51
|
Andresen E, Peiter E, Küpper H. Trace metal metabolism in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:909-954. [PMID: 29447378 DOI: 10.1093/jxb/erx465] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
Many trace metals are essential micronutrients, but also potent toxins. Due to natural and anthropogenic causes, vastly different trace metal concentrations occur in various habitats, ranging from deficient to toxic levels. Therefore, one focus of plant research is on the response to trace metals in terms of uptake, transport, sequestration, speciation, physiological use, deficiency, toxicity, and detoxification. In this review, we cover most of these aspects for the essential micronutrients copper, iron, manganese, molybdenum, nickel, and zinc to provide a broader overview than found in other recent reviews, to cross-link aspects of knowledge in this very active research field that are often seen in a separated way. For example, individual processes of metal usage, deficiency, or toxicity often were not mechanistically interconnected. Therefore, this review also aims to stimulate the communication of researchers following different approaches, such as gene expression analysis, biochemistry, or biophysics of metalloproteins. Furthermore, we highlight recent insights, emphasizing data obtained under physiologically and environmentally relevant conditions.
Collapse
Affiliation(s)
- Elisa Andresen
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, Ceské Budejovice, Czech Republic
| | - Edgar Peiter
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Plant Nutrition Laboratory, Betty-Heimann-Strasse, Halle (Saale), Germany
| | - Hendrik Küpper
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Branišovská, České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská, České Budějovice, Czech Republic
| |
Collapse
|
52
|
Tejada-Jiménez M, Gil-Díez P, León-Mediavilla J, Wen J, Mysore KS, Imperial J, González-Guerrero M. Medicago truncatula Molybdate Transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency. THE NEW PHYTOLOGIST 2017; 216:1223-1235. [PMID: 28805962 DOI: 10.1111/nph.14739] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/10/2017] [Indexed: 05/17/2023]
Abstract
Molybdenum, as a component of the iron-molybdenum cofactor of nitrogenase, is essential for symbiotic nitrogen fixation. This nutrient has to be provided by the host plant through molybdate transporters. Members of the molybdate transporter family Molybdate Transporter type 1 (MOT1) were identified in the model legume Medicago truncatula and their expression in nodules was determined. Yeast toxicity assays, confocal microscopy, and phenotypical characterization of a Transposable Element from Nicotiana tabacum (Tnt1) insertional mutant line were carried out in the one M. truncatula MOT1 family member specifically expressed in nodules. Among the five MOT1 members present in the M. truncatula genome, MtMOT1.3 is the only one uniquely expressed in nodules. MtMOT1.3 shows molybdate transport capabilities when expressed in yeast. Immunolocalization studies revealed that MtMOT1.3 is located in the plasma membrane of nodule cells. A mot1.3-1 knockout mutant showed impaired growth concomitant with a reduction of nitrogenase activity. This phenotype was rescued by increasing molybdate concentrations in the nutritive solution, or upon addition of an assimilable nitrogen source. Furthermore, mot1.3-1 plants transformed with a functional copy of MtMOT1.3 showed a wild-type-like phenotype. These data are consistent with a model in which MtMOT1.3 is responsible for introducing molybdate into nodule cells, which is later used to synthesize functional nitrogenase.
Collapse
Affiliation(s)
- Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Patricia Gil-Díez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Javier León-Mediavilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
- Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
53
|
Tsutsui H, Notaguchi M. The Use of Grafting to Study Systemic Signaling in Plants. PLANT & CELL PHYSIOLOGY 2017; 58:1291-1301. [PMID: 28961994 DOI: 10.1093/pcp/pcx098] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/10/2017] [Indexed: 05/03/2023]
Abstract
Grafting has long been an important technique in agriculture. Nowadays, grafting is a widely used technique also to study systemic long-distance signaling in plants. Plants respond to their surrounding environment, and at that time many aspects of their physiology are regulated systemically; these start from local input signals and are followed by the transmission of information to the rest of the plant. For example, soil nutrient conditions, light/photoperiod, and biotic and abiotic stresses affect plants heterogeneously, and plants perceive such information in specific plant tissues or organs. Such environmental cues are crucial determinants of plant growth and development, and plants drastically change their morphology and physiology to adapt to various events in their life. Hitherto, intensive studies have been conducted to understand systemic signaling in plants, and grafting techniques have permitted advances in this field. The breakthrough technique of micrografting in Arabidopsis thaliana was established in 2002 and led to the development of molecular genetic tools in this field. Thereafter, various phenomena of systemic signaling have been identified at the molecular level, including nutrient fixation, flowering, circadian clock and defense against pathogens. The significance of grafting is that it can clarify the transmission of the stimulus and molecules. At present, many micro- and macromolecules have been identified as mobile signals, which are transported through plant vascular tissues to co-ordinate their physiology and development. In this review, we introduce the various grafting techniques that have been developed, we report on the recent advances in the field of plant systemic signaling where grafting techniques have been applied and provide insights for the future.
Collapse
Affiliation(s)
- Hiroki Tsutsui
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Michitaka Notaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Japan Science and Technology Agency, PRESTO, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
54
|
Balao F, Trucchi E, Wolfe TM, Hao B, Lorenzo MT, Baar J, Sedman L, Kosiol C, Amman F, Chase MW, Hedrén M, Paun O. Adaptive sequence evolution is driven by biotic stress in a pair of orchid species (Dactylorhiza) with distinct ecological optima. Mol Ecol 2017; 26:3649-3662. [PMID: 28370647 PMCID: PMC5518283 DOI: 10.1111/mec.14123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/24/2017] [Accepted: 03/15/2017] [Indexed: 12/23/2022]
Abstract
The orchid family is the largest in the angiosperms, but little is known about the molecular basis of the significant variation they exhibit. We investigate here the transcriptomic divergence between two European terrestrial orchids, Dactylorhiza incarnata and Dactylorhiza fuchsii, and integrate these results in the context of their distinct ecologies that we also document. Clear signals of lineage-specific adaptive evolution of protein-coding sequences are identified, notably targeting elements of biotic defence, including both physical and chemical adaptations in the context of divergent pools of pathogens and herbivores. In turn, a substantial regulatory divergence between the two species appears linked to adaptation/acclimation to abiotic conditions. Several of the pathways affected by differential expression are also targeted by deviating post-transcriptional regulation via sRNAs. Finally, D. incarnata appears to suffer from insufficient sRNA control over the activity of RNA-dependent DNA polymerase, resulting in increased activity of class I transposable elements and, over time, in larger genome size than that of D. fuchsii. The extensive molecular divergence between the two species suggests significant genomic and transcriptomic shock in their hybrids and offers insights into the difficulty of coexistence at the homoploid level. Altogether, biological response to selection, accumulated during the history of these orchids, appears governed by their microenvironmental context, in which biotic and abiotic pressures act synergistically to shape transcriptome structure, expression and regulation.
Collapse
Affiliation(s)
- Francisco Balao
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Departamento de Biología Vegetal y EcologíaUniversity of SevilleSevillaSpain
| | - Emiliano Trucchi
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Department of Life Sciences and BiotechnologiesUniversity of FerraraFerraraItaly
| | - Thomas M. Wolfe
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Vienna Graduate School of Population GeneticsViennaAustria
| | - Bao‐Hai Hao
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Maria Teresa Lorenzo
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
- Departamento de Biología Vegetal y EcologíaUniversity of SevilleSevillaSpain
| | - Juliane Baar
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Laura Sedman
- Gregor Mendel Institute for Plant Molecular BiologyViennaAustria
| | - Carolin Kosiol
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Centre of Biological DiversitySchool of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Fabian Amman
- Department of Chromosome BiologyUniversity of ViennaViennaAustria
| | - Mark W. Chase
- Royal Botanic Gardens KewRichmondUK
- School of Plant BiologyUniversity of Western AustraliaCrawley, PerthWAAustralia
| | | | - Ovidiu Paun
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| |
Collapse
|
55
|
Medina-Velo IA, Barrios AC, Zuverza-Mena N, Hernandez-Viezcas JA, Chang CH, Ji Z, Zink JI, Peralta-Videa JR, Gardea-Torresdey JL. Comparison of the effects of commercial coated and uncoated ZnO nanomaterials and Zn compounds in kidney bean (Phaseolus vulgaris) plants. JOURNAL OF HAZARDOUS MATERIALS 2017; 332:214-222. [PMID: 28359954 DOI: 10.1016/j.jhazmat.2017.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/21/2017] [Accepted: 03/04/2017] [Indexed: 05/26/2023]
Abstract
Bean (Phaseolus vulgaris) plants were grown for 45 days in soil amended with either uncoated (Z-COTE®) and coated (Z-COTE HP1®) ZnO nanomaterials (NMs), bulk ZnO and ZnCl2, at 0-500mg/kg. At harvest, growth parameters, chlorophyll, and essential elements were determined. None of the treatments affected germination and pod production, and only ZnCl2 at 250 and 500mg/kg reduced relative chlorophyll content by 34% and 46%, respectively. While Z-COTE® did not produce phenotypic changes, Z-COTE HP1®, at all concentrations, increased root length (∼44%) and leaf length (∼13%) compared with control. Bulk ZnO reduced root length (53%) at 62.5mg/kg and ZnCl2 reduced leaf length (16%) at 125mg/kg. Z-COTE®, at 125mg/kg, increased Zn by 203%, 139%, and 76% in nodules, stems, and leaves, respectively; while at the same concentration, Z-COTE HP1® increased Zn by 89%, 97%, and 103% in roots, stems, and leaves, respectively. At 125mg/kg, Z-COTE HP1® increased root S (65%) and Mg (65%), while Z-COTE® increased stem B (122%) and Mn (73%). Bulk ZnO and ZnCl2 imposed more toxicity to kidney bean than the NMs, since they reduced root and leaf elongation, respectively, and the concentration of several essential elements in tissues.
