51
|
Review of Stem Cell-Based Therapy for the Treatment of Cardiovascular Disease. J Cardiovasc Transl Res 2008; 1:106-14. [DOI: 10.1007/s12265-008-9020-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 03/10/2008] [Indexed: 01/14/2023]
|
52
|
Psaltis PJ, Gronthos S, Worthley SG, Zannettino AC. Cellular Therapy for Cardiovascular Disease Part 1 - Preclinical Insights. Clin Med Cardiol 2008. [DOI: 10.4137/cmc.s571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Peter J Psaltis
- Cardiovascular Research Centre, Royal Adelaide Hospital; Department of Medicine, University of Adelaide, South Australia, 5000
| | - Stan Gronthos
- Division of Haematology, Institute of Medical and Veterinary Science; Department of Medicine, University of Adelaide, South Australia, 5000
| | - Stephen G Worthley
- Cardiovascular Research Centre, Royal Adelaide Hospital; Department of Medicine, University of Adelaide, South Australia, 5000
| | - Andrew C.W. Zannettino
- Division of Haematology, Institute of Medical and Veterinary Science; Department of Medicine, University of Adelaide, South Australia, 5000
| |
Collapse
|
53
|
Liu XN, Yin Q, Zhang H, Zhang H, Zhu SJ, Wei YJ, Hu SS. Tissue extracts from infarcted myocardium of rats in promoting the differentiation of bone marrow stromal cells into cardiomyocyte-like cells. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2008; 21:110-117. [PMID: 18548849 DOI: 10.1016/s0895-3988(08)60015-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVE To investigate whether cardiac tissue extracts from rats could mimic the cardiac microenvironment and act as a natural inducer in promoting the differentiation of bone marrow stromal cells (BMSCs) into cardiomyocytes. METHODS Three kinds of tissue extract or cell lysate [infarcted myocardial tissue extract (IMTE), normal myocardial tissue extract (NMTE) and cultured neonatal myocardial lysate (NML)] were employed to induce BMSCs into cardiomyocyte-like cells. The cells were harvested at each time point for reverse transcription-polymerase chain reaction (RT-PCR) detection, immunocytochemical analysis, and transmission electron microscopy. RESULTS After a 7-day induction, BMSCs were enlarged and polygonal in morphology. Myofilaments, striated sarcomeres, Z-lines, and more mitochondia were observed under transmission electron microscope. Elevated expression levels of cardiac-specific genes and proteins were also confirmed by RT-PCR and immunocytochemistry. Moreover, IMTE showed a greater capacity of differentiating BMSCs into cardiomyocyte-like cells. CONCLUSIONS Cardiac tissue extracts, especially IMTE, can effectively differentiate BMSCs into cardiomyocyte-like cells.
Collapse
Affiliation(s)
- Xiao-Ning Liu
- Key Laboratory of Cardiovascular Regenerative Medicine, Ministry of Health, and Department of Cardiovascular Surgery, Cardiovascular Institute of Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
| | | | | | | | | | | | | |
Collapse
|
54
|
Kalil RAK, Ott D, Sant'Anna R, Dias E, Marques-Pereira JP, Delgado-Cañedo A, Nardi NB, Sant'Anna JRM, Prates PR, Nesralla I. Autologous transplantation of bone marrow mononuclear stem cells by mini-thoracotomy in dilated cardiomyopathy: technique and early results. SAO PAULO MED J 2008; 126:75-81. [PMID: 18553028 PMCID: PMC11026027 DOI: 10.1590/s1516-31802008000200003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 12/27/2006] [Accepted: 03/07/2008] [Indexed: 11/21/2022] Open
Abstract
CONTEXT AND OBJECTIVES There are few studies concerning bone marrow mononuclear cell (BMMC) transplantation in cases of nonischemic dilated cardiomyopathy. This study describes a novel technique of BMMC transplantation and the results up to one year after the procedure. DESIGN AND SETTING This was a case series to evaluate the safety and viability of the procedure, at Instituto de Cardiologia do Rio Grande do Sul. METHODS Nine patients with symptomatic dilated cardiomyopathy, functional class III/IV and left ventricular ejection fraction (LVEF) < 35% received BMMC (9.6 +/- 2.6 x 107 cells) at 20 sites in the ventricular wall, by means of thoracotomy of length 5 cm in the fifth left intercostal space. Echocardiograms and nuclear magnetic resonance (NMR) were performed. RESULTS There were no major complications. The functional class results for the first six patients (preoperatively and at two, four, eight and twelve-month follow-ups, respectively) were: [IV-2, III-4] to [I-5, II-1] to [I-3, II-3] to [I-2, II-3] and [I-2, II-3]. Echocardiograms showed LVEF: 25.9 +/- 8.2; 32.9 +/- 10.4; 29.4 +/- 7.2; 25.1 +/- 7.9; 25.4 +/- 6.8% (p = 0.023); and % left ventricular (LV) fiber shortening: 12.6 +/- 4.4; 16.4 +/- 5.4; 14.3 +/- 3.7; 12.1 +/- 4.0; 12.2 +/- 3.4% (p = 0.021). LV performance variation seen on NMR was non-significant. CONCLUSION Intramyocardial transplantation of BMMC in dilated cardiomyopathy cases is feasible and safe. There were early improvements in symptoms and LV performance. Medium-term evaluation revealed regression of LV function, although maintaining improved functional class.
Collapse
Affiliation(s)
- Renato Abdala Karam Kalil
- Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Dinsmore JH, Dib N. Stem cells and cardiac repair: a critical analysis. J Cardiovasc Transl Res 2008; 1:41-54. [PMID: 20559957 DOI: 10.1007/s12265-007-9008-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 12/27/2007] [Indexed: 01/11/2023]
Abstract
Utilizing stem cells to repair the damaged heart has seen an intense amount of activity over the last 5 years or so. There are currently multiple clinical studies in progress to test the efficacy of various different cell therapy approaches for the repair of damaged myocardium that were only just beginning to be tested in preclinical animal studies a few years earlier. This rapid transition from preclinical to clinical testing is striking and is not typical of the customary timeframe for the progress of a therapy from bench-to-bedside. Doubtless, there will be many more trials to follow in the upcoming years. With the plethora of trials and cell alternatives, there has come not only great enthusiasm for the potential of the therapy, but also great confusion about what has been achieved. Cell therapy has the potential to do what no drug can: regenerate and replace damaged tissue with healthy tissue. Drugs may be effective at slowing the progression of heart failure, but none can stop or reverse the process. However, tissue repair is not a simple process, although the idea on its surface is quite simple. Understanding cells, the signals that they respond to, and the keys to appropriate survival and tissue formation are orders of magnitude more complicated than understanding the pathways targeted by most drugs. Drugs and their metabolites can be monitored, quantified, and their effects correlated to circulating levels in the body. Not so for most cell therapies. It is quite difficult to measure cell survival except through ex vivo techniques like histological analysis of the target organ. This makes the emphasis on preclinical research all the more important because it is only in the animal studies that research has the opportunity to readily harvest the target tissues and perform the detailed analyses of what has happened with the cells. This need for detailed and usually time-intensive research in animal studies stands in contrast to the rapidity with which therapies have progressed to the clinic. It is now becoming clear through a number of notable examples that progress to the clinic may have occurred too quickly, before adequate testing and independent verification of results could be completed (Check, Nature 446:485-486, 2007; Chien, J Clin Investig 116:1838-1840, 2006; Giles, Nature 442:344-347, 2006). Broad reproducibility and transfer of results from one lab to another has been and always will be essential for the successful application of any cell therapy. So, what is the prognosis for cell therapy to repair heart damage? Will there be an approved cell therapy, or multiple ones, or will it require combinations of more than one cell type to be successful? These are questions often asked. The answers are difficult to know and even more difficult to predict because there are so many variables associated with cell-based therapies. There is much about the biology of cell systems that we still do not understand. Much of the pluripotency or transdifferentiation phenomena (see below) being observed go against accepted and well-tested principles for cell development and fate choice, and has caused a reevaluation of long-accepted theories. Clearly, new pathways for tissue repair and regeneration have been uncovered, but will these new pathways be sufficient to effect significant tissue repair and regeneration? Despite the false starts so far, there is the strong likelihood one or possibly multiple cell therapies will succeed. Clearly, important information has been gained, which should better guide the field to achieving success. When there is the successful verification in patients of a cell therapy, there will be an explosion of technological advances around the approach(es) that succeed. Whatever cells get approved accompanying them will be: more effective delivery methods; growth and storage methods; combination therapies, mixes of cells or cells + gene therapies; combinations with biomaterials and technologies for immune protection, allowing allografting. There are many parallel paths of technology development waiting to be brought together once there is an effective cellular approach. The coming years will no doubt bring some exciting developments.
