51
|
Li W, Wang N, Li M, Gong H, Liao X, Yang X, Zhang T. Protein kinase Cα inhibits myocardin-induced cardiomyocyte hypertrophy through the promotion of myocardin phosphorylation. Acta Biochim Biophys Sin (Shanghai) 2015. [PMID: 26206583 DOI: 10.1093/abbs/gmv067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myocardin plays a key role in the development of cardiac hypertrophy. However, the upstream signals that control the stability and transactivity of myocardin remain to be fully understood. The expression of protein kinase Cα (PKCα) also induces cardiac hypertrophy. An essential downstream molecule of PKCα, extracellular signal-regulated kinase 1/2, was reported to negatively regulate the activities of myocardin. But, the effect of cooperation between PKCα and myocardin and the potential molecular mechanism by which PKCα regulates myocardin-mediated cardiac hypertrophy are unclear. In this study, a luciferase assay was performed using H9C2 cells transfected with expression plasmids for PKCα and myocardin. Surprisingly, the results showed that PKCα inhibited the transcriptional activity of myocardin. PKCα inhibited myocardin-induced cardiomyocyte hypertrophy, demonstrated by the decrease in cell surface area and fetal gene expression, in cardiomyocyte cells overexpressing PKCα and myocardin. The potential mechanism underlying the inhibition effect of PKCα on the function of myocardin is further explored. PKCα directly promoted the basal phosphorylation of endogenous myocardin at serine and threonine residues. In myocardin-overexpressing cardiomyocyte cells, PKCα induced the excessive phosphorylation of myocardin, resulting in the degradation of myocardin and a transcriptional suppression of hypertrophic genes. These results demonstrated that PKCα inhibits myocardin-induced cardiomyocyte hypertrophy through the promotion of myocardin phosphorylation.
Collapse
Affiliation(s)
- Weizong Li
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nan Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Man Li
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huiqin Gong
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinghua Liao
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China Department of Biochemistry, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaolong Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tongcun Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China Department of Biochemistry, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
52
|
Lee S, Lim S, Ham O, Lee SY, Lee CY, Park JH, Lee J, Seo HH, Yun I, Han SM, Cha MJ, Choi E, Hwang KC. ROS-mediated bidirectional regulation of miRNA results in distinct pathologic heart conditions. Biochem Biophys Res Commun 2015; 465:349-55. [PMID: 26253469 DOI: 10.1016/j.bbrc.2015.07.160] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
Under distinct pathological heart conditions, the expression of a single miRNA can display completely opposite patterns. However, the mechanism underlying the bidirectional regulation of a single miRNA and the clinical implications of this regulation remain largely unknown. To address this issue, we examined the regulation of miR-1, one of the most abundant miRNAs in the heart, during cardiac hypertrophy and ischemia/reperfusion (I/R). Our data indicated that different magnitudes and chronicities of ROS levels in cardiomyocytes resulted in differential expression of miR-1, subsequently altering the expression of myocardin. In animal models, the administration of a miR-1 mimic attenuated cardiac hypertrophy by suppressing the transverse aortic constriction-induced increase in myocardin expression, whereas the administration of anti-miR-1 ameliorated I/R-induced cardiac apoptosis and deterioration of heart function. Our findings indicated that a pathologic stimulus such as ROS can bidirectionally alter the expression of miRNA to contribute to the development of pathological conditions exhibiting distinct phenotypes and that the meticulous adjustment of the pathological miRNA levels is required to improve clinical outcomes.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, South Korea; Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Soyeon Lim
- Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, Seoul, South Korea
| | - Onju Ham
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Se-Yeon Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Chang Yeon Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, South Korea
| | - Jun-Hee Park
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, South Korea
| | - Jiyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Hyang-Hee Seo
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Ina Yun
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Sun M Han
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, South Korea
| | - Eunhyun Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, South Korea; Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung, South Korea; Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea.
| |
Collapse
|
53
|
Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation. Genome Biol 2015; 16:122. [PMID: 26056000 PMCID: PMC4480509 DOI: 10.1186/s13059-015-0683-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. RESULTS We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. CONCLUSIONS Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.
Collapse
|
54
|
Myocardin is required for maintenance of vascular and visceral smooth muscle homeostasis during postnatal development. Proc Natl Acad Sci U S A 2015; 112:4447-52. [PMID: 25805819 DOI: 10.1073/pnas.1420363112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myocardin is a muscle-restricted transcriptional coactivator that activates a serum response factor (SRF)-dependent gene program required for cardiogenesis and embryonic survival. To identify myocardin-dependent functions in smooth muscle cells (SMCs) during postnatal development, mice harboring a SMC-restricted conditional, inducible Myocd null mutation were generated and characterized. Tamoxifen-treated SMMHC-Cre(ERT2)/Myocd(F/F) conditional mutant mice die within 6 mo of Myocd gene deletion, exhibiting profound derangements in the structure of great arteries as well as the gastrointestinal and genitourinary tracts. Conditional mutant mice develop arterial aneurysms, dissection, and rupture, recapitulating pathology observed in heritable forms of thoracic aortic aneurysm and dissection (TAAD). SMCs populating arteries of Myocd conditional mutant mice modulate their phenotype by down-regulation of SMC contractile genes and up-regulation of extracellular matrix proteins. Surprisingly, this is accompanied by SMC autonomous activation of endoplasmic reticulum (ER) stress and autophagy, which over time progress to programmed cell death. Consistent with these observations, Myocd conditional mutant mice develop remarkable dilation of the stomach, small intestine, bladder, and ureters attributable to the loss of visceral SMCs disrupting the muscularis mucosa. Taken together, these data demonstrate that during postnatal development, myocardin plays a unique, and important, role required for maintenance and homeostasis of the vasculature, gastrointestinal, and genitourinary tracts. The loss of myocardin in SMCs triggers ER stress and autophagy, which transitions to apoptosis, revealing evolutionary conservation of myocardin function in SMCs and cardiomyocytes.
Collapse
|
55
|
Abstract
Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
56
|
Espinoza-Lewis RA, Wang DZ. Generation of a Cre knock-in into the Myocardin locus to mark early cardiac and smooth muscle cell lineages. Genesis 2014; 52:879-87. [PMID: 25174608 DOI: 10.1002/dvg.22819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/10/2022]
Abstract
The molecular events that control cell fate determination in cardiac and smooth muscle lineages remain elusive. Myocardin is an important transcription cofactor that regulates cell proliferation, differentiation, and development of the cardiovascular system. Here, we describe the construction and analysis of a dual Cre and enhanced green fluorescent protein (EGFP) knock-in mouse line in the Myocardin locus (Myocd(KI)). We report that the Myocd(KI) allele expresses the Cre enzyme and the EGFP in a manner that recapitulates endogenous Myocardin expression patterns. We show that Myocardin expression marks the earliest cardiac and smooth muscle lineages. Furthermore, this genetic model allows for the identification of a cardiac cell population, which maintains both Myocardin and Isl-1 expression, in E7.75-E8.0 embryos, highlighting the contribution and merging of the first and second heart fields during cardiogenesis. Therefore, the Myocd(KI) allele is a unique tool for studying cardiovascular development and lineage-specific gene manipulation.