Collapse
Affiliation(s)
- Illya A Medina-Velo
- Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Ana C Barrios
- Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Nubia Zuverza-Mena
- Metallurgical and Materials Engineering Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Jose A Hernandez-Viezcas
- Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Chong Hyun Chang
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Zhaoxia Ji
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Jeffrey I Zink
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Jose R Peralta-Videa
- Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Jorge L Gardea-Torresdey
- Department of Chemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States.
| |
Collapse
|
56
|
Liu L, Xiao W, Li L, Li DM, Gao DS, Zhu CY, Fu XL. Effect of exogenously applied molybdenum on its absorption and nitrate metabolism in strawberry seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:200-211. [PMID: 28376412 DOI: 10.1016/j.plaphy.2017.03.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 05/10/2023]
Abstract
Molybdenum (Mo)-an essential element of plants-is involved in nitrogen (N) metabolism. Plants tend to accumulate more nitrate and show lower nitrogen use efficiency (NUE) under Mo-deficient conditions. Improving NUE in fruits reduces the negative effect of large applications of chemical fertilizer, but the mechanisms underlying how Mo enhances NUE remain unclear. We cultivated strawberry seedlings sprayed with 0, 67.5, 135, 168.75, or 202.5 g Mo·ha-1 in a non-soil culture system. The Mo concentration in every plant tissue analyzed increased gradually as Mo application level rose. Mo application affected iron, copper, and selenium adsorption in roots. Seedlings sprayed with 135 g Mo·ha-1 had a higher [15N] shoot:root (S:R) ratio, and 15NUE, and produced higher molybdate transporter type 1 (MOT1) expression levels in the roots and leaves. Seedlings sprayed with 135 g Mo·ha-1 also had relatively high nitrogen metabolic enzyme activities and up-regulated transcript levels of nitrate uptake genes (NRT1.1; NRT2.1) and nitrate-responsive genes. Furthermore, there was a significantly lower NO3- concentration in the leaves and roots, a higher NH4+ concentration in leaves, and a higher glutamine/glutamate (Gln/Glu) concentration at 135 g Mo·ha-1. Seedlings sprayed with 202.5 g Mo·ha-1 showed the opposite trend. Taken together, these results suggest that a 135 g Mo·ha-1 application was optimal because it enhanced NO3- transport from the roots to the shoots and increased NUE by mediating nitrogen metabolic enzyme activities, nitrate transport, and nitrate assimilation gene activities.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Wei Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Ling Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dong-Mei Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dong-Sheng Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | - Cui-Ying Zhu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China.
| | - Xi-Ling Fu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China.
| |
Collapse
|
57
|
Duan G, Hakoyama T, Kamiya T, Miwa H, Lombardo F, Sato S, Tabata S, Chen Z, Watanabe T, Shinano T, Fujiwara T. LjMOT1, a high-affinity molybdate transporter from Lotus japonicus, is essential for molybdate uptake, but not for the delivery to nodules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1108-1119. [PMID: 28276145 DOI: 10.1111/tpj.13532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 05/06/2023]
Abstract
Molybdenum (Mo) is an essential nutrient for plants, and is required for nitrogenase activity of legumes. However, the pathways of Mo uptake from soils and then delivery to the nodules have not been characterized in legumes. In this study, we characterized a high-affinity Mo transporter (LjMOT1) from Lotus japonicus. Mo concentrations in an ethyl methanesulfonate-mutagenized line (ljmot1) decreased by 70-95% compared with wild-type (WT). By comparing the DNA sequences of four AtMOT1 homologs between mutant and WT lines, one point mutation was found in LjMOT1, which altered Trp292 to a stop codon; no mutation was found in the other homologous genes. The phenotype of Mo concentrations in F2 progeny from ljmot1 and WT crosses were associated with genotypes of LjMOT1. Introduction of endogenous LjMOT1 to ljmot1 restored Mo accumulation to approximately 60-70% of the WT. Yeast expressing LjMOT1 exhibited high Mo uptake activity, and the Km was 182 nm. LjMOT1 was expressed mainly in roots, and its expression was not affected by Mo supply or rhizobium inoculation. Although Mo accumulation in the nodules of ljmot1 was significantly lower than that of WT, it was still high enough for normal nodulation and nitrogenase activity, even for cotyledons-removed ljmot1 plants grown under low Mo conditions, in this case the plant growth was significantly inhibited by Mo deficiency. Our results suggest that LjMOT1 is an essential Mo transporter in L. japonicus for Mo uptake from the soil and growth, but is not for Mo delivery to the nodules.
Collapse
Affiliation(s)
- Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tsuneo Hakoyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroki Miwa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Fabien Lombardo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- National Agriculture and Food Research Organization (NARO) Institute of Crop Science, Ibaraki, 305-8518, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0812, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0812, Japan
| | - Zheng Chen
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
- Department of Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Toshihiro Watanabe
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
| | - Takuro Shinano
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 010-8589, Japan
- NARO Tohoku Agricultural Research Center, Arai, Fukushima, 960-2156, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
58
|
Qin S, Sun X, Hu C, Tan Q, Zhao X, Xu S. Effects of tungsten on uptake, transport and subcellular distribution of molybdenum in oilseed rape at two different molybdenum levels. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:87-93. [PMID: 28167042 DOI: 10.1016/j.plantsci.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/14/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Due to the similarities of molybdenum (Mo) with tungsten (W) in the physical structure and chemical properties, studies involving the two elements have mainly examined their competitive relationships. The objectives of this study were to assess the effects of equimolar W on Mo accumulation, transport and subcellular distribution in oilseed rape at two Mo levels with four treatments: Mo1 (1μmol/L Mo, Low Mo), Mo1+W1 (1μmol/L Mo+1μmol/LW, Low Mo with Low W), Mo200 (200μmol/L Mo, High Mo) and Mo200+W200 (200μmol/L Mo+200μmol/L Mo, High Mo with high W). The fresh weight and root growth were inhibited by equimolar W at both low and high Mo levels. The Mo concentration and accumulation in root was increased by equimolar W at the low Mo level, but that in the root and shoot was decreased at the high Mo level. Additionally, equimolar W increased the Mo concentrations of xylem and phloem sap at low Mo level, but decreased that of xylem and increased that of phloem sap at the high Mo level. Furthermore, equimolar W decreased the expression of BnMOT1 in roots and leaves at the low Mo level, and only decreased its expression in leaves at the high Mo level. The expression of BnMOT2 was also decreased in root for equimolar W compared with the low Mo level, but increased compared with high Mo level. Moreover, equimolar W increased the proportion of Mo in cell wall fraction in root and that of soluble fraction in leaves when compared with the low Mo level. The results suggest that cell wall and soluble fractions might be responsible for the adaptation of oilseed rape to W stress.
Collapse
Affiliation(s)
- Shiyu Qin
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| | - Xuecheng Sun
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China.
