51
|
Erkenbrack EM, Petsios E. A Conserved Role for VEGF Signaling in Specification of Homologous Mesenchymal Cell Types Positioned at Spatially Distinct Developmental Addresses in Early Development of Sea Urchins. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:423-432. [PMID: 28544452 DOI: 10.1002/jez.b.22743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/04/2017] [Accepted: 04/05/2017] [Indexed: 11/06/2022]
Abstract
Comparative studies of early development in echinoderms are revealing the tempo and mode of alterations to developmental gene regulatory networks and to the cell types they specify. In euechinoid sea urchins, skeletogenic mesenchyme (SM) ingresses prior to gastrulation at the vegetal pole and aligns into a ring-like array with two bilateral pockets of cells, the sites where spiculogenesis will later occur. In cidaroid sea urchins, the anciently diverged sister clade to euechinoid sea urchins, a homologous SM cell type ingresses later in development, after gastrulation has commenced, and consequently at a distinct developmental address. Thus, a heterochronic shift of ingression of the SM cell type occurred in one of the echinoid lineages. In euechinoids, specification and migration of SM are facilitated by vascular endothelial growth factor (VEGF) signaling. We describe spatiotemporal expression of vegf and vegfr and experimental manipulations targeting VEGF signaling in the cidaroid Eucidaris tribuloides. Spatially, vegf and vegfr mRNA localizes similarly as in euechinoids, suggesting conserved deployment in echinoids despite their spatially distinct development addresses of ingression. Inhibition of VEGF signaling in E. tribuloides suggests its role in SM specification is conserved in echinoids. Temporal discrepancies between the onset of vegf expression and SM ingression likely result in previous observations of SM "random wandering" behavior. Our results indicate that, although the SM cell type in echinoids ingresses into distinct developmental landscapes, it retains a signaling mechanism that restricts their spatial localization to a conserved developmental address where spiculogenesis later occurs.
Collapse
Affiliation(s)
- Eric M Erkenbrack
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut
| | - Elizabeth Petsios
- Department of Earth Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
52
|
Gaitán-Espitia JD, Hofmann GE. Gene expression profiling during the embryo-to-larva transition in the giant red sea urchin Mesocentrotus franciscanus. Ecol Evol 2017; 7:2798-2811. [PMID: 28428870 PMCID: PMC5395446 DOI: 10.1002/ece3.2850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 01/24/2023] Open
Abstract
In echinoderms, major morphological transitions during early development are attributed to different genetic interactions and changes in global expression patterns that shape the regulatory program for the specification of embryonic territories. In order more thoroughly to understand these biological and molecular processes, we examined the transcriptome structure and expression profiles during the embryo‐to‐larva transition of a keystone species, the giant red sea urchin Mesocentrotus franciscanus. Using a de novo assembly approach, we obtained 176,885 transcripts from which 60,439 (34%) had significant alignments to known proteins. From these transcripts, ~80% were functionally annotated allowing the identification of ~2,600 functional, structural, and regulatory genes involved in developmental process. Analysis of expression profiles between gastrula and pluteus stages of M. franciscanus revealed 791 differentially expressed genes with 251 GO overrepresented terms. For gastrula, up‐regulated GO terms were mainly linked to cell differentiation and signal transduction involved in cell cycle checkpoints. In the pluteus stage, major GO terms were associated with phosphoprotein phosphatase activity, muscle contraction, and olfactory behavior, among others. Our evolutionary comparative analysis revealed that several of these genes and functional pathways are highly conserved among echinoids, holothuroids, and ophiuroids.
Collapse
Affiliation(s)
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology University of California Santa Barbara CA USA
| |
Collapse
|
53
|
Cary GA, Hinman VF. Echinoderm development and evolution in the post-genomic era. Dev Biol 2017; 427:203-211. [PMID: 28185788 DOI: 10.1016/j.ydbio.2017.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 01/01/2023]
Abstract
The highly recognizable animals within the phylum Echinodermata encompass an enormous disparity of adult and larval body plans. The extensive knowledge of sea urchin development has culminated in the description of the exquisitely detailed gene regulatory network (GRN) that governs the specification of various embryonic territories. This information provides a unique opportunity for comparative studies in other echinoderm taxa to understand the evolution and developmental mechanisms underlying body plan change. This review focuses on recent work that has utilized new genomic resources and systems-level experiments to address questions of evolutionary developmental biology. In particular, we synthesize the results of several recent studies from various echinoderm classes that have explored the development and evolution of the larval skeleton, which is a major feature that distinguishes the two predominant larval subtypes within the Phylum. We specifically examine the ways in which GRNs can evolve, either through cis regulatory and/or protein-level changes in transcription factors. We also examine recent work comparing evolution across shorter time scales that occur within and between species of sea urchin, and highlight the kinds of questions that can be addressed by these comparisons. The advent of new genomic and transcriptomic datasets in additional species from all classes of echinoderm will continue to empower the use of these taxa for evolutionary developmental studies.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, United States
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA 15213, United States.
| |
Collapse
|
54
|
Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins. Proc Natl Acad Sci U S A 2016; 113:E7202-E7211. [PMID: 27810959 DOI: 10.1073/pnas.1612820113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Developmental gene regulatory networks (GRNs) are assemblages of gene regulatory interactions that direct ontogeny of animal body plans. Studies of GRNs operating in the early development of euechinoid sea urchins have revealed that little appreciable change has occurred since their divergence ∼90 million years ago (mya). These observations suggest that strong conservation of GRN architecture was maintained in early development of the sea urchin lineage. Testing whether this holds for all sea urchins necessitates comparative analyses of echinoid taxa that diverged deeper in geological time. Recent studies highlighted extensive divergence of skeletogenic mesoderm specification in the sister clade of euechinoids, the cidaroids, suggesting that comparative analyses of cidaroid GRN architecture may confer a greater understanding of the evolutionary dynamics of developmental GRNs. Here I report spatiotemporal patterning of 55 regulatory genes and perturbation analyses of key regulatory genes involved in euechinoid oral-aboral patterning of nonskeletogenic mesodermal and ectodermal domains in early development of the cidaroid Eucidaris tribuloides These results indicate that developmental GRNs directing mesodermal and ectodermal specification have undergone marked alterations since the divergence of cidaroids and euechinoids. Notably, statistical and clustering analyses of echinoid temporal gene expression datasets indicate that regulation of mesodermal genes has diverged more markedly than regulation of ectodermal genes. Although research on indirect-developing euechinoid sea urchins suggests strong conservation of GRN circuitry during early embryogenesis, this study indicates that since the divergence of cidaroids and euechinoids, developmental GRNs have undergone significant, cell type-biased alterations.