Collapse
Affiliation(s)
- Ramón A Espinoza-Lewis
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
57
|
Liao XH, Dong X, Wu C, Wang T, Liu F, Zhou J, Zhang TC. Human cytomegalovirus immediate early protein 2 enhances myocardin-mediated survival of rat aortic smooth muscle cells. Virus Res 2014; 192:85-91. [PMID: 25157858 DOI: 10.1016/j.virusres.2014.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/15/2014] [Accepted: 08/17/2014] [Indexed: 11/24/2022]
Abstract
Human cytomegalovirus (HCMV) may increase the incidence of restenosis and predispose to atherosclerosis. The lesions of restenosis and atherosclerosis often contain smooth muscle cells (SMCs) with high rates of proliferation and apoptosis. One of the immediate early (IE) gene products of HCMV-IE2 affects transcriptional activities of some cellular factors in SMCs, including myocardin. In this study, we studied the effects of IE2 and myocardin on PI3K pathway inducer wortmannin induced apoptosis in rat aortic SMCs. We show that the transcriptional activity of myocardin on Mcl-1 promoter is enhanced by co-expression of HCMV IE2 in rat aortic SMCs; and the expressions of mRNA and protein of antiapoptotic genes-Mcl-1 and Bcl-2 are upregulated by IE2 alone and co-transfection of myocardin and IE2, but decreased by myocardin-specific shRNA in rat aortic SMCs. We further demonstrate that co-expression of myocardin and HCMV IE2 declines apoptotic cell numbers and caspase-3 activities induced by serum starvation plus wortmannin in rat aortic SMCs. The results suggest that HCMV IE2 enhances myocardin-mediated survival of rat aortic SMCs under serum deprivation and PI3-kinase inhibition, partly via activation of Mcl-1's antiapoptosis effect. Our study connects HCMV IE2 to myocardin-induced transcriptional program for rat aortic SMCs survival and proliferation, involving in HCMV related restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Xing-Hua Liao
- Institute of Biological Medicine, and Medical School, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Xiumei Dong
- Institute of Biological Medicine, and Medical School, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Chenyu Wu
- Institute of Biological Medicine, and Medical School, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Tao Wang
- Institute of Biological Medicine, and Medical School, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Jun Zhou
- Institute of Biological Medicine, and Medical School, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| | - Tong-Cun Zhang
- Institute of Biological Medicine, and Medical School, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China; Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
58
|
Smad4 regulates ureteral smooth muscle cell differentiation during mouse embryogenesis. PLoS One 2014; 9:e104503. [PMID: 25127126 PMCID: PMC4134214 DOI: 10.1371/journal.pone.0104503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/14/2014] [Indexed: 12/03/2022] Open
Abstract
Proper formation of ureteral smooth muscle cells (SMCs) during embryogenesis is essential for ureter peristalsis that propels urine from the kidney to the bladder in mammals. Currently the molecular factors that regulate differentiation of ureteral mesenchymal cells into SMCs are incompletely understood. A recent study has reported that Smad4 deficiency reduces the number of ureteral SMCs. However, its precise role in the ureteral smooth muscle development remains largely unknown. Here, we used Tbx18:Cre knock-in mouse line to delete Smad4 to examine its requirement in the development of ureteral mesenchyme and SMC differentiation. We found that mice with specific deletion of Smad4 in Tbx18-expressing ureteral mesenchyme exhibited hydroureter and hydronephrosis at embryonic day (E) 16.5, and the mutant mesenchymal cells failed to differentiate into SMCs with increased apoptosis and decreased proliferation. Molecular markers for SMCs including alpha smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SM-MHC) were absent in the mutant ureters. Moreover, disruption of Smad4 significantly reduced the expression of genes, including Sox9, Tbx18 and Myocardin associated with SMC differentiation. These findings suggest that Smad4 is essential for initiating the SMC differentiation program during ureter development.
Collapse
|
59
|
Zhang J, Ho JCY, Chan YC, Lian Q, Siu CW, Tse HF. Overexpression of myocardin induces partial transdifferentiation of human-induced pluripotent stem cell-derived mesenchymal stem cells into cardiomyocytes. Physiol Rep 2014; 2:e00237. [PMID: 24744906 PMCID: PMC3966242 DOI: 10.1002/phy2.237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from human‐induced pluripotent stem cells (iPSCs) show superior proliferative capacity and therapeutic potential than those derived from bone marrow (BM). Ectopic expression of myocardin further improved the therapeutic potential of BM‐MSCs in a mouse model of myocardial infarction. The aim was of this study was to assess whether forced myocardin expression in iPSC‐MSCs could further enhance their transdifferentiation to cardiomyocytes and improve their electrophysiological properties for cardiac regeneration. Myocardin was overexpressed in iPSC‐MSCs using viral vectors (adenovirus or lentivirus). The expression of smooth muscle cell and cardiomyocyte markers, and ion channel genes was examined by reverse transcription‐polymerase chain reaction (RT‐PCR), immunofluorescence staining and patch clamp. The conduction velocity of the neonatal rat ventricular cardiomyocytes cocultured with iPSC‐MSC monolayer was measured by multielectrode arrays recording plate. Myocardin induced the expression of α‐MHC, GATA4, α‐actinin, cardiac MHC, MYH11, calponin, and SM α‐actin, but not cTnT, β‐MHC, and MLC2v in iPSC‐MSCs. Overexpression of myocardin in iPSC‐MSC enhanced the expression of SCN9A and CACNA1C, but reduced that of KCa3.1 and Kir2.2 in iPSC‐MSCs. Moreover, BKCa, IKir, ICl, Ito and INa.TTX were detected in iPSC‐MSC with myocardin overexpression; while only BKCa, IKir, ICl, IKDR, and IKCa were noted in iPSC‐MSC transfected with green florescence protein. Furthermore, the conduction velocity of iPSC‐MSC was significantly increased after myocardin overexpression. Overexpression of myocardin in iPSC‐MSCs resulted in partial transdifferentiation into cardiomyocytes phenotype and improved the electrical conduction during integration with mature cardiomyocytes. Forced myocardin expression in human‐induced pluripotent stem cell (hiPSC)‐derived mesenchymal stem cells lead to partial transdifferentiation into cardiomyocytes and smooth muscle cells phenotypes through modification in ion channel expression profile and electrical conduction velocity.
Collapse
Affiliation(s)
- Jiao Zhang
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| | - Jenny Chung-Yee Ho
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ; Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Chi Chan
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| | - Qizhou Lian
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ; Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China ; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chung-Wah Siu
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ; Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ; Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
60
|
Transcriptional networks regulating the costamere, sarcomere, and other cytoskeletal structures in striated muscle. Cell Mol Life Sci 2013; 71:1641-56. [PMID: 24218011 DOI: 10.1007/s00018-013-1512-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
Abstract
Structural abnormalities in striated muscle have been observed in numerous transcription factor gain- and loss-of-function phenotypes in animal and cell culture model systems, indicating that transcription is important in regulating the cytoarchitecture. While most characterized cytoarchitectural defects are largely indistinguishable by histological and ultrastructural criteria, analysis of dysregulated gene expression in each mutant phenotype has yielded valuable information regarding specific structural gene programs that may be uniquely controlled by each of these transcription factors. Linking the formation and maintenance of each subcellular structure or subset of proteins within a cytoskeletal compartment to an overlapping but distinct transcription factor cohort may enable striated muscle to control cytoarchitectural function in an efficient and specific manner. Here we summarize the available evidence that connects transcription factors, those with established roles in striated muscle such as MEF2 and SRF, as well as other non-muscle transcription factors, to the regulation of a defined cytoskeletal structure. The notion that genes encoding proteins localized to the same subcellular compartment are coordinately transcriptionally regulated may prompt rationally designed approaches that target specific transcription factor pathways to correct structural defects in muscle disease.
