the degradation pathway of leucine, valine, and isoleucine. The enzymatic activities of the three purified human enzymes were measured using optimized high-performance liquid chromatography procedures, and the respective kinetic parameters were determined in the absence and presence of VPA and the corresponding CoA and dephosphoCoA conjugates. Valproyl-CoA and valproyl-dephosphoCoA inhibited IVD activity significantly by a purely competitive mechanism with K(i) values of 74 ± 4 and 170 ± 12 μM, respectively. IBD activity was not affected by any of the tested VPA esters. However, valproyl-CoA did inhibit SBCAD activity by a purely competitive mechanism with a K(i) of 249 ± 29 μM. In addition, valproyl-dephosphoCoA inhibited SBCAD activity via a distinct mechanism (K(i) = 511 ± 96 μM) that appeared to be of the mixed type. Furthermore, we show that both SBCAD and IVD are active, using valproyl-CoA as a substrate. The catalytic efficiency of SBCAD turned out to be much higher than that of IVD, demonstrating that SBCAD is the most probable candidate for the first dehydrogenation step of VPA β-oxidation. Our data explain some of the effects of valproate on the branched-chain amino acid metabolism and shed new light on the biotransformation pathway of valproate.
Collapse
Affiliation(s)
- Paula B M Luís
- Research Institute for Medicines and Pharmaceutical Sciences-iMED.UL, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Zhao YL, Zhou GD, Yang HB, Wang JB, Shan LM, Li RS, Xiao XH. Rhein protects against acetaminophen-induced hepatic and renal toxicity. Food Chem Toxicol 2011; 49:1705-10. [PMID: 21515333 DOI: 10.1016/j.fct.2011.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/09/2011] [Accepted: 04/11/2011] [Indexed: 02/05/2023]
Abstract
This study investigated the possible protective effects and mechanism of rhein on Acetaminophen (APAP)-induced hepatotoxicity and nephrotoxicity in rats. Treatment of rats with APAP resulted in severe liver and kidney injuries, as demonstrated by drastic elevation of serum glutamate-pyruvate transaminase (GPT), glutamate-oxaloacetic transaminase (GOT), total bilirubin (TBIL), creatinine (CREA), urea nitrogen (UREA) levels and typical histopathological changes including necrosis, phlogocyte infiltration and fatty degeneration in liver, tubules epithelium swelling and severe vacuolar degeneration in kidney. APAP caused oxidative stress, as evidenced by increased reactive oxygen species (ROS) production, nitric oxide (NO) and malondiadehyde (MDA) levels, together with depleted glutathione (GSH) concentration in the liver and kidney of rats. However, rhein can attenuate APAP-induced hepatotoxicity and nephrotoxicity in a dose-dependent manner. Our results showed that GPT, GOT, UREA and CREA levels and ROS production were reduced dramatically, NO, MDA, GSH contents were restored remarkedly by rhein administration, as compared to the APAP alone treated rats. Moreover, the histopathological damage of liver and kidney were also significantly ameliorated by rhein treatment. These findings suggested that the protective effects of rhein against APAP-induced liver and kidney injuries might result from the amelioration of APAP-induced oxidative stress.
Collapse
Affiliation(s)
- Yan-Ling Zhao
- Institute of Traditional Chinese Material Medica, People's Liberation Army, Beijing 100039, PR China
| | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
The low incidence of idiosyncratic drug-induced liver injury (DILI), together with the lack of a reliable diagnostic biomarker and robust preclinical and in vitro toxicology test systems for the condition have limited our ability to define the mechanisms of DILI. A notable exception is acetaminophen hepatotoxicity, which is associated with the formation of a well-characterized and highly reactive intermediate metabolite, N-acetyl-p-benzoquinone imine. However, studies have also suggested a role for the host immune response and variation in the expression of the lymphocyte CD44 gene in the pathogenesis of acetaminophen hepatotoxicity. A careful review of the laboratory, clinical and histological phenotype of patients with DILI can provide potential clues to the mechanisms of disease pathogenesis, as observed with fialuridine and valproate hepatotoxicity. In addition, the use of transcriptomic and genomic approaches in patients with well-characterized DILI has provided important insights into the involvement of the host immune response in the pathogenesis of hepatotoxicity associated with the administration of flucloxacillin, lumiracoxib or ximelagatran. This Review highlights new developments regarding the potential role of reactive metabolites, mitochondrial toxicity, host immune-response pathways and biliary transporters in the etiopathogenesis of DILI. Going forward, a bedside-to-bench approach could improve our understanding of the mechanisms and risk factors for DILI.