Collapse
|
55
|
Cohen BL, Pisera A. Crinoid phylogeny: new interpretation of the main Permo-Triassic divergence, comparisons with echinoids and brachiopods, and EvoDevo interpretations of major morphological variations. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bernard L. Cohen
- University of Glasgow; Wolfson Link Building; Glasgow G12 8QQ UK
| | - Andrzej Pisera
- Institute of Paleobiology; Polish Academy of Sciences; ul. Twarda 51/55 00-818 Warszawa Poland
| |
Collapse
|
56
|
Espinosa-Soto C. Selection for distinct gene expression properties favours the evolution of mutational robustness in gene regulatory networks. J Evol Biol 2016; 29:2321-2333. [DOI: 10.1111/jeb.12959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/26/2016] [Indexed: 11/27/2022]
Affiliation(s)
- C. Espinosa-Soto
- Instituto de Física; Universidad Autónoma de San Luis Potosí; San Luis Potosí Mexico
| |
Collapse
|
57
|
Arnone MI, Andrikou C, Annunziata R. Echinoderm systems for gene regulatory studies in evolution and development. Curr Opin Genet Dev 2016; 39:129-137. [DOI: 10.1016/j.gde.2016.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/07/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022]
|
58
|
Czarkwiani A, Ferrario C, Dylus DV, Sugni M, Oliveri P. Skeletal regeneration in the brittle star Amphiura filiformis. Front Zool 2016; 13:18. [PMID: 27110269 PMCID: PMC4841056 DOI: 10.1186/s12983-016-0149-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/12/2016] [Indexed: 12/17/2022] Open
Abstract
Background Brittle stars regenerate their whole arms post-amputation. Amphiura filiformis can now be used for molecular characterization of arm regeneration due to the availability of transcriptomic data. Previous work showed that specific developmental transcription factors known to take part in echinoderm skeletogenesis are expressed during adult arm regeneration in A. filiformis; however, the process of skeleton formation remained poorly understood. Here, we present the results of an in-depth microscopic analysis of skeletal morphogenesis during regeneration, using calcein staining, EdU labeling and in situ hybridization. Results To better compare different samples, we propose a staging system for the early A. filiformis arm regeneration stages based on morphological landmarks identifiable in living animals and supported by histological analysis. We show that the calcified spicules forming the endoskeleton first appear very early during regeneration in the dermal layer of regenerates. These spicules then mature into complex skeletal elements of the differentiated arm during late regeneration. The mesenchymal cells in the dermal area express the skeletal marker genes Afi-c-lectin, Afi-p58b and Afi-p19; however, EdU labeling shows that these dermal cells do not proliferate. Conclusions A. filiformis arms regenerate through a consistent set of developmental stages using a distalization-intercalation mode, despite variability in regeneration rate. Skeletal elements form in a mesenchymal cell layer that does not proliferate and thus must be supplied from a different source. Our work provides the basis for future cellular and molecular studies of skeleton regeneration in brittle stars. Electronic supplementary material The online version of this article (doi:10.1186/s12983-016-0149-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Czarkwiani
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Cinzia Ferrario
- Department of Biosciences, University of Milan, Milan, Italy
| | - David Viktor Dylus
- Department of Genetics, Evolution and Environment, University College London, London, UK ; Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, London, UK ; Present address: Department of Ecology and Evolution & Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Michela Sugni
- Department of Biosciences, University of Milan, Milan, Italy
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, London, UK ; Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
59
|
Sharmankina VV, Kiselev KV. Expression of SM30(A–F) genes encoding spicule matrix proteins in intact and damaged sea urchin Strongylocentrotus intermedius at the six-armed pluteus. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416020125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
60
|
Koga H, Fujitani H, Morino Y, Miyamoto N, Tsuchimoto J, Shibata TF, Nozawa M, Shigenobu S, Ogura A, Tachibana K, Kiyomoto M, Amemiya S, Wada H. Experimental Approach Reveals the Role of alx1 in the Evolution of the Echinoderm Larval Skeleton. PLoS One 2016; 11:e0149067. [PMID: 26866800 PMCID: PMC4750990 DOI: 10.1371/journal.pone.0149067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/27/2016] [Indexed: 11/19/2022] Open
Abstract
Over the course of evolution, the acquisition of novel structures has ultimately led to wide variation in morphology among extant multicellular organisms. Thus, the origins of genetic systems for new morphological structures are a subject of great interest in evolutionary biology. The larval skeleton is a novel structure acquired in some echinoderm lineages via the activation of the adult skeletogenic machinery. Previously, VEGF signaling was suggested to have played an important role in the acquisition of the larval skeleton. In the present study, we compared expression patterns of Alx genes among echinoderm classes to further explore the factors involved in the acquisition of a larval skeleton. We found that the alx1 gene, originally described as crucial for sea urchin skeletogenesis, may have also played an essential role in the evolution of the larval skeleton. Unlike those echinoderms that have a larval skeleton, we found that alx1 of starfish was barely expressed in early larvae that have no skeleton. When alx1 overexpression was induced via injection of alx1 mRNA into starfish eggs, the expression patterns of certain genes, including those possibly involved in skeletogenesis, were altered. This suggested that a portion of the skeletogenic program was induced solely by alx1. However, we observed no obvious external phenotype or skeleton. We concluded that alx1 was necessary but not sufficient for the acquisition of the larval skeleton, which, in fact, requires several genetic events. Based on these results, we discuss how the larval expression of alx1 contributed to the acquisition of the larval skeleton in the putative ancestral lineage of echinoderms.
Collapse
Affiliation(s)
- Hiroyuki Koga
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Haruka Fujitani
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Norio Miyamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Jun Tsuchimoto
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | | | - Masafumi Nozawa
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Mishima, Japan
| | - Shuji Shigenobu
- National Institute for Basic Biology, Okazaki, Japan
- School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Atsushi Ogura
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Kazunori Tachibana
- Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama, Japan
| | - Masato Kiyomoto
- Marine and Coastal Research Center, Ochanomizu University, Tateyama, Japan
| | - Shonan Amemiya
- Marine and Coastal Research Center, Ochanomizu University, Tateyama, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
- Research and Education Center of Natural Sciences, Keio University, Yokohama, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
61
|
Peter IS, Davidson EH. Implications of Developmental Gene Regulatory Networks Inside and Outside Developmental Biology. Curr Top Dev Biol 2016; 117:237-51. [PMID: 26969981 DOI: 10.1016/bs.ctdb.2015.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The insight that the genomic control of developmental process is encoded in the form of gene regulatory networks has profound impacts on many areas of modern bioscience. Most importantly, it affects developmental biology itself, as it means that a causal understanding of development requires knowledge of the architecture of regulatory network interactions. Furthermore, it follows that functional changes in developmental gene regulatory networks have to be considered as a primary mechanism for evolutionary process. We here discuss some of the recent advances in gene regulatory network biology and how they have affected our current understanding of development, evolution, and regulatory genomics.
Collapse
Affiliation(s)
- Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| | - Eric H Davidson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
62
|
Morino Y, Koga H, Wada H. The conserved genetic background for pluteus arm development in brittle stars and sea urchin. Evol Dev 2016; 18:89-95. [DOI: 10.1111/ede.12174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yoshiaki Morino
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Hiroyuki Koga
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8572 Japan
| |
Collapse
|
63
|
Dylus DV, Czarkwiani A, Stångberg J, Ortega-Martinez O, Dupont S, Oliveri P. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. EvoDevo 2016; 7:2. [PMID: 26759711 PMCID: PMC4709884 DOI: 10.1186/s13227-015-0039-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022] Open
Abstract
Background The evolutionary mechanisms involved in shaping complex gene regulatory networks (GRN) that encode for morphologically similar structures in distantly related animals remain elusive. In this context, echinoderm larval skeletons found in brittle stars and sea urchins provide an ideal system. Here, we characterize for the first time the development of the larval skeleton in the ophiuroid Amphiura filiformis and compare it systematically with its counterpart in sea urchin. Results We show that ophiuroids and euechinoids, that split at least 480 Million years ago (Mya), have remarkable similarities in tempo and mode of skeletal development. Despite morphological and ontological similarities, our high-resolution study of the dynamics of genetic regulatory states in A. filiformis highlights numerous differences in the architecture of their underlying GRNs. Importantly, the A.filiformispplx, the closest gene to the sea urchin double negative gate (DNG) repressor pmar1, fails to drive the skeletogenic program in sea urchin, showing important evolutionary differences in protein function. hesC, the second repressor of the DNG, is co-expressed with most of the genes that are repressed in sea urchin, indicating the absence of direct repression of tbr, ets1/2, and delta in A. filiformis. Furthermore, the absence of expression in later stages of brittle star skeleton development of key regulatory genes, such as foxb and dri, shows significantly different regulatory states. Conclusion Our data fill up an important gap in the picture of larval mesoderm in echinoderms and allows us to explore the evolutionary implications relative to the recently established phylogeny of echinoderm classes. In light of recent studies on other echinoderms, our data highlight a high evolutionary plasticity of the same nodes throughout evolution of echinoderm skeletogenesis. Finally, gene duplication, protein function diversification, and cis-regulatory element evolution all contributed to shape the regulatory program for larval skeletogenesis in different branches of echinoderms. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0039-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Viktor Dylus
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK ; CoMPLEX/SysBio, UCL, Gower Street, London, WC1E 6BT UK ; Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Anna Czarkwiani
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| | - Josefine Stångberg
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK ; Research Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Olga Ortega-Martinez
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Sciences, University of Gothenburg, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Sam Dupont
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Sciences, University of Gothenburg, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Paola Oliveri
- Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
64
|
Erkenbrack EM, Ako-Asare K, Miller E, Tekelenburg S, Thompson JR, Romano L. Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms. Dev Genes Evol 2016; 226:37-45. [PMID: 26781941 DOI: 10.1007/s00427-015-0527-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/29/2015] [Indexed: 10/22/2022]
Abstract
Diverse sampling of organisms across the five major classes in the phylum Echinodermata is beginning to reveal much about the structure and function of gene regulatory networks (GRNs) in development and evolution. Sea urchins are the most studied clade within this phylum, and recent work suggests there has been dramatic rewiring at the top of the skeletogenic GRN along the lineage leading to extant members of the euechinoid sea urchins. Such rewiring likely accounts for some of the observed developmental differences between the two major subclasses of sea urchins-cidaroids and euechinoids. To address effects of topmost rewiring on downstream GRN events, we cloned four downstream regulatory genes within the skeletogenic GRN and surveyed their spatiotemporal expression patterns in the cidaroid Eucidaris tribuloides. We performed phylogenetic analyses with homologs from other non-vertebrate deuterostomes and characterized their spatiotemporal expression by quantitative polymerase chain reaction (qPCR) and whole-mount in situ hybridization (WMISH). Our data suggest the erg-hex-tgif subcircuit, a putative GRN kernel, exhibits a mesoderm-specific expression pattern early in Eucidaris development that is directly downstream of the initial mesodermal GRN circuitry. Comparative analysis of the expression of this subcircuit in four echinoderm taxa allowed robust ancestral state reconstruction, supporting hypotheses that its ancestral function was to stabilize the mesodermal regulatory state and that it has been co-opted and deployed as a unit in mesodermal subdomains in distantly diverged echinoderms. Importantly, our study supports the notion that GRN kernels exhibit structural and functional modularity, locking down and stabilizing clade-specific, embryonic regulatory states.