Collapse
|
61
|
Wystub K, Besser J, Bachmann A, Boettger T, Braun T. miR-1/133a clusters cooperatively specify the cardiomyogenic lineage by adjustment of myocardin levels during embryonic heart development. PLoS Genet 2013; 9:e1003793. [PMID: 24068960 PMCID: PMC3777988 DOI: 10.1371/journal.pgen.1003793] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022] Open
Abstract
miRNAs are small RNAs directing many developmental processes by posttranscriptional regulation of protein-coding genes. We uncovered a new role for miR-1-1/133a-2 and miR-1-2/133a-1 clusters in the specification of embryonic cardiomyocytes allowing transition from an immature state characterized by expression of smooth muscle (SM) genes to a more mature fetal phenotype. Concomitant knockout of miR-1-1/133a-2 and miR-1-2/133a-1 released suppression of the transcriptional co-activator myocardin, a major regulator of SM gene expression, but not of its binding partner SRF. Overexpression of myocardin in the embryonic heart essentially recapitulated the miR-1/133a mutant phenotype at the molecular level, arresting embryonic cardiomyocytes in an immature state. Interestingly, the majority of postulated miR-1/133a targets was not altered in double mutant mice, indicating that the ability of miR-1/133a to suppress target molecules strongly depends on the cellular context. Finally, we show that myocardin positively regulates expression of miR-1/133a, thus constituting a negative feedback loop that is essential for early cardiac development.
Collapse
Affiliation(s)
- Katharina Wystub
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Johannes Besser
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Angela Bachmann
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Thomas Boettger
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| | - Thomas Braun
- Max-Planck-Institut für Herz- und Lungenforschung, Department of Cardiac Development and Remodelling, Bad Nauheim, Germany
| |
Collapse
|
62
|
Fu JD, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, Delgado-Olguin P, Ding S, Bruneau BG, Srivastava D. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state. Stem Cell Reports 2013; 1:235-47. [PMID: 24319660 PMCID: PMC3849259 DOI: 10.1016/j.stemcr.2013.07.005] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 02/09/2023] Open
Abstract
Direct reprogramming of adult somatic cells into alternative cell types has been shown for several lineages. We previously showed that GATA4, MEF2C, and TBX5 (GMT) directly reprogrammed nonmyocyte mouse heart cells into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. However, GMT alone appears insufficient in human fibroblasts, at least in vitro. Here, we show that GMT plus ESRRG and MESP1 induced global cardiac gene-expression and phenotypic shifts in human fibroblasts derived from embryonic stem cells, fetal heart, and neonatal skin. Adding Myocardin and ZFPM2 enhanced reprogramming, including sarcomere formation, calcium transients, and action potentials, although the efficiency remained low. Human iCM reprogramming was epigenetically stable. Furthermore, we found that transforming growth factor β signaling was important for, and improved the efficiency of, human iCM reprogramming. These findings demonstrate that human fibroblasts can be directly reprogrammed toward the cardiac lineage, and lay the foundation for future refinements in vitro and in vivo. Human fibroblasts can be directly induced toward a CM-like state by defined factors Reprogramming of fibroblasts toward a CM state is epigenetically stable Human and mouse in vitro iCMs display a comparable gene-expression shift TGF-β signaling is important for human iCM reprogramming
Collapse
Affiliation(s)
- Ji-Dong Fu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA ; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA ; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA ; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Madonna R, Taylor DA, Geng YJ, De Caterina R, Shelat H, Perin EC, Willerson JT. Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. Circ Res 2013; 113:902-14. [PMID: 23780385 DOI: 10.1161/circresaha.113.301690] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
RATIONALE The number and function of stem cells decline with aging, reducing the ability of stem cells to contribute to endogenous repair processes. The repair capacity of stem cells in older individuals may be improved by genetically reprogramming the stem cells to exhibit delayed senescence and enhanced regenerative properties. OBJECTIVE We examined whether the overexpression of myocardin (MYOCD) and telomerase reverse transcriptase (TERT) enhanced the survival, growth, and myogenic differentiation of mesenchymal stromal cells (MSCs) isolated from adipose or bone marrow tissues of aged mice. We also examined the therapeutic efficacy of transplanted MSCs overexpressing MYOCD and TERT in a murine model of hindlimb ischemia. METHODS AND RESULTS MSCs from adipose or bone marrow tissues of young (1 month old) and aged (12 months old) male C57BL/6 and apolipoprotein E-null mice were transiently transduced with lentiviral vectors encoding TERT, MYOCD, or both TERT and MYOCD. Flow cytometry and bromodeoxyuridine cell proliferation assays showed that transduction with TERT and, to a lesser extent, MYOCD, increased MSC viability and proliferation. In colony-forming assays, MSCs overexpressing TERT and MYOCD were more clonogenic than mock-transduced MSCs. Fas-induced apoptosis was inhibited in MSCs overexpressing MYOCD or TERT. When compared with aged mock-transduced MSCs, aged MSCs overexpressing TERT, MYOCD, or both TERT and MYOCD increased myogenic marker expression, blood flow, and arteriogenesis when transplanted into the ischemic hindlimbs of apolipoprotein E-null mice. CONCLUSIONS The delivery of the TERT and MYOCD genes into MSCs may have therapeutic applications for restoring, or rejuvenating, aged MSCs from adipose and bone marrow tissues.
Collapse
|
64
|
Christoforou N, Chellappan M, Adler AF, Kirkton RD, Wu T, Addis RC, Bursac N, Leong KW. Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming. PLoS One 2013; 8:e63577. [PMID: 23704920 PMCID: PMC3660533 DOI: 10.1371/journal.pone.0063577] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/04/2013] [Indexed: 01/14/2023] Open
Abstract
Transient overexpression of defined combinations of master regulator genes can effectively induce cellular reprogramming: the acquisition of an alternative predicted phenotype from a differentiated cell lineage. This can be of particular importance in cardiac regenerative medicine wherein the heart lacks the capacity to heal itself, but simultaneously contains a large pool of fibroblasts. In this study we determined the cardio-inducing capacity of ten transcription factors to actuate cellular reprogramming of mouse embryonic fibroblasts into cardiomyocyte-like cells. Overexpression of transcription factors MYOCD and SRF alone or in conjunction with Mesp1 and SMARCD3 enhanced the basal but necessary cardio-inducing effect of the previously reported GATA4, TBX5, and MEF2C. In particular, combinations of five or seven transcription factors enhanced the activation of cardiac reporter vectors, and induced an upregulation of cardiac-specific genes. Global gene expression analysis also demonstrated a significantly greater cardio-inducing effect when the transcription factors MYOCD and SRF were used. Detection of cross-striated cells was highly dependent on the cell culture conditions and was enhanced by the addition of valproic acid and JAK inhibitor. Although we detected Ca2+ transient oscillations in the reprogrammed cells, we did not detect significant changes in resting membrane potential or spontaneously contracting cells. This study further elucidates the cardio-inducing effect of the transcriptional networks involved in cardiac cellular reprogramming, contributing to the ongoing rational design of a robust protocol required for cardiac regenerative therapies.