Collapse
Affiliation(s)
- Jonathan H Dinsmore
- Advanced Cell Technology and Mytogen, Inc., Bldg. 96, 13th St., Charlestown, MA 02129, USA.
| | | |
Collapse
|
56
|
Assessment of the effect of cardiomyocyte transplantation on left ventricular remodeling and function in post-infarction Wister rats by using high-frequency ultrasound. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2008; 27:696-9. [PMID: 18231746 DOI: 10.1007/s11596-007-0620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Indexed: 10/19/2022]
Abstract
The effects of cardiomyocyte grafting on left ventricular (LV) remodeling and function in rats with chronic myocardial infarction were evaluated using high-frequency ultrasound. Chronic myocardial infarction was induced in 50 Wister rats by ligating the left anterior descending artery. They were randomized into two groups: a trial group that received neonatal rat cardiomyocyte transplantation (n=25) and a control group which were given intramyocardial injection of culture medium (n=25). The left ventricular (LV) geometry and function were evaluated by high-frequency ultrasound before and 4 weeks after the cell transplantation. After the final evaluation, all rats were sacrificed for histological study. The results showed that 4 weeks after the cell transplantation, as compared with the control group, the LV end-systolic dimension, end-diastolic dimension, end-systolic volume and end-diastolic volume were significantly decreased and the LV anterior wall end-diastolic thickness, LV ejection fraction and fractional shortening were significantly increased in the trial group (P<0.01). Histological study showed that transplanted neonatal rat cardiomyocytes were found in all host hearts and identified by Brdu staining. It was suggested that transplantation of neonatal rat cardiomyocytes can reverse cardiac remodeling and improve heart function in chronic myocardial infarction rats. High-frequency ultrasound can be used as a reliable technique for the non-invasive evaluation of the effect of cardiomyocyte transplantation.
Collapse
|
57
|
G-CSF Augments Small Vessel and Cell Density in Canine Myocardial Infarction. Keio J Med 2008; 57:139-49. [DOI: 10.2302/kjm.57.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
58
|
Khan M, Kutala VK, Wisel S, Chacko SM, Kuppusamy ML, Kwiatkowski P, Kuppusamy P. Measurement of oxygenation at the site of stem cell therapy in a murine model of myocardial infarction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 614:45-52. [PMID: 18290313 DOI: 10.1007/978-0-387-74911-2_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have developed a noninvasive EPR (electron paramagnetic resonance) oximetry, based on a new class of oxygen-sensing nano-particulate probe (LiNc-BuO), for simultaneous monitoring of stem-cell therapy and in situ oxygenation (partial pressure of oxygen, pO2) in a mouse model of acute myocardial infarction (AMI). AMI was induced by a permanent occlusion of left-anterior-descending (LAD) coronary artery. Skeletal myoblast (SM) cells were used for therapy. The oximetry probe was implanted in the mid-ventricular region using a needle. Tissue histological studies after 3 weeks of implantation of the probe revealed significant fibrosis, which was solely due to the needle track and not due to the probe particles. The feasibility of long-term monitoring of pO2 was established in control (non-infarct) group of hearts (> 3 months; pO2 = 15.0 +/- 1.2 mmHg,). A mixture of the probe with/without SM cells (1 x 10(5)) was implanted as a single injection in the infarcted region and the myocardial tissue pO2 at the site of cell therapy was measured for 4 weeks. The pO2 was significantly higher in infarcted hearts treated with SM cells (pO2 = 3.5 +/- 0.9 mmHg) compared to untreated hearts (pO2 = 1.6 +/- 0.7 mmHg). We have demonstrated, for the first time, the feasibility of monitoring pO2 in mouse hearts after stem cell therapy.
Collapse
Affiliation(s)
- Mahmood Khan
- Center for Biomedical EPR Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, 420 W. 12th Ave, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Cellular transplantation has been employed for several years to deliver donor cardiomyocytes to normal and injured hearts. Recent reports of a variety of stem cells with apparent cardiomyogenic potential have raised the possibility of cell transplantation-based therapeutic interventions for heart disease. Here we review the preclinical studies demonstrating that intracardiac transplantation of skeletal myoblasts, cardiomyocytes and cardiomyogenic stem cells is feasible. In addition, recent clinical studies of skeletal myoblast and adult stem cell transplantation for heart disease are discussed.
Collapse
Affiliation(s)
- Michael Rubart
- Division of Pediatric Cardiology, Herman B Wells Center for Pediatric Research, Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
60
|
Khan M, Kutala VK, Vikram DS, Wisel S, Chacko SM, Kuppusamy ML, Mohan IK, Zweier JL, Kwiatkowski P, Kuppusamy P. Skeletal myoblasts transplanted in the ischemic myocardium enhance in situ oxygenation and recovery of contractile function. Am J Physiol Heart Circ Physiol 2007; 293:H2129-39. [PMID: 17660391 PMCID: PMC7062408 DOI: 10.1152/ajpheart.00677.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is unclear whether oxygen plays a role in stem cell therapy. Hence, the determination of local oxygenation (Po(2)) in the infarct heart and at the site of transplantation may be critical to study the efficacy of cell therapy. To demonstrate this, we have developed an oxygen-sensing paramagnetic spin probes (OxySpin) to monitor oxygenation in the region of cell transplantation using electron paramagnetic resonance (EPR) spectroscopy. Skeletal myoblast (SM) cells isolated from thigh muscle biopsies of mice were labeled with OxySpin by coculturing the cells with submicron-sized (270 +/- 120 nm) particulates of the probe. Myocardial infarction was created by left coronary artery ligation in mice. Immediately after ligation, labeled SM cells were transplanted in the ischemic region of the heart. The engraftment of the transplanted cells and in situ Po(2) in the heart were monitored weekly for 4 wk. EPR measurements revealed the retention of cells in the infarcted tissue. The myocardial Po(2) at the site of SM cell therapy was significantly higher compared with the untreated group throughout the 4-wk period. Histological studies revealed differentiation and engraftment of SM cells into myotubes and increased incidence of neovascularization in the infarct region. The infarct size in the treated group was significantly decreased, whereas echocardiography showed an overall improvement in cardiac function when compared with untreated hearts. To our knowledge, this the first report detailing changes in in situ oxygenation in cell therapy. The increased myocardial Po(2) positively correlated with neoangiogenesis and cardiac function.
Collapse
Affiliation(s)
- Mahmood Khan
- Center for Biomedical Electron Paramagnetic Resonance Spectroscopy and Imaging, Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Guan K, Hasenfuss G. Do stem cells in the heart truly differentiate into cardiomyocytes? J Mol Cell Cardiol 2007; 43:377-87. [PMID: 17716688 DOI: 10.1016/j.yjmcc.2007.07.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/18/2007] [Accepted: 07/20/2007] [Indexed: 12/29/2022]
Abstract
Chronic congestive heart failure (CHF) is a common consequence of heart muscle or valve damage and remains a major cause of morbidity and mortality worldwide. There are increasing interests to treat cardiac failure by stem cell-based therapy. Many types of stem cells or progenitor cells have been suggested for cellular therapy of heart failure. While stem cell-based therapy was initially thought to be achieved by transdifferentiation of stem cells into myocardial cells including cardiomyocytes it has become clear that this may be rather an infrequent event. Instead cardiac regeneration may result from vascular differentiation of stem cells or even from stem cell-mediated reverse remodelling. Thus the term stem cell-mediated cardiac regeneration covers the spectrum from stem cell transdifferentiation into cardiomyocytes to cell-mediated pharmacotherapy. In this review we revise stem cell-based cardiac regeneration both in experimental models and in clinical application. We have limited our discussion on some selected types of stem cells, with particular emphasis on their differentiation potential, current status and perspectives on their future applications.
Collapse
Affiliation(s)
- Kaomei Guan
- Department of Cardiology and Pneumology, Heart Centre, Georg-August-University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | | |
Collapse
|
62
|
Jawad H, Ali NN, Lyon AR, Chen QZ, Harding SE, Boccaccini AR. Myocardial tissue engineering: a review. J Tissue Eng Regen Med 2007; 1:327-42. [PMID: 18038427 DOI: 10.1002/term.46] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myocardial tissue engineering, a concept that intends to overcome the obstacles to prolonging patients' life after myocardial infarction, is continuously improving. It comprises a biomaterial based 'vehicle', either a porous scaffold or dense patch, made of either natural or synthetic polymeric materials, to aid transportation of cells into the diseased region in the heart. Many different cell types have been suggested for cell therapy and myocardial tissue engineering. These include both autologous and embryonic stem cells, both having their advantages and disadvantages. Biomaterials suggested for this specific tissue-engineering application need to be biocompatible with the cardiac cells and have particular mechanical properties matching those of native myocardium, so that the delivered donor cells integrate and remain intact in vivo. Although much research is being carried out, many questions still remain unanswered requiring further research efforts. In this review, we discuss the various approaches reported in the field of myocardial tissue engineering, focusing on the achievements of combining biomaterials and cells by various techniques to repair the infarcted region, also providing an insight on clinical trials and possible cell sources in cell therapy. Alternative suggestions to myocardial tissue engineering, in situ engineering and left ventricular devices are also discussed.
Collapse
Affiliation(s)
- H Jawad
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP, UK
| | | | | | | | | | | |
Collapse
|
63
|
Giraud MN, Armbruster C, Carrel T, Tevaearai HT. Current State of the Art in Myocardial Tissue Engineering. ACTA ACUST UNITED AC 2007; 13:1825-36. [PMID: 17518754 DOI: 10.1089/ten.2006.0110] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myocardial tissue engineering aims to repair, replace, and regenerate damaged cardiac tissue using tissue constructs created ex vivo. This approach may one day provide a full treatment for several cardiac disorders, including congenital diseases or ventricular dysfunction after myocardial infarction. Although the ex vivo construction of a myocardium-like tissue is faced with many challenges, it is nevertheless a pressing objective for cardiac reparative medicine. Multidisciplinary efforts have already led to the development of promising viable muscle constructs. In this article, we review the various concepts of cardiac tissue engineering and their specific challenges. We also review the different types of existing biografts and their physiological relevance. Although many investigators have favored cardiomyocytes, we discuss the potential of other clinically relevant cells, as well as the various hypotheses proposed to explain the functional benefit of cell transplantation.