Collapse
Affiliation(s)
- Eric M Erkenbrack
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Kayla Ako-Asare
- Department of Biology, Denison University, Granville, OH, 43023, USA
| | - Emily Miller
- Department of Biology, Denison University, Granville, OH, 43023, USA
| | - Saira Tekelenburg
- Department of Biology, Denison University, Granville, OH, 43023, USA
| | - Jeffrey R Thompson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Laura Romano
- Department of Biology, Denison University, Granville, OH, 43023, USA
| |
Collapse
|
65
|
Monteiro A, Gupta M. Identifying Coopted Networks and Causative Mutations in the Origin of Novel Complex Traits. Curr Top Dev Biol 2016; 119:205-26. [DOI: 10.1016/bs.ctdb.2016.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
66
|
Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid. Sci Rep 2015; 5:15541. [PMID: 26486232 PMCID: PMC4614444 DOI: 10.1038/srep15541] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/28/2015] [Indexed: 11/08/2022] Open
Abstract
Echinoids, or sea urchins, are rare in the Palaeozoic fossil record, and thus the details regarding the early diversification of crown group echinoids are unclear. Here we report on the earliest probable crown group echinoid from the fossil record, recovered from Permian (Roadian-Capitanian) rocks of west Texas, which has important implications for the timing of the divergence of crown group echinoids. The presence of apophyses and rigidly sutured interambulacral areas with two columns of plates indicates this species is a cidaroid echinoid. The species, Eotiaris guadalupensis, n. sp. is therefore the earliest stem group cidaroid. The occurrence of this species in Roadian strata pushes back the divergence of cidaroids and euechinoids, the clades that comprise all living echinoids, to at least 268.8 Ma, ten million years older than the previously oldest known cidaroid. Furthermore, the genomic regulation of development in echinoids is amongst the best known, and this new species informs the timing of large-scale reorganization in echinoid gene regulatory networks that occurred at the cidaroid-euechinoid divergence, indicating that these changes took place by the Roadian stage of the Permian.
Collapse
|
67
|
Glassford WJ, Johnson WC, Dall NR, Smith SJ, Liu Y, Boll W, Noll M, Rebeiz M. Co-option of an Ancestral Hox-Regulated Network Underlies a Recently Evolved Morphological Novelty. Dev Cell 2015; 34:520-31. [PMID: 26343453 DOI: 10.1016/j.devcel.2015.08.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/23/2015] [Accepted: 08/10/2015] [Indexed: 12/29/2022]
Abstract
The evolutionary origins of complex morphological structures such as the vertebrate eye or insect wing remain one of the greatest mysteries of biology. Recent comparative studies of gene expression imply that new structures are not built from scratch, but rather form by co-opting preexisting gene networks. A key prediction of this model is that upstream factors within the network will activate their preexisting targets (i.e., enhancers) to form novel anatomies. Here, we show how a recently derived morphological novelty present in the genitalia of D. melanogaster employs an ancestral Hox-regulated network deployed in the embryo to generate the larval posterior spiracle. We demonstrate how transcriptional enhancers and constituent transcription factor binding sites are used in both ancestral and novel contexts. These results illustrate network co-option at the level of individual connections between regulatory genes and highlight how morphological novelty may originate through the co-option of networks controlling seemingly unrelated structures.
Collapse
Affiliation(s)
- William J Glassford
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Winslow C Johnson
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Natalie R Dall
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Sarah Jacquelyn Smith
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Yang Liu
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Werner Boll
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Markus Noll
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
68
|
Reinardy HC, Emerson CE, Manley JM, Bodnar AG. Tissue regeneration and biomineralization in sea urchins: role of Notch signaling and presence of stem cell markers. PLoS One 2015; 10:e0133860. [PMID: 26267358 PMCID: PMC4534296 DOI: 10.1371/journal.pone.0133860] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/02/2015] [Indexed: 11/30/2022] Open
Abstract
Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa) were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes) suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions.
Collapse
Affiliation(s)
- Helena C. Reinardy
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
| | - Chloe E. Emerson
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
| | - Jason M. Manley
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
| | - Andrea G. Bodnar
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
- * E-mail:
| |
Collapse
|
69
|
Fan TP, Su YH. FGF signaling repertoire of the indirect developing hemichordate Ptychodera flava. Mar Genomics 2015; 24 Pt 2:167-75. [PMID: 26232261 DOI: 10.1016/j.margen.2015.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factors (FGFs) are a group of ligands that play multiple roles during development by transducing signals through FGF receptors (FGFRs) to downstream factors. At least 22 FGF ligands and 4 receptors have been identified in vertebrates, while six to eight FGF ligands and a single FGFR are present in invertebrate chordates, such as tunicates and amphioxus. The chordate FGFs can be categorized into at least seven subfamilies, and the members of which expanded during the evolution of early vertebrates. In contrast, only one FGF and two FGFRs have been found in sea urchins. Thus, it is unclear whether the FGF subfamilies duplicated in the lineage leading to the chordates, or sea urchins lost several fgf genes. Analyses of the FGF signaling repertoire in hemichordates, which together with echinoderms form the closest group to the chordates, may provide insights into the evolution of FGF signaling in deuterostomes. In this study, we identified five FGFs and three FGFRs from Ptychodera flava, an indirect-developing hemichordate acorn worm. Phylogenetic analyses revealed that hemichordates possess a conserved FGF8/17/18 in addition to several putative hemichordate-specific FGFs. Analyses of sequence similarity and protein domain organizations suggested that the sea urchin and hemichordate FGFRs arose from independent lineage-specific duplications. Furthermore, the acorn worm fgf and fgfr genes were demonstrated to be expressed during P. flava embryogenesis. These results set the foundations for further functional studies of FGF signaling in hemichordates and provided insights into the evolutionary history of the FGF repertoire.
Collapse
Affiliation(s)
- Tzu-Pei Fan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Yi-Hsien Su
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
70
|
Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses. Proc Natl Acad Sci U S A 2015; 112:E4075-84. [PMID: 26170318 DOI: 10.1073/pnas.1509845112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution of animal body plans occurs with changes in the encoded genomic programs that direct development, by alterations in the structure of encoded developmental gene-regulatory networks (GRNs). However, study of this most fundamental of evolutionary processes requires experimentally tractable, phylogenetically divergent organisms that differ morphologically while belonging to the same monophyletic clade, plus knowledge of the relevant GRNs operating in at least one of the species. These conditions are met in the divergent embryogenesis of the two extant, morphologically distinct, echinoid (sea urchin) subclasses, Euechinoidea and Cidaroidea, which diverged from a common late Paleozoic ancestor. Here we focus on striking differences in the mode of embryonic skeletogenesis in a euechinoid, the well-known model Strongylocentrotus purpuratus (Sp), vs. the cidaroid Eucidaris tribuloides (Et). At the level of descriptive embryology, skeletogenesis in Sp and Et has long been known to occur by distinct means. The complete GRN controlling this process is known for Sp. We carried out targeted functional analyses on Et skeletogenesis to identify the presence, or demonstrate the absence, of specific regulatory linkages and subcircuits key to the operation of the Sp skeletogenic GRN. Remarkably, most of the canonical design features of the Sp skeletogenic GRN that we examined are either missing or operate differently in Et. This work directly implies a dramatic reorganization of genomic regulatory circuitry concomitant with the divergence of the euechinoids, which began before the end-Permian extinction.
Collapse
|
71
|
Rebeiz M, Patel NH, Hinman VF. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development. Annu Rev Genomics Hum Genet 2015; 16:103-31. [PMID: 26079281 DOI: 10.1146/annurev-genom-091212-153423] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.