Collapse
Affiliation(s)
- Nicolas Christoforou
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Malathi Chellappan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Andrew F. Adler
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Robert D. Kirkton
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Tianyi Wu
- University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Russell C. Addis
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
65
|
Gatti S, Leo C, Gallo S, Sala V, Bucci E, Natale M, Cantarella D, Medico E, Crepaldi T. Gene expression profiling of HGF/Met activation in neonatal mouse heart. Transgenic Res 2012; 22:579-93. [DOI: 10.1007/s11248-012-9667-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/11/2012] [Indexed: 12/15/2022]
|
66
|
Zhou L, Liu Y, Lu L, Lu X, Dixon RAF. Cardiac gene activation analysis in mammalian non-myoblasic cells by Nkx2-5, Tbx5, Gata4 and Myocd. PLoS One 2012; 7:e48028. [PMID: 23144723 PMCID: PMC3483304 DOI: 10.1371/journal.pone.0048028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022] Open
Abstract
Cardiac transcription factors are master regulators during heart development. Some were shown to transdifferentiate tail tip and cardiac fibroblasts into cardiomyocytes. However, recent studies have showed that controversies exist. Potential difference in tail tip and cardiac fibroblast isolation may possibly confound the observations. Moreover, due to the use of a cardiac reporter (Myh6) selection strategy for induced cardiomyocyte enrichment, and the lack of tracking signals for each transcription factors, individual roles of each transcription factors in activating cardiac gene expression in mammalian non-myoblastic cells have never been elucidated. Answers to these questions are an important step toward cardiomyocyte regeneration. Because mouse 10T1/2 fibroblasts are non-myoblastic in nature and can be induced to express genes of all three types of muscle cells, they are an ideal model for the analysis of cardiac and non-cardiac gene activation after induction. We constructed bi-cistronic lentiviral vectors, capable of expressing cardiac transcription factors along with different fluorescent tracking signals. By infecting 10T1/2 fibroblasts with Nkx2-5, Tbx5, Gata4 or Myocd cardiac transcription factor lentivirus alone or different combinations, we found that only Tbx5+Myocd and Tbx5+Gata4+Myocd combinations induced Myh6 and Tnnt2 cardiac marker protein expression. Microarray-based gene ontology analysis revealed that Tbx5 alone activated genes involved in the Wnt receptor signaling pathway and inhibited genes involved in a number of cardiac-related processes. Myocd alone activated genes involved in a number of cardiac-related processes and inhibited genes involved in the Wnt receptor signaling pathway and non-cardiac processes. Gata4 alone inhibited genes involved in non-cardiac processes. Tbx5+Gata4+Myocd was the most effective activator of genes associated with cardiac-related processes. Unlike Tbx5, Gata4, Myocd alone or Tbx5+Myocd, Tbx5+Gata4+Myocd activated the fewest genes associated with non-cardiac processes. Conclusively, Tbx5, Gata4 and Myocd play different roles in cardiac gene activation in mammalian non-myoblastic cells. Tbx5+Gata4+Myocd activates the most cardiac and the least non-cardiac gene expression.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Molecular Cardiology, Texas Heart Institute, Houston, Texas, United States of America
- * E-mail: (LZ); (RD)
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Li Lu
- Department of Biochemistry and Molecular Biology, University of Texas, M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Xinzheng Lu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Richard A. F. Dixon
- Department of Molecular Cardiology, Texas Heart Institute, Houston, Texas, United States of America
- * E-mail: (LZ); (RD)
| |
Collapse
|
67
|
Huang J, Elicker J, Bowens N, Liu X, Cheng L, Cappola TP, Zhu X, Parmacek MS. Myocardin regulates BMP10 expression and is required for heart development. J Clin Invest 2012; 122:3678-91. [PMID: 22996691 DOI: 10.1172/jci63635] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
Abstract
Myocardin is a muscle lineage-restricted transcriptional coactivator that has been shown to transduce extracellular signals to the nucleus required for SMC differentiation. We now report the discovery of a myocardin/BMP10 (where BMP10 indicates bone morphogenetic protein 10) signaling pathway required for cardiac growth, chamber maturation, and embryonic survival. Myocardin-null (Myocd) embryos and embryos harboring a cardiomyocyte-restricted mutation in the Myocd gene exhibited myocardial hypoplasia, defective atrial and ventricular chamber maturation, heart failure, and embryonic lethality. Cardiac hypoplasia was caused by decreased cardiomyocyte proliferation accompanied by a dramatic increase in programmed cell death. Defective chamber maturation and the block in cardiomyocyte proliferation were caused in part by a block in BMP10 signaling. Myocardin transactivated the Bmp10 gene via binding of a serum response factor-myocardin protein complex to a nonconsensus CArG element in the Bmp10 promoter. Expression of p57kip2, a BMP10-regulated cyclin-dependent kinase inhibitor, was induced in Myocd-/- hearts, while BMP10-activated cardiogenic transcription factors, including NKX2.5 and MEF2c, were repressed. Remarkably, when embryonic Myocd-/- hearts were cultured ex vivo in BMP10-conditioned medium, the defects in cardiomyocyte proliferation and p57kip2 expression were rescued. Taken together, these data identify a heretofore undescribed myocardin/BMP10 signaling pathway that regulates cardiomyocyte proliferation and apoptosis in the embryonic heart.
Collapse
Affiliation(s)
- Jianhe Huang
- University of Pennsylvania, Cardiovascular Institute, Department of Medicine, Philadelphia, PA 19104-5159, USA
| | | | | | | | | | | | | | | |
Collapse
|
68
|
In search of novel targets for heart disease: myocardin and myocardin-related transcriptional cofactors. Biochem Res Int 2012; 2012:973723. [PMID: 22666593 PMCID: PMC3362810 DOI: 10.1155/2012/973723] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
Growing evidence suggests that gene-regulatory networks, which are responsible for directing cardiovascular development, are altered under stress conditions in the adult heart. The cardiac gene regulatory network is controlled by cardioenriched transcription factors and multiple-cell-signaling inputs. Transcriptional coactivators also participate in gene-regulatory circuits as the primary targets of both physiological and pathological signals. Here, we focus on the recently discovered myocardin-(MYOCD) related family of transcriptional cofactors (MRTF-A and MRTF-B) which associate with the serum response transcription factor and activate the expression of a variety of target genes involved in cardiac growth and adaptation to stress via overlapping but distinct mechanisms. We discuss the involvement of MYOCD, MRTF-A, and MRTF-B in the development of cardiac dysfunction and to what extent modulation of the expression of these factors in vivo can correlate with cardiac disease outcomes. A close examination of the findings identifies the MYOCD-related transcriptional cofactors as putative therapeutic targets to improve cardiac function in heart failure conditions through distinct context-dependent mechanisms. Nevertheless, we are in support of further research to better understand the precise role of individual MYOCD-related factors in cardiac function and disease, before any therapeutic intervention is to be entertained in preclinical trials.
