51
|
Zhen Y, Zhao ZZ, Zheng RH, Shi J. Proteomic analysis of early seed development in Pinus massoniana L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 54:97-104. [PMID: 22391127 DOI: 10.1016/j.plaphy.2012.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/06/2012] [Indexed: 05/13/2023]
Abstract
Understanding seed development is important for large-scale propagation and germplasm conservation for the Masson pine. We undertook a proteomic analysis of Masson pine seeds during the early stages of embryogenesis. Two-dimensional difference gel electrophoresis (2D DIGE) was used to quantify the differences in protein expression during early seed development. Using electrospray ionization mass spectrometry/mass spectrometry, we identified proteins from 43 gel spots that had been excised from preparative "pick" gels. Proteins involved in carbon metabolism were identified and were predominantly expressed at higher levels during the cleavage polyembryony and columnar embryo stages. Functional annotation of one seed protein revealed it involvement in programmed cell death and translation of selective mRNAs, which may play an important role in subordinate embryo elimination and suspensor degeneration in polyembryonic seed gymnosperms. Other identified proteins were associated with protein folding, nitrogen metabolism, disease/defense response, and protein storage, synthesis and stabilization. The comprehensive protein expression profiles generated by this study will provide new insights into the complex developmental process of seed development in Masson pine.
Collapse
Affiliation(s)
- Yan Zhen
- Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing 210037, People's Republic of China
| | | | | | | |
Collapse
|
52
|
Tasleem-Tahir A, Nadaud I, Chambon C, Branlard G. Expression Profiling of Starchy Endosperm Metabolic Proteins at 21 Stages of Wheat Grain Development. J Proteome Res 2012; 11:2754-73. [DOI: 10.1021/pr201110d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Isabelle Nadaud
- INRA, UMR 1095 GDEC-UBP, 234 avenue du
Brézet, F-63100 Clermont-Ferrand,
France
| | - Christophe Chambon
- INRA, QPA, Proteomic Plateforme, F-63122 Saint-Genès Champanelle,
France
| | - Gérard Branlard
- INRA, UMR 1095 GDEC-UBP, 234 avenue du
Brézet, F-63100 Clermont-Ferrand,
France
| |
Collapse
|
53
|
Minas IS, Tanou G, Belghazi M, Job D, Manganaris GA, Molassiotis A, Vasilakakis M. Physiological and proteomic approaches to address the active role of ozone in kiwifruit post-harvest ripening. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2449-64. [PMID: 22268155 PMCID: PMC3346216 DOI: 10.1093/jxb/err418] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/12/2011] [Accepted: 11/21/2011] [Indexed: 05/18/2023]
Abstract
Post-harvest ozone application has recently been shown to inhibit the onset of senescence symptoms on fleshy fruit and vegetables; however, the exact mechanism of action is yet unknown. To characterize the impact of ozone on the post-harvest performance of kiwifruit (Actinidia deliciosa cv. 'Hayward'), fruits were cold stored (0 °C, 95% relative humidity) in a commercial ethylene-free room for 1, 3, or 5 months in the absence (control) or presence of ozone (0.3 μl l(-1)) and subsequently were allowed to ripen at a higher temperature (20 °C), herein defined as the shelf-life period, for up to 12 days. Ozone blocked ethylene production, delayed ripening, and stimulated antioxidant and anti-radical activities of fruits. Proteomic analysis using 1D-SDS-PAGE and mass spectrometry identified 102 kiwifruit proteins during ripening, which are mainly involved in energy, protein metabolism, defence, and cell structure. Ripening induced protein carbonylation in kiwifruit but this effect was depressed by ozone. A set of candidate kiwifruit proteins that are sensitive to carbonylation was also discovered. Overall, the present data indicate that ozone improved kiwifruit post-harvest behaviour, thus providing a first step towards understanding the active role of this molecule in fruit ripening.
Collapse
Affiliation(s)
- Ioannis S. Minas
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Georgia Tanou
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Maya Belghazi
- Centre d’Analyse Protéomique de Marseille, Institut Fédératif de Recherche Jean Roche, F–13916 Marseille cedex 20, France
| | - Dominique Job
- CNRS-Bayer CropScience Joint Laboratory (UMR 5240), Bayer CropScience, F–69263 Lyon cedex 9, France
| | - George A. Manganaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus
| | - Athanassios Molassiotis
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Miltiadis Vasilakakis
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
54
|
Ma B, Johnson R. De novo sequencing and homology searching. Mol Cell Proteomics 2012; 11:O111.014902. [PMID: 22090170 PMCID: PMC3277775 DOI: 10.1074/mcp.o111.014902] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/08/2011] [Indexed: 11/06/2022] Open
Abstract
In proteomics, de novo sequencing is the process of deriving peptide sequences from tandem mass spectra without the assistance of a sequence database. Such analyses have traditionally been performed manually by human experts, and more recently by computer programs that have been developed because of the need for higher throughput. Although powerful, de novo sequencing often can only determine partially correct sequence tags because of imperfect tandem mass spectra. However, these sequence tags can then be searched in a sequence database to identify the exact or a homologous peptide. Homology searches are particularly useful for the study of organisms whose genomes have not been sequenced. This tutorial will present background important to understanding de novo sequencing, suggestions on how to do this manually, plus descriptions of computer algorithms used to automate this process and to subsequently carryout homology-based database searches. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 1).
Collapse
Affiliation(s)
- Bin Ma
- From the ‡School of Computer Science, University of Waterloo, 200 University Ave. W, Waterloo, ON, Canada N2L 3G1
| | | |
Collapse
|
55
|
Marondedze C, Thomas LA. Insights into fruit function from the proteome of the hypanthium. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:12-19. [PMID: 22050892 DOI: 10.1016/j.jplph.2011.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 05/25/2011] [Accepted: 10/10/2011] [Indexed: 05/31/2023]
Abstract
Apple (Malus×domestica Borkh.) was used as a model to studying essential biological processes occurring in mature fruit hypanthium, commonly referred to as the fruit flesh or pulp, a highly active tissue where numerous metabolic processes such as carbohydrate metabolism and signal transduction occur. To understand the complex biological processes occurring in the hypanthium, a proteomics approach was used to analyze the proteome from freshly harvested ripe apple fruits. A total of 290 well-resolved spots were detected using two-dimensional gel electrophoresis (2-DE). Out of these, 216 proteins were identified representing 116 non-redundant proteins using matrix-assisted laser-desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and either the MASCOT or ProteinProspector engine for peptide mass fingerprinting (PMF) database searching. Identified proteins were classified into 13 major functional categories. Among these, the energy metabolism class was the most represented and included 50% of proteins homologous to Arabidopsis proteins that are involved in the response to biotic and abiotic stresses, suggesting a dual role for these proteins in addition to energy metabolism. We also identified dynein heavy chain in the hypanthium although this protein has been proposed as absent from angiosperms and thus suggest that the lack of dyneins in higher plants studied to date may not be a general characteristic to angiosperm genomic organisation. We therefore conclude that the detection and elucidation of the apple hypanthium proteome is an indispensable step towards the comprehension of fruit metabolism, the integration of genomic, proteomic and metabolomic data to agronomic trait information and thus fruit quality improvements.