Collapse
Affiliation(s)
- Shannan Tujios
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 3912 Taubman Center, Ann Arbor, MI 48109-0362, USA
| | | |
Collapse
|
83
|
Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proc Natl Acad Sci U S A 2011; 108:586-91. [PMID: 21220299 DOI: 10.1073/pnas.1010013108] [Citation(s) in RCA: 404] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has long been hypothesized that elastic modulus governs the biodistribution and circulation times of particles and cells in blood; however, this notion has never been rigorously tested. We synthesized hydrogel microparticles with tunable elasticity in the physiological range, which resemble red blood cells in size and shape, and tested their behavior in vivo. Decreasing the modulus of these particles altered their biodistribution properties, allowing them to bypass several organs, such as the lung, that entrapped their more rigid counterparts, resulting in increasingly longer circulation times well past those of conventional microparticles. An 8-fold decrease in hydrogel modulus correlated to a greater than 30-fold increase in the elimination phase half-life for these particles. These results demonstrate a critical design parameter for hydrogel microparticles.
Collapse
|
84
|
Eidi A, Eidi M, Al-Ebrahim M, Rohani AH, Mortazavi P. Protective effects of sodium molybdate on carbon tetrachloride-induced hepatotoxicity in rats. J Trace Elem Med Biol 2011; 25:67-71. [PMID: 21277181 DOI: 10.1016/j.jtemb.2010.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 11/18/2010] [Accepted: 12/08/2010] [Indexed: 11/19/2022]
Abstract
Molybdenum is an essential trace micronutrient element that plays an important role in animal and plant physiology. Molybdenum is a constituent of at least three mammalian metalloflavoproteins: xanthine oxidase, aldehyde oxidase and sulphite oxidase. In the present study, the hepatoprotective potential of sodium molybdate was investigated against carbon tetrachloride (CCl(4))-induced liver damage in rats. Administration of CCl(4) increased the serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase levels in rats and reduced levels of the antioxidant enzymes superoxide dismutase and catalase in the liver. Treatment with sodium molybdate significantly attenuated these changes to nearly undetectable levels. The histopathological changes induced by CCl(4) were also significantly attenuated by sodium molybdate treatment. Therefore, the results of this study suggest that sodium molybdate can protect the liver against CCl(4)-induced oxidative damage in rats, and this hepatoprotective effect might be attributable to its modulation of detoxification enzymes and/or its antioxidant and free radical scavenger effects.
Collapse
Affiliation(s)
- Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | | | | | | |
Collapse
|
85
|
Domitrović R, Jakovac H, Blagojević G. Hepatoprotective activity of berberine is mediated by inhibition of TNF-α, COX-2, and iNOS expression in CCl(4)-intoxicated mice. Toxicology 2010; 280:33-43. [PMID: 21095217 DOI: 10.1016/j.tox.2010.11.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/25/2010] [Accepted: 11/16/2010] [Indexed: 12/21/2022]
Abstract
This study investigated the protective effects of isoquinoline alkaloid berberine on the CCl(4)-induced hepatotoxicity in mice. Berberine was administered as a single dose at 5 and 10mg/kg intraperitoneally (i.p.), 1h before CCl(4) (10%, v/v in olive oil, 2ml/kg) injection and mice were euthanized 24h later. The rise in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) in CCl(4)-intoxicated mice was markedly suppressed by berberine in a concentration-dependent manner. The decrease in hepatic activity of superoxide dismutase (Cu/Zn SOD) and an increase in lipid peroxidation were significantly prevented by berberine. Histopathological changes were reduced and the expression of tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) was markedly attenuated by berberine 10mg/mg. The results of this study indicate that berberine could be effective in protecting the liver from acute CCl(4)-induced injury. The hepatoprotective mechanisms of berberine may be related to the free radical scavenging and attenuation of oxidative/nitrosative stress, as well as to the inhibition of inflammatory response in the liver.