Collapse
|
69
|
Gurha P, Abreu-Goodger C, Wang T, Ramirez MO, Drumond AL, van Dongen S, Chen Y, Bartonicek N, Enright AJ, Lee B, Kelm RJ, Reddy AK, Taffet GE, Bradley A, Wehrens XH, Entman ML, Rodriguez A. Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation 2012; 125:2751-61. [PMID: 22570371 DOI: 10.1161/circulationaha.111.044354] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Delineating the role of microRNAs (miRNAs) in the posttranscriptional gene regulation offers new insights into how the heart adapts to pathological stress. We developed a knockout of miR-22 in mice and investigated its function in the heart. METHODS AND RESULTS Here, we show that miR-22-deficient mice are impaired in inotropic and lusitropic response to acute stress by dobutamine. Furthermore, the absence of miR-22 sensitized mice to cardiac decompensation and left ventricular dilation after long-term stimulation by pressure overload. Calcium transient analysis revealed reduced sarcoplasmic reticulum Ca(2+) load in association with repressed sarcoplasmic reticulum Ca(2+) ATPase activity in mutant myocytes. Genetic ablation of miR-22 also led to a decrease in cardiac expression levels for Serca2a and muscle-restricted genes encoding proteins in the vicinity of the cardiac Z disk/titin cytoskeleton. These phenotypes were attributed in part to inappropriate repression of serum response factor activity in stressed hearts. Global analysis revealed increased expression of the transcriptional/translational repressor purine-rich element binding protein B, a highly conserved miR-22 target implicated in the negative control of muscle expression. CONCLUSION These data indicate that miR-22 functions as an integrator of Ca(2+) homeostasis and myofibrillar protein content during stress in the heart and shed light on the mechanisms that enhance propensity toward heart failure.
Collapse
Affiliation(s)
- Priyatansh Gurha
- Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX, 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Poon KL, Tan KT, Wei YY, Ng CP, Colman A, Korzh V, Xu XQ. RNA-binding protein RBM24 is required for sarcomere assembly and heart contractility. Cardiovasc Res 2012; 94:418-27. [DOI: 10.1093/cvr/cvs095] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
71
|
Moscoso I, Rodriguez-Barbosa JI, Barallobre-Barreiro J, Anon P, Domenech N. Immortalization of bone marrow-derived porcine mesenchymal stem cells and their differentiation into cells expressing cardiac phenotypic markers. J Tissue Eng Regen Med 2011; 6:655-65. [PMID: 22162515 DOI: 10.1002/term.469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 03/31/2011] [Accepted: 07/05/2011] [Indexed: 11/07/2022]
Abstract
Mesenchymal stem cells (MSCs) may be among the first stem cell types to be utilized in the clinic for cell therapy, because of their ease of isolation and extensive differentiation potential. Using a porcine model, we have established several cell lines from MSCs to facilitate in vitro and in vivo studies of their potential use for cellular therapy. Bone marrow-derived primary MSCs were immortalized using the pRNS-1 plasmid. We obtained four stable immortalized cell lines that exhibited higher proliferative capacities than the parental cells. All four cell lines displayed a common phenotype similar to that of primary mesenchymal cells, characterized by constitutively high expressions of CD90, CD29, CD44, SLA I and CD46, while CD172a, CD106 and CD56 were less expressed. Remarkably, treatment with 5-azacytidine-stimulated porcine MSCs lines to differentiate into cells that were positive for cardiac phenotypic markers, such as α-actin, connexin-43, sarcomeric actin, serca-2 and, to a lesser extent, desmin and troponin-T. These porcine MSC lines will be valuable biological tools for developing strategies for ex vivo expansion and differentiation of MSCs into a specific lineage.
Collapse
Affiliation(s)
- Isabel Moscoso
- Unidad de Investigación, INIBIC-Complejo Universitario Universitario A Coruña, Spain
| | | | | | | | | |
Collapse
|
72
|
Nanda V, Miano JM. Leiomodin 1, a new serum response factor-dependent target gene expressed preferentially in differentiated smooth muscle cells. J Biol Chem 2011; 287:2459-67. [PMID: 22157009 DOI: 10.1074/jbc.m111.302224] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Smooth muscle cell (SMC) differentiation is defined largely by a number of cell-restricted genes governed directly by the serum response factor (SRF)/myocardin (MYOCD) transcriptional switch. Here, we describe a new SRF/MYOCD-dependent, SMC-restricted gene known as Leiomodin 1 (Lmod1). Conventional and quantitative RT-PCRs indicate that Lmod1 mRNA expression is enriched in SMC-containing tissues of the mouse, whereas its two paralogs, Lmod2 and Lmod3, exhibit abundant expression in skeletal and cardiac muscle with very low levels in SMC-containing tissues. Western blotting and immunostaining of various adult and embryonic mouse tissues further confirm SMC-specific expression of the LMOD1 protein. Comparative genomic analysis of the human LMOD1 and LMOD2 genes with their respective mouse and rat orthologs shows high conservation between the three exons and several noncoding sequences, including the immediate 5' promoter region. Two conserved CArG boxes are present in both the LMOD1 and LMOD2 promoter regions, although LMOD1 displays much higher promoter activity and is more responsive to SRF/MYOCD stimulation. Gel shift assays demonstrate clear binding between SRF and the two CArG boxes in human LMOD1. Although the CArG boxes in LMOD1 and LMOD2 are similar, only LMOD1 displays SRF or MYOCD-dependent activation. Transgenic mouse studies reveal wild type LMOD1 promoter activity in cardiac and vascular SMC. Such activity is abolished upon mutation of both CArG boxes. Collectively, these data demonstrate that Lmod1 is a new SMC-restricted SRF/MYOCD target gene.
Collapse
Affiliation(s)
- Vivek Nanda
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
73
|
Torrado M, Iglesias R, Centeno A, López E, Mikhailov AT. Targeted gene-silencing reveals the functional significance of myocardin signaling in the failing heart. PLoS One 2011; 6:e26392. [PMID: 22028870 PMCID: PMC3196561 DOI: 10.1371/journal.pone.0026392] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/26/2011] [Indexed: 12/20/2022] Open
Abstract
Background Myocardin (MYOCD), a potent transcriptional coactivator of smooth muscle (SM) and cardiac genes, is upregulated in failing myocardium in animal models and human end-stage heart failure (HF). However, the molecular and functional consequences of myocd upregulation in HF are still unclear. Methodology/Principal Findings The goal of the present study was to investigate if targeted inhibition of upregulated expression of myocd could influence failing heart gene expression and function. To this end, we used the doxorubicin (Dox)-induced diastolic HF (DHF) model in neonatal piglets, in which, as we show, not only myocd but also myocd-dependent SM-marker genes are highly activated in failing left ventricular (LV) myocardium. In this model, intra-myocardial delivery of short-hairpin RNAs, designed to target myocd variants expressed in porcine heart, leads on day 2 post-delivery to: (1) a decrease in the activated expression of myocd and myocd-dependent SM-marker genes in failing myocardium to levels seen in healthy control animals, (2) amelioration of impaired diastolic dysfunction, and (3) higher survival rates of DHF piglets. The posterior restoration of elevated myocd expression (on day 7 post-delivery) led to overexpression of myocd-dependent SM-marker genes in failing LV-myocardium that was associated with a return to altered diastolic function. Conclusions/Significance These data provide the first evidence that a moderate inhibition (e.g., normalization) of the activated MYOCD signaling in the diseased heart may be promising from a therapeutic point of view.