Collapse
|
64
|
Abstract
Congestive heart failure remains the leading cause of morbidity and mortality in the developed world. Current therapies do not address the underlying pathophysiology of this disease, namely, the progressive loss of functional cardiomyocytes. The notion of repairing or regenerating lost myocardium via cell-based therapies remains highly appealing. The recent identification of adult stem cells, including both cardiac stem/progenitor cells and bone marrow stem cells, has triggered an explosive interest in using these cells for physiologically relevant cardiomyogenesis. Enthusiasm for cardiac regeneration via cell therapy has further been fueled by the many encouraging reports in both animals and human studies. Further intensive research in basic science and clinical arenas are needed to make this next great frontier in cardiovascular regenerative medicine a reality. In this review, we focus on the role of bone marrow-derived stem cells and cardiac stem/progenitor cells in cardiomyocyte homeostasis and myocardial repair and regeneration, as well as provide a brief overview of current clinical trials using cell-based therapeutic approaches in patients with heart disease.
Collapse
Affiliation(s)
- Ronglih Liao
- Cardiac Muscle Research Laboratory, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
65
|
Sim EKW, Ye L, Haider HK. New strategy for cardiac repair: genetically modified skeletal myoblasts. Asian Cardiovasc Thorac Ann 2007; 15:183-4. [PMID: 17540983 DOI: 10.1177/021849230701500301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
66
|
Guo J, Lin GS, Bao CY, Hu ZM, Hu MY. Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation 2007; 30:97-104. [PMID: 17497204 DOI: 10.1007/s10753-007-9025-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 04/17/2007] [Indexed: 01/11/2023]
Abstract
The aim of the present study was to investigate the role of anti-inflammation for MSCs transplantation in rat models of myocardial infarction. Rats with AMI induced by occlusion of the left coronary artery were randomized to MSCs transplantation group, MI group and sham operated group. The effects of MSCs transplantation on cardiac inflammation and left ventricular remodeling in non-infarcted zone were observed after 4 weeks of MI. We found that MSC transplantation (1) decreased protein production and gene expression of inflammation cytokines TNF-alpha, IL-1beta and IL-6, (2) inhibited deposition of type I and III collagen, as well as gene and protein expression of MMP-1 and TIMP-1, (3) attenuated LV cavitary dilation and transmural infarct thinning, thus prevent myocardial remodeling after myocardial infarction, and (4) increased EF, FS, LVESP and dp/dtmax (P < 0.01), decreased LVDd, LVEDV, LVEDP (P < 0.05). Anti-inflammation role for MSCs transplantation might partly account for the cardiac protective effect in ischemic heart disease.
Collapse
Affiliation(s)
- Jun Guo
- Department of Cardiology, Renmin Hospital of Wuhan University school of medicine, 238 JieFang Road, Wuchang, Wuhan, 430060, People's Republic of China.
| | | | | | | | | |
Collapse
|
67
|
Soares MBP, Garcia S, Campos de Carvalho AC, Ribeiro dos Santos R. Cellular therapy in Chagas' disease: potential applications in patients with chronic cardiomyopathy. Regen Med 2007; 2:257-264. [PMID: 17511562 DOI: 10.2217/17460751.2.3.257] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Nearly a century after its discovery, Chagas' disease, caused by the protozoan Trypanosoma cruzi, remains a major health problem in Latin America. Although efforts in transmission control have contributed to a decrease in the number of new cases, approximately a third of chronic Chagasic individuals have or will develop the symptomatic forms of the disease, mainly cardiomyopathy. Chagas' disease is a progressively debilitating disease, which, at the final stages, there are no currently available treatments other than heart transplantation. In this scenario, cellular therapy is being tested as an alternative for millions of patients with heart dysfunction due to Chagas' disease. In this article, we review the studies of cellular therapy in animal models and in patients with Chagasic cardiomyopathy and the possible mechanisms by which cellular therapy may act in this disease.
Collapse
Affiliation(s)
- Milena B P Soares
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ. Rua Waldemar Falcão, 121 Candeal, Salvador, BA, 40296-710, Brazil
| | | | | | | |
Collapse
|
68
|
O’Flaherty J, Mei Y, Freer M, Weyman CM. Signaling through the TRAIL receptor DR5/FADD pathway plays a role in the apoptosis associated with skeletal myoblast differentiation. Apoptosis 2007; 11:2103-13. [PMID: 17041756 PMCID: PMC2782111 DOI: 10.1007/s10495-006-0196-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Apoptosis rather than differentiation is a physiological process during myogenesis and muscle regeneration. When cultured myoblasts were induced to differentiate, we detected an increase in caspase 8 activity. Pharmacological inhibition of caspase 8 activity decreased apoptosis. Expression of a dominant-negative mutant of the adapter protein FADD also abrogated apoptosis, implicating a death ligand pathway. Treatment with TRAIL, but not Fas, induced apoptosis in these myoblasts. Accordingly, treatment with a soluble TRAIL decoy receptor or expression of a dominant-negative mutant of the TRAIL receptor DR5 abrogated apoptosis. While TRAIL expression levels remained unaltered in apoptotic myoblasts, DR5 expression levels increased. Finally, we also detected a reduction in FLIP, a death-receptor effector protein and caspase 8 competitive inhibitor, to undetectable levels in apoptotic myoblasts. Thus, our data demonstrate an important role for the TRAIL/DR5/FADD/caspase 8 pathway in the apoptosis associated with skeletal myoblast differentiation. Identifying the functional apoptotic pathways in skeletal myoblasts may prove useful in minimizing the myoblast apoptosis that contributes pathologically to a variety of diseases and in minimizing the apoptosis of transplanted myoblasts to treat these and other disease states.
Collapse
Affiliation(s)
- J. O’Flaherty
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - Y. Mei
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - M. Freer
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - C. M. Weyman
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
69
|
Abstract
Cellular cardiomyoplasty is an expanding field of research that involves numerous types of immature cells administered via several modes of delivery. The purpose of this review is to investigate the benefits of different types of cells used in stem cell research as well as the most efficient mode of delivery. The authors also present data showing that stem cells isolated from bone marrow are present at both 2 weeks and 3 months after engraftment in a myocardial infarction. These cells express muscle markers at both time points, which suggests that they have begun to differentiate into cardiomyocytes. Several questions must be answered, however, before stem cells can be used routinely in the clinic. Once these questions have been addressed, the use of stem cells in clinical practice can be realized.
Collapse
Affiliation(s)
- Loren E Wold
- The Heart Institute, Good Samaritan Hospital, 1225 Wilshire Boulevard, Los Angeles, CA 90017, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Baba S, Heike T, Umeda K, Iwasa T, Kaichi S, Hiraumi Y, Doi H, Yoshimoto M, Kanatsu-Shinohara M, Shinohara T, Nakahata T. Generation of cardiac and endothelial cells from neonatal mouse testis-derived multipotent germline stem cells. Stem Cells 2007; 25:1375-83. [PMID: 17322104 DOI: 10.1634/stemcells.2006-0574] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multipotent germline stem (mGS) cells have been established from neonatal mouse testes. Here, we compared mGS, embryonic stem (ES), and embryonic germ (EG) cells with regard to their ability to differentiate into mesodermal cells, namely, cardiomyocytes and endothelial cells. The in situ morphological appearances of undifferentiated mGS, ES, and EG cells were similar, and 4 days after being induced to differentiate, approximately 30%-40% of each cell type differentiated into Flk1(+) cells. The sorted Flk1(+) cells differentiated efficiently into cardiomyocytes and endothelial cells. By day 10 after differentiation induction, the three cell types generated equal number of endothelial colonies. However, by day 13 after differentiation induction, the Flk1(+) mGS cells generated more contractile colonies than did the Flk1(+) ES cells, whereas the Flk1(+) EG cells generated equivalent numbers as the Flk1(+) mGS cells. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis of differentiation markers such as Rex1, FGF-5, GATA-4, Brachyury, and Flk1 revealed that mGS cells expressed these markers more slowly during days 0-4 after differentiation induction than did ES cells, but that this mGS cell pattern was similar to that of the EG cells. RT-PCR analysis also revealed that the three differentiation cell types expressed various cardiac markers. Moreover, immunohistochemical analysis revealed that the contractile colonies derived from Flk1(+) mGS cells express mature cardiac cell-specific markers. In conclusion, mGS cells are phenotypically similar to ES and EG cells and have a similar potential to differentiate into cardiomyocytes and endothelial cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Shiro Baba
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Penn MS. Cell-based gene therapy for the prevention and treatment of cardiac dysfunction. ACTA ACUST UNITED AC 2007; 4 Suppl 1:S83-8. [PMID: 17230220 DOI: 10.1038/ncpcardio0733] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 10/18/2006] [Indexed: 11/08/2022]
Abstract
A substantial need exists for new treatments to prevent and treat cardiac dysfunction. In the 1990s, there was great hope for gene therapy in this regard. Since that time, the focus has switched to cell therapy-in particular, therapy-with the aim of inducing myocardial regeneration. Individually, gene and cell therapies still have substantial promise. Ultimately, however, the convergence of both techniques might be necessary to achieve improvements in cardiac function and more successful clinical outcomes in patients with cardiac dysfunction. This approach has already been adopted for treatment of malignancies. Several gene products are currently being studied, including growth factors and chemokines that can modulate the survival and function of cardiac myocytes following an ischemic event and influence remodeling of the left ventricle. However, several issues remain, including the optimization and characterization of cell types, selection of vectors for gene transfer, and identification of appropriate strategies for delivery. Here, we review the potential and need for cell-based gene therapy for the prevention and treatment of cardiac dysfunction and attempt to discuss the unresolved issues.