Collapse
Affiliation(s)
- Robert Domitrović
- Department of Chemistry and Biochemistry, School of Medicine, University of Rijeka, B. Branchetta 20, Rijeka, Croatia.
| | | | | |
Collapse
|
86
|
Tumor initiation and progression in hepatocellular carcinoma: risk factors, classification, and therapeutic targets. Acta Pharmacol Sin 2010; 31:1409-20. [PMID: 20953207 DOI: 10.1038/aps.2010.142] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major health problem worldwide responsible for 500 000 deaths annually. A number of risk factors are associated with either the induction of the disease or its progression; these include infection with hepatitis B or C virus, alcohol consumption, non-alcoholic steatohepatitis and certain congenital disorders. In around 80% of the cases, HCC is associated with cirrhosis or advanced fibrosis and with inflammation and oxidative stress. In this review we focus firstly on the different risk factors for HCC and summarize the mechanisms by which each is considered to contribute to HCC. In the second part we look at the molecular processes involved in cancer progression. HCC development is recognized as a multistep process that normally develops over many years. Over this period several mutations accumulate in the cell and that stimulate malign transformation, growth, and metastatic behavior. Over the recent years it has become evident that not only the tumor cell itself but also the tumor microenviroment plays a major role in the development of a tumor. There is a direct link between the role of inflammation and cirrhosis with this microenviroment. Both in vitro and in vivo it has been shown that tumor formation and metastatic properties are linked to epithelial-mesenchymal transition (EMT), a process by which facillitates the tumor cell's attempts to migrate to a more favourable microenviroment. Several groups have analyzed the gene expression in HCC and its surrounding tissue by microarray and this has resulted in the molecular classification into a distinct number of classes. Here we also found a role for hypoxia induced gene expression leading to a clinically more aggressive gene expression in HCC. Molecular analysis also helped to identify important cellular pathways and possible therapeutic targets. The first molecule that in this way has shown clinical application for liver cancer is the multikinase inhibitor sorafenib, others are currently in different stages of clinical studies like the mTOR inhibitor everolimus.
Collapse
|
87
|
Yang L, Dong W, Yan F, Ren X, Hao X. Recombinant bovine pancreatic trypsin inhibitor protects the liver from carbon tetrachloride-induced acute injury in mice. J Pharm Pharmacol 2010; 62:332-8. [PMID: 20487216 DOI: 10.1211/jpp.62.03.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Toxicity caused by pharmacological and chemical substances, including carbon tetrachloride (CCl(4)), is a major pathological factor for liver injury. Therefore, strategies to prevent toxicity are needed for maintaining a healthy liver. This study was designed to determine whether recombinant bovine pancreatic trypsin inhibitor (rBPTI), a non-specific serine protease inhibitor, prevents CCl(4)-induced liver injury in mice. METHODS Mice were treated with CCl(4) in the presence or absence of co-treatment with rBPTI. Liver sections were prepared for histopathological assessment. Liver function was evaluated by detecting serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and liver index. Liver oxidative stress and inflammation were examined by detecting the liver malondialdehyde level and glutathione and superoxide dismutase activity, and serum tumour necrosis factor-alpha level, respectively. KEY FINDINGS CCl(4) induced hepatocyte necrosis, inflammatory cell infiltration and fatty degeneration, which were ameliorated by co-treatment with rBPTI in a concentration-dependent manner. Furthermore, rBPTI prevented CCl(4)-induced disruption of liver function. Importantly, rBPTI reduced CCl(4)-induced liver oxidative stress response and pro-inflammatory cytokine production. CONCLUSIONS These results indicated that rBPTI exerted a protective effect on CCl(4)-induced liver injury in mice. Thus, rBPTI may have potential application for prevention of liver injury induced by metabolism of drugs and toxic substances.