Collapse
Affiliation(s)
- Mario Torrado
- Developmental Biology Group, Institute of Health Sciences, University of La Coruña, La Coruña, Spain
| | - Raquel Iglesias
- Developmental Biology Group, Institute of Health Sciences, University of La Coruña, La Coruña, Spain
| | - Alberto Centeno
- Experimental Surgery Unit, University Hospital Center of La Coruña, La Coruña, Spain
| | - Eduardo López
- Experimental Surgery Unit, University Hospital Center of La Coruña, La Coruña, Spain
| | - Alexander T. Mikhailov
- Developmental Biology Group, Institute of Health Sciences, University of La Coruña, La Coruña, Spain
- * E-mail:
| |
Collapse
|
74
|
Schnabel RB, Kerr KF, Lubitz SA, Alkylbekova EL, Marcus GM, Sinner MF, Magnani JW, Wolf PA, Deo R, Lloyd-Jones DM, Lunetta KL, Mehra R, Levy D, Fox ER, Arking DE, Mosley TH, Mueller M, Young T, Wichmann E, Seshadri S, Farlow DN, Rotter JI, Soliman EZ, Glazer NL, Wilson JG, Breteler MM, Sotoodehnia N, Newton-Cheh C, Kääb S, Ellinor PT, Alonso A, Benjamin EJ, Heckbert SR, The Candidate Gene Association Resource (CARe) Atrial Fibrillation/Electrocardiography Working Group. Large-scale candidate gene analysis in whites and African Americans identifies IL6R polymorphism in relation to atrial fibrillation: the National Heart, Lung, and Blood Institute's Candidate Gene Association Resource (CARe) project. CIRCULATION. CARDIOVASCULAR GENETICS 2011; 4:557-64. [PMID: 21846873 PMCID: PMC3224824 DOI: 10.1161/circgenetics.110.959197] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The genetic background of atrial fibrillation (AF) in whites and African Americans is largely unknown. Genes in cardiovascular pathways have not been systematically investigated. METHODS AND RESULTS We examined a panel of approximately 50,000 common single-nucleotide polymorphisms (SNPs) in 2095 cardiovascular candidate genes and AF in 3 cohorts with participants of European (n=18,524; 2260 cases) or African American descent (n=3662; 263 cases) in the National Heart, Lung, and Blood Institute's Candidate Gene Association Resource. Results in whites were followed up in the German Competence Network for AF (n=906, 468 cases). The top result was assessed in relation to incident ischemic stroke in the Cohorts for Heart and Aging Research in Genomic Epidemiology Stroke Consortium (n=19,602 whites, 1544 incident strokes). SNP rs4845625 in the IL6R gene was associated with AF (relative risk [RR] C allele, 0.90; 95% confidence interval [CI], 0.85-0.95; P=0.0005) in whites but did not reach statistical significance in African Americans (RR, 0.86; 95% CI, 0.72-1.03; P=0.09). The results were comparable in the German AF Network replication, (RR, 0.71; 95% CI, 0.57-0.89; P=0.003). No association between rs4845625 and stroke was observed in whites. The known chromosome 4 locus near PITX2 in whites also was associated with AF in African Americans (rs4611994; hazard ratio, 1.40; 95% CI, 1.16-1.69; P=0.0005). CONCLUSIONS In a community-based cohort meta-analysis, we identified genetic association in IL6R with AF in whites. Additionally, we demonstrated that the chromosome 4 locus known from recent genome-wide association studies in whites is associated with AF in African Americans.
Collapse
Affiliation(s)
- Renate B. Schnabel
- NHLBI's Framingham Study, Framingham, MA
- Dept of General & Interventional Cardiology, University Medical Center Hamburg-Eppendorf, Germany
| | - Kathleen F. Kerr
- Dept of Biostatistics, School of Public Health, University of Washington, Seattle, WA
| | - Steven A. Lubitz
- Cardiovascular Research Ctr, Massachusetts General Hospital, Boston, MA
| | | | - Gregory M. Marcus
- Division of Cardiology, Electrophysiology Section, University of California, San Francisco, CA
| | - Moritz F. Sinner
- NHLBI's Framingham Study, Framingham, MA
- Cardiovascular Research Ctr, Massachusetts General Hospital, Boston, MA
- Dept of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Jared W. Magnani
- Cardiovascular Medicine, Boston University School of Medicine Boston, MA
| | - Philip A. Wolf
- NHLBI's Framingham Study, Framingham, MA
- Dept of Neurology, Boston University School of Medicine Boston, MA
- Dept of Neurology, Boston University School of Public Health, Boston, MA
| | - Rajat Deo
- Division of Cardiology, Electrophysiology Section University of Pennsylvania, Philadelphia, PA
| | - Donald M. Lloyd-Jones
- Dept of Preventive, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Bluhm Cardiovascular Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Kathryn L. Lunetta
- Dept of Biostatistics, School of Public Health, Boston University, Boston, MA
| | - Reena Mehra
- Dept of Medicine, Case School of Medicine, Cleveland, OH
| | - Daniel Levy
- Center for Population Studies, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Ervin R. Fox
- Dept of Medicine, University of Mississippi Medical Center, Jackson, MS
| | - Dan E. Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Thomas H. Mosley
- Dept of Medicine (Geriatrics), University of Mississippi Medical Center, Jackson, MS
| | - Martina Mueller
- Dept of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg
- Institute of Medical Informatics, Biometry & Epidemiology, Ludwig Maximilians University, Munich, Germany
| | | | - Erich Wichmann
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg
- Institute of Medical Informatics, Biometry & Epidemiology, Ludwig Maximilians University, Munich, Germany
- Klinikum Grosshadern, Munich, Germany
| | - Sudha Seshadri
- Dept of Neurology, Boston University School of Medicine Boston, MA
| | | | - Jerome I. Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Elsayed Z. Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest University School of Medicine, Winston Salem, NC
| | - Nicole L. Glazer
- Section of Preventive Medicine & Epidemiology, Boston University School of Medicine, Boston, MA
| | - James G. Wilson
- Dept of Medicine, University of Mississippi Medical Center, Jackson, MS
| | | | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Dept of Epidemiology, University of Washington, Seattle, WA
| | - Christopher Newton-Cheh
- Cardiovascular Research Ctr, Ctr for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Broad Institute of Harvard & Massachusetts Institute of Technology, Cambridge, MA
| | - Stefan Kääb
- Dept of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Patrick T. Ellinor
- Cardiovascular Research Ctr, Massachusetts General Hospital, Boston, MA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA
| | - Alvaro Alonso
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Emelia J. Benjamin
- NHLBI's Framingham Study, Framingham, MA
- Dept of Epidemiology, Boston University School of Public Health
- Dept of Cardiology, Boston University, Boston, MA
- Dept of Preventive Medicine, Boston University, Boston, MA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit, Dept of Epidemiology, University of Washington, Seattle, WA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | | |
Collapse
|
75
|
Wang C, Cao D, Wang Q, Wang DZ. Synergistic activation of cardiac genes by myocardin and Tbx5. PLoS One 2011; 6:e24242. [PMID: 21897873 PMCID: PMC3163680 DOI: 10.1371/journal.pone.0024242] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/03/2011] [Indexed: 11/18/2022] Open
Abstract
Myocardial differentiation is associated with the activation and expression of an array of cardiac specific genes. However, the transcriptional networks that control cardiac gene expression are not completely understood. Myocardin is a cardiac and smooth muscle-specific expressed transcriptional coactivator of Serum Response Factor (SRF) and is able to potently activate cardiac and smooth muscle gene expression during development. We hypothesize that myocardin discriminates between cardiac and smooth muscle specific genes by associating with distinct co-factors. Here, we show that myocardin directly interacts with Tbx5, a member of the T-box family of transcription factors involved in the Holt-Oram syndrome. Tbx5 synergizes with myocardin to activate expression of the cardiac specific genes atrial natriuretic factor (ANF) and alpha myosin heavy chain (α-MHC), but not that of smooth muscle specific genes SM22 or smooth muscle myosin heavy chain (SM-MHC). We found that this synergistic activation of shared target genes is dependent on the binding sites for Tbx5, T-box factor-Binding Elements (TBEs). Myocardin and Tbx5 physically interact and their interaction domains were mapped to the basic domain and the coil domain of myocardin and Tbx5, respectively. Our analysis demonstrates that the Tbx5G80R mutation, which leads to the Holt-Oram syndrome in humans, failed to synergize with myocardin to activate cardiac gene expression. These data uncover a key role for Tbx5 and myocardin in establishing the transcriptional foundation for cardiac gene activation and suggest that the interaction of myocardin and Tbx5 maybe involved in cardiac development and diseases.