Collapse
Affiliation(s)
- Claudius Marondedze
- Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa.
| | | |
Collapse
|
56
|
Nambara E, Nonogaki H. Seed biology in the 21st century: perspectives and new directions. PLANT & CELL PHYSIOLOGY 2012; 53:1-4. [PMID: 22241887 DOI: 10.1093/pcp/pcr184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
57
|
Cherrad S, Girard V, Dieryckx C, Gonçalves IR, Dupuy JW, Bonneu M, Rascle C, Job C, Job D, Vacher S, Poussereau N. Proteomic analysis of proteins secreted by Botrytis cinerea in response to heavy metal toxicity. Metallomics 2012; 4:835-46. [DOI: 10.1039/c2mt20041d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
58
|
Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:507-33. [PMID: 22136565 DOI: 10.1146/annurev-arplant-042811-105550] [Citation(s) in RCA: 507] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Germination vigor is driven by the ability of the plant embryo, embedded within the seed, to resume its metabolic activity in a coordinated and sequential manner. Studies using "-omics" approaches support the finding that a main contributor of seed germination success is the quality of the messenger RNAs stored during embryo maturation on the mother plant. In addition, proteostasis and DNA integrity play a major role in the germination phenotype. Because of its pivotal role in cell metabolism and its close relationships with hormone signaling pathways regulating seed germination, the sulfur amino acid metabolism pathway represents a key biochemical determinant of the commitment of the seed to initiate its development toward germination. This review highlights that germination vigor depends on multiple biochemical and molecular variables. Their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.
Collapse
Affiliation(s)
- Loïc Rajjou
- CNRS-Bayer CropScience Joint Laboratory, UMR 5240, Bayer CropScience, Lyon Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
59
|
Rajjou L, Belghazi M, Catusse J, Ogé L, Arc E, Godin B, Chibani K, Ali-Rachidi S, Collet B, Grappin P, Jullien M, Gallardo K, Job C, Job D. Proteomics and posttranslational proteomics of seed dormancy and germination. Methods Mol Biol 2011; 773:215-36. [PMID: 21898259 DOI: 10.1007/978-1-61779-231-1_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The seed is the dispersal unit of plants and must survive the vagaries of the environment. It is the object of intense genetic and genomic studies because processes related to seed quality affect crop yield and the seed itself provides food for humans and animals. Presently, the general aim of postgenomics analyses is to understand the complex biochemical and molecular processes underlying seed quality, longevity, dormancy, and vigor. Due to advances in functional genomics, the recent past years have seen a tremendous progress in our understanding of several aspects of seed development and germination. Here, we describe the proteomics protocols (from protein extraction to mass spectrometry) that can be used to investigate several aspects of seed physiology, including germination and its hormonal regulation, dormancy release, and seed longevity. These techniques can be applied to the study of both model plants (such as Arabidopsis) and crops.
Collapse
Affiliation(s)
- Loïc Rajjou
- AgroParisTech, Unité de Formation et de Recherche de Physiologie Végétale, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Barba-Espín G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernández JA. Understanding the role of H(2)O(2) during pea seed germination: a combined proteomic and hormone profiling approach. PLANT, CELL & ENVIRONMENT 2011; 34:1907-19. [PMID: 21711356 DOI: 10.1111/j.1365-3040.2011.02386.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In a previous publication, we showed that the treatment of pea seeds in the presence of hydrogen peroxide (H(2)O(2)) increased germination performance as well as seedling growth. To gain insight into the mechanisms responsible for this behaviour, we have analysed the effect of treating mature pea seeds in the presence of 20 mm H(2)O(2) on several oxidative features such as protein carbonylation, endogenous H(2)O(2) and lipid peroxidation levels. We report that H(2)O(2) treatment of the pea seeds increased their endogenous H(2)O(2) content and caused carbonylation of storage proteins and of several metabolic enzymes. Under the same conditions, we also monitored the expression of two MAPK genes known to be activated by H(2)O(2) in adult pea plants. The expression of one of them, PsMAPK2, largely increased upon pea seed imbibition in H(2)O(2) , whereas no change could be observed in expression of the other, PsMAPK3. The levels of several phytohormones such as 1-aminocyclopropane carboxylic acid, indole-3-acetic acid and zeatin appeared to correlate with the measured oxidative indicators and with the expression of PsMAPK2. Globally, our results suggest a key role of H(2)O(2) in the coordination of pea seed germination, acting as a priming factor that involves specific changes at the proteome, transcriptome and hormonal levels.
Collapse
|
61
|
Šírová J, Sedlářová M, Piterková J, Luhová L, Petřivalský M. The role of nitric oxide in the germination of plant seeds and pollen. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:560-72. [PMID: 21893253 DOI: 10.1016/j.plantsci.2011.03.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/09/2011] [Accepted: 03/24/2011] [Indexed: 05/17/2023]
Abstract
Two complex physiological processes, with opposite positions in the plant's life-cycle, seed and pollen germination, are vital to the accomplishment of successful plant growth and reproduction. This review summarizes the current state of knowledge of the intersection of NO signalling with the signalling pathways of ABA, GA, and ethylene; plant hormones that control the release of plant seeds from dormancy and germination. The cross-talk of NO and ROS is involved in the light- and hormone-specific regulation of seeds' developmental processes during the initiation of plant ontogenesis. Similarly to seed germination, the mechanisms of plant pollen hydration, germination, tube growth, as well as pollen-stigma recognition are tightly linked to the proper adjustment of NO and ROS levels. The interaction of NO with ROS and secondary messengers such as Ca(2+), cAMP and cGMP discovered in pollen represent a common mechanism of NO signalling. The involvement of NO in both breakpoints of plant physiology, as well as in the germination of spores within fungi and oomycetes, points toward NO as a component of an evolutionary conserved signalling pathway.