Collapse
Affiliation(s)
- Marc S Penn
- NE3, Department of Cardiovascular Medicine, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
72
|
Retuerto MA, Beckmann JT, Carbray J, Patejunas G, Sarateanu S, Kane BJ, Smulevitz B, McPherson DD, Rosengart TK. Angiogenic pretreatment to enhance myocardial function after cellular cardiomyoplasty with skeletal myoblasts. J Thorac Cardiovasc Surg 2007; 133:478-484.e2. [PMID: 17258586 DOI: 10.1016/j.jtcvs.2006.08.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 06/28/2006] [Accepted: 08/03/2006] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Improvements in ventricular function after cellular cardiomyoplasty appear to be limited by the poor survival of the cellular implants. Angiogenic pretreatment of infarcted myocardium may improve implanted cell survival and consequently myocardial function. METHODS Fischer 344 rats underwent coronary artery ligation and injection of an adenovirus encoding vascular endothelial growth factor 121 or of saline solution at increasing intervals after ligation. Myocardial perfusion and mass preservation were assessed. On the basis of these data, four groups of animals underwent coronary ligation and adenovirus with or without syngeneic skeletal myoblast administration: (1) adenovirus at ligation and myoblasts 3 weeks later (n = 7), (2) saline solution at ligation and myoblasts 3 weeks later (n = 8), (3) saline solution at ligation and 3 weeks later (n = 8), and (4) saline solution at ligation and adenovirus with myoblasts 3 weeks later (n = 5). Left ventricular ejection fraction was analyzed by echocardiography before coronary ligation and 3 and 5 weeks later, after which cell survival was assessed in harvested tissues. RESULTS Myocardial infarct perfusion was at least 50% greater in animals treated with adenoviral vector than with saline solution immediately after ligation (P < .02). In comparison, delayed adenovirus administration did not significantly diminish infarct perfusion but resulted in decreased myocardial preservation (P < .05). Accordingly, adenovirus administration nearly tripled implanted myoblast survival relative to saline solution-treated animals (P = .004). Left ventricular ejection fraction was improved, however, only after cell implantation with adenovirus pretreatment (P = .027). CONCLUSION Angiogenic strategies can help to preserve myocardium jeopardized by acute coronary occlusions. Angiogenic pretreatment enhances the efficacy of cellular cardiomyoplasty.
Collapse
|
73
|
Hou M, Yang KM, Zhang H, Zhu WQ, Duan FJ, Wang H, Song YH, Wei YJ, Hu SS. Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats. Int J Cardiol 2007; 115:220-8. [PMID: 16889848 DOI: 10.1016/j.ijcard.2006.03.028] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 02/25/2006] [Accepted: 03/11/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (MSCs) are of great therapeutic potential after myocardial ischemic injury. However, little is known about the biological characteristics of MSCs in patients with coronary artery disease and their effects on infracted myocardium. The present study evaluated the biological characteristics of MSCs from patients with coronary artery disease and their effects after being transplanted into infarcted myocardium using a rat model. METHODS Sternal bone marrow aspirates were taken at the time of coronary artery bypass graft surgery. Mononuclear cells isolated from bone marrow were cultured based on plastic adherence. The morphology and growth characteristics of MSCs were observed in primary and successive passages. A myocardial infarction model was created in 27 adult rats. Two weeks later, animals were randomized into two groups: culture medium (group I, n=13) or MSCs (2x10(6)) from early passages labeled with BrdU (group II, n=14) were injected into the infarcted myocardium. Echocardiography, histological examination, and reverse transcription-polymerase chain reaction (RT-PCR) were performed four weeks after cell transplantation. RESULTS Flow cytometry analyses demonstrated that adherent spindle cells from bone marrow are mesenchymal stem cells (positive for CD29 and CD44, but negative for CD34 and CD45). Growth curves showed that MSCs have great proliferative capability especially at early passages. MSCs implantation in the infarcted border zone improved left ventricular function significantly in group II compared with group I. However, despite improved left ventricular function, we did not observe significant regeneration of cardiac myocytes. Immunohistochemistry revealed only the expression of desmin in the engrafted MSCs, a marker of premature myocyte. Moreover, the improved left ventricular function in this study seemed to be secondary to the beneficial reverse remodeling induced by the increase of collagen in infarcted zone, the decrease in the adjacent myocardium, and the increase of neovascularization (capillary density: 192+/-7.8/mm2 in group II vs. 165+/-5.9/mm2 in group I, P<0.05). Reverse transcription-polymerase chain reaction (RT-PCR) results showed the expression levels of collagen I, collagen III, SDF-1 (stromal cell-derived factor-1), and VEGF (vascular endothelia growth factor) in the infarcted border zone were significantly higher in the MSCs treated group. CONCLUSIONS The MSCs from patients with coronary artery disease have a typical phenotype with highly proliferative potential and the engrafted MSCs may regulate extracellular collagens and cytokines to prevent the ventricular scar from pathologic thinning and attenuate the contractile dysfunction of the infarcted heart.
Collapse
Affiliation(s)
- Mai Hou
- Research Center for Cardiovascular Regeneration Medicine in Fu-Wai Hospital, the Ministry of Health, Department of Cardiovascular Surgery, Cardiovascular Institute and Fuwai Heart Hospital, CAMS, PUMC, Beijing 100037, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Zenovich AG, Davis BH, Taylor DA. Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Handb Exp Pharmacol 2007:117-65. [PMID: 17554507 DOI: 10.1007/978-3-540-68976-8_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An increasing number of patients living with cardiovascular disease (CVD) and still unacceptably high mortality created an urgent need to effectively treat and prevent disease-related events. Within the past 5 years, skeletal myoblasts (SKMBs) and bone marrow (or blood)-derived mononuclear cells (BMNCs) have demonstrated preclinical efficacy in reducing ischemia and salvaging already injured myocardium, and in preventing left ventricular (LV) remodeling, respectively. These findings have been translated into clinical trials, so far totaling over 200 patients for SKMBs and over 800 patients for BMNCs. These safety/feasibility and early phase II studies showed promising but somewhat conflicting symptomatic and functional improvements, and some safety concerns have arisen. However, the patient population, cell type, dose, time and mode of delivery, and outcome measures differed, making comparisons problematic. In addition, the mechanisms through which cells engraft and deliver their beneficial effects remain to be fully elucidated. It is now time to critically evaluate progress made and challenges encountered in order to select not only the most suitable cells for cardiac repair but also to define appropriate patient populations and outcome measures. Reiterations between bench and bedside will increase the likelihood of cell therapy success, reduce the time to development of combined of drug- and cell-based disease management algorithms, and offer these therapies to patients to achieve a greater reduction of symptoms and allow for a sustained improvement of quality of life.
Collapse
Affiliation(s)
- A G Zenovich
- Center for Cardiovascular Repair, 312 Church Street SE, NHH 7-105A, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
75
|
McMullen NM, Pasumarthi KBS. Donor cell transplantation for myocardial disease: does it complement current pharmacological therapies?This paper is one of a selection of papers published in this Special Issue, entitled Young Investigators' Forum. Can J Physiol Pharmacol 2007; 85:1-15. [PMID: 17487241 DOI: 10.1139/y06-105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart failure secondary to ischemic heart disease, hypertension, and myocardial infarction is a common cause of death in developed countries. Although pharmacological therapies are very effective, poor prognosis and shorter life expectancy of heart disease patients clearly indicate the need for alternative interventions to complement the present therapies. Since the progression of heart disease is associated with the loss of myocardial cells, the concept of donor cell transplantation into host myocardium is emerging as an attractive strategy to repopulate the damaged tissue. To this end, a number of donor cell types have been tested for their ability to increase the systolic function of diseased hearts in both experimental and clinical settings. Although initial clinical trials with bone marrow stem cells are encouraging, long-term consequences of such interventions are yet to be rigorously examined. While additional laboratory studies are required to address several issues in this field, there is also a clear need for further characterization of drug interactions with donor cells in these interventions. Here, we provide a brief summary of current pharmacological and cell-based therapies for heart disease. Further, we discuss the potential of various donor cell types in myocardial repair, mechanisms underlying functional improvement in cell-based therapies, as well as potential interactions between pharmacological and cell-based therapies.
Collapse
Affiliation(s)
- Nichole M McMullen
- Department of Pharmacology, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
76
|
Collins SD, Baffour R, Waksman R. Cell therapy in myocardial infarction. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2007; 8:43-51. [PMID: 17293268 DOI: 10.1016/j.carrev.2006.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 11/28/2006] [Indexed: 01/04/2023]
Abstract
Heart failure is associated with a high rate of morbidity and mortality. In some patients, current treatment modalities may not be adequate to prevent myocardial remodeling, which leads to exacerbation of the disease. Cell therapy is based on the premise of replacing damaged myocardium with functional tissues. Multiple forms of stem cells, including bone marrow-derived stem cells and skeletal myoblasts, have been investigated using several delivery routes of administration. Different mechanisms have been proposed to explain the beneficial effects of cell-based therapy. These include cell transdifferentiation, cell fusion, and release of paracrine growth factors. The beneficial effects of cell therapy may involve multiple mechanisms. The encouraging results of early clinical cell therapy studies have not been sustained by subsequent robust studies. These findings suggest that many unanswered questions need to be addressed before cell therapy becomes an acceptable adjunctive treatment for heart failure.