Collapse
Affiliation(s)
- Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;
| | | | | |
Collapse
|
72
|
Gao F, Thompson JR, Petsios E, Erkenbrack E, Moats RA, Bottjer DJ, Davidson EH. Juvenile skeletogenesis in anciently diverged sea urchin clades. Dev Biol 2015; 400:148-58. [PMID: 25641694 DOI: 10.1016/j.ydbio.2015.01.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/19/2014] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Mechanistic understanding of evolutionary divergence in animal body plans devolves from analysis of those developmental processes that, in forms descendant from a common ancestor, are responsible for their morphological differences. The last common ancestor of the two extant subclasses of sea urchins, i.e., euechinoids and cidaroids, existed well before the Permian/Triassic extinction (252 mya). Subsequent evolutionary divergence of these clades offers in principle a rare opportunity to solve the developmental regulatory events underlying a defined evolutionary divergence process. Thus (i) there is an excellent and fairly dense (if yet incompletely analyzed) fossil record; (ii) cladistically confined features of the skeletal structures of modern euechinoid and cidaroid sea urchins are preserved in fossils of ancestral forms; (iii) euechinoids and cidaroids are among current laboratory model systems in molecular developmental biology (here Strongylocentrotus purpuratus [Sp] and Eucidaris tribuloides [Et]); (iv) skeletogenic specification in sea urchins is uncommonly well understood at the causal level of interactions of regulatory genes with one another, and with known skeletogenic effector genes, providing a ready arsenal of available molecular tools. Here we focus on differences in test and perignathic girdle skeletal morphology that distinguish all modern euechinoid from all modern cidaroid sea urchins. We demonstrate distinct canonical test and girdle morphologies in juveniles of both species by use of SEM and X-ray microtomography. Among the sharply distinct morphological features of these clades are the internal skeletal structures of the perignathic girdle to which attach homologous muscles utilized for retraction and protraction of Aristotles׳ lantern and its teeth. We demonstrate that these structures develop de novo between one and four weeks after metamorphosis. In order to study the underlying developmental processes, a method of section whole mount in situ hybridization was adapted. This method displays current gene expression in the developing test and perignathic girdle skeletal elements of both Sp and Et juveniles. Active, specific expression of the sm37 biomineralization gene in these muscle attachment structures accompanies morphogenetic development of these clade-specific features in juveniles of both species. Skeletogenesis at these clade-specific muscle attachment structures displays molecular earmarks of the well understood embryonic skeletogenic GRN: thus the upstream regulatory gene alx1 and the gene encoding the vegfR signaling receptor are both expressed at the sites where they are formed. This work opens the way to analysis of the alternative spatial specification processes that were installed at the evolutionary divergence of the two extant subclasses of sea urchins.
Collapse
Affiliation(s)
- Feng Gao
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States
| | - Jeffrey R Thompson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Elizabeth Petsios
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Eric Erkenbrack
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States
| | - Rex A Moats
- Translational Biomedical Imaging Laboratory, Department of Radiology, The Saban Research Institute, Children׳s Hospital Los Angeles, Keck School of Medicine USC, Los Angeles, CA 90027, United States
| | - David J Bottjer
- Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, United States
| | - Eric H Davidson
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
73
|
Telford MJ, Lowe CJ, Cameron CB, Ortega-Martinez O, Aronowicz J, Oliveri P, Copley RR. Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proc Biol Sci 2015; 281:rspb.2014.0479. [PMID: 24850925 DOI: 10.1098/rspb.2014.0479] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While some aspects of the phylogeny of the five living echinoderm classes are clear, the position of the ophiuroids (brittlestars) relative to asteroids (starfish), echinoids (sea urchins) and holothurians (sea cucumbers) is controversial. Ophiuroids have a pluteus-type larva in common with echinoids giving some support to an ophiuroid/echinoid/holothurian clade named Cryptosyringida. Most molecular phylogenetic studies, however, support an ophiuroid/asteroid clade (Asterozoa) implying either convergent evolution of the pluteus or reversals to an auricularia-type larva in asteroids and holothurians. A recent study of 10 genes from four of the five echinoderm classes used 'phylogenetic signal dissection' to separate alignment positions into subsets of (i) suboptimal, heterogeneously evolving sites (invariant plus rapidly changing) and (ii) the remaining optimal, homogeneously evolving sites. Along with most previous molecular phylogenetic studies, their set of heterogeneous sites, expected to be more prone to systematic error, support Asterozoa. The homogeneous sites, in contrast, support an ophiuroid/echinoid grouping, consistent with the cryptosyringid clade, leading them to posit homology of the ophiopluteus and echinopluteus. Our new dataset comprises 219 genes from all echinoderm classes; analyses using probabilistic Bayesian phylogenetic methods strongly support Asterozoa. The most reliable, slowly evolving quartile of genes also gives highest support for Asterozoa; this support diminishes in second and third quartiles and the fastest changing quartile places the ophiuroids close to the root. Using phylogenetic signal dissection, we find heterogenous sites support an unlikely grouping of Ophiuroidea + Holothuria while homogeneous sites again strongly support Asterozoa. Our large and taxonomically complete dataset finds no support for the cryptosyringid hypothesis; in showing strong support for the Asterozoa, our preferred topology leaves the question of homology of pluteus larvae open.
Collapse
Affiliation(s)
- Maximilian J Telford
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Christopher J Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview Boulevard, Pacific Grove, CA 93950, USA
| | - Christopher B Cameron
- Départment de Sciences Biologiques, Université de Montréal, Pavillion Marie-Victorin, C.P. 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Olga Ortega-Martinez
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Sciences, University of Gothenburg, Kristineberg 566, Fiskebäckskil 451 78, Sweden
| | - Jochanan Aronowicz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60650, USA
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Richard R Copley
- CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Observatoire Océanographique, Villefranche-sur-mer 06230, France Sorbonne Universites, UPMC Univ Paris 06, Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Observatoire Oceanographique, Villefranche-sur-mer 06230, France
| |
Collapse
|
74
|
Heyland A, Hodin J, Bishop C. Manipulation of developing juvenile structures in purple sea urchins (Strongylocentrotus purpuratus) by morpholino injection into late stage larvae. PLoS One 2014; 9:e113866. [PMID: 25436992 PMCID: PMC4250057 DOI: 10.1371/journal.pone.0113866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/30/2014] [Indexed: 11/19/2022] Open
Abstract
Sea urchins have been used as experimental organisms for developmental biology for over a century. Yet, as is the case for many other marine invertebrates, understanding the development of the juveniles and adults has lagged far behind that of their embryos and larvae. The reasons for this are, in large part, due to the difficulty of experimentally manipulating juvenile development. Here we develop and validate a technique for injecting compounds into juvenile rudiments of the purple sea urchin, Strongylocentrotus purpuratus. We first document the distribution of rhodaminated dextran injected into different compartments of the juvenile rudiment of sea urchin larvae. Then, to test the potential of this technique to manipulate development, we injected Vivo-Morpholinos (vMOs) designed to knock down p58b and p16, two proteins involved in the elongation of S. purpuratus larval skeleton. Rudiments injected with these vMOs showed a delay in the growth of some juvenile skeletal elements relative to controls. These data provide the first evidence that vMOs, which are designed to cross cell membranes, can be used to transiently manipulate gene function in later developmental stages in sea urchins. We therefore propose that injection of vMOs into juvenile rudiments, as shown here, is a viable approach to testing hypotheses about gene function during development, including metamorphosis.
Collapse
Affiliation(s)
- Andreas Heyland
- Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | - Jason Hodin
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States of America
| | - Cory Bishop
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| |
Collapse
|
75
|
Signal-dependent regulation of the sea urchin skeletogenic gene regulatory network. Gene Expr Patterns 2014; 16:93-103. [PMID: 25460514 DOI: 10.1016/j.gep.2014.10.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 11/23/2022]
Abstract
The endoskeleton of the sea urchin embryo is produced by primary mesenchyme cells (PMCs). Maternal inputs activate a complex gene regulatory network (GRN) in the PMC lineage in a cell-autonomous fashion during early development, initially creating a uniform population of prospective skeleton-forming cells. Previous studies showed that at post-blastula stages of development, several effector genes in the network exhibit non-uniform patterns of expression, suggesting that their regulation becomes subject to local, extrinsic cues. Other studies have identified the VEGF and MAPK pathways as regulators of PMC migration, gene expression, and biomineralization. In this study, we used whole mount in situ hybridization (WMISH) to examine the spatial expression patterns of 39 PMC-specific/enriched mRNAs in Strongylocentrotus purpuratus embryos at the late gastrula, early prism and pluteus stages. We found that all 39 mRNAs (including several regulatory genes) showed non-uniform patterns of expression within the PMC syncytium, revealing a global shift in the regulation of the skeletogenic GRN from a cell-autonomous to a signal-dependent mode. In general, localized regions of elevated gene expression corresponded to sites of rapid biomineral deposition. We used a VEGFR inhibitor (axitinib) and a MEK inhibitor (U0126) to show that VEGF signaling and the MAPK pathway are essential for maintaining high levels of gene expression in PMCs at the tips of rods that extend from the ventral region of the embryo. These inhibitors affected gene expression in the PMCs in similar ways, suggesting that VEGF acts via the MAPK pathway. In contrast, axitinib and U0126 did not affect the localized expression of genes in PMCs at the tips of the body rods, which form on the dorsal side of the embryo. Our results therefore indicate that multiple signaling pathways regulate the skeletogenic GRN during late stages of embryogenesis-VEGF/MAPK signaling on the ventral side and a separate, unidentified pathway on the dorsal side. These two signaling pathways appear to be activated sequentially (ventral followed by dorsal) and many effector genes are subject to regulation by both pathways.