Collapse
Affiliation(s)
- Jana Šírová
- Department of Biochemistry, Palacký University in Olomouc, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
62
|
Yang L, Peng X, Sun MX. AtNG1 encodes a protein that is required for seed germination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:457-64. [PMID: 21889052 DOI: 10.1016/j.plantsci.2011.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 05/25/2023]
Abstract
The pentatricopeptide repeat (PPR) family of eukaryotic proteins has numerous members in plants and is important for plant development. In the present study, we cloned a novel PPR gene, designated AtNG1, and characterized the ng1 Arabidopsis mutant. Morphological and structural observation of an ng1 mutant revealed that its sexual reproduction and seed formation processes are essentially normal. The mature embryonic root of ng1 is fully developed and has a well-differentiated structure; however, ng1 seeds cannot germinate, even when supplied with supplemental hormones and nutrition. Further investigation showed that embryo expansion and root cell elongation fails to occur after water imbibitions. Transient gene expression analysis indicated that AtNG1 localizes in mitochondrion. This implies that the deficiency of mitochondrion function might be the reason for the failed seed germination. Thus, our finding confirmed that AtNG1 plays a critical role in the early process of seed germination.
Collapse
Affiliation(s)
- Libo Yang
- Department of Cell and Developmental Biology, College of Life Science, Wuhan University, Wuhan, China
| | | | | |
Collapse
|
63
|
Bally J, Job C, Belghazi M, Job D. Metabolic adaptation in transplastomic plants massively accumulating recombinant proteins. PLoS One 2011; 6:e25289. [PMID: 21966485 PMCID: PMC3178635 DOI: 10.1371/journal.pone.0025289] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 08/31/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. METHODOLOGY/PRINCIPAL FINDINGS Here we used proteomics to characterize tobacco (Nicotiana tabacum) plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD) or a green fluorescent protein (GFP). While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO(2) metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. CONCLUSIONS/SIGNIFICANCE The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation.
Collapse
Affiliation(s)
- Julia Bally
- Centre National de la Recherche Scientifique - Bayer CropScience Joint Laboratory, UMR5240, Lyon, France
| | - Claudette Job
- Centre National de la Recherche Scientifique - Bayer CropScience Joint Laboratory, UMR5240, Lyon, France
| | - Maya Belghazi
- Centre d'Analyse Protéomique de Marseille, Institut Fédératif de Recherche Jean Roche, Marseille, France
| | - Dominique Job
- Centre National de la Recherche Scientifique - Bayer CropScience Joint Laboratory, UMR5240, Lyon, France
| |
Collapse
|
64
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Yacoubi R, Job C, Belghazi M, Chaibi W, Job D. Toward Characterizing Seed Vigor in Alfalfa Through Proteomic Analysis of Germination and Priming. J Proteome Res 2011; 10:3891-903. [DOI: 10.1021/pr101274f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rafika Yacoubi
- Laboratoire de Biologie et Physiologie Cellulaire Végétales, Département de Biologie, Université de Tunis, Tunisie
| | - Claudette Job
- Centre National de la Recherche Scientifique-Université Claude Bernard Lyon 1-Institut National des Sciences Appliquées-Bayer CropScience Joint Laboratory, UMR 5240 Lyon cedex 9, France
| | - Maya Belghazi
- Centre d’Analyses Protéomiques de Marseille (CAPM), IFR Jean Roche, Faculté de médecine, Marseille cedex 20, France
| | - Wided Chaibi
- Laboratoire de Biologie et Physiologie Cellulaire Végétales, Département de Biologie, Université de Tunis, Tunisie
| | - Dominique Job
- Centre National de la Recherche Scientifique-Université Claude Bernard Lyon 1-Institut National des Sciences Appliquées-Bayer CropScience Joint Laboratory, UMR 5240 Lyon cedex 9, France
| |
Collapse
|
66
|
Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3289-309. [PMID: 21430292 DOI: 10.1093/jxb/err030] [Citation(s) in RCA: 413] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Most plant seeds are dispersed in a dry, mature state. If these seeds are non-dormant and the environmental conditions are favourable, they will pass through the complex process of germination. In this review, recent progress made with state-of-the-art techniques including genome-wide gene expression analyses that provided deeper insight into the early phase of seed germination, which includes imbibition and the subsequent plateau phase of water uptake in which metabolism is reactivated, is summarized. The physiological state of a seed is determined, at least in part, by the stored mRNAs that are translated upon imbibition. Very early upon imbibition massive transcriptome changes occur, which are regulated by ambient temperature, light conditions, and plant hormones. The hormones abscisic acid and gibberellins play a major role in regulating early seed germination. The early germination phase of Arabidopsis thaliana culminates in testa rupture, which is followed by the late germination phase and endosperm rupture. An integrated view on the early phase of seed germination is provided and it is shown that it is characterized by dynamic biomechanical changes together with very early alterations in transcript, protein, and hormone levels that set the stage for the later events. Early seed germination thereby contributes to seed and seedling performance important for plant establishment in the natural and agricultural ecosystem.
Collapse
Affiliation(s)
- Karin Weitbrecht
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
67
|
Bourgeois M, Jacquin F, Cassecuelle F, Savois V, Belghazi M, Aubert G, Quillien L, Huart M, Marget P, Burstin J. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition. Proteomics 2011; 11:1581-94. [PMID: 21433288 DOI: 10.1002/pmic.201000687] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/10/2011] [Accepted: 01/29/2011] [Indexed: 12/20/2022]
Abstract
Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility.
Collapse
|
68
|
Shinano T, Komatsu S, Yoshimura T, Tokutake S, Kong FJ, Watanabe T, Wasaki J, Osaki M. Proteomic analysis of secreted proteins from aseptically grown rice. PHYTOCHEMISTRY 2011; 72:312-20. [PMID: 21255809 DOI: 10.1016/j.phytochem.2010.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/01/2010] [Accepted: 12/06/2010] [Indexed: 05/18/2023]
Abstract
Plants are known to secrete a variety of compounds into the rhizosphere. These compounds are thought to play important roles in the regulation of soil chemical properties and soil microorganisms. To determine the composition of proteins secreted from rice roots, aseptic hydro culture was performed, and the collected proteins were analyzed. Over 100 proteins were identified; most were identified using the rice database (RAP-DB), and about 60% of the identified proteins were suspected to have a signal peptide. Functional categorization suggested that most were secondary metabolism- and defense-related proteins. Pathogenesis- and stress-related proteins were the major proteins found in the bathing solution under aseptic conditions. Thus, we propose that rice plants constitutively secrete a large variety of proteins to protect their roots against abiotic and/or biotic stresses in the environment.
