51
|
Xia PF, Li Q, Tan LR, Liu MM, Jin YS, Wang SG. Synthetic Whole-Cell Biodevices for Targeted Degradation of Antibiotics. Sci Rep 2018; 8:2906. [PMID: 29440690 PMCID: PMC5811551 DOI: 10.1038/s41598-018-21350-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 11/09/2022] Open
Abstract
Synthetic biology enables infinite possibilities in biotechnology via employing genetic modules. However, not many researches have explored the potentials of synthetic biology in environmental bioprocesses. In this study, we introduced a genetic module harboring the codon-optimized tetracycline degrading gene, tetX.co, into the model host, Escherichia coli, and generated a prototypal whole-cell biodevice for the degradation of a target antibiotic. Our results suggested that E. coli with the tetX.co-module driven by either the PJ23119 or PBAD promoters conferred resistance up to 50 μg/mL of tetracycline and degrades over 95% of tetracycline within 24 h. The detoxification ability of tetX was further verified in conditioned media by typical E. coli K-12 and B strains as well as Shewanella oneidensis. Our strategy demonstrated the feasibility of introducing genetic modules into model hosts to enable environmental functions, and this work will inspire more environmental innovations through synthetic biological devices.
Collapse
Affiliation(s)
- Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P.R. China
| | - Qian Li
- School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P.R. China
| | - Lin-Rui Tan
- School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P.R. China
| | - Miao-Miao Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Ave, Urbana, IL, 61801, United States
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, United States.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 905k South Goodwin Avenue, Urbana, IL, 61801, United States
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan, 250100, P.R. China.
| |
Collapse
|
52
|
Sakamoto I, Abe K, Kawai S, Tsukakoshi K, Sakai Y, Sode K, Ikebukuro K. Improving the induction fold of riboregulators for cyanobacteria. RNA Biol 2018; 15:353-358. [PMID: 29303421 DOI: 10.1080/15476286.2017.1422470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cyanobacteria are ideal cellular factories for biochemical production because of their ability to fix CO2 by photosynthesis and convert this molecule into biochemicals. Previously, we engineered a riboregulator that enables post-transcriptional gene regulation in the cyanobacterium Synechocystis sp. PCC 6803. Here, we improved the riboregulator by designing two RNA species, taRNA and crRNA, to enhance its induction fold. We inserted nucleotides into the crRNA loop to enhance intermolecular hybridization and successfully improved its induction fold. The engineered riboregulator exhibited a higher induction fold than the previously engineered riboregulator in both Escherichia coli and Synechocystis sp. PCC 6803. This improved riboregulator can be used to control gene expression over a wide dynamic range in cyanobacteria.
Collapse
Affiliation(s)
- Ippei Sakamoto
- a Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , Koganei , Tokyo , Japan
| | - Koichi Abe
- a Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , Koganei , Tokyo , Japan
| | - Sumiya Kawai
- a Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , Koganei , Tokyo , Japan
| | - Kaori Tsukakoshi
- a Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , Koganei , Tokyo , Japan
| | - Yuta Sakai
- a Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , Koganei , Tokyo , Japan
| | - Koji Sode
- a Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , Koganei , Tokyo , Japan
| | - Kazunori Ikebukuro
- a Department of Biotechnology and Life Science , Tokyo University of Agriculture and Technology , Koganei , Tokyo , Japan
| |
Collapse
|
53
|
Lee YJ, Moon TS. Design rules of synthetic non-coding RNAs in bacteria. Methods 2018; 143:58-69. [PMID: 29309838 DOI: 10.1016/j.ymeth.2018.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
One of the long-term goals of synthetic biology is to develop designable genetic parts with predictable behaviors that can be utilized to implement diverse cellular functions. The discovery of non-coding RNAs and their importance in cellular processing have rapidly attracted researchers' attention towards designing functional non-coding RNA molecules. These synthetic non-coding RNAs have simple design principles governed by Watson-Crick base pairing, but exhibit increasingly complex functions. Importantly, due to their specific and modular behaviors, synthetic non-coding RNAs have been widely adopted to modulate transcription and translation of target genes. In this review, we summarize various design rules and strategies employed to engineer synthetic non-coding RNAs. Specifically, we discuss how RNA molecules can be transformed into powerful regulators and utilized to control target gene expression. With the establishment of generalizable non-coding RNA design rules, the research community will shift its focus to RNA regulators from protein regulators.