| | - Chengxiao Hu
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| | - Qiling Tan
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| | - Xiaohu Zhao
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| | - Shoujun Xu
- Micro-Element Research Center, Huazhong Agricultural University, Wuhan, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China
| |
Collapse
|
59
|
Vigani G, Di Silvestre D, Agresta AM, Donnini S, Mauri P, Gehl C, Bittner F, Murgia I. Molybdenum and iron mutually impact their homeostasis in cucumber (Cucumis sativus) plants. THE NEW PHYTOLOGIST 2017; 213:1222-1241. [PMID: 27735062 DOI: 10.1111/nph.14214] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/22/2016] [Indexed: 05/22/2023]
Abstract
Molybdenum (Mo) and iron (Fe) are essential micronutrients required for crucial enzyme activities in plant metabolism. Here we investigated the existence of a mutual control of Mo and Fe homeostasis in cucumber (Cucumis sativus). Plants were grown under single or combined Mo and Fe starvation. Physiological parameters were measured, the ionomes of tissues and the ionomes and proteomes of root mitochondria were profiled, and the activities of molybdo-enzymes and the synthesis of molybdenum cofactor (Moco) were evaluated. Fe and Mo were found to affect each other's total uptake and distribution within tissues and at the mitochondrial level, with Fe nutritional status dominating over Mo homeostasis and affecting Mo availability for molybdo-enzymes in the form of Moco. Fe starvation triggered Moco biosynthesis and affected the molybdo-enzymes, with its main impact on nitrate reductase and xanthine dehydrogenase, both being involved in nitrogen assimilation and mobilization, and on the mitochondrial amidoxime reducing component. These results, together with the identification of > 100 proteins differentially expressed in root mitochondria, highlight the central role of mitochondria in the coordination of Fe and Mo homeostasis and allow us to propose the first model of the molecular interactions connecting Mo and Fe homeostasis.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Department of Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy
| | - Dario Di Silvestre
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), via F.lli Cervi 93, 20090, Segrate (MI), Italy
| | - Anna Maria Agresta
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), via F.lli Cervi 93, 20090, Segrate (MI), Italy
| | - Silvia Donnini
- Department of Agricultural and Environmental Sciences, University of Milano, via Celoria 2, 20133, Milano, Italy
| | - Pierluigi Mauri
- Proteomic and Metabolomic Laboratory, Institute of Biomedical Technologies, National Research Council (ITB-CNR), via F.lli Cervi 93, 20090, Segrate (MI), Italy
| | - Christian Gehl
- Institute of Horticulture Production Systems, Leibniz University of Hannover, Herrenhaeuser Str. 2, 30419, Hannover, Germany
| | - Florian Bittner
- Department of Plant Biology, Braunschweig University of Technology, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - Irene Murgia
- Department of Biosciences, University of Milano, via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
60
|
Maillard A, Sorin E, Etienne P, Diquélou S, Koprivova A, Kopriva S, Arkoun M, Gallardo K, Turner M, Cruz F, Yvin JC, Ourry A. Non-Specific Root Transport of Nutrient Gives Access to an Early Nutritional Indicator: The Case of Sulfate and Molybdate. PLoS One 2016; 11:e0166910. [PMID: 27870884 PMCID: PMC5117742 DOI: 10.1371/journal.pone.0166910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/04/2016] [Indexed: 01/08/2023] Open
Abstract
Under sulfur (S) deficiency, crosstalk between nutrients induced accumulation of other nutrients, particularly molybdenum (Mo). This disturbed balanced between S and Mo could provide a way to detect S deficiency and therefore avoid losses in yield and seed quality in cultivated species. Under hydroponic conditions, S deprivation was applied to Brassica napus to determine the precise kinetics of S and Mo uptake and whether sulfate transporters were involved in Mo uptake. Leaf contents of S and Mo were also quantified in a field-grown S deficient oilseed rape crop with different S and N fertilization applications to evaluate the [Mo]:[S] ratio, as an indicator of S nutrition. To test genericity of this indicator, the [Mo]:[S] ratio was also assessed with other cultivated species under different controlled conditions. During S deprivation, Mo uptake was strongly increased in B. napus. This accumulation was not a result of the induction of the molybdate transporters, Mot1 and Asy, but could be a direct consequence of Sultr1.1 and Sultr1.2 inductions. However, analysis of single mutants of these transporters in Arabidopsis thaliana suggested that other sulfate deficiency responsive transporters may be involved. Under field conditions, Mo content was also increased in leaves by a reduction in S fertilization. The [Mo]:[S] ratio significantly discriminated between the plots with different rates of S fertilization. Threshold values were estimated for the hierarchical clustering of commercial crops according to S status. The use of the [Mo]:[S] ratio was also reliable to detect S deficiency for other cultivated species under controlled conditions. The analysis of the leaf [Mo]:[S] ratio seems to be a practical indicator to detect early S deficiency under field conditions and thus improve S fertilization management.
Collapse
Affiliation(s)
- Anne Maillard
- Normandie Université, Caen, France
- UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Caen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Caen, France
| | - Elise Sorin
- Normandie Université, Caen, France
- UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Caen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Caen, France
- University of Cologne, Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Philippe Etienne
- Normandie Université, Caen, France
- UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Caen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Caen, France
| | - Sylvain Diquélou
- Normandie Université, Caen, France
- UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Caen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Caen, France
| | - Anna Koprivova
- University of Cologne, Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Stanislav Kopriva
- University of Cologne, Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Mustapha Arkoun
- Centre Mondial d’Innovation, CMI, Groupe Roullier, Saint-Malo, France
| | | | | | - Florence Cruz
- Centre Mondial d’Innovation, CMI, Groupe Roullier, Saint-Malo, France
| | - Jean-Claude Yvin
- Centre Mondial d’Innovation, CMI, Groupe Roullier, Saint-Malo, France
| | - Alain Ourry
- Normandie Université, Caen, France
- UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Caen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, Caen, France
- * E-mail:
| |
Collapse
|
61
|
Gao JS, Wu FF, Shen ZL, Meng Y, Cai YP, Lin Y. A putative molybdate transporter LjMOT1 is required for molybdenum transport in Lotus japonicus. PHYSIOLOGIA PLANTARUM 2016; 158:331-340. [PMID: 27535112 DOI: 10.1111/ppl.12489] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 05/17/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient that is required for plant growth and development, and it affects the formation of root nodules and nitrogen fixation in legumes. In this study, Lotus japonicus was grown on MS solid media containing 0 nmol l-1 (-Mo), 103 nmol l-1 (+Mo) and 1030 nmol l-1 (10 × Mo) of Mo. The phenotypes of plants growing on the three different media showed no obvious differences after 15 days, but the plants growing on -Mo for 45 days presented typical symptoms of Mo depletion, such as a short taproot, few lateral roots and yellowing leaves. A Mo transporter gene, LjMOT1, was isolated from L. japonicus. It encoded 468 amino acids, including two conserved motifs, and was predicted to locate to chromosome 3 of the L. japonicus genome. A homology comparison indicated that LjMOT1 had high similarities to other MOT1 proteins and was closely related to GmMOT1. Subcellular localization indicated that LjMOT1 is localized to the plasma membrane. qRT-PCR analyses showed that increasing Mo concentrations regulated the relative expression level of LjMOT1. Moreover, the Mo concentration in shoots was positively correlated to the expression of LjMOT1, but there was no such evident correlation in the roots. In addition, changes in the nitrate reductase activity were coincident with changes in the Mo concentration. These results suggest that LjMOT1 may be involved in the transport of Mo and provide a theoretical basis for further understanding of the mechanism of Mo transport in higher plants.
Collapse
Affiliation(s)
- Jun-Shan Gao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Fei-Fei Wu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhi-Lin Shen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yan Meng
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yong-Ping Cai
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
62
|
Maillard A, Etienne P, Diquélou S, Trouverie J, Billard V, Yvin JC, Ourry A. Nutrient deficiencies modify the ionomic composition of plant tissues: a focus on cross-talk between molybdenum and other nutrients in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5631-5641. [PMID: 27625417 DOI: 10.1093/jxb/erw322] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The composition of the ionome is closely linked to a plant's nutritional status. Under certain deficiencies, cross-talk induces unavoidable accumulation of some nutrients, which upsets the balance and modifies the ionomic composition of plant tissues. Rapeseed plants (Brassica napus L.) grown under controlled conditions were subject to individual nutrient deficiencies (N, K, P, Ca, S, Mg, Fe, Cu, Zn, Mn, Mo, or B) and analyzed by inductively high-resolution coupled plasma mass spectrometry to determine the impact of deprivation on the plant ionome. Eighteen situations of increased uptake under mineral nutrient deficiency were identified, some of which have already been described (K and Na, S and Mo, Fe, Zn and Cu). Additionally, as Mo uptake was strongly increased under S, Fe, Cu, Zn, Mn, or B deprivation, the mechanisms underlying the accumulation of Mo in these deficient plants were investigated. The results suggest that it could be the consequence of multiple metabolic disturbances, namely: (i) a direct disturbance of Mo metabolism leading to an up-regulation of Mo transporters such as MOT1, as found under Zn or Cu deficiency, which are nutrients required for synthesis of the Mo cofactor; and (ii) a disturbance of S metabolism leading to an up-regulation of root SO42- transporters, causing an indirect increase in the uptake of Mo in S, Fe, Mn, and B deficient plants.
Collapse
Affiliation(s)
- Anne Maillard
- Normandie Université, Caen, France UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032 Caen Cedex 5, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032 Caen Cedex 5, France
| | - Philippe Etienne
- Normandie Université, Caen, France UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032 Caen Cedex 5, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032 Caen Cedex 5, France
| | - Sylvain Diquélou
- Normandie Université, Caen, France UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032 Caen Cedex 5, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032 Caen Cedex 5, France
| | - Jacques Trouverie
- Normandie Université, Caen, France UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032 Caen Cedex 5, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032 Caen Cedex 5, France
| | - Vincent Billard
- Normandie Université, Caen, France UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032 Caen Cedex 5, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032 Caen Cedex 5, France
| | - Jean-Claude Yvin
- Centre Mondial d'Innovation, CMI, Groupe Roullier, 55 boulevard Jules Verger, 35800 Dinard, France
| | - Alain Ourry
- Normandie Université, Caen, France UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032 Caen Cedex 5, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, 14032 Caen Cedex 5, France
| |
Collapse
|
63
|
González-Guerrero M, Escudero V, Saéz Á, Tejada-Jiménez M. Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia. FRONTIERS IN PLANT SCIENCE 2016; 7:1088. [PMID: 27524990 PMCID: PMC4965479 DOI: 10.3389/fpls.2016.01088] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/11/2016] [Indexed: 05/03/2023]
Abstract
Transition metals such as iron, copper, zinc, or molybdenum are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms. These microorganisms can simply increase metal solubility in soils and making them more accessible to the host plant, as well as induce the plant metal deficiency response, or directly deliver transition elements to cortical cells. Other, instead of providing metals, can act as metal sinks, such as endosymbiotic rhizobia in legume nodules that requires relatively large amounts to carry out nitrogen fixation. In this review, we propose to do an overview of metal transport mechanisms in the plant-microbe system, emphasizing the role of arbuscular mycorrhizal fungi and endosymbiotic rhizobia.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Madrid, Spain
| | | | | | | |
Collapse
|
64
|
Huang XY, Salt DE. Plant Ionomics: From Elemental Profiling to Environmental Adaptation. MOLECULAR PLANT 2016; 9:787-97. [PMID: 27212388 DOI: 10.1016/j.molp.2016.05.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
Ionomics is a high-throughput elemental profiling approach to study the molecular mechanistic basis underlying mineral nutrient and trace element composition (also known as the ionome) of living organisms. Since the concept of ionomics was first introduced more than 10 years ago, significant progress has been made in the identification of genes and gene networks that control the ionome. In this update, we summarize the progress made in using the ionomics approach over the last decade, including the identification of genes by forward genetics and the study of natural ionomic variation. We further discuss the potential application of ionomics to the investigation of the ecological functions of ionomic alleles in adaptation to the environment.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen AB24 3UU, UK.
| |
Collapse
|
65
|
Sasaki A, Yamaji N, Ma JF. Transporters involved in mineral nutrient uptake in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3645-53. [PMID: 26931170 DOI: 10.1093/jxb/erw060] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
One of the most important roles of plant roots is to take up essential mineral nutrients from the soil for use in plant growth and development. The uptake of mineral elements is mediated by various transporters belonging to different transporter families. Here we reviewed transporters for the uptake of macronutrients and micronutrients identified in rice, an important staple food for half of the world's population. Rice roots are characterized by having two Casparian strips on the exodermis and endodermis and by the formation of aerenchyma in the mature root zone. This distinct anatomical structure dictates that a pair of influx and efflux transporters at both the exodermis and endodermis is required for the radial transport of a mineral element from the soil solution to the stele. Some transporters showing polar localization at the distal and proximal sides of the exodermis and endodermis have been identified for silicon and manganese, forming an efficient uptake system. However, transporters for the uptake of most mineral elements remain to be identified.