Collapse
Affiliation(s)
- T Shinano
- National Agriculture and Food Research Organization, National Agricultural Research Center for Hokkaido Region, 1-Hitsujigaoka, Toyohira-ku, Sapporo 062-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Arc E, Galland M, Cueff G, Godin B, Lounifi I, Job D, Rajjou L. Reboot the system thanks to protein post-translational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics 2011; 11:1606-18. [DOI: 10.1002/pmic.201000641] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/05/2010] [Accepted: 01/07/2011] [Indexed: 11/12/2022]
|
70
|
Agrawal GK, Job D, Zivy M, Agrawal VP, Bradshaw RA, Dunn MJ, Haynes PA, van Wijk KJ, Kikuchi S, Renaut J, Weckwerth W, Rakwal R. Time to articulate a vision for the future of plant proteomics - A global perspective: An initiative for establishing the International Plant Proteomics Organization (INPPO). Proteomics 2011; 11:1559-68. [DOI: 10.1002/pmic.201000608] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 11/23/2010] [Accepted: 12/27/2010] [Indexed: 01/11/2023]
|
71
|
Catusse J, Meinhard J, Job C, Strub JM, Fischer U, Pestsova E, Westhoff P, Van Dorsselaer A, Job D. Proteomics reveals potential biomarkers of seed vigor in sugarbeet. Proteomics 2011; 11:1569-80. [PMID: 21432998 DOI: 10.1002/pmic.201000586] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/21/2010] [Accepted: 11/08/2010] [Indexed: 12/14/2022]
Abstract
To unravel biomarkers of seed vigor, an important trait conditioning crop yield, a comparative proteomic study was conducted with sugarbeet seed samples of varying vigor as generated by an invigoration treatment called hydropriming and an aging treatment called controlled deterioration. Comparative proteomics revealed proteins exhibiting contrasting behavior between seed samples. Thus, 18 proteins were up-regulated during priming and down-regulated during aging and further displayed an up-regulation upon priming of the aged seeds, meaning that down-regulation of these spot volumes during aging was reversible upon subsequent priming. Also, 11 proteins exhibited the converse behavior characterized by a decrease and an increase of the spot volumes during priming and aging of the control seeds, respectively, and a decrease in the spot volumes upon priming of the aged seeds. The results underpinned the role in seed vigor of several metabolic pathways involved in lipid and starch mobilization, protein synthesis or the methyl cycle. They also corroborate previous studies suggesting that the glyoxylate enzyme isocitrate lyase, the capacity of protein synthesis and components of abscisic acid signaling pathways are likely contributors of seed vigor.
Collapse
Affiliation(s)
- Julie Catusse
- CNRS/UCBL/INSA/Bayer CropScience Joint Laboratory (UMR), Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Classification of ancient mammal individuals using dental pulp MALDI-TOF MS peptide profiling. PLoS One 2011; 6:e17319. [PMID: 21364886 PMCID: PMC3045434 DOI: 10.1371/journal.pone.0017319] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 01/29/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The classification of ancient animal corpses at the species level remains a challenging task for forensic scientists and anthropologists. Severe damage and mixed, tiny pieces originating from several skeletons may render morphological classification virtually impossible. Standard approaches are based on sequencing mitochondrial and nuclear targets. METHODOLOGY/PRINCIPAL FINDINGS We present a method that can accurately classify mammalian species using dental pulp and mass spectrometry peptide profiling. Our work was organized into three successive steps. First, after extracting proteins from the dental pulp collected from 37 modern individuals representing 13 mammalian species, trypsin-digested peptides were used for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. The resulting peptide profiles accurately classified every individual at the species level in agreement with parallel cytochrome b gene sequencing gold standard. Second, using a 279-modern spectrum database, we blindly classified 33 of 37 teeth collected in 37 modern individuals (89.1%). Third, we classified 10 of 18 teeth (56%) collected in 15 ancient individuals representing five mammal species including human, from five burial sites dating back 8,500 years. Further comparison with an upgraded database comprising ancient specimen profiles yielded 100% classification in ancient teeth. Peptide sequencing yield 4 and 16 different non-keratin proteins including collagen (alpha-1 type I and alpha-2 type I) in human ancient and modern dental pulp, respectively. CONCLUSIONS/SIGNIFICANCE Mass spectrometry peptide profiling of the dental pulp is a new approach that can be added to the arsenal of species classification tools for forensics and anthropology as a complementary method to DNA sequencing. The dental pulp is a new source for collagen and other proteins for the species classification of modern and ancient mammal individuals.
Collapse
|
73
|
Kaufmann K, Smaczniak C, de Vries S, Angenent GC, Karlova R. Proteomics insights into plant signaling and development. Proteomics 2011; 11:744-55. [DOI: 10.1002/pmic.201000418] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 12/11/2022]
|
74
|
Langridge P, Fleury D. Making the most of 'omics' for crop breeding. Trends Biotechnol 2010; 29:33-40. [PMID: 21030098 DOI: 10.1016/j.tibtech.2010.09.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 11/30/2022]
Abstract
Adoption of new breeding technologies is likely to underpin future gains in crop productivity. The rapid advances in 'omics' technologies provide an opportunity to generate new datasets for crop species. Integration of genome and functional omics data with genetic and phenotypic information is leading to the identification of genes and pathways responsible for important agronomic phenotypes. In addition, high-throughput genotyping technologies enable the screening of large germplasm collections to identify novel alleles from diverse sources, thus offering a major expansion in the variation available for breeding. In this review, we discuss these advances, which have opened the door to new techniques for construction and screening of breeding populations, to increase ultimately the efficiency of selection and accelerate the rates of genetic gain.
Collapse
Affiliation(s)
- Peter Langridge
- Australian Centre for Plant Functional Genomics ACPFG, University of Adelaide, PMB1, Glen Osmond SA 5064, Australia
| | | |
Collapse
|
75
|
Tanou G, Job C, Belghazi M, Molassiotis A, Diamantidis G, Job D. Proteomic signatures uncover hydrogen peroxide and nitric oxide cross-talk signaling network in citrus plants. J Proteome Res 2010; 9:5994-6006. [PMID: 20825250 DOI: 10.1021/pr100782h] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) and nitric oxide ((•)NO) elicit numerous processes in plants. However, our knowledge of H(2)O(2) and (•)NO-responsive proteins is limited. The present study aimed to identify proteins whose accumulation levels were regulated by these signaling molecules in citrus leaves. To address this question, hydroponically grown citrus plants were treated by incubating their roots in the presence of H(2)O(2) or the (•)NO donor, sodium nitroprusside (SNP). Both treatments induced H(2)O(2) and (•)NO production in leaves, indicating occurrence of oxidative and nitrosative stress conditions. However, treated plants maintained their normal physiological status. The vascular system was shown to be involved in the H(2)O(2) and (•)NO systemic signaling as evidenced by real-time labeling of the two molecules. Comparative proteomic analysis identified a number of proteins whose accumulation levels were altered by treatments. They were mainly involved in photosynthesis, defense and energy. More than half of them were commonly modulated by both treatments, indicating a strong overlap between H(2)O(2) and (•)NO responses. Using a redox proteomic approach, several proteins were also identified as being carbonylation targets of H(2)O(2) and SNP. The analysis reveals an interlinked H(2)O(2) and (•)NO proteins network allowing a deeper understanding of oxidative and nitrosative signaling in plants.