Collapse
Affiliation(s)
- Chunbo Wang
- UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Dongsun Cao
- UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Qing Wang
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Da-Zhi Wang
- Department of Cardiology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
76
|
Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, Hata A. down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem 2011; 286:28097-110. [PMID: 21673106 PMCID: PMC3151055 DOI: 10.1074/jbc.m111.236950] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/09/2011] [Indexed: 11/06/2022] Open
Abstract
In the postnatal vasculature, fully differentiated and quiescent vascular smooth muscle cells (VSMCs) in a "contractile" phenotype are required for the normal regulation of vascular tone. The transforming growth factor-β (TGF-β) superfamily of growth factors (TGF-βs and bone morphogenetic proteins (BMPs)) are potent inducers of contractile phenotype and mediate (i) induction of contractile genes, and (ii) inhibition of VSMC growth and migration. Transcription of contractile genes is positively regulated by a regulatory DNA element called a CArG box. The CArG box is activated by the binding of serum response factor and its coactivators, myocardin (Myocd) or Myocd-related transcription factors (MRTFs). Krüppel-like factor-4 (KLF4) is known to inhibit activation of the CArG box. However, the potential role of KLF4 in the contractile activities of TGF-β or BMP has not been explored. Here, we demonstrate that TGF-β and BMP4 rapidly down-regulate KLF4 through induction of microRNA-143 (miR-143) and miR-145, which leads to a reduction of KLF4 transcripts and decreased KLF4 protein expression. Inhibition of miR-145 prevents down-regulation of KLF4 and activation of contractile genes by TGF-β or BMP4, suggesting that modulation of KLF4 is a prerequisite for induction of contractile genes by TGF-β and BMP4. Interestingly, both TGF-β and BMP4 activate transcription of the miR-143/145 gene cluster through the CArG box, however, TGF-β mediates this effect through induction of Myocd expression, whereas BMP4 utilizes nuclear translocation of MRTF-A. Thus, this study sheds light on both the similarities and the differences of TGF-β and BMP4 signaling in the regulation of KLF4 and contractile genes.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Animals
- Bone Morphogenetic Protein 4/genetics
- Bone Morphogenetic Protein 4/metabolism
- Cell Line
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Down-Regulation/physiology
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/biosynthesis
- Kruppel-Like Transcription Factors/genetics
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle Contraction/physiology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic/physiology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
| | - Mun Chun Chan
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and
| | - Kelsey E. Reno
- the Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111 and
| | | | - Matthew D. Layne
- the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Giorgio Lagna
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and
| | - Akiko Hata
- From the Molecular Cardiology Research Institute, Tufts Medical Center, and
| |
Collapse
|
77
|
Wang J, Chen L, Wen S, Zhu H, Yu W, Moskowitz IP, Shaw GM, Finnell RH, Schwartz RJ. Defective sumoylation pathway directs congenital heart disease. ACTA ACUST UNITED AC 2011; 91:468-76. [PMID: 21563299 DOI: 10.1002/bdra.20816] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/17/2011] [Accepted: 02/25/2011] [Indexed: 12/17/2022]
Abstract
Congenital heart defects (CHDs) are the most common of all birth defects, yet molecular mechanism(s) underlying highly prevalent atrial septal defects (ASDs) and ventricular septal defects (VSDs) have remained elusive. We demonstrate the indispensability of "balanced" posttranslational small ubiquitin-like modifier (SUMO) conjugation-deconjugation pathway for normal cardiac development. Both hetero- and homozygous SUMO-1 knockout mice exhibited ASDs and VSDs with high mortality rates, which were rescued by cardiac reexpression of the SUMO-1 transgene. Because SUMO-1 was also involved in cleft lip/palate in human patients, the previous findings provided a powerful rationale to question whether SUMO-1 was mutated in infants born with cleft palates and ASDs. Sequence analysis of DNA from newborn screening blood spots revealed a single 16 bp substitution in the SUMO-1 regulatory promoter of a patient displaying both oral-facial clefts and ASDs. Diminished sumoylation activity whether by genetics, environmental toxins, and/or pharmaceuticals may significantly contribute to susceptibility to the induction of congenital heart disease worldwide. Birth Defects Research (Part A) 2011. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jun Wang
- Center for Stem Cell Engineering, Texas Heart Institute, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Liao XH, Wang N, Liu QX, Qin T, Cao B, Cao DS, Zhang TC. Myocardin-related transcription factor-A induces cardiomyocyte hypertrophy. IUBMB Life 2011; 63:54-61. [PMID: 21280178 DOI: 10.1002/iub.415] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myocardin is a remarkably potent transcriptional coactivator expressed specifically in cardiac muscle lineages and smooth muscle cells during postnatal development. Myocardin shares homology with myocardin-related transcription factor-A (MRTF-A), which are expressed in a broad range of embryonic and adult tissues. Our previous results show that myocardin induces cardiac hypertrophy. However, the effects of MRTF-A in cardiac hypertrophy remain poorly understood. Our present work further demonstrates that myocardin plays an important role in inducing hypertrophy. At the same time, we find that overexpression of MRTF-A in neonatal rat cardiomyocytes might induce cardiomyocyte hypertrophy. Furthermore, MRTF-A expression is induced in phenylephrine, angiotensin-II, and transforming growth factor-β-stimulated cardiac hypertrophy, whereas a dominant-negative form of MRTF-A or MRTF-A siRNA strongly inhibited upregulation of hypertrophy genes in response to hypertrophic agonists in neonatal rat cardiomyocytes. Our studies indicate that besides myocardin, MRTF-A might play an important role in cardiac hypertrophy. Our findings provide novel evidence for the future studies to explore the roles of MRTFs in cardiac hypertrophy.
Collapse
Affiliation(s)
- Xing-Hua Liao
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
79
|
Hoofnagle MH, Neppl RL, Berzin EL, Teg Pipes GC, Olson EN, Wamhoff BW, Somlyo AV, Owens GK. Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes. Am J Physiol Heart Circ Physiol 2011; 300:H1707-21. [PMID: 21357509 DOI: 10.1152/ajpheart.01192.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myocardin is a serum response factor (SRF) coactivator exclusively expressed in cardiomyocytes and smooth muscle cells (SMCs). However, there is highly controversial evidence as to whether myocardin is essential for normal differentiation of these cell types, and there are no data showing whether cardiac or SMC subtypes exhibit differential myocardin requirements during development. Results of the present studies showed the virtual absence of myocardin(-/-) visceral SMCs or ventricular myocytes in chimeric myocardin knockout (KO) mice generated by injection of myocardin(-/-) embryonic stem cells (ESCs) into wild-type (WT; i.e., myocardin(+/+) ESC) blastocysts. In contrast, myocardin(-/-) ESCs readily formed vascular SMC, albeit at a reduced frequency compared with WT ESCs. In addition, myocardin(-/-) ESCs competed equally with WT ESCs in forming atrial myocytes. The ultrastructural features of myocardin(-/-) vascular SMCs and cardiomyocytes were unchanged from their WT counterparts as determined using a unique X-ray microprobe transmission electron microscopic method developed by our laboratory. Myocardin(-/-) ESC-derived SMCs also showed normal contractile properties in an in vitro embryoid body SMC differentiation model, other than impaired thromboxane A2 responsiveness. Together, these results provide novel evidence that myocardin is essential for development of visceral SMCs and ventricular myocytes but is dispensable for development of atrial myocytes and vascular SMCs in the setting of chimeric KO mice. In addition, results suggest that as yet undefined defects in development and/or maturation of ventricular cardiomyocytes may have contributed to early embryonic lethality observed in conventional myocardin KO mice and that observed deficiencies in development of vascular SMC may have been secondary to these defects.