Collapse
Affiliation(s)
- Sara D Collins
- Department of Internal Medicine, University of Maryland Medical Center, Baltimore, MD, USA
| | | | | |
Collapse
|
77
|
Siminiak T, Meliga E, Jerzykowska O, Serruys PW. Percutaneous transplantation of skeletal myoblast in the treatment of post-infarction injury. Eur Heart J Suppl 2006. [DOI: 10.1093/eurheartj/sul064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
78
|
Biagini E, Valgimigli M, Smits PC, Poldermans D, Schinkel AFL, Rizzello V, Onderwater- EEM, Bountioukos M, Serruys PW. Stress and tissue Doppler echocardiographic evidence of effectiveness of myoblast transplantation in patients with ischaemic heart failure. Eur J Heart Fail 2006; 8:641-8. [PMID: 16510308 DOI: 10.1016/j.ejheart.2005.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 08/18/2005] [Accepted: 12/08/2005] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND There is experimental evidence that transplanting skeletal myoblasts (SM) into the post-infarction myocardial scar improves regional and global left ventricular (LV) function. AIMS To evaluate short- and long-term regional and global LV functional effects of percutaneously transplanted SM in patients with ischaemic heart failure. METHODS AND RESULTS Ten patients (mean age 60+/-10 years, 8 males) with dilated ischaemic cardiomyopathy underwent percutaneous injection of autologous myoblasts. Regional and global LV function was evaluated by 2-dimensional echocardiography and tissue Doppler imaging (TDI) at rest and during low-dose dobutamine infusion to assess contractile reserve. After a baseline examination, sequential follow-ups were performed at 1, 3, and 6 months and 1 year. NYHA functional class decreased from 2.7+/-0.5 to 1.9+/-0.5 (p<0.01) at one year. LV function and volumes at rest remained unchanged while contractile reserve significantly improved during follow-up. At low-dose dobutamine infusion, the peak systolic velocity in the regions of myoblasts injection significantly increased at TDI examination (from 7.7+/-2.1 to 8.6+/-1.8 cm/s, p=0.02); LV ejection fraction improved (from 40+/-9% to 46+/-8%, p<0.0001) and end-systolic volumes decreased (from 56+/-28 to 50+/-25 ml/m(2), p=0.001) at 1 year. CONCLUSION In patients with ischaemic heart failure, percutaneous injection of autologous myoblasts may improve regional and global LV systolic function during dobutamine infusion, at 1-year follow-up.
Collapse
Affiliation(s)
- Elena Biagini
- Department of Cardiology, Thoraxcenter, Erasmus MC, Bd406, Dr. Molewaterplein 40, 3015-GD Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Siminiak T, Burchardt P, Kurpisz M. Postinfarction heart failure: surgical and trans-coronary-venous transplantation of autologous myoblasts. ACTA ACUST UNITED AC 2006; 3 Suppl 1:S46-51. [PMID: 16501631 DOI: 10.1038/ncpcardio0403] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/20/2005] [Indexed: 01/14/2023]
Abstract
Increasing experimental evidence indicates that skeletal myoblasts can be considered as a possible source of cells for regeneration of contractile performance in chronic postinfarction myocardial injury. In experimental models, the observed functional benefit of transplanting skeletal myoblasts into an area of chronic fibrotic myocardial scar has led to the development of clinical trials to evaluate the potential use of autologous skeletal myoblasts for myocardial regeneration in patients with postinfarction heart failure. We conducted an independent, phase I clinical trial to evaluate myoblast transplantation during coronary artery bypass grafting. In addition, to test whether the effect of transplanted cells on myocardial contractility was independent of revascularization, we performed a clinical study of percutaneous transvenous myoblast transplantation-the POZNAN trial. These trials have shown the feasibility of myoblast transplantation during cardiac surgery and via a percutaneous route, as well as the safety of both procedures when performed with concurrent prophylactic administration of amiodarone. Here, we review the details of our observations from both of these phase I clinical trials in the context of the clinical work in cardiovascular cell transplantation performed by others.
Collapse
Affiliation(s)
- Tomasz Siminiak
- Poznań University School of Medical Sciences, Poznań, Poland.
| | | | | |
Collapse
|
80
|
Ooi OC, Al Habib HF, Almsherqi ZA, El Oakley RM. Stem cell transplantation: potential impact on heart failure. Cell Tissue Bank 2006; 7:307-17. [PMID: 16955341 DOI: 10.1007/s10561-006-9007-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 01/10/2006] [Indexed: 01/14/2023]
Abstract
Cell transplantation is a promising new modality in treating damaged myocardium after myocardial infarction and in preventing postmyocardial infarction LV remodelling. Two strategies are plausible: the first uses adult tissue stem cells to replace the scar tissues and amend the lost myocardium, whilst the second strategy uses embryonic stem cells in an attempt to regenerate myocardium and/or blood vessels.
Collapse
Affiliation(s)
- Oon Cheong Ooi
- Department of Cardiac, Thoracic and Vascular Surgery, The Heart Institute, National Healthcare Group, National University Hospital, Singapore, Singapore
| | | | | | | |
Collapse
|
81
|
|
82
|
Guarita-Souza LC, Carvalho KAT, Woitowicz V, Rebelatto C, Senegaglia A, Hansen P, Miyague N, Francisco JC, Olandoski M, Faria-Neto JR, Brofman P. Simultaneous autologous transplantation of cocultured mesenchymal stem cells and skeletal myoblasts improves ventricular function in a murine model of Chagas disease. Circulation 2006; 114:I120-4. [PMID: 16820560 DOI: 10.1161/circulationaha.105.000646] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cellular transplantation is emerging as a promising strategy for the treatment of postinfarction ventricular dysfunction. Whether its beneficial effects can be extended to other cardiomyopathies remains an unexplored question. We evaluated the histological and functional effects of simultaneous autologous transplantation of co-cultured stem cells and skeletal myoblasts in an experimental model of dilated cardiomyopathy caused by Chagas disease, characterized by diffuse fibrosis and impairment of microcirculation. METHODS AND RESULTS Wistar rats weighing 200 grams were infected intraperitoneally with 15 x 10(4) trypomastigotes. After 8 months, 2-dimensional echocardiographic study was performed for baseline assessment of left ventricle (LV) ejection fraction (EF) (%), left ventricle end-diastolic volume (LVEDV) (mL), and left ventricle end-systolic volume (LVESV) (mL). Animals with LV dysfunction (EF <37%) were selected for the study. Autologous skeletal myoblasts were isolated from muscle biopsy and mesenchymal stem cells from bone marrow aspirates were co-cultured in vitro for 14 days, yielding a cell viability of >90%. Eleven animals received autologous transplant of 5.4 x 10(6)+/-8.0 x 10(6) cells (300 microL) into the LV wall. The control group (n=10) received culture medium (300 microL). Cell types were identified with vimentin and fast myosin. After 4 weeks, ventricular function was reassessed by echo. For histological analysis, heart tissue was stained with hematoxylin and eosin and immunostained for fast myosin. After 4 weeks, cell transplantation significantly improved EF and reduced LVEDV and LVESV. No change was observed in the control group. CONCLUSIONS The co-transplant of stem cells and skeletal myoblasts is functionally effective in the Chagas disease ventricular dysfunction.
Collapse
Affiliation(s)
- L C Guarita-Souza
- Experimental Laboratory of Cell Culture Institute of Biological and Health Sciences, Pontificia Universidade Catolica do Paraná (PUCPR), Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Guarita-Souza LC, Carvalho KAT, Rebelatto C, Senegaglia A, Hansen P, Furuta M, Miyague N, Francisco JC, Olandoski M, Faria-Neto JR, Oliveira SA, Brofman PRS. Cell transplantation: Differential effects of myoblasts and mesenchymal stem cells. Int J Cardiol 2006; 111:423-9. [PMID: 16290098 DOI: 10.1016/j.ijcard.2005.08.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 08/18/2005] [Accepted: 08/20/2005] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cellular transplantation has emerged as a novel therapeutic option for treatment of ventricular dysfunction. Both skeletal myoblasts (SM) and mesenchymal stem cells (MSC) have been proposed as ideal cell for this aim. The aim of this study is to compare the efficacy of these cells in improving ventricular function and to evaluate the different histological findings in a rat model of severe post-infarct ventricular dysfunction. METHODS Myocardial infarction was induced in Wistar rats by left coronary occlusion. Animals with resulting ejection fraction (EF) lower than 40% were included. Heterologous SM were obtained by lower limb muscle biopsy and MSC by bone marrow aspiration. Nine days after infarction, rats received intramyocardial injection of SM (n=8), MSC (n=8) or culture medium, as control (n=11). Echocardiographic evaluation was performed at baseline and after 1 month. Histological evaluation was performed after HE and Gomori's trichrome staining and immunostainig against desmin, fast myosin and factor VIII. RESULTS There was no difference in baseline EF and left ventricular end diastolic (LVEDV) and systolic volume (LVESV) between all groups. After 1 month a decrease was observed in the EF in the control group (27.0+/-7.10% to 21.46+/-5.96%, p=0.005) while the EF markedly improved in SM group (22.66+/-7.29% to 29.40+/-7.01%, p=0.04) and remained unchanged in the MSC group (23.88+/-8.44% to 23.63+/-10.28%, p=0.94). Histopathology identified new muscular fibers in the group that received SM and new vessels and endothelial cells in the MSC. CONCLUSION Skeletal myoblasts transplantation resulted in myogenesis and improvement of ventricular function. In contrast, treatment with mesenchymal stem cells resulted in neoangiogenesis and no functional effect.