Collapse
|
76
|
Yamazaki A, Kidachi Y, Yamaguchi M, Minokawa T. Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate. Development 2014; 141:2669-79. [PMID: 24924196 DOI: 10.1242/dev.104331] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Echinoids (sea urchins) are divided into two major groups - cidaroids (a 'primitive' group) and euechinoids (a 'derived' group). The cidaroids are a promising model species for understanding the ancestral developmental mechanisms in echinoids, but little is known about the molecular mechanisms of cidaroid development. In euechinoids, skeletogenic mesenchyme cell specification is regulated by the double-negative gate (DNG), in which hesC represses the transcription of the downstream mesenchyme specification genes (alx1, tbr and ets1), thereby defining the prospective mesenchyme region. To estimate the ancestral mechanism of larval mesenchyme cell specification in echinoids, the expression patterns and roles of mesenchyme specification genes in the cidaroid Prionocidaris baculosa were examined. The present study reveals that the expression pattern and function of hesC in P. baculosa were inconsistent with the DNG model, suggesting that the euechinoid-type DNG is not utilized during cidaroid mesenchyme specification. In contrast with hesC, the expression patterns and functions of alx1, tbr and ets1 were similar between P. baculosa and euechinoids. Based on these results, we propose that the roles of alx1, tbr and ets1 in mesenchyme specification were established in the common ancestor of echinoids, and that the DNG system was acquired in the euechinoid lineage after divergence from the cidaroid ancestor. The evolutionary timing of the establishment of the DNG suggests that the DNG was originally related to micromere and/or primary mesenchyme cell formation but not to skeletogenic cell differentiation.
Collapse
Affiliation(s)
- Atsuko Yamazaki
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori, Aomori 039-3501, Japan
| | - Yumi Kidachi
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori, Aomori 030-0943, Japan
| | - Masaaki Yamaguchi
- Division of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Takuya Minokawa
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori, Aomori 039-3501, Japan
| |
Collapse
|
77
|
Tsuchimoto J, Yamaguchi M. Hoxexpression in the direct-type developing sand dollarPeronella japonica. Dev Dyn 2014; 243:1020-9. [DOI: 10.1002/dvdy.24135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jun Tsuchimoto
- Division of Life Science; Graduate School of Natural Science and Technology, Kanazawa University; Kanazawa Japan
- Institute for Molecular Science of Medicine, Aichi Medical University; Nagakute Japan
| | - Masaaki Yamaguchi
- Division of Life Science; Graduate School of Natural Science and Technology, Kanazawa University; Kanazawa Japan
| |
Collapse
|
78
|
Hinman VF, Cheatle Jarvela AM. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms. Genesis 2014; 52:193-207. [PMID: 24549884 DOI: 10.1002/dvg.22757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 12/17/2022]
Abstract
One of the central concerns of Evolutionary Developmental biology is to understand how the specification of cell types can change during evolution. In the last decade, developmental biology has progressed toward a systems level understanding of cell specification processes. In particular, the focus has been on determining the regulatory interactions of the repertoire of genes that make up gene regulatory networks (GRNs). Echinoderms provide an extraordinary model system for determining how GRNs evolve. This review highlights the comparative GRN analyses arising from the echinoderm system. This work shows that certain types of GRN subcircuits or motifs, i.e., those involving positive feedback, tend to be conserved and may provide a constraint on development. This conservation may be due to a required arrangement of transcription factor binding sites in cis regulatory modules. The review will also discuss ways in which novelty may arise, in particular through the co-option of regulatory genes and subcircuits. The development of the sea urchin larval skeleton, a novel feature that arose in echinoderms, has provided a model for study of co-option mechanisms. Finally, the types of GRNs that can permit the great diversity in the patterns of ciliary bands and their associated neurons found among these taxa are discussed. The availability of genomic resources is rapidly expanding for echinoderms, including genome sequences not only for multiple species of sea urchins but also a species of sea star, sea cucumber, and brittle star. This will enable echinoderms to become a particularly powerful system for understanding how developmental GRNs evolve.
Collapse
Affiliation(s)
- Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | |
Collapse
|
79
|
Koga H, Morino Y, Wada H. The echinoderm larval skeleton as a possible model system for experimental evolutionary biology. Genesis 2014; 52:186-92. [PMID: 24549940 DOI: 10.1002/dvg.22758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 01/29/2023]
Abstract
The evolution of various body plans results from the acquisition of novel structures as well as the loss of existing structures. Some novel structures necessitate multiple evolutionary steps, requiring organisms to overcome the intermediate steps, which might be less adaptive or neutral. To examine this issue, echinoderms might provide an ideal experimental system. A larval skeleton is acquired in some echinoderm lineages, such as sea urchins, probably via the co-option of the skeletogenic machinery that was already established to produce the adult skeleton. The acquisition of a larval skeleton was found to require multiple steps and so provides a model experimental system for reproducing intermediate evolutionary stages. The fact that echinoderm embryology has been studied with various natural populations also presents an advantage.
Collapse
Affiliation(s)
- Hiroyuki Koga
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
| | | | | |
Collapse
|
80
|
McIntyre DC, Lyons DC, Martik M, McClay DR. Branching out: origins of the sea urchin larval skeleton in development and evolution. Genesis 2014; 52:173-85. [PMID: 24549853 PMCID: PMC3990003 DOI: 10.1002/dvg.22756] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 11/08/2022]
Abstract
It is a challenge to understand how the information encoded in DNA is used to build a three-dimensional structure. To explore how this works the assembly of a relatively simple skeleton has been examined at multiple control levels. The skeleton of the sea urchin embryo consists of a number of calcite rods produced by 64 skeletogenic cells. The ectoderm supplies spatial cues for patterning, essentially telling the skeletogenic cells where to position themselves and providing the factors for skeletal growth. Here, we describe the information known about how this works. First the ectoderm must be patterned so that the signaling cues are released from precise positions. The skeletogenic cells respond by initiating skeletogenesis immediately beneath two regions (one on the right and the other on the left side). Growth of the skeletal rods requires additional signaling from defined ectodermal locations, and the skeletogenic cells respond to produce a membrane-bound template in which the calcite crystal grows. Important in this process are three signals, fibroblast growth factor, vascular endothelial growth factor, and Wnt5. Each is necessary for explicit tasks in skeleton production.
Collapse
Affiliation(s)
| | | | - Megan Martik
- Department of Biology, Duke University, Durham, NC
| | | |
Collapse
|
81
|
Janssens H, Siggens K, Cicin-Sain D, Jiménez-Guri E, Musy M, Akam M, Jaeger J. A quantitative atlas of Even-skipped and Hunchback expression in Clogmia albipunctata (Diptera: Psychodidae) blastoderm embryos. EvoDevo 2014; 5:1. [PMID: 24393251 PMCID: PMC3897886 DOI: 10.1186/2041-9139-5-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/22/2013] [Indexed: 11/13/2022] Open
Abstract
Background Comparative studies of developmental processes are one of the main approaches to evolutionary developmental biology (evo-devo). Over recent years, there has been a shift of focus from the comparative study of particular regulatory genes to the level of whole gene networks. Reverse-engineering methods can be used to computationally reconstitute and analyze the function and dynamics of such networks. These methods require quantitative spatio-temporal expression data for model fitting. Obtaining such data in non-model organisms remains a major technical challenge, impeding the wider application of data-driven mathematical modeling to evo-devo. Results We have raised antibodies against four segmentation gene products in the moth midge Clogmia albipunctata, a non-drosophilid dipteran species. We have used these antibodies to create a quantitative atlas of protein expression patterns for the gap gene hunchback (hb), and the pair-rule gene even-skipped (eve). Our data reveal differences in the dynamics of Hb boundary positioning and Eve stripe formation between C. albipunctata and Drosophila melanogaster. Despite these differences, the overall relative spatial arrangement of Hb and Eve domains is remarkably conserved between these two distantly related dipteran species. Conclusions We provide a proof of principle that it is possible to acquire quantitative gene expression data at high accuracy and spatio-temporal resolution in non-model organisms. Our quantitative data extend earlier qualitative studies of segmentation gene expression in C. albipunctata, and provide a starting point for comparative reverse-engineering studies of the evolutionary and developmental dynamics of the segmentation gene system.