Collapse
Affiliation(s)
- Akimasa Sasaki
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| |
Collapse
|
66
|
Bemm F, Becker D, Larisch C, Kreuzer I, Escalante-Perez M, Schulze WX, Ankenbrand M, Van de Weyer AL, Krol E, Al-Rasheid KA, Mithöfer A, Weber AP, Schultz J, Hedrich R. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res 2016; 26:812-25. [PMID: 27197216 PMCID: PMC4889972 DOI: 10.1101/gr.202200.115] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/07/2016] [Indexed: 11/24/2022]
Abstract
Although the concept of botanical carnivory has been known since Darwin's time, the molecular mechanisms that allow animal feeding remain unknown, primarily due to a complete lack of genomic information. Here, we show that the transcriptomic landscape of the Dionaea trap is dramatically shifted toward signal transduction and nutrient transport upon insect feeding, with touch hormone signaling and protein secretion prevailing. At the same time, a massive induction of general defense responses is accompanied by the repression of cell death-related genes/processes. We hypothesize that the carnivory syndrome of Dionaea evolved by exaptation of ancient defense pathways, replacing cell death with nutrient acquisition.
Collapse
Affiliation(s)
- Felix Bemm
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Christina Larisch
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Ines Kreuzer
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Maria Escalante-Perez
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Markus Ankenbrand
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany; Department of Animal Ecology and Tropical Biology, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Anna-Lena Van de Weyer
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Elzbieta Krol
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| | - Khaled A Al-Rasheid
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany; Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Axel Mithöfer
- Bioorganic Chemistry Department, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Andreas P Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, Campus Hubland Nord; Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, D-97218 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
67
|
Forsberg SKG, Andreatta ME, Huang XY, Danku J, Salt DE, Carlborg Ö. The Multi-allelic Genetic Architecture of a Variance-Heterogeneity Locus for Molybdenum Concentration in Leaves Acts as a Source of Unexplained Additive Genetic Variance. PLoS Genet 2015; 11:e1005648. [PMID: 26599497 PMCID: PMC4657900 DOI: 10.1371/journal.pgen.1005648] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association (GWA) analyses have generally been used to detect individual loci contributing to the phenotypic diversity in a population by the effects of these loci on the trait mean. More rarely, loci have also been detected based on variance differences between genotypes. Several hypotheses have been proposed to explain the possible genetic mechanisms leading to such variance signals. However, little is known about what causes these signals, or whether this genetic variance-heterogeneity reflects mechanisms of importance in natural populations. Previously, we identified a variance-heterogeneity GWA (vGWA) signal for leaf molybdenum concentrations in Arabidopsis thaliana. Here, fine-mapping of this association reveals that the vGWA emerges from the effects of three independent genetic polymorphisms that all are in strong LD with the markers displaying the genetic variance-heterogeneity. By revealing the genetic architecture underlying this vGWA signal, we uncovered the molecular source of a significant amount of hidden additive genetic variation or “missing heritability”. Two of the three polymorphisms underlying the genetic variance-heterogeneity are promoter variants for Molybdate transporter 1 (MOT1), and the third a variant located ~25 kb downstream of this gene. A fourth independent association was also detected ~600 kb upstream of MOT1. Use of a T-DNA knockout allele highlights Copper Transporter 6; COPT6 (AT2G26975) as a strong candidate gene for this association. Our results show that an extended LD across a complex locus including multiple functional alleles can lead to a variance-heterogeneity between genotypes in natural populations. Further, they provide novel insights into the genetic regulation of ion homeostasis in A. thaliana, and empirically confirm that variance-heterogeneity based GWA methods are a valuable tool to detect novel associations of biological importance in natural populations. Most biological traits vary in natural populations, and understanding the genetic basis of this variation remains an important challenge. Genome-wide association (GWA) studies have emerged as a powerful tool to address this challenge by dissecting the genetic architecture of trait variation into the contribution of individual genes. This contribution has traditionally been measured as the difference in the phenotypic means between groups of individuals with alternative genotypes at one, or multiple loci. However, instead of altering the trait mean, certain loci alter the variability of the trait. Here, we describe the genetic dissection of one such variance-controlling locus that drives variation in leaf molybdenum concentrations amongst natural accessions of Arabidopsis thaliana. The variance-controlling locus was found to result from the contributions of multiple alleles at multiple loci that are closely linked on the chromosome and is a major contributor to the “missing heritability” for this trait identified in previous studies. This illustrates that multi-allelic genetic architectures can hide large amounts of additive genetic variation, and that it is possible to uncover this hidden variation using the appropriate experimental designs and statistical methods described here.
Collapse
Affiliation(s)
- Simon K. G. Forsberg
- Department of Clinical Sciences, Division of Computational Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Matthew E. Andreatta
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Xin-Yuan Huang
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - John Danku
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - David E. Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Örjan Carlborg
- Department of Clinical Sciences, Division of Computational Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
68
|
DeTar RA, Alford ÉR, Pilon-Smits EAH. Molybdenum accumulation, tolerance and molybdenum-selenium-sulfur interactions in Astragalus selenium hyperaccumulator and nonaccumulator species. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:32-40. [PMID: 26074355 DOI: 10.1016/j.jplph.2015.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/02/2023]
Abstract
Some species hyperaccumulate selenium (Se) upwards of 0.1% of dry weight. This study addressed whether Se hyperaccumulators also accumulate and tolerate more molybdenum (Mo). A field survey revealed on average 2-fold higher Mo levels in three hyperaccumulator Astragali compared to three nonaccumulator Astragali, which were not significantly different. Next, a controlled study was performed where hyperaccumulators Astragalus racemosus and Astragalus bisulcatus were compared with nonaccumulators Astragalus drummondii and Astragalus convallarius for Mo accumulation and tolerance, alone or in the presence of Se. When grown on agar media with 0, 12, 24 or 48 mg L(-1) molybdate and/or 0, 1.6 or 3.2 mg L(-1) selenate, all species decreased in biomass with increasing Mo supply. Selenium did not impact biomass at the supplied levels. All Astragali accumulated Mo upwards of 0.1% of dry weight. Selenium levels were up to 0.08% in Astragalus racemosus and 0.04% Se in the other species. Overall, there was no correlation between Se hyperaccumulation and Mo accumulation capacity. However, the hyperaccumulators and nonaccumulators differed in some respects. While none of the species had a higher tissue Mo to sulfur (S) ratio than the growth medium, nonaccumulators had a higher Mo/S ratio than hyperaccumulators. Also, while molybdate and selenate reduced S accumulation in nonaccumulators, it did not in hyperaccumulators. Furthermore, A. racemosus had a higher Se/S ratio than its medium, while the other species did not. Additionally, Mo and Se treatment affected S levels in nonaccumulators, but not in hyperaccumulators. In conclusion, there is no evidence of a link between Se and Mo accumulation and tolerance in Astragalus. Sulfate transporters in hyperaccumulating Astragali appear to have higher sulfate specificity over other oxyanions, compared to nonaccumulators, and A. racemosus may have a transporter with enhanced selenate specificity relative to sulfate or molybdate.
Collapse
Affiliation(s)
- Rachael Ann DeTar
- Biology Department, Colorado State University, Fort Collins, CO 80523, USA
| | - Élan R Alford
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA; Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
69
|
Clarke VC, Loughlin PC, Gavrin A, Chen C, Brear EM, Day DA, Smith PMC. Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Mol Cell Proteomics 2015; 14:1301-22. [PMID: 25724908 PMCID: PMC4424401 DOI: 10.1074/mcp.m114.043166] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/25/2015] [Indexed: 12/21/2022] Open
Abstract
Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Victoria C Clarke
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Patrick C Loughlin
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Aleksandr Gavrin
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Chi Chen
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Ella M Brear
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - David A Day
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia; §Flinders University, School of Biological Sciences, Adelaide Australia
| | - Penelope M C Smith
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia;
| |
Collapse
|
70
|
Anjum NA, Singh HP, Khan MIR, Masood A, Per TS, Negi A, Batish DR, Khan NA, Duarte AC, Pereira E, Ahmad I. Too much is bad--an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3361-82. [PMID: 25408077 DOI: 10.1007/s11356-014-3849-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/10/2014] [Indexed: 05/20/2023]
Abstract
Heavy metal ions such as cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and zinc (Zn) are considered essential/beneficial for optimal plant growth, development, and productivity. However, these ions readily impact functions of many enzymes and proteins, halt metabolism, and exhibit phytotoxicity at supra-optimum supply. Nevertheless, the concentrations of these heavy metal ions are increasing in agricultural soils worldwide via both natural and anthropogenic sources that need immediate attention. Considering recent breakthroughs on Co, Cu, Fe, Mn, Mo, Ni, and Zn in soil-plant system, the present paper: (a) overviews the status in soils and their uptake, transport, and significance in plants; (b) critically discusses their elevated level-mediated toxicity to both plant growth/development and cell/genome; (c) briefly cross talks on the significance of potential interactions between previous plant-beneficial heavy metal ions in plants; and (d) highlights so far unexplored aspects in the current context.