Collapse
Affiliation(s)
- Georgia Tanou
- Aristotle University of Thessaloniki, School of Agriculture, University Campus, 54124 Thessaloniki, Greece.
| | | | | | | | | | | |
Collapse
|
76
|
Zuber H, Davidian JC, Aubert G, Aimé D, Belghazi M, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, Gallardo K. The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. PLANT PHYSIOLOGY 2010; 154:913-26. [PMID: 20702726 PMCID: PMC2949013 DOI: 10.1104/pp.110.162123] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/03/2010] [Indexed: 05/18/2023]
Abstract
Sulfate is required for the synthesis of sulfur-containing amino acids and numerous other compounds essential for the plant life cycle. The delivery of sulfate to seeds and its translocation between seed tissues is likely to require specific transporters. In Arabidopsis (Arabidopsis thaliana), the group 3 plasmalemma-predicted sulfate transporters (SULTR3) comprise five genes, all expressed in developing seeds, especially in the tissues surrounding the embryo. Here, we show that sulfur supply to seeds is unaffected by T-DNA insertions in the SULTR3 genes. However, remarkably, an increased accumulation of sulfate was found in mature seeds of four mutants out of five. In these mutant seeds, the ratio of sulfur in sulfate form versus total sulfur was significantly increased, accompanied by a reduction in free cysteine content, which varied depending on the gene inactivated. These results demonstrate a reduced capacity of the mutant seeds to metabolize sulfate and suggest that these transporters may be involved in sulfate translocation between seed compartments. This was further supported by sulfate measurements of the envelopes separated from the embryo of the sultr3;2 mutant seeds, which showed differences in sulfate partitioning compared with the wild type. A dissection of the seed proteome of the sultr3 mutants revealed protein changes characteristic of a sulfur-stress response, supporting a role for these transporters in providing sulfate to the embryo. The mutants were affected in 12S globulin accumulation, demonstrating the importance of intraseed sulfate transport for the synthesis and maturation of embryo proteins. Metabolic adjustments were also revealed, some of which could release sulfur from glucosinolates.
Collapse
|
77
|
Sghaier-Hammami B, Jorrín-Novo JV, Gargouri-Bouzid R, Drira N. Abscisic acid and sucrose increase the protein content in date palm somatic embryos, causing changes in 2-DE profile. PHYTOCHEMISTRY 2010; 71:1223-36. [PMID: 20605176 DOI: 10.1016/j.phytochem.2010.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 05/22/2023]
Abstract
Various supplements (abscisic acid (ABA) or sucrose) were added to the initial embryo culture medium (M3) with the aim of improving the vigour of vitroplants deriving from date palm somatic embryogenesis. ABA (20 and 40 microM) and sucrose (90 g/l) applied for 4 and 2 weeks respectively increased embryo thickness, with no apparent difference in length. ABA (5-40 microM) increased embryo proliferation rate. Somatic embryos maintained in modified M3 (M3 supplemented with ABA and an increased sucrose concentration) contained a higher amount of protein than those maintained in initial M3 (no ABA, 30 g/l of sucrose), with a 1.5-1.7-fold increase depending on the compound and concentration assayed. The 1-D and 2-DE protein profiles showed qualitative and quantitative differences between the somatic embryos cultured in initial M3 (control) and in modified M3. Statistical analysis of spot intensity was performed by principal component analysis, yielding two accurate groups of samples and determining the most discriminating spots. Samples were also clustered using Euclidean distance with an average linkage algorithm. Thirty-four variable spots were identified using mass spectrometry analysis. Identified proteins were classified into the following functional categories: energy metabolism (five proteins); protein translation, folding and degradation (9); redox maintenance (5); cytoskeleton (3); storage protein (2); and with no assigned function as (10). While "up-regulation" of stress-related proteins and "down-regulation" of energy metabolism proteins were observed in somatic embryos matured in M3 supplemented with ABA, storage proteins (legumin) were "up-regulated" in somatic embryos matured in M3 supplemented with increased sucrose.
Collapse
Affiliation(s)
- Besma Sghaier-Hammami
- Laboratoire des Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Sfax, Tunisia.
| | | | | | | |
Collapse
|
78
|
Duby G, Degand H, Faber AM, Boutry M. The proteome complement of Nicotiana tabacum Bright-Yellow-2 culture cells. Proteomics 2010; 10:2545-50. [PMID: 20405476 DOI: 10.1002/pmic.200900527] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 04/08/2010] [Indexed: 12/16/2023]
Abstract
The Nicotiana tabacum Bright-Yellow-2 (BY2) cell line is one of most commonly used plant suspension cell lines and offers interesting properties, such as fast growth, amenability to genetic transformation, and synchronization of cell division. To build a proteome reference map of BY2 cell proteins, we isolated the soluble proteins from N. tabacum BY2 cells at the end of the exponential growth phase and analyzed them by 2-DE and MALDI TOF-TOF. Of the 1422 spots isolated, 795 were identified with a significant score, corresponding to 532 distinct proteins.
Collapse
Affiliation(s)
- Geoffrey Duby
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
79
|
Two-dimensional gel electrophoresis in proteomics: Past, present and future. J Proteomics 2010; 73:2064-77. [PMID: 20685252 DOI: 10.1016/j.jprot.2010.05.016] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 12/14/2022]
Abstract
Two-dimensional gel electrophoresis has been instrumental in the birth and developments of proteomics, although it is no longer the exclusive separation tool used in the field of proteomics. In this review, a historical perspective is made, starting from the days where two-dimensional gels were used and the word proteomics did not even exist. The events that have led to the birth of proteomics are also recalled, ending with a description of the now well-known limitations of two-dimensional gels in proteomics. However, the often-underestimated advantages of two-dimensional gels are also underlined, leading to a description of how and when to use two-dimensional gels for the best in a proteomics approach. Taking support of these advantages (robustness, resolution, and ability to separate entire, intact proteins), possible future applications of this technique in proteomics are also mentioned.