Collapse
Affiliation(s)
- Lili Yang
- Department of Immunology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, PR China
| | | | | | | | | |
Collapse
|
88
|
Abstract
Highly active antiretroviral therapy (HAART)-related hepatotoxicity complicates the management of patients infected with human immunodeficiency virus (HIV), increases medical costs, alters the prescription patterns, and affects the guideline recommendations. Among the clinical consequences derived from HAART-related liver toxicity, hypersensitivity reactions and lactic acidosis are recognized as acute events with potential to evolve into fatal cases, whereas there seems to be other syndromes not as well characterized but of equal concern as possible long-term liver complications. Belonging to the latter category of syndrome, HAART-related nonalcoholic steatohepatitis, liver fibrosis, portal hypertension, and nodular regenerative hyperplasia are discussed in this review. Updated information on liver toxicity of current antiretroviral drugs, including the most recently licensed, is provided. Management and prevention of liver toxicity among HIV-infected patients treated with HAART are reviewed as well.
Collapse
Affiliation(s)
- Marina Núñez
- Department of Internal Medicine, Wake Forest University Health Sciences, Winston Salem, NC 27157, USA.
| |
Collapse
|
89
|
Qiu J, Ren C, Fan J, Li Z. Antioxidant activities of aged oat vinegar in vitro and in mouse serum and liver. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:1951-1958. [PMID: 20564418 DOI: 10.1002/jsfa.4040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND The present study focused on the antioxidant activities of aged oat (Avena sativa L.) vinegar. The antioxidant activities of oat and vinegar have been proved by many previous research studies. It should be noted that oat vinegar, as a novel seasoning, has antioxidant activity. RESULTS Oat vinegar showed stronger radical scavenging activities, reducing power, and inhibition of lipid peroxidation than rice vinegar. The concentrations of polyphenols and flavonoids in oat vinegar were higher than those in rice vinegar. Ethyl acetate extract of oat vinegar possessed the most varieties of phenolic acids and showed the strongest antioxidant activity compared with ethanol and water extracts. At suitable doses of oat vinegar, the malondialdehyde value was decreased, activities of superoxide dismutase and glutathione peroxidase were promoted, and hepatic damage induced by (60)Co gamma-irradiation was ameliorated in aging mice. CONCLUSION Oat vinegar manifested antioxidant activity which was stronger than that of rice vinegar in vitro and the same as that of vitamin E in vivo.
Collapse
Affiliation(s)
- Ju Qiu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing 100083, China
| | | | | | | |
Collapse
|
90
|
Rockey DC, Seeff LB, Rochon J, Freston J, Chalasani N, Bonacini M, Fontana RJ, Hayashi PH, US Drug-Induced Liver Injury Network. Causality assessment in drug-induced liver injury using a structured expert opinion process: comparison to the Roussel-Uclaf causality assessment method. Hepatology 2010; 51:2117-26. [PMID: 20512999 PMCID: PMC3249230 DOI: 10.1002/hep.23577] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Drug-induced liver injury (DILI) is largely a diagnosis of exclusion and is therefore challenging. The US Drug-Induced Liver Injury Network (DILIN) prospective study used two methods to assess DILI causality: a structured expert opinion process and the Roussel-Uclaf Causality Assessment Method (RUCAM). Causality assessment focused on detailed clinical and laboratory data from patients with suspected DILI. The adjudication process used standardized numerical and descriptive definitions and scored cases as definite, highly likely, probable, possible, or unlikely. Results of the structured expert opinion procedure were compared with those derived by the RUCAM approach. Among 250 patients with suspected DILI, the expert opinion adjudication process scored 78 patients (31%) as definite, 102 (41%) as highly likely, 37 (15%) as probable, 25 (10%) as possible, and 8 (3%) as unlikely. Among 187 enrollees who had received a single implicated drug, initial complete agreement was reached for 50 (27%) with the expert opinion process and for 34 (19%) with a five-category RUCAM scale (P = 0.08), and the two methods demonstrated a modest correlation with each other (Spearman's r = 0.42, P = 0.0001). Importantly, the RUCAM approach substantially shifted the causality likelihood toward lower probabilities in comparison with the DILIN expert opinion process. CONCLUSION The structured DILIN expert opinion process produced higher agreement rates and likelihood scores than RUCAM in assessing causality, but there was still considerable interobserver variability in both. Accordingly, a more objective, reliable, and reproducible means of assessing DILI causality is still needed.