Collapse
Affiliation(s)
- L C Guarita-Souza
- PUCPR-Experimental Laboratory of Cell Culture Institute of Biological and Health Sciences, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Fuchs JR, Nasseri BA, Vacanti JP, Fauza DO. Postnatal myocardial augmentation with skeletal myoblast–based fetal tissue engineering. Surgery 2006; 140:100-7. [PMID: 16857447 DOI: 10.1016/j.surg.2006.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 09/29/2005] [Accepted: 01/27/2006] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cardiac anomalies constitute the most common birth defects, many of which involve variable myocardial deficiencies. Therapeutic options for structural myocardial repair remain limited in the neonatal population. This study was aimed at determining whether engineered fetal muscle constructs undergo milieu-dependent transdifferentiation after cardiac implantation, thus becoming a potential means to increase/support myocardial mass after birth. METHODS Myoblasts were isolated from skeletal muscle specimens harvested from fetal lambs, labeled by transduction with a retrovirus-expressing green fluorescent protein, expanded in vitro, and then seeded onto collagen hydrogels. After birth, animals underwent autologous implantation of the engineered constructs (n = 8) onto the myocardium as an onlay patch. Between 4 and 30 weeks postoperatively, implants were harvested for multiple analyses. RESULTS Fetal and postnatal survival rates were 89% and 100%, respectively. Labeled cells were identified within the implants at all time points by immunohistochemical staining for green fluorescent protein. At 24 and 30 weeks postimplantation, donor cells double-stained for green fluorescent protein and Troponin I, while losing skeletal (type II) myosin expression. CONCLUSIONS Fetal skeletal myoblasts engraft in native myocardium up to 30 weeks after postnatal, autologous implantation as components of engineered onlay patches. These cells also display evidence of time-dependent transdifferentiation toward a cardiomyocyte-like lineage. Further analysis of fetal skeletal myoblast-based constructs for the repair of congenital myocardial defects is warranted.
Collapse
Affiliation(s)
- Julie R Fuchs
- Harvard Center for Minimally Invasive Surgery, Boston, Mass, USA
| | | | | | | |
Collapse
|
85
|
Tolmachov O, Ma YL, Themis M, Patel P, Spohr H, MacLeod KT, Ullrich ND, Kienast Y, Coutelle C, Peters NS. Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro. BMC Cardiovasc Disord 2006; 6:25. [PMID: 16756651 PMCID: PMC1513252 DOI: 10.1186/1471-2261-6-25] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 06/06/2006] [Indexed: 01/02/2023] Open
Abstract
Background Organ transplantation is presently often the only available option to repair a damaged heart. As heart donors are scarce, engineering of cardiac grafts from autologous skeletal myoblasts is a promising novel therapeutic strategy. The functionality of skeletal muscle cells in the heart milieu is, however, limited because of their inability to integrate electrically and mechanically into the myocardium. Therefore, in pursuit of improved cardiac integration of skeletal muscle grafts we sought to modify primary skeletal myoblasts by overexpression of the main gap-junctional protein connexin 43 and to study electrical coupling of connexin 43 overexpressing myoblasts to cardiac myocytes in vitro. Methods To create an efficient means for overexpression of connexin 43 in skeletal myoblasts we constructed a bicistronic retroviral vector MLV-CX43-EGFP expressing the human connexin 43 cDNA and the marker EGFP gene. This vector was employed to transduce primary rat skeletal myoblasts in optimised conditions involving a concomitant use of the retrovirus immobilising protein RetroNectin® and the polycation transduction enhancer Transfectam®. The EGFP-positive transduced cells were then enriched by flow cytometry. Results More than four-fold overexpression of connexin 43 in the transduced skeletal myoblasts, compared with non-transduced cells, was shown by Western blotting. Functionality of the overexpressed connexin 43 was demonstrated by microinjection of a fluorescent dye showing enhanced gap-junctional intercellular transfer in connexin 43 transduced myoblasts compared with transfer in non-transduced myoblasts. Rat cardiac myocytes were cultured in multielectrode array culture dishes together with connexin 43/EGFP transduced skeletal myoblasts, control non-transduced skeletal myoblasts or alone. Extracellular field action potential activation rates in the co-cultures of connexin 43 transduced skeletal myoblasts with cardiac myocytes were significantly higher than in the co-cultures of non-transduced skeletal myoblasts with cardiac myocytes and similar to the rates in pure cultures of cardiac myocytes. Conclusion The observed elevated field action potential activation rate in the co-cultures of cardiac myocytes with connexin 43 transduced skeletal myoblasts indicates enhanced cell-to-cell electrical coupling due to overexpression of connexin 43 in skeletal myoblasts. This study suggests that retroviral connexin 43 transduction can be employed to augment engineering of the electrocompetent cardiac grafts from patients' own skeletal myoblasts.
Collapse
Affiliation(s)
- Oleg Tolmachov
- Section of Molecular and Cellular Medicine, Division of Biomedical Sciences, Faculty of Life Sciences, Imperial College London, London, UK
| | - Yu-Ling Ma
- Department of Cardiac Electrophysiology, National Heart and Lung Institute, Imperial College London at St. Mary's Hospital, London, UK
| | - Michael Themis
- Section of Molecular and Cellular Medicine, Division of Biomedical Sciences, Faculty of Life Sciences, Imperial College London, London, UK
| | - Pravina Patel
- Department of Cardiac Electrophysiology, National Heart and Lung Institute, Imperial College London at St. Mary's Hospital, London, UK
| | - Hilmar Spohr
- Department of Cardiac Electrophysiology, National Heart and Lung Institute, Imperial College London at St. Mary's Hospital, London, UK
| | - Kenneth T MacLeod
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Nina D Ullrich
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Yvonne Kienast
- Section of Molecular and Cellular Medicine, Division of Biomedical Sciences, Faculty of Life Sciences, Imperial College London, London, UK
| | - Charles Coutelle
- Section of Molecular and Cellular Medicine, Division of Biomedical Sciences, Faculty of Life Sciences, Imperial College London, London, UK
| | - Nicholas S Peters
- Department of Cardiac Electrophysiology, National Heart and Lung Institute, Imperial College London at St. Mary's Hospital, London, UK
| |
Collapse
|
86
|
Becker C, Lacchini S, Muotri AR, da Silva GJJ, Castelli JB, Vassallo PF, Menck CFM, Krieger JE. Skeletal muscle cells expressing VEGF induce capillary formation and reduce cardiac injury in rats. Int J Cardiol 2006; 113:348-54. [PMID: 16675047 DOI: 10.1016/j.ijcard.2005.11.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 11/15/2005] [Indexed: 11/30/2022]
Abstract
BACKGROUND We tested a preemptive combined cell/gene therapy strategy of skeletal myoblasts transfected with Ad(5)RSVVEGF-165 in an ischemia/reperfusion rat model to increase collateral blood flow to nonischemic heart tissue. METHODS Lewis rats were injected with placebo (Control), 10(6) skeletal myoblasts (SkM), or 10(6) skeletal myoblasts transfected with Ad(5)RSVVEGF-165 (SkM(+)) into the left ventricle 1week before ischemia. Left ventricle end-diastolic pressure, scar area, and capillary density were assessed 4weeks later. RESULTS Local expression of human vascular endothelial growth factor was accompanied by an increase in capillary density in the SkM(+) group compared with that in the SkM and Control groups (700+/-40 vs. 289+/-18 and 318+/-59capillaries/mm(2), respectively; p<0.05). After 3weeks, the myocardial scar area was reduced in SkM(+) vs. Control (5.3+/-0.4% and 14.8+/-1.6%, p<0.05), while injected cells alone (SkM) did not cause improvement compared with Control (11.8+/-2.1% vs. 14.8+/-1.6%, p>0.05). The decrease in the scar area in SkM(+) was accompanied by an increase in the capillary density compared with that in SkM and Control 30days after cell injection (1005+/-108 vs. 524+/-16 and 528+/-26capillaries/mm(2), respectively; p<0.05). The scar areas were discrete (5.3-14.8%) and left ventricle end-diastolic pressure in all groups were comparable (p>0.05). CONCLUSIONS The combined cell/gene therapy strategy of genetically modified myoblast cells expressing angiogenic factors injected into the myocardium induced capillary formation and prevented the extension and development of cardiac damage associated with ischemia/reperfusion in rats.
Collapse
Affiliation(s)
- Claudia Becker
- Heart Institute (InCor)-LIM-13, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Murry CE, Reinecke H, Pabon LM. Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 2006; 47:1777-85. [PMID: 16682301 DOI: 10.1016/j.jacc.2006.02.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 11/22/2005] [Accepted: 12/19/2005] [Indexed: 12/16/2022]
Abstract
Substantial evidence indicates that cell transplantation can improve function of the infarcted heart. A surprisingly wide range of non-myogenic cell types improves ventricular function, suggesting that benefit may result in part from mechanisms that are distinct from true myocardial regeneration. While clinical trials explore cells derived from skeletal muscle and bone marrow, basic researchers are investigating sources of new cardiomyocytes, such as resident myocardial progenitors and embryonic stem cells. In this commentary, we briefly review the evolution of cell-based cardiac repair, discuss the current state of clinical research, and offer some thoughts on how newcomers can critically evaluate this emerging field.