Collapse
|
80
|
|
81
|
Yamada N, Promden W, Yamane K, Tamagake H, Hibino T, Tanaka Y, Takabe T. Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet--importance of long-distance translocation of betaine under normal and salt-stressed conditions. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:2058-70. [PMID: 19647889 DOI: 10.1016/j.jplph.2009.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 06/28/2009] [Accepted: 06/28/2009] [Indexed: 05/03/2023]
Abstract
It has been reported that glycinebetaine (betaine) is synthesized in response to abiotic stresses via a two-step oxidation of choline in which choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH) are involved. Here we show that significant amounts of betaine, > 20 micromol/gFW, accumulated in young leaves of Beta vulgaris even under normal growth conditions, whereas levels in old leaves, cotyledons, hypocotyls, and roots were low. Under the same conditions, CMO accumulates exclusively in old leaves and is difficult to be detected in young leaves. By contrast, the levels of BADH were high in all tissues. Exogenously supplied choline was converted into betaine in old leaves, but levels were significantly lower in young leaves under the same conditions. When d(11)-betaine was applied exogenously to old leaves, it was translocated preferentially into young leaves and roots. In response to salt stress, betaine levels increased in all tissues, but most significantly increased in young leaves. The levels of CMO increased in various tissues, but were low in young leaves. A betaine transporter gene was isolated. Its expression was more strongly induced in old leaves than in young leaves. Based on these data, we discussed the role of CMO and betaine transporter under stress and non-stress conditions.
Collapse
Affiliation(s)
- Nana Yamada
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya 468-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
82
|
Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:795-804. [PMID: 19682288 DOI: 10.1111/j.1365-313x.2009.04000.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) and nitric oxide (*NO) are key reactive species in signal transduction pathways leading to activation of plant defense against biotic or abiotic stress. Here, we investigated the effect of pre-treating citrus plants (Citrus aurantium L.) with either of these two molecules on plant acclimation to salinity and show that both pre-treatments strongly reduced the detrimental phenotypical and physiological effects accompanying this stress. A proteomic analysis disclosed 85 leaf proteins that underwent significant quantitative variations in plants directly exposed to salt stress. A large part of these changes was not observed with salt-stressed plants pre-treated with either H(2)O(2) or sodium nitroprusside (SNP; a *NO-releasing chemical). We also identified several proteins undergoing changes either in their oxidation (carbonylation; 40 proteins) and/or S-nitrosylation (49 proteins) status in response to salinity stress. Both H(2)O(2) and SNP pre-treatments before salinity stress alleviated salinity-induced protein carbonylation and shifted the accumulation levels of leaf S-nitrosylated proteins to those of unstressed control plants. Altogether, the results indicate an overlap between H(2)O(2)- and *NO-signaling pathways in acclimation to salinity and suggest that the oxidation and S-nitrosylation patterns of leaf proteins are specific molecular signatures of citrus plant vigour under stressful conditions.
Collapse
Affiliation(s)
- Georgia Tanou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Proteomic analysis of sugar beet apomictic monosomic addition line M14. J Proteomics 2009; 73:297-308. [DOI: 10.1016/j.jprot.2009.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 11/19/2022]
|
84
|
Müller K, Job C, Belghazi M, Job D, Leubner-Metzger G. Proteomics reveal tissue-specific features of the cress (Lepidium sativum
L.) endosperm cap proteome and its hormone-induced changes during seed germination. Proteomics 2009; 10:406-16. [DOI: 10.1002/pmic.200900548] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
85
|
Ahsan N, Komatsu S. Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics 2009; 9:4889-907. [PMID: 19862761 DOI: 10.1002/pmic.200900308] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/10/2009] [Indexed: 12/19/2022]
Abstract
The functional differentiation of protein networks in individual organs and tissues of soybean at various developmental stages was investigated by proteomic approach. Protein extraction by Mg/NP-40 buffer followed by alkaline phenol-based method was optimized for proteomic analysis. Proteome analyses of leaves at various developmental stages showed 26 differentially expressed proteins, wherein proteins in translocon at the outer/inner envelope membrane of chloroplast protein-transport machineries increased significantly at the first trifoliate. Immunoblot analysis showed chaperonin-60 expressed abundantly in young leaves, whereas HSP 70 and ATP-synthase beta were constitutively expressed in all tissues. The net photosynthesis rate and chlorophyll content showed an age-dependent correlation in leaves. These results suggest that proteins involved in carbon assimilation, folding and assembly, and energy may work synchronously and show a linear correlation to photosynthesis at developmental stages of leaves. Comparison of flower bud and flower proteome reveals 29 differentially expressed proteins, wherein proteins involved in mitochondrial protein transport and assembly, secondary metabolism, and pollen-tube growth were up-regulated during flower development. Together, these results suggest that during developmental stages, each type of tissue is associated with a specific group of proteins; wherein proteins involved in energy, sugar metabolism, and folding, assembly, and destination may play pivotal roles in the maturation process of each organ or tissue.
Collapse
Affiliation(s)
- Nagib Ahsan
- National Institute of Crop Science, Tsukuba, Japan
| | | |
Collapse
|
86
|
Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:124-36. [PMID: 19786127 DOI: 10.1016/j.bbapap.2009.09.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 11/21/2022]
Abstract
Cell wall proteins (CWPs) are important both for maintenance of cell structure and for responses to abiotic and biotic stresses. In this study, a destructive CWP purification procedure was adopted using wheat seedling roots and the purity of the CWP extract was confirmed by minimizing the activity of glucose-6-phosphate dehydrogenase, a cytoplasmic marker enzyme. To determine differentially expressed CWPs under flooding stress, gel-based proteomic and LC-MS/MS-based proteomic techniques were applied. Eighteen proteins were found to be significantly regulated in response to flood by gel-based proteomics and 15 proteins by LC MS/MS-based proteomics. Among the flooding down-regulated proteins, most were related to the glycolysis pathway and cell wall structure and modification. However, the most highly up-regulated proteins in response to flooding belong to the category of defense and disease response proteins. Among these differentially expressed proteins, only methionine synthase, beta-1,3-glucanases, and beta-glucosidase were consistently identified by both techniques. The down-regulation of these three proteins suggested that wheat seedlings respond to flooding stress by restricting cell growth to avoid energy consumption; by coordinating methionine assimilation and cell wall hydrolysis, CWPs played critical roles in flooding responsiveness.