Collapse
Affiliation(s)
- Young Je Lee
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
54
|
Stirling F, Bitzan L, O'Keefe S, Redfield E, Oliver JWK, Way J, Silver PA. Rational Design of Evolutionarily Stable Microbial Kill Switches. Mol Cell 2017; 68:686-697.e3. [PMID: 29149596 DOI: 10.1016/j.molcel.2017.10.033] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/11/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
Abstract
The evolutionary stability of synthetic genetic circuits is key to both the understanding and application of genetic control elements. One useful but challenging situation is a switch between life and death depending on environment. Here are presented "essentializer" and "cryodeath" circuits, which act as kill switches in Escherichia coli. The essentializer element induces cell death upon the loss of a bi-stable cI/Cro memory switch. Cryodeath makes use of a cold-inducible promoter to express a toxin. We employ rational design and a toxin/antitoxin titering approach to produce and screen a small library of potential constructs, in order to select for constructs that are evolutionarily stable. Both kill switches were shown to maintain functionality in vitro for at least 140 generations. Additionally, cryodeath was shown to control the growth environment of a population, with an escape frequency of less than 1 in 105 after 10 days of growth in the mammalian gut.
Collapse
Affiliation(s)
- Finn Stirling
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA
| | - Lisa Bitzan
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA
| | - Samuel O'Keefe
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA
| | - Elizabeth Redfield
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA
| | - John W K Oliver
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA
| | - Jeffrey Way
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, 3 Blackfan Circle, 5th Floor, Boston, MA 02115, USA.
| |
Collapse
|
55
|
Kubiak JM, Culyba MJ, Liu MY, Mo CY, Goulian M, Kohli RM. A Small-Molecule Inducible Synthetic Circuit for Control of the SOS Gene Network without DNA Damage. ACS Synth Biol 2017; 6:2067-2076. [PMID: 28826208 PMCID: PMC5696648 DOI: 10.1021/acssynbio.7b00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The bacterial SOS stress-response
pathway is a pro-mutagenic DNA
repair system that mediates bacterial survival and adaptation to genotoxic
stressors, including antibiotics and UV light. The SOS pathway is
composed of a network of genes under the control of the transcriptional
repressor, LexA. Activation of the pathway involves linked but distinct
events: an initial DNA damage event leads to activation of RecA, which
promotes autoproteolysis of LexA, abrogating its repressor function
and leading to induction of the SOS gene network. These linked events
can each independently contribute to DNA repair and mutagenesis, making
it difficult to separate the contributions of the different events
to observed phenotypes. We therefore devised a novel synthetic circuit
to unlink these events and permit induction of the SOS gene network
in the absence of DNA damage or RecA activation via orthogonal cleavage of LexA. Strains engineered with the synthetic
SOS circuit demonstrate small-molecule inducible expression of SOS
genes as well as the associated resistance to UV light. Exploiting
our ability to activate SOS genes independently of upstream events,
we further demonstrate that the majority of SOS-mediated mutagenesis
on the chromosome does not readily occur with orthogonal pathway induction
alone, but instead requires DNA damage. More generally, our approach
provides an exemplar for using synthetic circuit design to separate
an environmental stressor from its associated stress-response pathway.
Collapse
Affiliation(s)
- Jeffrey M. Kubiak
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew J. Culyba
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Monica Yun Liu
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Charlie Y. Mo
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mark Goulian
- Department
of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rahul M. Kohli
- Department
of Medicine, Department of Biochemistry and Biophysics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
56
|
Jin E, Wong L, Jiao Y, Engel J, Holdridge B, Xu P. Rapid evolution of regulatory element libraries for tunable transcriptional and translational control of gene expression. Synth Syst Biotechnol 2017; 2:295-301. [PMID: 29552654 PMCID: PMC5851936 DOI: 10.1016/j.synbio.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
Engineering cell factories for producing biofuels and pharmaceuticals has spurred great interests to develop rapid and efficient synthetic biology tools customized for modular pathway engineering. Along the way, combinatorial gene expression control through modification of regulatory element offered tremendous opportunity for fine-tuning gene expression and generating digital-like genetic circuits. In this report, we present an efficient evolutionary approach to build a range of regulatory control elements. The reported method allows for rapid construction of promoter, 5'UTR, terminator and trans-activating RNA libraries. Synthetic overlapping oligos with high portion of degenerate nucleotides flanking the regulatory element could be efficiently assembled to a vector expressing fluorescence reporter. This approach combines high mutation rate of the synthetic DNA with the high assembly efficiency of Gibson Mix. Our constructed library demonstrates broad range of transcriptional or translational gene expression dynamics. Specifically, both the promoter library and 5'UTR library exhibits gene expression dynamics spanning across three order of magnitude. The terminator library and trans-activating RNA library displays relatively narrowed gene expression pattern. The reported study provides a versatile toolbox for rapidly constructing a large family of prokaryotic regulatory elements. These libraries also facilitate the implementation of combinatorial pathway engineering principles and the engineering of more efficient microbial cell factory for various biomanufacturing applications.