Collapse
Affiliation(s)
- Naser A Anjum
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Clarke VC, Loughlin PC, Day DA, Smith PMC. Transport processes of the legume symbiosome membrane. FRONTIERS IN PLANT SCIENCE 2014; 5:699. [PMID: 25566274 PMCID: PMC4266029 DOI: 10.3389/fpls.2014.00699] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/24/2014] [Indexed: 05/19/2023]
Abstract
The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologs of transporters of sulfate, calcium, peptides, and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.
Collapse
Affiliation(s)
- Victoria C. Clarke
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - David A. Day
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | | |
Collapse
|
72
|
Billard V, Ourry A, Maillard A, Garnica M, Coquet L, Jouenne T, Cruz F, Garcia-Mina JM, Yvin JC, Etienne P. Copper-deficiency in Brassica napus induces copper remobilization, molybdenum accumulation and modification of the expression of chloroplastic proteins. PLoS One 2014; 9:e109889. [PMID: 25333918 PMCID: PMC4198169 DOI: 10.1371/journal.pone.0109889] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/08/2014] [Indexed: 01/10/2023] Open
Abstract
During the last 40 years, crop breeding has strongly increased yields but has had adverse effects on the content of micronutrients, such as Fe, Mg, Zn and Cu, in edible products despite their sufficient supply in most soils. This suggests that micronutrient remobilization to edible tissues has been negatively selected. As a consequence, the aim of this work was to quantify the remobilization of Cu in leaves of Brassica napus L. during Cu deficiency and to identify the main metabolic processes that were affected so that improvements can be achieved in the future. While Cu deficiency reduced oilseed rape growth by less than 19% compared to control plants, Cu content in old leaves decreased by 61.4%, thus demonstrating a remobilization process between leaves. Cu deficiency also triggered an increase in Cu transporter expression in roots (COPT2) and leaves (HMA1), and more surprisingly, the induction of the MOT1 gene encoding a molybdenum transporter associated with a strong increase in molybdenum (Mo) uptake. Proteomic analysis of leaves revealed 33 proteins differentially regulated by Cu deficiency, among which more than half were located in chloroplasts. Eleven differentially expressed proteins are known to require Cu for their synthesis and/or activity. Enzymes that were located directly upstream or downstream of Cu-dependent enzymes were also differentially expressed. The overall results are then discussed in relation to remobilization of Cu, the interaction between Mo and Cu that occurs through the synthesis pathway of Mo cofactor, and finally their putative regulation within the Calvin cycle and the chloroplastic electron transport chain.
Collapse
Affiliation(s)
- Vincent Billard
- Normandie Université, Caen, France
- UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Caen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Caen, France
| | - Alain Ourry
- Normandie Université, Caen, France
- UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Caen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Caen, France
| | - Anne Maillard
- Normandie Université, Caen, France
- UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Caen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Caen, France
| | - Maria Garnica
- Timac Agro Spain, Poligono de Arazuri-Orcoyen, Orcoyen, Spain
| | - Laurent Coquet
- Plateforme de protéomique PISSARO, UMR6270 CNRS Faculté des Sciences de Rouen, Mont-Saint-Aignan, France
| | - Thierry Jouenne
- Plateforme de protéomique PISSARO, UMR6270 CNRS Faculté des Sciences de Rouen, Mont-Saint-Aignan, France
| | - Florence Cruz
- Centre de Recherche International en Agroscience, CRIAS-TAI, Groupe Roullier, Dinard, France
| | | | - Jean-Claude Yvin
- Centre de Recherche International en Agroscience, CRIAS-TAI, Groupe Roullier, Dinard, France
| | - Philippe Etienne
- Normandie Université, Caen, France
- UNICAEN, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Caen, France
- INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Caen, France
| |
Collapse
|
73
|
Nie Z, Hu C, Liu H, Tan Q, Sun X. Differential expression of molybdenum transport and assimilation genes between two winter wheat cultivars (Triticum aestivum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:27-33. [PMID: 24880579 DOI: 10.1016/j.plaphy.2014.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/09/2014] [Indexed: 05/12/2023]
Abstract
Molybdenum (Mo) is an essential trace element for higher plants. Winter wheat cultivar 97003 has a higher Mo efficiency than 97014 under Mo-deficiency stress. Mo efficiency is related to Mo uptake, transfer and assimilation in plants. Several genes are involved in regulating Mo uptake, transfer and assimilation in plants. To obtain a better understanding of the aforementioned difference in Mo uptake, we have conducted a hydroponic trail to investigate the expression of genes related to Mo uptake, transfer and assimilation in the above two cultivars. The results indicate a closed relationship between Mo uptake and TaSultr5.1, TaSultr5.2 and TaCnx1 expression, according to a stepwise regression analysis of the time course of Mo uptake in the two cultivars. Meanwhile, expression of TaSultr5.2 in roots also showed a positive relationship with Mo uptake rates. 97003 had stronger Mo uptake than 97014 at low Mo-application rates (less than 1 μmol Mo L(-1)) due to the higher expression of TaSultr5.2, TaSultr5.1 and TaCnx1 in roots. On the contrary, Mo uptake of 97003 was weaker than 97014 at high Mo application rates (ranging from 5 to 20 μmol Mo L(-1)), which was related to significant down-regulation of TaSultr5.2 and TaCnx1 genes in roots of 97003 compared to 97014. Therefore, we speculated that the differential-expression intensities of TaSultr5.2, TaSultr5.1 and TaCnx1 could be the cause of the difference in Mo uptake between the two winter wheat cultivars at low and high Mo application levels.
Collapse
Affiliation(s)
- Zhaojun Nie
- Micro-element Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Micro-element Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongen Liu
- Micro-element Research Center, Huazhong Agricultural University, Wuhan 430070, China; College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiling Tan
- Micro-element Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecheng Sun
- Micro-element Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
74
|
DalCorso G, Manara A, Piasentin S, Furini A. Nutrient metal elements in plants. Metallomics 2014; 6:1770-88. [DOI: 10.1039/c4mt00173g] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
75
|
Raboy V, Cichy K, Peterson K, Reichman S, Sompong U, Srinives P, Saneoka H. Barley (Hordeum vulgare L.) low phytic acid 1-1: an endosperm-specific, filial determinant of seed total phosphorus. J Hered 2014; 105:656-65. [PMID: 25080466 DOI: 10.1093/jhered/esu044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inositol hexaphosphate (Ins P6 or "phytic acid") typically accounts for 75 (± 10%) of seed total phosphorus (P). In some cases, genetic blocks in seed Ins P6 accumulation can also alter the distribution or total amount of seed P. In nonmutant barley (Hordeum vulgare L.) caryopses, ~80% of Ins P6 and total P accumulate in the aleurone layer, the outer layer of the endosperm, with the remainder in the germ. In barley low phytic acid 1-1 (Hvlpa1-1) seed, both endosperm Ins P6 and total P are reduced (~45% and ~25%, respectively), but germs are phenotypically wild type. This translates into a net reduction in whole-seed total P of ~15%. Nutrient culture studies demonstrate that the reduction in endosperm total P is not due to a reduction in the uptake of P into the maternal plant. Genetic tests (analyses of testcross and F2 seed) reveal that the Hvlpa1-1 genotype of the filial seed conditions the seed total P reduction; sibling seed in the same head of barley that differ in their Hvlpa1-1 genotype (heterozygous vs. homozygous recessive) differ in their total P (normal vs. reduced, respectively). Therefore, Hvlpa1 functions as a seed-specific or filial determinant of barley endosperm total P.