Collapse
|
87
|
Cui S, Hu J, Yang B, Shi L, Huang F, Tsai SN, Ngai SM, He Y, Zhang J. Proteomic characterization of Phragmites communis
in ecotypes of swamp and desert dune. Proteomics 2009; 9:3950-67. [DOI: 10.1002/pmic.200800654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
88
|
Kim ST, Wang Y, Kang SY, Kim SG, Rakwal R, Kim YC, Kang KY. Developing Rice Embryo Proteomics Reveals Essential Role for Embryonic Proteins in Regulation of Seed Germination. J Proteome Res 2009; 8:3598-605. [DOI: 10.1021/pr900358s] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, 660-701, South Korea, Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, South Korea, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology West, Tsukuba 305-8569, Ibaraki, Japan, Research Laboratory for Biotechnology and
| | - Yiming Wang
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, 660-701, South Korea, Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, South Korea, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology West, Tsukuba 305-8569, Ibaraki, Japan, Research Laboratory for Biotechnology and
| | - Sun Young Kang
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, 660-701, South Korea, Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, South Korea, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology West, Tsukuba 305-8569, Ibaraki, Japan, Research Laboratory for Biotechnology and
| | - Sang Gon Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, 660-701, South Korea, Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, South Korea, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology West, Tsukuba 305-8569, Ibaraki, Japan, Research Laboratory for Biotechnology and
| | - Randeep Rakwal
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, 660-701, South Korea, Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, South Korea, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology West, Tsukuba 305-8569, Ibaraki, Japan, Research Laboratory for Biotechnology and
| | - Yong Chul Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, 660-701, South Korea, Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, South Korea, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology West, Tsukuba 305-8569, Ibaraki, Japan, Research Laboratory for Biotechnology and
| | - Kyu Young Kang
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea, Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, 660-701, South Korea, Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju, 660-701, South Korea, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology West, Tsukuba 305-8569, Ibaraki, Japan, Research Laboratory for Biotechnology and
| |
Collapse
|
89
|
Page N, Schall N, Strub JM, Quinternet M, Chaloin O, Décossas M, Cung MT, Van Dorsselaer A, Briand JP, Muller S. The spliceosomal phosphopeptide P140 controls the lupus disease by interacting with the HSC70 protein and via a mechanism mediated by gammadelta T cells. PLoS One 2009; 4:e5273. [PMID: 19390596 PMCID: PMC2669294 DOI: 10.1371/journal.pone.0005273] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/23/2009] [Indexed: 12/31/2022] Open
Abstract
The phosphopeptide P140 issued from the spliceosomal U1-70K snRNP protein is recognized by lupus CD4(+) T cells, transiently abolishes T cell reactivity to other spliceosomal peptides in P140-treated MRL/lpr mice, and ameliorates their clinical features. P140 modulates lupus patients' T cell response ex vivo and is currently included in phase IIb clinical trials. Its underlying mechanism of action remains elusive. Here we show that P140 peptide binds a unique cell-surface receptor, the constitutively-expressed chaperone HSC70 protein, known as a presenting-protein. P140 induces apoptosis of activated MRL/lpr CD4(+) T cells. In P140-treated mice, it increases peripheral blood lymphocyte apoptosis and decreases B cell, activated T cell, and CD4(-)CD8(-)B220(+) T cell counts via a specific mechanism strictly depending on gammadelta T cells. Expression of inflammation-linked genes is rapidly regulated in CD4(+) T cells. This work led us to identify a powerful pathway taken by a newly-designed therapeutic peptide to immunomodulate lupus autoimmunity.
Collapse
MESH Headings
- Animals
- Apoptosis
- B-Lymphocytes/metabolism
- Binding Sites
- Down-Regulation
- Fluorescent Antibody Technique
- HSC70 Heat-Shock Proteins/metabolism
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/therapy
- Mice
- Mice, Inbred MRL lpr
- Models, Biological
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Ribonucleoprotein, U1 Small Nuclear/immunology
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Surface Plasmon Resonance
- T-Lymphocytes/immunology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Nicolas Page
- CNRS UPR9021, Institut de biologie moléculaire et cellulaire, Strasbourg, France
| | - Nicolas Schall
- CNRS UPR9021, Institut de biologie moléculaire et cellulaire, Strasbourg, France
| | - Jean-Marc Strub
- CNRS UMR7178, laboratoire de spectrométrie de masse BioOrganique-IPHC-DSA- Université de Strasbourg, Strasbourg, France
| | - Marc Quinternet
- CNRS-INPL UMR7568, Laboratoire de Chimie-Physique Macromoléculaire, Nancy Université, ENSIC, Nancy, France
| | - Olivier Chaloin
- CNRS UPR9021, Institut de biologie moléculaire et cellulaire, Strasbourg, France
| | - Marion Décossas
- CNRS UPR9021, Institut de biologie moléculaire et cellulaire, Strasbourg, France
| | - Manh Thong Cung
- CNRS-INPL UMR7568, Laboratoire de Chimie-Physique Macromoléculaire, Nancy Université, ENSIC, Nancy, France
| | - Alain Van Dorsselaer
- CNRS UMR7178, laboratoire de spectrométrie de masse BioOrganique-IPHC-DSA- Université de Strasbourg, Strasbourg, France
| | - Jean-Paul Briand
- CNRS UPR9021, Institut de biologie moléculaire et cellulaire, Strasbourg, France
| | - Sylviane Muller
- CNRS UPR9021, Institut de biologie moléculaire et cellulaire, Strasbourg, France
- * E-mail:
| |
Collapse
|
90
|
Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I. Plant proteomics update (2007–2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 2009; 72:285-314. [DOI: 10.1016/j.jprot.2009.01.026] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
91
|
Pestsova E, Meinhard J, Menze A, Fischer U, Windhövel A, Westhoff P. Transcript profiles uncover temporal and stress-induced changes of metabolic pathways in germinating sugar beet seeds. BMC PLANT BIOLOGY 2008; 8:122. [PMID: 19046420 PMCID: PMC2632670 DOI: 10.1186/1471-2229-8-122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 12/01/2008] [Indexed: 05/07/2023]
Abstract
BACKGROUND With a cultivation area of 1.75 Mio ha and sugar yield of 16.7 Mio tons in 2006, sugar beet is a crop of great economic importance in Europe. The productivity of sugar beet is determined significantly by seed vigour and field emergence potential; however, little is known about the molecular mechanisms underlying these traits. Both traits exhibit large variations within sugar beet germplasm that have been difficult to ascribe to either environmental or genetic causes. Among potential targets for trait improvement, an enhancement of stress tolerance is considered because of the high negative influence of environmental stresses on trait parameters. Extending our knowledge of genetic and molecular determinants of sugar beet germination, stress response and adaptation mechanisms would facilitate the detection of new targets for breeding crop with an enhanced field emergence potential. RESULTS To gain insight into the sugar beet germination we initiated an analysis of gene expression in a well emerging sugar beet hybrid showing high germination potential under various environmental conditions. A total of 2,784 ESTs representing 2,251 'unigenes' was generated from dry mature and germinating seeds. Analysis of the temporal expression of these genes during germination under non-stress conditions uncovered drastic transcriptional changes accompanying a shift from quiescent to metabolically active stages of the plant life cycle. Assay of germination under stressful conditions revealed 157 genes showing significantly different expression patterns in response to stress. As deduced from transcriptome data, stress adaptation mechanisms included an alteration in reserve mobilization pathways, an accumulation of the osmoprotectant glycine betaine, late embryogenesis abundant proteins and detoxification enzymes. The observed transcriptional changes are supposed to be regulated by ABA-dependent signal transduction pathway. CONCLUSION This study provides an important step toward the understanding of main events and metabolic pathways during germination in sugar beet. The reported alterations of gene expression in response to stress shed light on sugar beet stress adaptation mechanisms. Some of the identified stress-responsive genes provide a new potential source for improvement of sugar beet stress tolerance during germination and field emergence.