Collapse
Affiliation(s)
- Hilde Janssens
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ken Siggens
- Department of Zoology, Downing Street, Cambridge CB2 3EJ UK
| | - Damjan Cicin-Sain
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eva Jiménez-Guri
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Marco Musy
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Michael Akam
- Department of Zoology, Downing Street, Cambridge CB2 3EJ UK
| | - Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica (CRG), and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
82
|
Czarkwiani A, Dylus DV, Oliveri P. Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis. Gene Expr Patterns 2013; 13:464-72. [PMID: 24051028 PMCID: PMC3838619 DOI: 10.1016/j.gep.2013.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 11/19/2022]
Abstract
Analysis of brittle star regenerating arms using differentiation markers. Identification of the early segregation of skeletal and muscle progenitor cells. Expression of skeletal and non-skeletal genes at different stages of regeneration. Combinatorial role of TF genes in early specification of skeletal cells. Same TF genes identify different skeletal structures later in regeneration.
The brittle star Amphiura filiformis, which regenerates its arms post autotomy, is emerging as a useful model for studying the molecular underpinnings of regeneration, aided by the recent availability of some molecular resources. During regeneration a blastema initially is formed distally to the amputation site, and then a rapid rebuild is obtained by adding metameric units, which will eventually differentiate and become fully functional. In this work we first characterize the developmental process of the regenerating arms using two differentiation markers for muscle and skeletal structures – Afi-trop-1 and Afi-αcoll. Both genes are not expressed in the blastema and newly added undifferentiated metameric units. Their expression at different regenerating stages shows an early segregation of muscle and skeletal cells during the regenerating process, long before the metameric units become functional. We then studied the expression of a set of genes orthologous of the sea urchin transcription factors involved in the development of skeletal and non-skeletal mesoderm: Afi-ets1/2, Afi-alx1, Afi-tbr, Afi-foxB and Afi-gataC. We found that Afi-ets1/2, Afi-alx1, Afi-foxB and Afi-gataC are all expressed at the blastemal stage. As regeneration progresses those genes are expressed in a similar small undifferentiated domain beneath the distal growth cap, while in more advanced metameric units they become restricted to different skeletal domains. Afi-foxB becomes expressed in non-skeletal structures. This suggests that they might play a combinatorial role only in the early cell specification process and that subsequently they function independently in the differentiation of different structures. Afi-tbr is not present in the adult arm tissue at any stage of regeneration. In situ hybridization results have been confirmed with a new strategy for quantitative PCR (QPCR), using a subdivision of the three stages of regeneration into proximal (differentiated) and distal (undifferentiated) arm segments.
Collapse
Affiliation(s)
- Anna Czarkwiani
- Research Department of Genetics, Evolution and Environment, UCL, Gower Street, London WC1E 6BT, UK
| | - David V. Dylus
- Research Department of Genetics, Evolution and Environment, UCL, Gower Street, London WC1E 6BT, UK
- CoMPLEX/SysBio, UCL, Gower Street, London WC1E 6BT, UK
| | - Paola Oliveri
- Research Department of Genetics, Evolution and Environment, UCL, Gower Street, London WC1E 6BT, UK
- Corresponding author. Address: Research Department of Genetics, Evolution and Environment, University College London, Room 426, Darwin Building, Gower Street, London WC1E 6BT, UK. Tel.: +44 020 767 93719; fax: +44 020 7679 7193.
| |
Collapse
|
83
|
Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proc Natl Acad Sci U S A 2013; 110:9571-6. [PMID: 23690618 DOI: 10.1073/pnas.1305457110] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of multicellular organisms was made possible by the evolution of underlying gene regulatory networks. In animals, the core of gene regulatory networks consists of kernels, stable subnetworks of transcription factors that are highly conserved in distantly related species. However, in plants it is not clear when and how kernels evolved. We show here that RSL (ROOT HAIR DEFECTIVE SIX-LIKE) transcription factors form an ancient land plant kernel controlling caulonema differentiation in the moss Physcomitrella patens and root hair development in the flowering plant Arabidopsis thaliana. Phylogenetic analyses suggest that RSL proteins evolved in aquatic charophyte algae or in early land plants, and have been conserved throughout land plant radiation. Genetic and transcriptional analyses in loss of function A. thaliana and P. patens mutants suggest that the transcriptional interactions in the RSL kernel were remodeled and became more hierarchical during the evolution of vascular plants. We predict that other gene regulatory networks that control development in derived groups of plants may have originated in the earliest land plants or in their ancestors, the Charophycean algae.
Collapse
|
84
|
Abstract
Evolutionary systems biology (ESB) is a rapidly growing integrative approach that has the core aim of generating mechanistic and evolutionary understanding of genotype-phenotype relationships at multiple levels. ESB's more specific objectives include extending knowledge gained from model organisms to non-model organisms, predicting the effects of mutations, and defining the core network structures and dynamics that have evolved to cause particular intracellular and intercellular responses. By combining mathematical, molecular, and cellular approaches to evolution, ESB adds new insights and methods to the modern evolutionary synthesis, and offers ways in which to enhance its explanatory and predictive capacities. This combination of prediction and explanation marks ESB out as a research manifesto that goes further than its two contributing fields. Here, we summarize ESB via an analysis of characteristic research examples and exploratory questions, while also making a case for why these integrative efforts are worth pursuing.
Collapse
Affiliation(s)
- Orkun S Soyer
- Warwick Centre for Synthetic Biology, School of Life Sciences, University of Warwick, Coventry, UK.
| | | |
Collapse
|
85
|
Wilt F, Killian CE, Croker L, Hamilton P. SM30 protein function during sea urchin larval spicule formation. J Struct Biol 2013; 183:199-204. [PMID: 23583702 DOI: 10.1016/j.jsb.2013.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/20/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
Abstract
A central issue in better understanding the process of biomineralization is to elucidate the function of occluded matrix proteins present in mineralized tissues. A potent approach to addressing this issue utilizes specific inhibitors of expression of known genes. Application of antisense oligonucleotides that specifically suppress translation of a given mRNA are capable of causing aberrant biomineralization, thereby revealing, at least in part, a likely function of the protein and gene under investigation. We have applied this approach to study the possible function(s) of the SM30 family of proteins, which are found in spicules, teeth, spines, and tests of Strongylocentrotus purpuratus as well as other euechinoid sea urchins. It is possible using the anti-SM30 morpholino-oligonucleotides (MO's) to reduce the level of these proteins to very low levels, yet the development of skeletal spicules in the embryo shows little or no aberration. This surprising result requires re-thinking about the role of these, and possibly other occluded matrix proteins.
Collapse
Affiliation(s)
- Fred Wilt
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, United States.
| | | | | | | |
Collapse
|
86
|
Ettensohn CA. Encoding anatomy: Developmental gene regulatory networks and morphogenesis. Genesis 2013; 51:383-409. [PMID: 23436627 DOI: 10.1002/dvg.22380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh; Pennsylvania
| |
Collapse
|
87
|
Morino Y, Koga H, Tachibana K, Shoguchi E, Kiyomoto M, Wada H. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae. Evol Dev 2012; 14:428-36. [PMID: 22947316 DOI: 10.1111/j.1525-142x.2012.00563.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The evolution of the echinoderm larval skeleton was examined from the aspect of interactions between skeletogenic mesenchyme cells and surrounding epithelium. We focused on vascular endothelial growth factor (VEGF) signaling, which was reported to be essential for skeletogenesis in sea urchin larvae. Here, we examined the expression patterns of vegf and vegfr in starfish and brittle stars. During starfish embryogenesis, no expression of either vegfr or vegf was detected, which contrast with previous reports on the expression of starfish homologs of sea urchin skeletogenic genes, including Ets, Tbr, and Dri. In later stages, when adult skeletogenesis commenced, vegfr and vegf expression were upregulated in skeletogenic cells and in the adjacent epidermis, respectively. These expression patterns suggest that heterochronic activation of VEGF signaling is one of the key molecular evolutionary steps in the evolution of the larval skeleton. The absence of vegf or vegfr expression during early embryogenesis in starfish suggests that the evolution of the larval skeleton requires distinct evolutionary changes, both in mesoderm cells (activation of vegfr expression) and in epidermal cells (activation of vegf expression). In brittle stars, which have well-organized skeletons like the sea urchin, vegfr and vegf were expressed in the skeletogenic mesenchyme and the overlying epidermis, respectively, in the same manner as in sea urchins. Therefore, the distinct activation of vegfr and vegf may have occurred in two lineages, sea urchins and brittle stars.