Collapse
Affiliation(s)
- Victor Raboy
- From the USDA Agricultural Research Service, Small Grains and Potato Research Unit, 1691 South 2700 West, Aberdeen, ID 83210 (Raboy, Cichy, Peterson, and Reichman); the Department of Agronomy, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand (Sompong and Srinives); and the Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan (Saneoka).
| | - Karen Cichy
- From the USDA Agricultural Research Service, Small Grains and Potato Research Unit, 1691 South 2700 West, Aberdeen, ID 83210 (Raboy, Cichy, Peterson, and Reichman); the Department of Agronomy, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand (Sompong and Srinives); and the Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan (Saneoka)
| | - Kevin Peterson
- From the USDA Agricultural Research Service, Small Grains and Potato Research Unit, 1691 South 2700 West, Aberdeen, ID 83210 (Raboy, Cichy, Peterson, and Reichman); the Department of Agronomy, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand (Sompong and Srinives); and the Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan (Saneoka)
| | - Sarah Reichman
- From the USDA Agricultural Research Service, Small Grains and Potato Research Unit, 1691 South 2700 West, Aberdeen, ID 83210 (Raboy, Cichy, Peterson, and Reichman); the Department of Agronomy, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand (Sompong and Srinives); and the Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan (Saneoka)
| | - Utumporn Sompong
- From the USDA Agricultural Research Service, Small Grains and Potato Research Unit, 1691 South 2700 West, Aberdeen, ID 83210 (Raboy, Cichy, Peterson, and Reichman); the Department of Agronomy, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand (Sompong and Srinives); and the Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan (Saneoka)
| | - Peerasak Srinives
- From the USDA Agricultural Research Service, Small Grains and Potato Research Unit, 1691 South 2700 West, Aberdeen, ID 83210 (Raboy, Cichy, Peterson, and Reichman); the Department of Agronomy, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand (Sompong and Srinives); and the Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan (Saneoka)
| | - Hirofumi Saneoka
- From the USDA Agricultural Research Service, Small Grains and Potato Research Unit, 1691 South 2700 West, Aberdeen, ID 83210 (Raboy, Cichy, Peterson, and Reichman); the Department of Agronomy, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand (Sompong and Srinives); and the Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan (Saneoka)
| |
Collapse
|
76
|
Tejada-Jiménez M, Schwarz G. Molybdenum and Tungsten. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Molybdenum (Mo) is an essential micronutrient for the majority of organisms ranging from bacteria to animals. To fulfil its biological role, it is incorporated into a pterin-based Mo-cofactor (Moco) and can be found in the active centre of more than 50 enzymes that are involved in key reactions of carbon, nitrogen and sulfur metabolism. Five of the Mo-enzymes are present in eukaryotes: nitrate reductase (NR), sulfite oxidase (SO), aldehyde oxidase (AO), xanthine oxidase (XO) and the amidoxime-reducing component (mARC). Cells acquire Mo in form of the oxyanion molybdate using specific molybdate transporters. In bacteria, molybdate transport is an extensively studied process and is mediated mainly by the ATP-binding cassette system ModABC. In contrast, in eukaryotes, molybdate transport is poorly understood since specific molybdate transporters remained unknown until recently. Two rather distantly related families of proteins, MOT1 and MOT2, are involved in eukaryotic molybdate transport. They each feature high-affinity molybdate transporters that regulate the intracellular concentration of Mo and thus control activity of Mo-enzymes. The present chapter presents an overview of the biological functions of Mo with special focus on recent data related to its uptake, binding and storage.
Collapse
Affiliation(s)
- Manuel Tejada-Jiménez
- Institute of Biochemistry, Department of Chemistry, University of Cologne Zuelpicher Str. 47 Cologne 50674 Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne Zuelpicher Str. 47 Cologne 50674 Germany
- Center for Molecular Medicine Cologne, University of Cologne Robert-Koch Str. 21 Cologne 50931 Germany
- Cluster of Excellence in Ageing Research, CECAD Research Center Joseph-Stelzmann-Str. 26 Cologne 50931 Germany
| |
Collapse
|
77
|
Abstract
Molybdenum is an essential trace element and crucial for the survival of animals. Four mammalian Mo-dependent enzymes are known, all of them harboring a pterin-based molybdenum cofactor (Moco) in their active site. In these enzymes, molybdenum catalyzes oxygen transfer reactions from or to substrates using water as oxygen donor or acceptor. Molybdenum shuttles between two oxidation states, Mo(IV) and Mo(VI). Following substrate reduction or oxidation, electrons are subsequently shuttled by either inter- or intra-molecular electron transfer chains involving prosthetic groups such as heme or iron-sulfur clusters. In all organisms studied so far, Moco is synthesized by a highly conserved multi-step biosynthetic pathway. A deficiency in the biosynthesis of Moco results in a pleitropic loss of all four human Mo-enzyme activities and in most cases in early childhood death. In this review we first introduce general aspects of molybdenum biochemistry before we focus on the functions and deficiencies of two Mo-enzymes, xanthine dehydrogenase and sulfite oxidase, caused either by deficiency of the apo-protein or a pleiotropic loss of Moco due to a genetic defect in its biosynthesis. The underlying molecular basis of Moco deficiency, possible treatment options and links to other diseases, such as neuropsychiatric disorders, will be discussed.
Collapse
Affiliation(s)
- Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zülpicher Strasse 47, D-50674, Köln, Germany,
| | | |
Collapse
|
78
|
Norton GJ, Douglas A, Lahner B, Yakubova E, Guerinot ML, Pinson SRM, Tarpley L, Eizenga GC, McGrath SP, Zhao FJ, Islam MR, Islam S, Duan G, Zhu Y, Salt DE, Meharg AA, Price AH. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS One 2014; 9:e89685. [PMID: 24586963 PMCID: PMC3934919 DOI: 10.1371/journal.pone.0089685] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/22/2014] [Indexed: 11/19/2022] Open
Abstract
The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.
Collapse
Affiliation(s)
- Gareth J. Norton
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Brett Lahner
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Elena Yakubova
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Shannon R. M. Pinson
- USDA ARS, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States of America
| | - Lee Tarpley
- Texas A&M University System, Texas A&M AgriLife Research, Beaumont, Texas, United States of America
| | - Georgia C. Eizenga
- USDA ARS, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States of America
| | | | - Fang-Jie Zhao
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - M. Rafiqul Islam
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shofiqul Islam
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Guilan Duan
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yongguan Zhu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - David E. Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew A. Meharg
- Institute for Global Food Security, Queen’s University Belfast, David Keir Building, Belfast, United Kingdom
| | - Adam H. Price
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail:
| |
Collapse
|
79
|
Gigolashvili T, Kopriva S. Transporters in plant sulfur metabolism. FRONTIERS IN PLANT SCIENCE 2014; 5:442. [PMID: 25250037 PMCID: PMC4158793 DOI: 10.3389/fpls.2014.00442] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/18/2014] [Indexed: 05/02/2023]
Abstract
Sulfur is an essential nutrient, necessary for synthesis of many metabolites. The uptake of sulfate, primary and secondary assimilation, the biosynthesis, storage, and final utilization of sulfur (S) containing compounds requires a lot of movement between organs, cells, and organelles. Efficient transport systems of S-containing compounds across the internal barriers or the plasma membrane and organellar membranes are therefore required. Here, we review a current state of knowledge of the transport of a range of S-containing metabolites within and between the cells as well as of their long distance transport. An improved understanding of mechanisms and regulation of transport will facilitate successful engineering of the respective pathways, to improve the plant yield, biotic interaction and nutritional properties of crops.
Collapse
Affiliation(s)
- Tamara Gigolashvili
- Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne Germany
- *Correspondence: Tamara Gigolashvili, Department of Plant Molecular Physiology, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, Zülpicher Street 47 B, 50674 Cologne, Germany e-mail:
| | - Stanislav Kopriva
- Plant Biochemistry Department, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of CologneCologne Germany
| |
Collapse
|
80
|
Norton GJ, Douglas A, Lahner B, Yakubova E, Guerinot ML, Pinson SRM, Tarpley L, Eizenga GC, McGrath SP, Zhao FJ, Islam MR, Islam S, Duan G, Zhu Y, Salt DE, Meharg AA, Price AH. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L.) grown at four international field sites. PLoS One 2014. [PMID: 24586963 DOI: 10.137/journalpone.0089685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼ 300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.
Collapse
Affiliation(s)
- Gareth J Norton
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Brett Lahner
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Elena Yakubova
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Mary Lou Guerinot
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Shannon R M Pinson
- USDA ARS, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States of America
| | - Lee Tarpley
- Texas A&M University System, Texas A&M AgriLife Research, Beaumont, Texas, United States of America
| | - Georgia C Eizenga
- USDA ARS, Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, United States of America
| | - Steve P McGrath
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Fang-Jie Zhao
- Rothamsted Research, Harpenden, Hertfordshire, United Kingdom ; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - M Rafiqul Islam
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shofiqul Islam
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Guilan Duan
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yongguan Zhu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - David E Salt
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew A Meharg
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Belfast, United Kingdom
| | - Adam H Price
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
81
|
Pushie MJ, Cotelesage JJ, George GN. Molybdenum and tungsten oxygen transferases – structural and functional diversity within a common active site motif. Metallomics 2014; 6:15-24. [DOI: 10.1039/c3mt00177f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
82
|
Gruber BD, Giehl RFH, Friedel S, von Wirén N. Plasticity of the Arabidopsis root system under nutrient deficiencies. PLANT PHYSIOLOGY 2013. [PMID: 23852440 DOI: 10.1014/pp.113.218453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program.
Collapse
Affiliation(s)
- Benjamin D Gruber
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | | | | | | |
Collapse
|
83
|
Gruber BD, Giehl RF, Friedel S, von Wirén N. Plasticity of the Arabidopsis root system under nutrient deficiencies. PLANT PHYSIOLOGY 2013; 163:161-79. [PMID: 23852440 PMCID: PMC3762638 DOI: 10.1104/pp.113.218453] [Citation(s) in RCA: 504] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/06/2013] [Indexed: 05/17/2023]
Abstract
Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program.