Collapse
Affiliation(s)
- Elena Pestsova
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | - Andreas Menze
- KWS SAAT AG, Grimsehlstr. 31, 37555 Einbeck, Germany
| | - Uwe Fischer
- KWS SAAT AG, Grimsehlstr. 31, 37555 Einbeck, Germany
| | - Andrea Windhövel
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Peter Westhoff
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
92
|
Catusse J, Strub JM, Job C, Van Dorsselaer A, Job D. [Metabolic control of seed germination]. JOURNAL DE LA SOCIETE DE BIOLOGIE 2008; 202:223-229. [PMID: 18980744 DOI: 10.1051/jbio:2008024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have used proteomics to better characterize germination and early seedling vigor in sugarbeet. Our strategy includes (1) construction of proteome reference maps for dry and germinating seeds of a high-vigor reference seed lot; (2) investigation of the specific tissue accumulation of proteins (root, cotyledon, perisperm); (3) investigation of changes in protein expression profiles detected in the reference seed lot subjected to different vigor-modifying treatments, e.g. aging and/or priming. More than 1 000 sugarbeet seed proteins have been identified by LC/MS-MS mass spectrometry (albumins, globulins and glutelins have been analyzed separately). Due to the conservation of protein sequences and the quality of MS sequencing (more than 10 000 peptide sequences have been obtained), the success rate of protein identification was on the average of 80%. This is to our knowledge the best detailed proteome analysis ever carried out in seeds. The data allowed us to build a detailed metabolic chart of the sugarbeet seed, generating new insights into the molecular mechanisms determining the development of a new seedling. Also, the proteome of a seed-storage tissue as the perisperm is described for the first time.
Collapse
Affiliation(s)
- Julie Catusse
- CNRS / UCBL / INSA / Bayer CropScience Joint Laboratory, Bayer CropScience (UMR CNRS 5240), 14-20 rue Pierre Baizet, 69263 Lyon Cedex 9, France
| | | | | | | | | |
Collapse
|
93
|
Ogé L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin JP, Job D, Jullien M, Grappin P. Protein repair L-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. THE PLANT CELL 2008; 20:3022-37. [PMID: 19011119 PMCID: PMC2613667 DOI: 10.1105/tpc.108.058479] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 10/22/2008] [Accepted: 11/01/2008] [Indexed: 05/04/2023]
Abstract
The formation of abnormal amino acid residues is a major source of spontaneous age-related protein damage in cells. The protein l-isoaspartyl methyltransferase (PIMT) combats protein misfolding resulting from l-isoaspartyl formation by catalyzing the conversion of abnormal l-isoaspartyl residues to their normal l-aspartyl forms. In this way, the PIMT repair enzyme system contributes to longevity and survival in bacterial and animal kingdoms. Despite the discovery of PIMT activity in plants two decades ago, the role of this enzyme during plant stress adaptation and in seed longevity remains undefined. In this work, we have isolated Arabidopsis thaliana lines exhibiting altered expression of PIMT1, one of the two genes encoding the PIMT enzyme in Arabidopsis. PIMT1 overaccumulation reduced the accumulation of l-isoaspartyl residues in seed proteins and increased both seed longevity and germination vigor. Conversely, reduced PIMT1 accumulation was associated with an increase in the accumulation of l-isoaspartyl residues in the proteome of freshly harvested dry mature seeds, thus leading to heightened sensitivity to aging treatments and loss of seed vigor under stressful germination conditions. These data implicate PIMT1 as a major endogenous factor that limits abnormal l-isoaspartyl accumulation in seed proteins, thereby improving seed traits such as longevity and vigor. The PIMT repair pathway likely works in concert with other anti-aging pathways to actively eliminate deleterious protein products, thus enabling successful seedling establishment and strengthening plant proliferation in natural environments.
Collapse
Affiliation(s)
- Laurent Ogé
- Laboratoire de Biologie des Semences, Unité Mixte de Recherche 204 Institut National de la Recherche Agronomique-AgroParisTech, Institut Jean-Pierre Bourgin, F-78026 Versailles cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Using post-genomic technologies, it is now possible to understand the molecular basis of complex developmental processes. In the case of seed germination, recent transcriptome- and proteome-wide studies led to new insights concerning the building up of the germination potential during seed maturation on the mother plant, the reversible character of the first phases of the germination process enabling the imbibed embryo to recapitulate the late maturation program for mounting defense response when confronted to environmental fluctuations, the timing of expression of genes playing a role in controlling radicle emergence, the role of plant hormones as abscisic acid and gibberellins in seed germination, and finally the global changes in proteome activity induced by redox regulation occurring in seed development and germination. In this way, post-genomic technologies help facilitating the advent of a systems approach to uncover novel features of seed quality, which can lead to potential applications, for example in selection programs.
Collapse
Affiliation(s)
- Julie Catusse
- CNRS-Université Claude-Bernard Lyon 1-INSA-Bayer CropScience Joint Laboratory, UMR 5240, Bayer CropScience, 14-20, rue Pierre-Baizet, 69263 Lyon cedex 9, France
| | | | | |
Collapse
|
95
|
|
96
|
Abstract
The accumulation of seed reserves is the result of distinct processes occurring in parallel in the main seed compartments of either maternal (seed coats) or zygotic (embryo, endosperm) origin. With the development of legume genomic resources, recent advances have been made toward understanding the metabolic control of seed filling and the regulatory network underlying reserve accumulation. Genetic variability for seed composition has been studied along with the environmental factors influencing reserve accumulation. Nutrient availability and sink strength were both found to be limiting for reserve accumulation. Genes and/or QTL controlling seed protein content and sulfur-amino acid levels have been identified. These new findings will support our attempts to engineer legume seed composition for added end user value.
Collapse
Affiliation(s)
- Karine Gallardo
- INRA, UMR102 Genetics and Ecophysiology of Grain Legumes, 21000 Dijon, France.
| | | | | |
Collapse
|