Collapse
Affiliation(s)
- Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 305-8572, Japan.
| | | | | | | | | | | |
Collapse
|
88
|
Jaeger J, Irons D, Monk N. The inheritance of process: a dynamical systems approach. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:591-612. [PMID: 23060018 DOI: 10.1002/jez.b.22468] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 06/12/2012] [Accepted: 07/01/2012] [Indexed: 11/11/2022]
Abstract
A central unresolved problem of evolutionary biology concerns the way in which evolution at the genotypic level relates to the evolution of phenotypes. This genotype-phenotype map involves developmental and physiological processes, which are complex and not well understood. These processes co-determine the rate and direction of adaptive change by shaping the distribution of phenotypic variability on which selection can act. In this study, we argue-expanding on earlier ideas by Goodwin, Oster, and Alberch-that an explicit treatment of this map in terms of dynamical systems theory can provide an integrated understanding of evolution and development. We describe a conceptual framework, which demonstrates how development determines the probability of possible phenotypic transitions-and hence the evolvability of a biological system. We use a simple conceptual model to illustrate how the regulatory dynamics of the genotype-phenotype map can be passed on from generation to generation, and how heredity itself can be treated as a dynamic process. Our model yields explanations for punctuated evolutionary dynamics, the difference between micro- and macroevolution, and for the role of the environment in major phenotypic transitions. We propose a quantitative research program in evolutionary developmental systems biology-combining experimental methods with mathematical modeling-which aims at elaborating our conceptual framework by applying it to a wide range of evolving developmental systems. This requires a large and sustained effort, which we believe is justified by the significant potential benefits of an extended evolutionary theory that uses dynamic molecular genetic data to reintegrate development and evolution.
Collapse
Affiliation(s)
- Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, Centre de Regulació Genòmica, Universtitat Pompeu Fabra, Barcelona, Spain.
| | | | | |
Collapse
|
89
|
Vaughn R, Garnhart N, Garey JR, Thomas WK, Livingston BT. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii. EvoDevo 2012; 3:19. [PMID: 22938175 PMCID: PMC3492025 DOI: 10.1186/2041-9139-3-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/13/2012] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED BACKGROUND The gastrula stage represents the point in development at which the three primary germ layers diverge. At this point the gene regulatory networks that specify the germ layers are established and the genes that define the differentiated states of the tissues have begun to be activated. These networks have been well-characterized in sea urchins, but not in other echinoderms. Embryos of the brittle star Ophiocoma wendtii share a number of developmental features with sea urchin embryos, including the ingression of mesenchyme cells that give rise to an embryonic skeleton. Notable differences are that no micromeres are formed during cleavage divisions and no pigment cells are formed during development to the pluteus larval stage. More subtle changes in timing of developmental events also occur. To explore the molecular basis for the similarities and differences between these two echinoderms, we have sequenced and characterized the gastrula transcriptome of O. wendtii. METHODS Development of Ophiocoma wendtii embryos was characterized and RNA was isolated from the gastrula stage. A transcriptome data base was generated from this RNA and was analyzed using a variety of methods to identify transcripts expressed and to compare those transcripts to those expressed at the gastrula stage in other organisms. RESULTS Using existing databases, we identified brittle star transcripts that correspond to 3,385 genes, including 1,863 genes shared with the sea urchin Strongylocentrotus purpuratus gastrula transcriptome. We characterized the functional classes of genes present in the transcriptome and compared them to those found in this sea urchin. We then examined those members of the germ-layer specific gene regulatory networks (GRNs) of S. purpuratus that are expressed in the O. wendtii gastrula. Our results indicate that there is a shared 'genetic toolkit' central to the echinoderm gastrula, a key stage in embryonic development, though there are also differences that reflect changes in developmental processes. CONCLUSIONS The brittle star expresses genes representing all functional classes at the gastrula stage. Brittle stars and sea urchins have comparable numbers of each class of genes and share many of the genes expressed at gastrulation. Examination of the brittle star genes in which sea urchin orthologs are utilized in germ layer specification reveals a relatively higher level of conservation of key regulatory components compared to the overall transcriptome. We also identify genes that were either lost or whose temporal expression has diverged from that of sea urchins.
Collapse
Affiliation(s)
- Roy Vaughn
- Department of Biological, Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90815, USA.
| | | | | | | | | |
Collapse
|
90
|
McCauley BS, Wright EP, Exner C, Kitazawa C, Hinman VF. Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms. EvoDevo 2012; 3:17. [PMID: 22877149 PMCID: PMC3482387 DOI: 10.1186/2041-9139-3-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 06/22/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The mechanisms by which the conserved genetic "toolkit" for development generates phenotypic disparity across metazoans is poorly understood. Echinoderm larvae provide a great resource for understanding how developmental novelty arises. The sea urchin pluteus larva is dramatically different from basal echinoderm larval types, which include the auricularia-type larva of its sister taxon, the sea cucumbers, and the sea star bipinnaria larva. In particular, the pluteus has a mesodermally-derived larval skeleton that is not present in sea star larvae or any outgroup taxa. To understand the evolutionary origin of this structure, we examined the molecular development of mesoderm in the sea cucumber, Parastichopus parvimensis. RESULTS By comparing gene expression in sea urchins, sea cucumbers and sea stars, we partially reconstructed the mesodermal regulatory state of the echinoderm ancestor. Surprisingly, we also identified expression of the transcription factor alx1 in a cryptic skeletogenic mesenchyme lineage in P. parvimensis. Orthologs of alx1 are expressed exclusively within the sea urchin skeletogenic mesenchyme, but are not expressed in the mesenchyme of the sea star, which suggests that alx1+ mesenchyme is a synapomorphy of at least sea urchins and sea cucumbers. Perturbation of Alx1 demonstrates that this protein is necessary for the formation of the sea cucumber spicule. Overexpression of the sea star alx1 ortholog in sea urchins is sufficient to induce additional skeleton, indicating that the Alx1 protein has not evolved a new function during the evolution of the larval skeleton. CONCLUSIONS The proposed echinoderm ancestral mesoderm state is highly conserved between the morphologically similar, but evolutionarily distant, auricularia and bipinnaria larvae. However, the auricularia, but not bipinnaria, also develops a simple skelotogenic cell lineage. Our data indicate that the first step in acquiring these novel cell fates was to re-specify the ancestral mesoderm into molecularly distinct territories. These new territories likely consisted of only a few cells with few regulatory differences from the ancestral state, thereby leaving the remaining mesoderm to retain its original function. The new territories were then free to take on a new fate. Partitioning of existing gene networks was a necessary pre-requisite to establish novelty in this system.
Collapse
Affiliation(s)
- Brenna S McCauley
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Erin P Wright
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Cameron Exner
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Chisato Kitazawa
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
91
|
Abstract
Embryonic development is controlled by networks of interacting regulatory genes. The individual linkages of gene regulatory networks (GRNs) are customarily validated by functional cis-regulatory analysis, but an additional approach to validation is to rewire GRN circuitry to test experimentally predictions derived from network structure. Here we use this synthetic method to challenge specific predictions of the sea urchin embryo endomesoderm GRN. Expression vectors generated by in vitro recombination of exogenous sequences into BACs were used to cause elements of a nonskeletogenic mesoderm GRN to be deployed in skeletogenic cells and to detect their effects. The result of reengineering the regulatory circuitry in this way was to divert the developmental program of these cells from skeletogenesis to pigment cell formation, confirming a direct prediction of the GRN. In addition, the experiment revealed previously undetected cryptic repression functions.
Collapse
|
92
|
Monteiro A. Gene regulatory networks reused to build novel traits: co-option of an eye-related gene regulatory network in eye-like organs and red wing patches on insect wings is suggested by optix expression. Bioessays 2012; 34:181-6. [PMID: 22223407 DOI: 10.1002/bies.201100160] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Co-option of the eye developmental gene regulatory network may have led to the appearance of novel functional traits on the wings of flies and butterflies. The first trait is a recently described wing organ in a species of extinct midge resembling the outer layers of the midge's own compound eye. The second trait is red pigment patches on Heliconius butterfly wings connected to the expression of an eye selector gene, optix. These examples, as well as others, are discussed regarding the type of empirical evidence and burden of proof that have been used to infer gene network co-option underlying the origin of novel traits. A conceptual framework describing increasing confidence in inference of network co-option is proposed. Novel research directions to facilitate inference of network co-option are also highlighted, especially in cases where the pre-existent and novel traits do not resemble each other.