Collapse
Affiliation(s)
| | | | - Swetlana Friedel
- Molecular Plant Nutrition (B.D.G., R.F.H.G., N.v.W.) and Data Inspection (S.F.), Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition (B.D.G., R.F.H.G., N.v.W.) and Data Inspection (S.F.), Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| |
Collapse
|
84
|
Malcheska F, Honsel A, Wildhagen H, Dürr J, Larisch C, Rennenberg H, Herschbach C. Differential expression of specific sulphate transporters underlies seasonal and spatial patterns of sulphate allocation in trees. PLANT, CELL & ENVIRONMENT 2013; 36:1285-95. [PMID: 23278135 DOI: 10.1111/pce.12058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/07/2012] [Accepted: 12/17/2012] [Indexed: 05/15/2023]
Abstract
Sulphate uptake and its distribution within plants depend on the activity of different sulphate transporters (SULTR). In long-living deciduous plants such as trees, seasonal changes of spatial patterns add another layer of complexity to the question of how the interplay of different transporters adjusts S distribution within the plant to environmental changes. Poplar is an excellent model to address this question because its S metabolism is already well characterized. In the present study, the importance of SULTRs for seasonal sulphate storage and mobilization was examined in the wood of poplar (Populus tremula × P. alba) by analysing their gene expression in relation to sulphate contents in wood and xylem sap. According to these results, possible functions of the respective SULTRs for seasonal sulphate storage and mobilization in the wood are suggested. Together, the present results complement the previously published model for seasonal sulphate circulation between leaves and bark and provide information for future mechanistic modelling of whole tree sulphate fluxes.
Collapse
Affiliation(s)
- F Malcheska
- Albert-Ludwigs-Universität Freiburg, Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| | - A Honsel
- Albert-Ludwigs-Universität Freiburg, Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany
| | - H Wildhagen
- Albert-Ludwigs-Universität Freiburg, Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany
| | - J Dürr
- Albert-Ludwigs-Universität Freiburg, Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany
| | - C Larisch
- Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Institut für Biowissenschaften, Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Platz 2, 97082, Würzburg, Germany
| | - H Rennenberg
- Albert-Ludwigs-Universität Freiburg, Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany
- King Saud University, PO Box 2454, Riyadh, 11451, Saudi Arabia
| | - C Herschbach
- Albert-Ludwigs-Universität Freiburg, Institut für Forstbotanik und Baumphysiologie, Professur für Baumphysiologie, Georges-Köhler-Allee 53/54, 79110, Freiburg, Germany
| |
Collapse
|
85
|
Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P. The plant vascular system: evolution, development and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:294-388. [PMID: 23462277 DOI: 10.1111/jipb.12041] [Citation(s) in RCA: 432] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
The transition element molybdenum needs to be complexed by a special cofactor to gain catalytic activity. Molybdenum is bound to a unique pterin, thus forming the molybdenum cofactor (Moco), which, in different variants, is the active compound at the catalytic site of all molybdenum-containing enzymes in nature, except bacterial molybdenum nitrogenase. The biosynthesis of Moco involves the complex interaction of six proteins and is a process of four steps, which also require iron, ATP, and copper. After its synthesis, Moco is distributed, involving Moco-binding proteins. A deficiency in the biosynthesis of Moco has lethal consequences for the respective organisms.
Collapse
Affiliation(s)
- Ralf R Mendel
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany.
| |
Collapse
|
87
|
Liao D, Cram D, Sharpe AG, Marsolais F. Transcriptome Profiling Identifies Candidate Genes Associated with the Accumulation of Distinct Sulfur γ-Glutamyl Dipeptides in Phaseolus vulgaris and Vigna mungo Seeds. FRONTIERS IN PLANT SCIENCE 2013; 4:60. [PMID: 23532826 PMCID: PMC3606967 DOI: 10.3389/fpls.2013.00060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/04/2013] [Indexed: 05/29/2023]
Abstract
Common bean (Phaseolus vulgaris) and black gram (Vigna mungo) accumulate γ-Glutamyl-S-methylcysteine and γ-Glutamyl-methionine in seed, respectively. Transcripts were profiled by 454 pyrosequencing data at a similar developmental stage coinciding with the beginning of the accumulation of these metabolites. Expressed sequence tags were assembled into Unigenes, which were assigned to specific genes in the early release chromosomal assembly of the P. vulgaris genome. Genes involved in multiple sulfur metabolic processes were expressed in both species. Expression of Sultr3 members was predominant in P. vulgaris, whereas expression of Sultr5 members predominated in V. mungo. Expression of the cytosolic SERAT1;1 and -1;2 was approximately fourfold higher in P. vulgaris while expression of the plastidic SERAT2;1 was twofold higher in V. mungo. Among BSAS family members, BSAS4;1, encoding a cytosolic cysteine desulfhydrase, and BSAS1;1, encoding a cytosolic O-acetylserine sulphydrylase were most highly expressed in both species. This was followed by BSAS3;1 encoding a plastidic β-cyanoalanine synthase which was more highly expressed by 10-fold in P. vulgaris. The data identify BSAS3;1 as a candidate enzyme for the biosynthesis of S-methylcysteine through the use of methanethiol as substrate instead of cyanide. Expression of GLC1 would provide a complete sequence leading to the biosynthesis of γ-Glutamyl-S-methylcysteine in plastids. The detection of S-methylhomoglutathione in P. vulgaris suggested that homoglutathione synthetase may accept, to some extent, γ-Glutamyl-S-methylcysteine as substrate, which might lead to the formation of S-methylated phytochelatins. In conclusion, 454 sequencing was effective at revealing differences in the expression of sulfur metabolic genes, providing information on candidate genes for the biosynthesis of distinct sulfur amino acid γ-Glutamyl dipeptides between P. vulgaris and V. mungo.
Collapse
Affiliation(s)
- Dengqun Liao
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Dustin Cram
- National Research Council CanadaSaskatoon, SK, Canada
| | | | - Frédéric Marsolais
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
88
|
Nakanishi Y, Iida S, Ueoka-Nakanishi H, Niimi T, Tomioka R, Maeshima M. Exploring dynamics of molybdate in living animal cells by a genetically encoded FRET nanosensor. PLoS One 2013; 8:e58175. [PMID: 23472155 PMCID: PMC3589368 DOI: 10.1371/journal.pone.0058175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/30/2013] [Indexed: 12/17/2022] Open
Abstract
Molybdenum (Mo) is an essential trace element for almost all living organisms including animals. Mo is used as a catalytic center of molybdo-enzymes for oxidation/reduction reactions of carbon, nitrogen, and sulfur metabolism. Whilst living cells are known to import inorganic molybdate oxyanion from the surrounding environment, the in vivo dynamics of cytosolic molybdate remain poorly understood as no appropriate indicator is available for this trace anion. We here describe a genetically encoded Förester-resonance-energy-transfer (FRET)-based nanosensor composed of CFP, YFP and the bacterial molybdate-sensor protein ModE. The nanosensor MolyProbe containing an optimized peptide-linker responded to nanomolar-range molybdate selectively, and increased YFP:CFP fluorescence intensity ratio by up to 109%. By introduction of the nanosensor, we have been able to successfully demonstrate the real-time dynamics of molybdate in living animal cells. Furthermore, time course analyses of the dynamics suggest that novel oxalate-sensitive- and sulfate-resistant- transporter(s) uptake molybdate in a model culture cell.
Collapse
Affiliation(s)
- Yoichi Nakanishi
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
89
|
Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB. SULTR3;1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:607-16. [PMID: 23095126 DOI: 10.1111/tpj.12059] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 05/03/2023]
Abstract
Plants play a prominent role as sulfur reducers in the global sulfur cycle. Sulfate, the major form of inorganic sulfur utilized by plants, is absorbed and transported by specific sulfate transporters into plastids, especially chloroplasts, where it is reduced and assimilated into cysteine before entering other metabolic processes. How sulfate is transported into the chloroplast, however, remains unresolved; no plastid-localized sulfate transporters have been previously identified in higher plants. Here we report that SULTR3;1 is localized in the chloroplast, which was demonstrated by SULTR3;1-GFP localization, Western blot analysis, protein import as well as comparative analysis of sulfate uptake by chloroplasts between knockout mutants, complemented transgenic plants, and the wild type. Loss of SULTR3;1 significantly decreases the sulfate uptake of the chloroplast. Complementation of the sultr3;1 mutant phenotypes by expression of a 35S-SULTR3;1 construct further confirms that SULTR3;1 is one of the transporters responsible for sulfate transport into chloroplasts.
Collapse
Affiliation(s)
- Min-Jie Cao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| | | | | | | | | | | |
Collapse
|
90
|
Bromke MA, Hoefgen R, Hesse H. Phylogenetic aspects of the sulfate assimilation genes from Thalassiosira pseudonana. Amino Acids 2013; 44:1253-65. [DOI: 10.1007/s00726-013-1462-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 01/18/2023]
|
91
|
Satismruti K, Senthil N, Vellaikumar S, Ranjani RV, Raveendran M. Plant Ionomics: A Platform for Identifying Novel Gene Regulating Plant Mineral Nutrition. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.47162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
92
|
Hibara KI, Hosoki W, Hakoyama T, Ohmori Y, Fujiwara T, Itoh JI, Nagato Y. <i>ABNORMAL SHOOT IN YOUTH</i>, a Homolog of Molybdate Transporter Gene, Regulates Early Shoot Development in Rice. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.45a001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
93
|
Tejada-Jiménez M, Chamizo-Ampudia A, Galván A, Fernández E, Llamas Á. Molybdenum metabolism in plants. Metallomics 2013; 5:1191-203. [DOI: 10.1039/c3mt00078h] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
94
|
Abstract
Biological trace metals are needed in small quantities, but used by all living organisms. They are employed in key cellular functions in a variety of biological processes, resulting in the various degree of dependence of organisms on metals. Most effort in the field has been placed on experimental studies of metal utilization pathways and metal-dependent proteins. On the other hand, systemic level analyses of metalloproteomes (or metallomes) have been limited for most metals. In this chapter, we focus on the recent advances in comparative genomics, which provides many insights into evolution and function of metal utilization. These studies suggested that iron and zinc are widely used in biology (presumably by all organisms), whereas some other metals such as copper, molybdenum, nickel, and cobalt, show scattered occurrence in various groups of organisms. For these metals, most user proteins are well characterized and their dependence on a specific element is evolutionarily conserved. We also discuss evolutionary dynamics of the dependence of user proteins on different metals. Overall, comparative genomics analysis of metallomes provides a foundation for the systemic level understanding of metal utilization as well as for investigating the general features, functions, and evolutionary dynamics of metal use in the three domains of life.