Collapse
Affiliation(s)
- Charles E Murry
- Center for Cardiovascular Biology and Regenerative Medicine, University of Washington, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
88
|
Affiliation(s)
- Charles E Murry
- Center for Cardiovascular Biology and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
89
|
Abstract
Recent advances in stem cell biology have given rise the new field of cardiac regenerative medicine. Specifically, the development of cardiac stem cell science now offers the promise of novel cardiovascular therapies based on a dynamic body of basic and translational research. Importantly, the potential wide-spread clinical application of this technology will require that therapies be optimized for individuals with potential impairments in cardiac stem cell function. To this end, the previous experience of hematopoietic stem cell therapies can provide important guidance in the development and maturation of the young cardiac stem cell field. Parallel to the impact that exogenous growth factors have made in the field of hematopoietic therapies, the discovery and potential application of the factor(s) that govern cardiac regeneration may speed the progression of cardiac stem cell technology into an assessable and potent clinical therapy.
Collapse
|
90
|
Steendijk P, Smits PC, Valgimigli M, van der Giessen WJ, Onderwater EEM, Serruys PW. Intramyocardial injection of skeletal myoblasts: long-term follow-up with pressure–volume loops. ACTA ACUST UNITED AC 2006; 3 Suppl 1:S94-100. [PMID: 16501641 DOI: 10.1038/ncpcardio0416] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/18/2005] [Indexed: 11/09/2022]
Abstract
The human heart has a limited capacity for self-repair because, unlike most other cells, cardiomyocytes do not regenerate. Therefore, if a substantial number of myocytes is lost after a myocardial infarction, the performance of the heart may become severely limited, leading to a condition of heart failure. Recently, cell transplantation has emerged as a potential therapy for patients with end-stage heart failure. Of the various cell types being investigated for this purpose, skeletal myoblasts are an attractive option, because they are readily available from muscle biopsies and, if autologous cells are used, immunosuppression is not required and ethical issues are avoided. Several studies have shown that the cells can survive and differentiate after transplantation, and promising clinical results have been reported. However, effects of this therapy on left ventricular function remain largely unknown. In the present study, we investigated the long-term hemodynamic effects of intramyocardial injection of autologous skeletal myoblasts in patients with ischemic heart failure. Our findings indicate hemodynamic improvement after follow-up for up to 1 year, which is especially promising in view of the expected decline in left ventricular function in these patients.
Collapse
Affiliation(s)
- Paul Steendijk
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | | | | | |
Collapse
|
91
|
Payne TR, Oshima H, Sakai T, Ling Y, Gharaibeh B, Cummins J, Huard J. Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle stem cells. Gene Ther 2006; 12:1264-74. [PMID: 15843810 DOI: 10.1038/sj.gt.3302521] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell transplantation holds promise as a potential treatment for cardiac dysfunction. Our group has isolated populations of murine skeletal muscle-derived stem cells (MDSCs) that exhibit stem cell-like properties. Here, we investigated the fate of MDSCs after transplantation into the hearts of dystrophin-deficient mdx mice, which model Duchenne muscular dystrophy (DMD). Transplanted MDSCs generated large grafts consisting primarily of numerous dystrophin-positive myocytes and, to a lesser degree, dystrophin-negative non-myocytes that expressed an endothelial phenotype. Most of the dystrophin-positive myocytes expressed a skeletal muscle phenotype and did not express a cardiac phenotype. However, some donor myocytes, located at the graft-host myocardium border, were observed to express cardiac-specific markers. More than half of these donor cells that exhibited a cardiac phenotype still maintained a skeletal muscle phenotype, demonstrating a hybrid state. Sex-mismatched donors and hosts revealed that many donor-derived cells that acquired a cardiac phenotype did so through fusion with host cardiomyocytes. Connexin43 gap junctions were not expressed by donor-derived myocytes in the graft. Scar tissue formation in the border region may inhibit the fusion and gap junction connections between donor and host cells. This study demonstrates that MDSC transplantation warrants further investigation as a potential therapy for cardiac dysfunction in DMD.
Collapse
Affiliation(s)
- T R Payne
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Bettiol E, Clement S, Krause KH, Jaconi ME. Embryonic and adult stem cell-derived cardiomyocytes: lessons from in vitro models. Rev Physiol Biochem Pharmacol 2006; 157:1-30. [PMID: 17236648 DOI: 10.1007/112_0508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For years, research has focused on how to treat heart failure by sustaining the overloaded remaining cardiomyocytes. Recently, the concept of cell replacement therapy as a treatment of heart diseases has opened a new area of investigation. In vitro-generated cardiomyocytes could be injected into the heart to rescue the function of a damaged myocardium. Embryonic and/or adult stem cells could provide cardiac cells for this purpose. Knowledge of fundamental cardiac differentiation mechanisms unraveled by studies on animal models has been improved using in vitro models of cardiogenesis such as mouse embryonal carcinoma cells, mouse embryonic stem cells and, recently, human embryonic stem cells. On the other hand, studies suggesting the existence of cardiac stem cells and the potential of adult stem cells from bone marrow or skeletal muscle to differentiate toward unexpected phenotypes raise hope and questions about their potential use for cardiac cell therapy. In this review, we compare the specificities of embryonic vs adult stem cell populations regarding their cardiac differentiation potential, and we give an overview of what in vitro models have taught us about cardiogenesis.
Collapse
Affiliation(s)
- E Bettiol
- University of Geneva, Department of Pathology and Immunology, Faculty of Medicine, Switzerland
| | | | | | | |
Collapse
|
93
|
Grinnemo KH, Månsson-Broberg A, Leblanc K, Corbascio M, Wärdell E, Siddiqui AJ, Hao X, Sylvén C, Dellgren G. Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel. Ann Med 2006; 38:144-53. [PMID: 16581700 DOI: 10.1080/07853890500422982] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM As the capability of human mesenchymal stem cells (hMSC) to engraft, differentiate and improve myocardial function cannot be studied in humans, exploration was performed in a xenomodel. METHODS The rats were divided into three groups depending on the type of rats used (Rowett nude (RNU) or Fischer rats +/- immunosuppression). Different groups were treated with intramyocardial injection of hMSC (1-2 million) either directly or three days after ligation of the left anterior descending artery (LAD). Myocardial function was investigated by echocardiography. The hMSC were identified with fluorescence in situ hybridization and myocardial differentiation was assessed by immunohistochemistry. RESULTS When hMSC were injected directly after LAD ligation they could be identified in half (8/16) of the RNU rats (without immunosuppression) at 4 weeks. When injected 3 days after LAD ligation in immunosuppressed RNU rats they were identified in all (6/6) rats at 6 weeks. The surviving hMSC showed signs of differentiation into fibroblasts. No cardiomyocyte differentiation was observed. There was no difference in myocardial function in treated animals compared to controls. CONCLUSIONS The hMSC survived in this xenomodel up to 6 weeks. However, hMSC required implantation into immunoincompetent animals as well as immunosuppression to survive, indicating that these cells are otherwise rejected. Furthermore, these cells did not differentiate into cardiomyocytes nor did they improve heart function in this xenomodel.
Collapse
Affiliation(s)
- Karl-Henrik Grinnemo
- Department of Cardiothoracic Surgery and Anaesthesiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Piao H, Youn TJ, Kwon JS, Kim YH, Bae JW, Kim DW, Cho MC, Lee MM, Park YB. Effects of bone marrow derived mesenchymal stem cells transplantation in acutely infarcting myocardium. Eur J Heart Fail 2005; 7:730-8. [PMID: 16158494 DOI: 10.1016/j.ejheart.2004.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cellular cardiomyoplasty (CCM) is considered to be a novel therapeutic approach for post-myocardial infarction (MI) heart failure. In this study, the functional effects of cultured mesenchymal stem cells (MSCs) transplantation and the associated histopathologic changes were evaluated in a rat model of MI. METHODS Rats were subjected to 5 h of coronary ligation followed by reperfusion and, 10 days after MI, animals were randomized into either the MSCs transplantation (MI-MSC, n=8) group or the control (n=8) group. Allogeneic MSCs (3x10(6) cells) or media were epicardially injected into the center and the border area of the infarct scar. RESULTS Four weeks after the MSCs transplantation, the echocardiogram showed preserved anterior regional wall motion and increases in fractional shortening in the MI-MSC heart relative to the control heart. Left ventricular (LV) end-diastolic pressure was smaller in the MI-MSC than in the control group. Implanted MSCs formed islands of cell clusters on the border of the infarct scar, and the cells were positively immunostained by sarcomeric alpha-actinin and cardiac troponin T. In addition, the number of microvessels on the border area of the infarct scar was greater in the MI-MSC than in the control group. CONCLUSION Allogeneic MSCs transplanted into the MI scar formed clusters of cell grafts on the border of the infarct, expressed cardiac muscle proteins, increased microvessel formation, and improved regional and global LV function. Our data indicate that CCM using MSCs may have a significant role in the treatment of post-MI heart failure.