Collapse
Affiliation(s)
- Antónia Monteiro
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
93
|
Lyons DC, Kaltenbach SL, McClay DR. Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:231-52. [PMID: 23801438 DOI: 10.1002/wdev.18] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastrulation in the sea urchin begins with ingression of the primary mesenchyme cells (PMCs) at the vegetal pole of the embryo. After entering the blastocoel the PMCs migrate, form a syncitium, and synthesize the skeleton of the embryo. Several hours after the PMCs ingress the vegetal plate buckles to initiate invagination of the archenteron. That morphogenetic process occurs in several steps. The nonskeletogenic cells produce the initial inbending of the vegetal plate. Endoderm cells then rearrange and extend the length of the gut across the blastocoel to a target near the animal pole. Finally, cells that will form part of the midgut and hindgut are added to complete gastrulation. Later, the stomodeum invaginates from the oral ectoderm and fuses with the foregut to complete the archenteron. In advance of, and during these morphogenetic events, an increasingly complex input of transcription factors controls the specification and the cell biological events that conduct the gastrulation movements.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Department of Biology, French Family Science Center, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
94
|
Rafiq K, Cheers MS, Ettensohn CA. The genomic regulatory control of skeletal morphogenesis in the sea urchin. Development 2011; 139:579-90. [PMID: 22190640 DOI: 10.1242/dev.073049] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A central challenge of developmental and evolutionary biology is to understand how anatomy is encoded in the genome. Elucidating the genetic mechanisms that control the development of specific anatomical features will require the analysis of model morphogenetic processes and an integration of biological information at genomic, cellular and tissue levels. The formation of the endoskeleton of the sea urchin embryo is a powerful experimental system for developing such an integrated view of the genomic regulatory control of morphogenesis. The dynamic cellular behaviors that underlie skeletogenesis are well understood and a complex transcriptional gene regulatory network (GRN) that underlies the specification of embryonic skeletogenic cells (primary mesenchyme cells, PMCs) has recently been elucidated. Here, we link the PMC specification GRN to genes that directly control skeletal morphogenesis. We identify new gene products that play a proximate role in skeletal morphogenesis and uncover transcriptional regulatory inputs into many of these genes. Our work extends the importance of the PMC GRN as a model developmental GRN and establishes a unique picture of the genomic regulatory control of a major morphogenetic process. Furthermore, because echinoderms exhibit diverse programs of skeletal development, the newly expanded sea urchin skeletogenic GRN will provide a foundation for comparative studies that explore the relationship between GRN evolution and morphological evolution.
Collapse
Affiliation(s)
- Kiran Rafiq
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
95
|
Damle S, Davidson EH. Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus. Dev Biol 2011; 357:505-17. [PMID: 21723273 PMCID: PMC3164750 DOI: 10.1016/j.ydbio.2011.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 11/28/2022]
Abstract
Deployment of the gene-regulatory network (GRN) responsible for skeletogenesis in the embryo of the sea urchin Strongylocentrotus purpuratus is restricted to the large micromere lineage by a double negative regulatory gate. The gate consists of a GRN subcircuit composed of the pmar1 and hesC genes, which encode repressors and are wired in tandem, plus a set of target regulatory genes under hesC control. The skeletogenic cell state is specified initially by micromere-specific expression of these regulatory genes, viz. alx1, ets1, tbrain and tel, plus the gene encoding the Notch ligand Delta. Here we use a recently developed high throughput methodology for experimental cis-regulatory analysis to elucidate the genomic regulatory system controlling alx1 expression in time and embryonic space. The results entirely confirm the double negative gate control system at the cis-regulatory level, including definition of the functional HesC target sites, and add the crucial new information that the drivers of alx1 expression are initially Ets1, and then Alx1 itself plus Ets1. Cis-regulatory analysis demonstrates that these inputs quantitatively account for the magnitude of alx1 expression. Furthermore, the Alx1 gene product not only performs an auto-regulatory role, promoting a fast rise in alx1 expression, but also, when at high levels, it behaves as an auto-repressor. A synthetic experiment indicates that this behavior is probably due to dimerization. In summary, the results we report provide the sequence level basis for control of alx1 spatial expression by the double negative gate GRN architecture, and explain the rising, then falling temporal expression profile of the alx1 gene in terms of its auto-regulatory genetic wiring.
Collapse
Affiliation(s)
- Sagar Damle
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eric H. Davidson
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
96
|
de-Leon SBT. The conserved role and divergent regulation of foxa, a pan-eumetazoan developmental regulatory gene. Dev Biol 2011; 357:21-6. [PMID: 21130759 PMCID: PMC3074024 DOI: 10.1016/j.ydbio.2010.11.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/15/2010] [Accepted: 11/24/2010] [Indexed: 11/23/2022]
Abstract
Foxa is a forkhead transcription factor that is expressed in the endoderm lineage across metazoans. Orthologs of foxa are expressed in cells that intercalate, polarize, and form tight junctions in the digestive tracts of the mouse, the sea urchin, and the nematode and in the chordate notochord. The loss of foxa expression eliminates these morphogenetic processes. The remarkable similarity in foxa phenotypes in these diverse organisms raises the following questions: why is the developmental role of Foxa so highly conserved? Is foxa transcriptional regulation as conserved as its developmental role? Comparison of the regulation of foxa orthologs in sea urchin and in Caenorhabditis elegans shows that foxa transcriptional regulation has diverged significantly between these two organisms, particularly in the cells that contribute to the C. elegans pharynx formation. We suggest that the similarity of foxa phenotype is due to its role in an ancestral gene regulatory network that controlled intercalation followed by mesenchymal-to-epithelial transition. foxa transcriptional regulation had evolved to support the developmental program in each species so foxa would play its role controlling morphogenesis at the necessary embryonic address.
Collapse
|
97
|
Davidson EH. Evolutionary bioscience as regulatory systems biology. Dev Biol 2011; 357:35-40. [PMID: 21320483 PMCID: PMC3135751 DOI: 10.1016/j.ydbio.2011.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/02/2011] [Accepted: 02/06/2011] [Indexed: 01/14/2023]
Abstract
At present several entirely different explanatory approaches compete to illuminate the mechanisms by which animal body plans have evolved. Their respective relevance is briefly considered here in the light of modern knowledge of genomes and the regulatory processes by which development is controlled. Just as development is a system property of the regulatory genome, causal explanation of evolutionary change in developmental process must be considered at a system level. Here I enumerate some mechanistic consequences that follow from the conclusion that evolution of the body plan has occurred by alteration of the structure of developmental gene regulatory networks. The hierarchy and multiple additional design features of these networks act to produce Boolean regulatory state specification functions at upstream phases of development of the body plan. These are created by the logic outputs of network subcircuits, and in modern animals these outputs are impervious to continuous adaptive variation unlike genes operating more peripherally in the network.
Collapse
Affiliation(s)
- Eric H Davidson
- Division of Biology, California Institute of Technology, Pasadena, 91125, USA.
| |
Collapse
|
98
|
Abstract
Embryos of the echinoderms, especially those of sea urchins and sea stars, have been studied as model organisms for over 100 years. The simplicity of their early development, and the ease of experimentally perturbing this development, provides an excellent platform for mechanistic studies of cell specification and morphogenesis. As a result, echinoderms have contributed significantly to our understanding of many developmental mechanisms, including those that govern the structure and design of gene regulatory networks, those that direct cell lineage specification, and those that regulate the dynamic morphogenetic events that shape the early embryo.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
99
|
Transphyletic conservation of developmental regulatory state in animal evolution. Proc Natl Acad Sci U S A 2011; 108:14186-91. [PMID: 21844364 DOI: 10.1073/pnas.1109037108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific regulatory states, i.e., sets of expressed transcription factors, define the gene expression capabilities of cells in animal development. Here we explore the functional significance of an unprecedented example of regulatory state conservation from the cnidarian Nematostella to Drosophila, sea urchin, fish, and mammals. Our probe is a deeply conserved cis-regulatory DNA module of the SRY-box B2 (soxB2), recognizable at the sequence level across many phyla. Transphyletic cis-regulatory DNA transfer experiments reveal that the plesiomorphic control function of this module may have been to respond to a regulatory state associated with neuronal differentiation. By introducing expression constructs driven by this module from any phyletic source into the genomes of diverse developing animals, we discover that the regulatory state to which it responds is used at different levels of the neurogenic developmental process, including patterning and development of the vertebrate forebrain and neurogenesis in the Drosophila optic lobe and brain. The regulatory state recognized by the conserved DNA sequence may have been redeployed to different levels of the developmental regulatory program during evolution of complex central nervous systems.
Collapse
|
100
|
Peter IS, Davidson EH. Evolution of gene regulatory networks controlling body plan development. Cell 2011; 144:970-85. [PMID: 21414487 PMCID: PMC3076009 DOI: 10.1016/j.cell.2011.02.017] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/16/2010] [Accepted: 02/10/2011] [Indexed: 11/29/2022]
Abstract
Evolutionary change in animal morphology results from alteration of the functional organization of the gene regulatory networks (GRNs) that control development of the body plan. A major mechanism of evolutionary change in GRN structure is alteration of cis-regulatory modules that determine regulatory gene expression. Here we consider the causes and consequences of GRN evolution. Although some GRN subcircuits are of great antiquity, other aspects are highly flexible and thus in any given genome more recent. This mosaic view of the evolution of GRN structure explains major aspects of evolutionary process, such as hierarchical phylogeny and discontinuities of paleontological change.
Collapse
Affiliation(s)
- Isabelle S. Peter
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eric H. Davidson
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|