Collapse
Affiliation(s)
- Mark H Hoofnagle
- Department of Molecular Physiology and Biological Physic, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Wang L, Di Tullio MR, Beecham A, Slifer S, Rundek T, Homma S, Blanton SH, Sacco RL. A comprehensive genetic study on left atrium size in Caribbean Hispanics identifies potential candidate genes in 17p10. CIRCULATION. CARDIOVASCULAR GENETICS 2010; 3:386-92. [PMID: 20562446 PMCID: PMC2923674 DOI: 10.1161/circgenetics.110.938381] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Left atrial (LA) enlargement is associated with cardiovascular disease and stroke. Genetic factors contributing to the LA dimension are poorly understood. We sought to map susceptibility genes for LA size in a large Dominican family data set and an independent population-based sample from the Northern Manhattan Study. METHODS AND RESULTS One hundred Dominican families comprising 1350 individuals were studied to estimate heritability and map quantitative trait loci for LA size using variance components analysis. LA dimension was measured by transthoracic echocardiography. A polygenic covariate screening was used to identify significant covariates. LA size had a moderate estimate of heritability (h(2)=0.42) after adjusting for significant covariates. Linkage analysis revealed suggestive evidence on chromosome 10p19 (D10S1423, MLOD=2.00) and 17p10 (D17S974, MLOD=2.05). Ordered subset analysis found significantly enhanced (P<0.05 for increase of LOD score) evidence for linkage at 17p10 (MLOD=2.9) in families with lower LDL level. Single nucleotide polymophisms (n=2233)were used to perform a peak-wide association mapping across 17p10 in 825 NOMAS individuals. Evidence for association were found in NTN1, MYH10, COX10, and MYOCD genes (P=0.00005 to 0.005). CONCLUSIONS Using nonbiased genome-wide linkage followed by peak-wide association analysis, we identified several possible susceptibility genes affecting LA size. Among them, MYOCD has been shown to serve as a key transducer of hypertrophic signals in cardiomyocytes. Our data support that polymorphisms in MYOCD modify LA size.
Collapse
Affiliation(s)
- Liyong Wang
- John T. McDonald Department of Human Genetics, John P Hussman
Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami,
FL
| | | | - Ashley Beecham
- John T. McDonald Department of Human Genetics, John P Hussman
Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami,
FL
| | - Susan Slifer
- John T. McDonald Department of Human Genetics, John P Hussman
Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami,
FL
| | - Tatjana Rundek
- Department of Neurology and Epidemiology, Miller School of
Medicine, University of Miami, Miami, FL
| | - Shunichi Homma
- Department of Medicine, Columbia University, New York, NY
| | - Susan H. Blanton
- John T. McDonald Department of Human Genetics, John P Hussman
Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami,
FL
| | - Ralph L. Sacco
- John T. McDonald Department of Human Genetics, John P Hussman
Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami,
FL
- Department of Neurology and Epidemiology, Miller School of
Medicine, University of Miami, Miami, FL
| |
Collapse
|
81
|
Abstract
Sumoylation is a posttranslational modification process in which SUMO proteins are covalently and reversibly conjugated to their targets via enzymatic cascade reactions. Since the discovery of SUMO-1 in 1996, the SUMO pathway has garnered increased attention due to its role in a number of important biological activities such as cell cycle progression, epigenetic modulation, signal transduction, and DNA replication/repair, as well as its potential implication in human pathogenesis such as in cancer development and metastasis, neurodegenerative disorders and craniofacial defects. The role of the SUMO pathway in regulating cardiogenic gene activity, development and/or disorders is just emerging. Our review is based on recent advances that highlight the regulation of cardiac gene activity in cardiac development and disease by the SUMO conjugation pathway.
Collapse
Affiliation(s)
- Jun Wang
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX 77030
| | - Robert J Schwartz
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX 77030
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| |
Collapse
|
82
|
Leenders JJ, Wijnen WJ, Hiller M, van der Made I, Lentink V, van Leeuwen REW, Herias V, Pokharel S, Heymans S, de Windt LJ, Høydal MA, Pinto YM, Creemers EE. Regulation of cardiac gene expression by KLF15, a repressor of myocardin activity. J Biol Chem 2010; 285:27449-27456. [PMID: 20566642 DOI: 10.1074/jbc.m110.107292] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pathological forms of left ventricular hypertrophy (LVH) often progress to heart failure. Specific transcription factors have been identified that activate the gene program to induce pathological forms of LVH. It is likely that apart from activating transcriptional inducers of LVH, constitutive transcriptional repressors need to be removed during the development of cardiac hypertrophy. Here, we report that the constitutive presence of Krüppel-like factor 15 (KLF15) is lost in pathological hypertrophy and that this loss precedes progression toward heart failure. We show that transforming growth factor-beta-mediated activation of p38 MAPK is necessary and sufficient to decrease KLF15 expression. We further show that KLF15 robustly inhibits myocardin, a potent transcriptional activator. Loss of KLF15 during pathological LVH relieves the inhibitory effects on myocardin and stimulates the expression of serum response factor target genes, such as atrial natriuretic factor. This uncovers a novel mechanism where activated p38 MAPK decreases KLF15, an important constitutive transcriptional repressor whose removal seems a vital step to allow the induction of pathological LVH.
Collapse
Affiliation(s)
- Joost J Leenders
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Wino J Wijnen
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Monika Hiller
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Viola Lentink
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Rick E W van Leeuwen
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Veronica Herias
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Saraswati Pokharel
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Stephane Heymans
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Leon J de Windt
- Experimental and Molecular Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Morten A Høydal
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Yigal M Pinto
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Esther E Creemers
- Heart Failure Research Center, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
83
|
Jiang Y, Yin H, Zheng XL. MicroRNA-1 inhibits myocardin-induced contractility of human vascular smooth muscle cells. J Cell Physiol 2010; 225:506-11. [DOI: 10.1002/jcp.22230] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
84
|
Olson EN, Nordheim A. Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 2010; 11:353-65. [PMID: 20414257 PMCID: PMC3073350 DOI: 10.1038/nrm2890] [Citation(s) in RCA: 785] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous physiological and pathological stimuli promote the rearrangement of the actin cytoskeleton, thereby modulating cellular motile functions. Although it seems intuitively obvious that cell motility requires coordinated protein biosynthesis, until recently the linkage between cytoskeletal actin dynamics and correlated gene activities remained unknown. This knowledge gap was filled in part by the discovery that globular actin polymerization liberates myocardin-related transcription factor (MRTF) cofactors, thereby inducing the nuclear transcription factor serum response factor (SRF) to modulate the expression of genes encoding structural and regulatory effectors of actin dynamics. This insight stimulated research to better understand the actin-MRTF-SRF circuit and to identify alternative mechanisms that link cytoskeletal dynamics and genome activity.
Collapse
Affiliation(s)
- Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | | |
Collapse
|