Collapse
Affiliation(s)
- Hainan Piao
- Department of Internal Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Maurel A, Azarnoush K, Sabbah L, Vignier N, Le Lorc'h M, Mandet C, Bissery A, Garcin I, Carrion C, Fiszman M, Bruneval P, Hagege A, Carpentier A, Vilquin JT, Menasché P. Can cold or heat shock improve skeletal myoblast engraftment in infarcted myocardium? Transplantation 2005; 80:660-5. [PMID: 16177642 DOI: 10.1097/01.tp.0000172178.35488.31] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Cell death remains a major limitation of skeletal myoblast (SM) transplantation but the patterns of cell survival and proliferation in heart and their potential modulation by thermic stresses like heat shock (HS) and cryopreservation (Cryo) are still incompletely characterized. METHODS To track SMs in situ, we developed a dual-marker system based on the semiconservative expression of the foreign soluble protein, beta-Galactosidase (beta-Gal) and the constitutive expression of the Y chromosome in a myocardial infarction model. Control medium or Lewis male rat SMs (fresh or subjected to Cryo or HS) were injected in Lewis female rats. RESULTS There was a massive cell loss early after transplantation in the fresh group, which was only partially compensated for by a subsequent proliferation. Conversely, both Cryo and HS significantly improved early cell survival but blunted subsequent proliferation so that, at 15 days posttransplantation, the total number of engrafted donor-derived Y-positive cells did not differ significantly between the three groups. Most of them expressed a skeletal muscle phenotype. CONCLUSIONS These data confirm the high death rate of in-scar transplanted myoblasts, demonstrate the ability of those that survive to proliferate and differentiate along the myogenic pathway but do not support the efficacy of either Cryo or HS for increasing the ultimate magnitude of myoblast engraftment.
Collapse
Affiliation(s)
- Agnès Maurel
- 1 INSERM U633, Laboratoire d'Etude des Greffes et Prothèses Cardiaques, Hôpital Broussais, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Sales KM, Salacinski HJ, Alobaid N, Mikhail M, Balakrishnan V, Seifalian AM. Advancing vascular tissue engineering: the role of stem cell technology. Trends Biotechnol 2005; 23:461-7. [PMID: 15979750 DOI: 10.1016/j.tibtech.2005.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 04/28/2005] [Accepted: 06/10/2005] [Indexed: 01/19/2023]
Abstract
Atherosclerosis and heart disease are still the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts but the patency of such grafts is limited compared to natural materials. Tissue engineering, whereby living tissue replacements can be constructed, has emerged as a solution to some of these difficulties. This, in turn, is limited by the availability of suitable cells from which to construct the vessels. The development of prosthesis using progenitor cells and switching these into endothelial cells is an important and exciting advance in the field of tissue engineering. Here, we describe recent developments in the use of stem cells for the development of replacement vessels. These paradigm shifts in vascular engineering now offer a new route for effective clinical therapy.
Collapse
Affiliation(s)
- Kevin M Sales
- Biomaterials & Tissue Engineering Centre (BTEC), Academic Division of Surgical and Interventional Sciences, University College London, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | |
Collapse
|
97
|
He KL, Yi GH, Sherman W, Zhou H, Zhang GP, Gu A, Kao R, Haimes HB, Harvey J, Roos E, White D, Taylor DA, Wang J, Burkhoff D. Autologous Skeletal Myoblast Transplantation Improved Hemodynamics and Left Ventricular Function in Chronic Heart Failure Dogs. J Heart Lung Transplant 2005; 24:1940-9. [PMID: 16297802 DOI: 10.1016/j.healun.2005.02.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2004] [Revised: 01/27/2005] [Accepted: 02/23/2005] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Previous studies have suggested that autologous skeletal myoblast transplantation (ASMT) improves left ventricular (LV) function in small animals after myocardial infarction. We tested the effects of ASMT on hemodynamics, LV function and remodeling in coronary microembolization-induced chronic heart failure (CHF) in conscious dogs. METHODS Nineteen dogs were continuously instrumented with LV pressure sensors and mid-myocardial sonomicrometry crystals for dP/dt(max) and LV volume determination. Each dog underwent baseline assessment in a conscious state. CHF (20% to 30% reduction in dP/dt(max) and LV end-diastolic pressure >16 mm Hg) was created by daily coronary microembolizations via a continuously implanted coronary catheter. Skeletal muscle biopsy was performed and myoblasts were isolated and expanded. Then 2.7 x 10(8) to 8.3 x 10(8) myoblasts were injected into the infarcted region of 11 dogs after establishment of CHF. Saline injection (sham) was performed in 8 control dogs. Animals were evaluated every 2 weeks for up to 10 weeks. Global ejection fraction was determined by echocardiography. The end-systolic pressure-end-systolic volume relationship (ESPVR) was analyzed by the Sonomicrometic system. RESULTS Compared with saline injection, ASMT significantly increased dP/dt(max) (105 +/- 9% vs 97 +/- 7%, values were expressed as percentage change from baseline CHF, p = 0.013) and ejection fraction (46 +/- 3% vs 40 +/- 2%, p = 0.034) at 10 weeks after myoblast transplantation. There was a significant leftward and upward shift of the ESPVR back toward normal at 10 weeks after myoblast transplantation (p = 0.034). Three animals labeled with BrdU myoblasts showed no histologic evidence of viable engraftment. CONCLUSIONS ASMT provided mild improvements in hemodynamics and LV function and reduced LV remodeling in conscious dogs with CHF.
Collapse
Affiliation(s)
- Kun-Lun He
- Department of Cardio-Nephrology, Chinese PLA General Hospital, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
McConnell PI, del Rio CL, Jacoby DB, Pavlicova M, Kwiatkowski P, Zawadzka A, Dinsmore JH, Astra L, Wisel S, Michler RE. Correlation of autologous skeletal myoblast survival with changes in left ventricular remodeling in dilated ischemic heart failure. J Thorac Cardiovasc Surg 2005; 130:1001. [PMID: 16214511 DOI: 10.1016/j.jtcvs.2005.02.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 01/25/2005] [Accepted: 02/10/2005] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The effect of autologous skeletal myoblast transplantation has not been rigorously studied in the setting of end-stage ischemic heart failure free of concomitant coronary revascularization. The aims of the present study were to determine autologous skeletal myoblast survival and its effects on left ventricular function and remodeling in sheep with dilated ischemic heart failure. METHODS Ischemic heart failure (left ventricular ejection fraction, 30% +/- 2%; left ventricular end-systolic volume index, 82 +/- 9 mL/m2) was created in sheep (n = 11) with serial left circumflex coronary artery microembolizations. Instruments were inserted for the long-term determination of left ventricular global and regional dimensions, hemodynamics, and pressure-volume analysis after autologous skeletal myoblast transplantation (approximately 3.0 x 10(8) myoblasts; heart failure plus autologous skeletal myoblast group, n = 5) or without (heart failure-control group, n = 6). Measurements were performed in conscious animals. RESULTS Autologous skeletal myoblast-derived skeletal muscle was found in all injected animals at 6 weeks. In ischemic heart failure, autologous skeletal myoblast cardiomyoplasty failed to improve systolic (left ventricular ejection fraction, 29% +/- 4%; dP/dT(max), 2863 +/- 152 mm Hg/s; end-systolic elastance, 1.6 +/- 0.22) or diastolic (left ventricular end-diastolic pressure, 21 +/- 2 mm Hg; time constant of relaxation (Tau), 34 +/- 4 ms; dP/dT(min), -1880 +/- 68 mm Hg/s) function. There was, however, attenuation in the left ventricular dilatation after autologous skeletal myoblast transplantation (change in end-systolic volume index, 14% +/- 4% vs 32% +/- 6%; P < .05). The effects of autologous skeletal myoblast-derived skeletal muscle were exclusive to the left ventricular short-axis dimension and dependent on autologous skeletal myoblast survival (R2 = 0.59, P = .006, n = 11). CONCLUSIONS Autologous skeletal cardiomyoplasty was able to attenuate left ventricular remodeling in sheep with end-stage ischemic heart failure.
Collapse
|
99
|
Fedak PWM, Verma S, Weisel RD, Skrtic M, Li RK. Cardiac remodeling and failure: from molecules to man (Part III). Cardiovasc Pathol 2005; 14:109-19. [PMID: 15914295 DOI: 10.1016/j.carpath.2005.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 03/02/2005] [Accepted: 03/17/2005] [Indexed: 10/25/2022] Open
Abstract
Given the lack of a unified theory of heart failure, future research efforts will be required to unify and synthesize our current understanding of the multiple mechanisms that control remodeling in the failing heart. Matrix remodeling and the associated activation of inflammatory cytokines and MMPs have emerged as key pathways in the development of heart failure. As such, attempts to understand the integrated control of ECM homeostasis with the bioactivation of inflammatory cytokines may be of particular relevance to the development of effective anti-remodeling approaches. Notably, the implantation of isolated populations of cells in failing myocardium has a profound and consistent anti-remodeling effect that limits the progression to CHF. These observations were consistently identified in numerous studies using diverse experimental animal models and varied cell types. Accordingly, multicenter clinical trials are underway, and the preliminary data in patients with CHF are encouraging. Despite the enormous promise of cell transplantation to restore and regenerate failing myocardium, the mechanisms underlying these profound biological effects are not understood. An improved understanding of the myocardial response to cell implantation, particularly on parameters of matrix remodeling, may help unify our current understanding of the progression of heart failure and optimize the development of this technique for its evolving therapeutic use. The following review outlines recent advances in medical and surgical approaches to control the remodeling process that underlies the progression of heart failure.
Collapse
Affiliation(s)
- Paul W M Fedak
- Division of Cardiac Surgery, Toronto General Hospital, University of Toronto, Toronto, ON, Canada M5G 2C4.
| | | | | | | | | |
Collapse
|
100
|
Mangi AA. Gene and Cell‐based Therapies for Cardiovascular Disease. MODERN BIOPHARMACEUTICALS 2005:305-324. [DOI: 10.1002/9783527620982.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|