Collapse
Affiliation(s)
- Don C Rockey
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390-8887, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Xia YY, Hu DY, Liu FY, Wang XM, Yuan YL, Tu DH, Chen YX, Zhou L, Zhu LZ, Gao WW, Wang HY, Chen DF, Yang L, He PP, Li XT, He YJ, Sun F, Zhan SY. Design of the anti-tuberculosis drugs induced adverse reactions in China National Tuberculosis Prevention and Control Scheme Study (ADACS). BMC Public Health 2010; 10:267. [PMID: 20492672 PMCID: PMC2893093 DOI: 10.1186/1471-2458-10-267] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 05/21/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND More than 1 million tuberculosis (TB) patients are receiving the standard anti-TB treatment provided by China National Tuberculosis Prevention and Control Scheme (CNTS) in China every year. Adverse reactions (ADRs) induced by anti-TB drugs could both do harm to patients and lead to anti-TB treatment failure. The ADACS aimed to explore ADRs' incidences, prognoses, economical and public health impacts for TB patients and TB control, and build a DNA bank of TB patients. METHODS/DESIGN Multiple study designs were adopted. Firstly, a prospective cohort with 4488 sputum smears positive pulmonary tuberculosis patients was established. Patients were followed up for 6-9 months in 52 counties of four regions. Those suspected ADRs should be checked and confirmed by Chinese State Food and Drug Administration (SFDA). Secondly, if the suspected ADR was anti-TB drug induced liver injury (ATLI), a nested case-control study would be performed which comprised choosing a matched control and doing a plus questionnaire inquiry. Thirdly, health economical data of ADRs would be collected to analyze financial burdens brought by ADRs and cost-effectiveness of ADRs' treatments. Fourthly, a drop of intravenous blood for each patient was taken and saved in FTA card for DNA banking and genotyping. Finally, the demographic, clinical, environmental, administrative and genetic data would be merged for the comprehensive analysis. DISCUSSION ADACS will give an overview of anti-TB drugs induced ADRs' incidences, risk factors, treatments, prognoses, and clinical, economical and public health impacts for TB patients applying CNTS regimen in China, and provide suggestions for individualized health care and TB control policy.
Collapse
Affiliation(s)
- Yin Yin Xia
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Dai Yu Hu
- Center for Disease Control and Prevention in Chongqing Municipality, Chongqing, China
| | - Fei Ying Liu
- Center for Disease Control and Prevention in Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiao Meng Wang
- Center for Disease Control and Prevention in Zhejiang Province, Hangzhou, China
| | - Yan Li Yuan
- Center for Disease Control and Prevention in Jilin Province, Changchun, China
| | - De Hua Tu
- Beijing Institute for Tuberculosis Control, Beijing, China
| | - Yi Xin Chen
- Center for Drug Reassessment, State Food and Drug Administration, Beijing, China
| | - Lin Zhou
- Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Zhen Zhu
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei Wei Gao
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hong Yuan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Da Fang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Li Yang
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
| | - Ping Ping He
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xiao Ting Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Ying Jian He
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Feng Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Si Yan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
92
|
Abstract
PURPOSE OF REVIEW To gather new and important data published on idiosyncratic drug-induced liver injury (DILI) over the past 2 years in the peer-reviewed literature. Clinical studies focusing on mechanisms of injury, clinical evaluation and prognosis will be reviewed. RECENT FINDINGS The most common drugs leading to DILI in the United States are antibiotics, central nervous system agents, herbal/dietary supplements and immunomodulatory agents. Hepatocellular type of DILI is more common in younger patients, whereas cholestatic pattern increases with older age. Certain human leukocyte antigen genotype increases the likelihood of flucloxacillin-induced liver injury. Idiosyncratic DILI was shown to have an important dose-dependency and drugs with extensive hepatic metabolism are associated with higher frequency of DILI. Chronic DILI may occur, but development of clinically important liver injury after severe DILI is rare. N-acetylcysteine seems to be beneficial for patients with acute liver failure caused by medications or herbal agents.