Collapse
|
95
|
|
96
|
Roles and functions of plant mineral nutrients. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 953:1-21. [PMID: 23073873 DOI: 10.1007/978-1-62703-152-3_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plants require macro- and micronutrients, each of which is essential for a plant to complete its life cycle. Adequate provision of nutrients impacts greatly on plant growth and as such is of crucial importance in the context of agriculture. Minerals are taken up by plant roots from the soil solution in ionic form which is mediated by specific transport proteins. Recently, important progress has been achieved in identifying transport and regulatory mechanisms for the uptake and distribution of nutrients. This and the main physiological roles of each nutrient will be discussed in this chapter.
Collapse
|
97
|
Wang D. Redox chemistry of molybdenum in natural waters and its involvement in biological evolution. Front Microbiol 2012; 3:427. [PMID: 23267355 PMCID: PMC3528336 DOI: 10.3389/fmicb.2012.00427] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/03/2012] [Indexed: 11/13/2022] Open
Abstract
The transition element molybdenum (Mo) possesses diverse valances (+II to +VI), and is involved in forming cofactors in more than 60 enzymes in biology. Redox switching of the element in these enzymes catalyzes a series of metabolic reactions in both prokaryotes and eukaryotes, and the element therefore plays a fundamental role in the global carbon, nitrogen, and sulfur cycling. In the present oxygenated waters, oxidized Mo(VI) predominates thermodynamically, whilst reduced Mo species are mainly confined within specific niches including cytoplasm. Only recently has the reduced Mo(V) been separated from Mo(VI) in sulfidic mats and even in some reducing waters. Given the presence of reduced Mo(V) in contemporary anaerobic habitats, it seems that reduced Mo species were present in the ancient reducing ocean (probably under both ferruginous and sulfidic conditions), prompting the involvement of Mo in enzymes including nitrogenase and nitrate reductase. During the global transition to oxic conditions, reduced Mo species were constrained to specific anaerobic habitats, and efficient uptake systems of oxidized Mo(VI) became a selective advantage for current prokaryotic and eukaryotic cells. Some prokaryotes are still able to directly utilize reduced Mo if any exists in ambient environments. In total, this mini-review describes the redox chemistry and biogeochemistry of Mo over the Earth’s history.
Collapse
Affiliation(s)
- Deli Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China
| |
Collapse
|
98
|
Shen X, Pettersson M, Rönnegård L, Carlborg Ö. Inheritance beyond plain heritability: variance-controlling genes in Arabidopsis thaliana. PLoS Genet 2012; 8:e1002839. [PMID: 22876191 PMCID: PMC3410891 DOI: 10.1371/journal.pgen.1002839] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 06/01/2012] [Indexed: 11/21/2022] Open
Abstract
The phenotypic effect of a gene is normally described by the mean-difference between alternative genotypes. A gene may, however, also influence the phenotype by causing a difference in variance between genotypes. Here, we reanalyze a publicly available Arabidopsis thaliana dataset [1] and show that genetic variance heterogeneity appears to be as common as normal additive effects on a genomewide scale. The study also develops theory to estimate the contributions of variance differences between genotypes to the phenotypic variance, and this is used to show that individual loci can explain more than 20% of the phenotypic variance. Two well-studied systems, cellular control of molybdenum level by the ion-transporter MOT1 and flowering-time regulation by the FRI-FLC expression network, and a novel association for Leaf serration are used to illustrate the contribution of major individual loci, expression pathways, and gene-by-environment interactions to the genetic variance heterogeneity. The most well-studied effects of genes are those leading to different phenotypic means for alternative genotypes. A less well-explored type of genetic control is that resulting in a heterogeneity in variance between genotypes. Here, we reanalyze a publicly available Arabidopsis thaliana GWAS dataset to detect genetic effects on the variance heterogeneity, and our results indicate that the environmental variance is under extensive genetic control by a large number of variance-controlling loci across the genome. A straightforward extension of current quantitative genetics theory was derived to estimate the contribution of genetic variance heterogeneity to the phenotypic variance for loci detected in the vGWAS. This showed that some variance-controlling loci explained more than 20% of the phenotypic variance. Genetic variance heterogeneity was detected in various biological processes, including cellular control of ion levels in the plant and regulation of flowering. Our findings indicate that further studies of genetically determined variance heterogeneity are important to further understand the extent of its biological importance. Accounting for variance-controlling loci in complex trait genetic studies is a useful way to identify previously unexplained genetic variance, dissect the genetic control of environmental variance, and gain biological insight into the genetic regulation of complex traits.
Collapse
Affiliation(s)
- Xia Shen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Statistics Unit, School of Technology and Business Studies, Dalarna University, Borlänge, Sweden
| | - Mats Pettersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lars Rönnegård
- Statistics Unit, School of Technology and Business Studies, Dalarna University, Borlänge, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Örjan Carlborg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
99
|
Rönnegård L, Valdar W. Recent developments in statistical methods for detecting genetic loci affecting phenotypic variability. BMC Genet 2012; 13:63. [PMID: 22827487 PMCID: PMC3493319 DOI: 10.1186/1471-2156-13-63] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/24/2012] [Indexed: 12/15/2022] Open
Abstract
A number of recent works have introduced statistical methods for detecting genetic loci that affect phenotypic variability, which we refer to as variability-controlling quantitative trait loci (vQTL). These are genetic variants whose allelic state predicts how much phenotype values will vary about their expected means. Such loci are of great potential interest in both human and non-human genetic studies, one reason being that a detected vQTL could represent a previously undetected interaction with other genes or environmental factors. The simultaneous publication of these new methods in different journals has in many cases precluded opportunity for comparison. We survey some of these methods, the respective trade-offs they imply, and the connections between them. The methods fall into three main groups: classical non-parametric, fully parametric, and semi-parametric two-stage approximations. Choosing between alternatives involves balancing the need for robustness, flexibility, and speed. For each method, we identify important assumptions and limitations, including those of practical importance, such as their scope for including covariates and random effects. We show in simulations that both parametric methods and their semi-parametric approximations can give elevated false positive rates when they ignore mean-variance relationships intrinsic to the data generation process. We conclude that choice of method depends on the trait distribution, the need to include non-genetic covariates, and the population size and structure, coupled with a critical evaluation of how these fit with the assumptions of the statistical model.
Collapse
Affiliation(s)
- Lars Rönnegård
- Statistics Unit, Dalarna University, SE-781 70 Borlänge, Sweden.
| | | |
Collapse
|
100
|
Poormohammad Kiani S, Trontin C, Andreatta M, Simon M, Robert T, Salt DE, Loudet O. Allelic heterogeneity and trade-off shape natural variation for response to soil micronutrient. PLoS Genet 2012; 8:e1002814. [PMID: 22807689 PMCID: PMC3395621 DOI: 10.1371/journal.pgen.1002814] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/21/2012] [Indexed: 11/24/2022] Open
Abstract
As sessile organisms, plants have to cope with diverse environmental constraints that may vary through time and space, eventually leading to changes in the phenotype of populations through fixation of adaptive genetic variation. To fully comprehend the mechanisms of evolution and make sense of the extensive genotypic diversity currently revealed by new sequencing technologies, we are challenged with identifying the molecular basis of such adaptive variation. Here, we have identified a new variant of a molybdenum (Mo) transporter, MOT1, which is causal for fitness changes under artificial conditions of both Mo-deficiency and Mo-toxicity and in which allelic variation among West-Asian populations is strictly correlated with the concentration of available Mo in native soils. In addition, this association is accompanied at different scales with patterns of polymorphisms that are not consistent with neutral evolution and show signs of diversifying selection. Resolving such a case of allelic heterogeneity helps explain species-wide phenotypic variation for Mo homeostasis and potentially reveals trade-off effects, a finding still rarely linked to fitness. Plants are studied for their ability to adapt to their environment and especially to the physical constraints to which they are subjected. It is expected that they evolve in promoting genetic variants favorable under their native conditions, which could lead to negative consequences in other conditions. One approach to study the mechanisms and dynamics of these adaptations is to discover genetic variants that control potentially adaptive traits, and to study directly these variants in wild populations to try to reveal their evolutionary trajectory. We have identified a new polymorphism in a gene coding for a transporter of molybdenum (an essential micronutrient for the plant) in Arabidopsis; we show that this variant has strong phenotypic consequences at the level of plant growth and reproductive value in specific conditions, and that it explains a lot of the species diversity for these traits. Especially, the variant is associated with a clear negative effect under molybdenum-deficient conditions (caused by soil acidity) and with a subtle positive effect under molybdenum-plethoric conditions. Interestingly, the landscape distribution of the variant is not random among Asian populations and correlates well with the availability of molybdenum in the soil at the precise location where the plants are growing in the wild.
Collapse
Affiliation(s)
| | | | - Matthew Andreatta
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana United States of America
| | - Matthieu Simon
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
| | - Thierry Robert
- Laboratoire d'Ecologie, Systématique, et Evolution, Université Paris-Sud XI, Orsay, France
| | - David E. Salt
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana United States of America
| | - Olivier Loudet
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Versailles, France
- * E-mail:
| |
Collapse
|