Collapse
Affiliation(s)
- Marwan Ghabril
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Einar Björnsson
- Section of Gastroenterology and Hepatology, Department of Internal medicine, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
93
|
Abstract
Cytokines are thought to play a role in acute and/or immune-mediated adverse drug reactions (ADRs) due to their ability to regulate the innate and adaptive immune systems. This role is highly complex owing to the pluripotent nature of cytokines, which enables the same cytokine to play multiple roles depending on target organ(s) involved. As a result, the discussion of cytokine involvement in ADRs is organized according to target organ(s); specifically, ADRs targeting skin and liver, as well as ADRs targeting multiple organs, such as drug-induced autoimmunity and infusion-related reactions. In addition to discussing the mechanism(s) by which cytokines contribute to the initiation, propagation, and resolution of ADRs, we also discuss the usefulness and limitations of current methodologies available to conduct such mechanistic studies. While animal models appear to hold the most promise for uncovering additional mechanisms, this field is plagued by a lack of good animal models and, as a result, the mechanism of cytokine involvement in ADRs is often studied using less informative in vitro studies. The recent formation of the Drug-Induced Liver Injury Network, whose goal is collect thousands of samples from drug-induced liver injury patients, has enormous potential to advance knowledge in this field, by enabling large-scale cytokine polymorphism studies. In conclusion, we discuss how further advances in this field could be of significant benefit to patients in terms of preventing, predicting, and treating ADRs.
Collapse
|
94
|
Domitrović R, Jakovac H, Milin Č, Radošević-Stašić B. Dose- and time-dependent effects of luteolin on carbon tetrachloride-induced hepatotoxicity in mice. ACTA ACUST UNITED AC 2009; 61:581-9. [DOI: 10.1016/j.etp.2008.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/03/2008] [Accepted: 12/17/2008] [Indexed: 11/17/2022]
|
95
|
Dash A, Inman W, Hoffmaster K, Sevidal S, Kelly J, Obach RS, Griffith LG, Tannenbaum SR. Liver tissue engineering in the evaluation of drug safety. Expert Opin Drug Metab Toxicol 2009; 5:1159-74. [PMID: 19637986 PMCID: PMC4110978 DOI: 10.1517/17425250903160664] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Assessment of drug-liver interactions is an integral part of predicting the safety profile of new drugs. Existing model systems range from in vitro cell culture models to FDA-mandated animal tests. Data from these models often fail, however, to predict human liver toxicity, resulting in costly failures of clinical trials. In vitro screens based on cultured hepatocytes are now commonly used in early stages of development, but many toxic responses in vivo seem to be mediated by a complex interplay among several different cell types. We discuss some of the evolving trends in liver cell culture systems applied to drug safety assessment and describe an experimental model that captures complex liver physiology through incorporation of heterotypic cell-cell interactions, 3D architecture and perfused flow. We demonstrate how heterotypic interactions in this system can be manipulated to recreate an inflammatory environment and apply the model to test compounds that potentially exhibit idiosyncratic drug toxicity. Finally, we provide a perspective on how the range of existing and emerging in vitro liver culture approaches, from simple to complex, might serve needs across the range of stages in drug discovery and development, including applications in molecular therapeutics.
Collapse
Affiliation(s)
- Ajit Dash
- Underwood-Prescott Professor of Toxicology and Chemistry, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Office 56-731A, Cambridge, MA 02139, USA
| | - Walker Inman
- Underwood-Prescott Professor of Toxicology and Chemistry, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Office 56-731A, Cambridge, MA 02139, USA
| | - Keith Hoffmaster
- Novartis Institute of Biomedical Research, 350 Massachusetts Avenue, Cambridge, Massachusetts, MA 02139, USA
| | - Samantha Sevidal
- Pfizer Research Technology Center, Cambridge, Massachusetts, MA 02139, USA
| | - Joan Kelly
- Pfizer Research Technology Center, Cambridge, Massachusetts, MA 02139, USA
| | - R Scott Obach
- Pfizer Research Technology Center, Cambridge, Massachusetts, MA 02139, USA
| | - Linda G Griffith
- Underwood-Prescott Professor of Toxicology and Chemistry, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Office 56-731A, Cambridge, MA 02139, USA
| | - Steven R Tannenbaum
- Underwood-Prescott Professor of Toxicology and Chemistry, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Office 56-731A, Cambridge, MA 02139, USA
| |
Collapse
|
96
|
Papay J. Response to Letter to the editor by Papay Regulatory Toxicology and Pharmacology 54 (2009), pp. 84–90 Drug-Induced Liver Injury Following Positive Drug Rechallenge. Regul Toxicol Pharmacol 2009; 54:314. [DOI: 10.1016/j.yrtph.2009.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/09/2009] [Indexed: 10/20/2022]
|
97
|
Zhao YL, Wang JB, Zhou GD, Shan LM, Xiao XH. Investigations of Free Anthraquinones from Rhubarb Against α-Naphthylisothiocyanate-induced Cholestatic Liver Injury in Rats. Basic Clin Pharmacol Toxicol 2009; 104:463-9. [DOI: 10.1111/j.1742-7843.2009.00389.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
98
|
Rizos CV, Elisaf MS, Mikhailidis DP, Liberopoulos EN. How safe is the use of thiazolidinediones in clinical practice? Expert Opin Drug Saf 2009; 8:15-32. [PMID: 19236215 DOI: 10.1517/14740330802597821] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Thiazolidinediones (TZDs) are widely used antidiabetic drugs with proven efficacy regarding mainly surrogate markers of diabetes management. However, efficacy on surrogate markers may not always translate into benefits in clinical outcomes. Thiazolidinediones are usually well tolerated; however, their use may be associated with several adverse effects. The first TZD, troglitazone, was withdrawn from the market owing to serious hepatotoxicity. However, this does not seem to be the case with newer TZDs. OBJECTIVE The aim of the present review is to discuss the safety profile of this drug class. METHODS We searched PubMed up to July 2008 using relevant keywords. CONCLUSIONS Common side effects associated with TZDs include edema, weight gain, macular edema and heart failure. Moreover, they may cause hypoglycemia when combined with other antidiabetic drugs as well as decrease hematocrit and hemoglobin levels. Increased bone fracture risk is another TZD-related side effect. Thiazolidinediones tend to increase serum low density lipoprotein cholesterol levels, with rosiglitazone having a more pronounced effect compared with pioglitazone. Moreover, rosiglitazone increases low density lipoprotein particle concentration in contrast to pioglitazone where a decrease is observed. Rosiglitazone has been associated with an increase in myocardial infarction incidence. On the other hand, pioglitazone may reduce cardiovascular events. Overall, TZDs are valuable drugs for diabetes management but physicians should keep in mind that they are associated with several adverse events, the most prominent of which is heart failure.
Collapse
Affiliation(s)
- C V Rizos
- Department of Internal Medicine, University of Ioannina, School of Medicine, Ioannina 45110, Greece.
| | | | | | | |
Collapse
|
99
|
Goyal RK, Srivastava D, Lessnau KD. Clopidogrel-Induced Hepatocellular Injury and Cholestatic Jaundice in an Elderly Patient: Case Report and Review of the Literature. Pharmacotherapy 2009; 29:608-12. [DOI: 10.1592/phco.29.5.608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
100
|
Vickers AE. Tissue slices for the evaluation of metabolism-based toxicity with the example of diclofenac. Chem Biol Interact 2009; 179:9-16. [DOI: 10.1016/j.cbi.2008.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
|