Collapse
Affiliation(s)
- Erqing Jin
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States.,Department of Food Science and Engineering, Jinan University, 601 West Huangpu Road, Guangzhou 510632, China
| | - Lynn Wong
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Yun Jiao
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Jake Engel
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Benjamin Holdridge
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| | - Peng Xu
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States
| |
Collapse
|
57
|
Guzmán-Trampe S, Ceapa CD, Manzo-Ruiz M, Sánchez S. Synthetic biology era: Improving antibiotic’s world. Biochem Pharmacol 2017; 134:99-113. [DOI: 10.1016/j.bcp.2017.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
|
58
|
Wang J, Yang L, Cui X, Zhang Z, Dong L, Guan N. A DNA Bubble-Mediated Gene Regulation System Based on Thrombin-Bound DNA Aptamers. ACS Synth Biol 2017; 6:758-765. [PMID: 28147483 DOI: 10.1021/acssynbio.6b00391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe here a novel approach to enhance the transcription of a target gene in cell-free systems by symmetrically introducing duplex aptamers upstream to a T7 promoter in both the sense and antisense strands of double-stranded plasmids, which leads to the formation of a DNA bubble due to the none-complementary state of the ssDNA region harboring the aptamer sequences. With the presence of thrombins, the DNA bubble would be enlarged due to the binding of aptamers with thrombins. Consequently, the recognition region of the promoter contained in the DNA bubble can be more easily recognized and bound by RNA polymerases, and the separation efficiency of the unwinding region can also be significantly improved, leading to the enhanced expression of the target gene at the transcriptional level. The effectiveness of the proposed gene regulation system was demonstrated by enhancing the expression of gfp and ecaA genes in cell-free systems.
Collapse
Affiliation(s)
- Jing Wang
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 30332, United States
| | - Le Yang
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 30332, United States
| | | | - Zhe Zhang
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 30332, United States
| | | | - Ningzi Guan
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 30332, United States
| |
Collapse
|
59
|
Leitão AL, Costa MC, Enguita FJ. Applications of genome editing by programmable nucleases to the metabolic engineering of secondary metabolites. J Biotechnol 2016; 241:50-60. [PMID: 27845165 DOI: 10.1016/j.jbiotec.2016.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
Genome engineering is a branch of modern biotechnology composed of a cohort of protocols designed to construct and modify a genotype with the main objective of giving rise to a desired phenotype. Conceptually, genome engineering is based on the so called genome editing technologies, a group of genetic techniques that allow either to delete or to insert genetic information in a particular genomic locus. Ten years ago, genome editing tools were limited to virus-driven integration and homologous DNA recombination. However, nowadays the uprising of programmable nucleases is rapidly changing this paradigm. There are two main families of modern tools for genome editing depending on the molecule that controls the specificity of the system and drives the editor machinery to its place of action. Enzymes such as Zn-finger and TALEN nucleases are protein-driven genome editors; while CRISPR system is a nucleic acid-guided editing system. Genome editing techniques are still not widely applied for the design of new compounds with pharmacological activity, but they are starting to be considered as promising tools for rational genome manipulation in biotechnology applications. In this review we will discuss the potential applications of programmable nucleases for the metabolic engineering of secondary metabolites with biological activity.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Campus de Caparica, 2829-516 Caparica, Portugal; MEtRICs, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Marina C Costa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
60
|
Krishnamurthy M, Moore RT, Rajamani S, Panchal RG. Bacterial genome engineering and synthetic biology: combating pathogens. BMC Microbiol 2016; 16:258. [PMID: 27814687 PMCID: PMC5097395 DOI: 10.1186/s12866-016-0876-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. RESEARCH The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. CONCLUSIONS The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.
Collapse
Affiliation(s)
- Malathy Krishnamurthy
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Richard T. Moore
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Sathish Rajamani
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Rekha G. Panchal
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| |
Collapse
|
61
|
Rossetti M, Ranallo S, Idili A, Palleschi G, Porchetta A, Ricci F. Allosteric DNA nanoswitches for controlled release of a molecular cargo triggered by biological inputs. Chem Sci 2016; 8:914-920. [PMID: 28572901 PMCID: PMC5452262 DOI: 10.1039/c6sc03404g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
A rationally designed new class of DNA-based nanoswitches allosterically regulated by specific biological targets, antibodies and transcription factors, can load and release a molecular cargo in a controlled fashion.
Here we demonstrate the rational design of a new class of DNA-based nanoswitches which are allosterically regulated by specific biological targets, antibodies and transcription factors, and are able to load and release a molecular cargo (i.e. doxorubicin) in a controlled fashion. In our first model system we rationally designed a stem-loop DNA-nanoswitch that adopts two mutually exclusive conformations: a “Load” conformation containing a doxorubicin-intercalating domain and a “Release” conformation containing a duplex portion recognized by a specific transcription-factor (here Tata Binding Protein). The binding of the transcription factor pushes this conformational equilibrium towards the “Release” state thus leading to doxorubicin release from the nanoswitch. In our second model system we designed a similar stem-loop DNA-nanoswitch for which conformational change and subsequent doxorubicin release can be triggered by a specific antibody. Our approach augments the current tool kit of smart drug release mechanisms regulated by different biological inputs.
Collapse
Affiliation(s)
- Marianna Rossetti
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Simona Ranallo
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Andrea Idili
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Giuseppe Palleschi
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Alessandro Porchetta
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| | - Francesco Ricci
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , Rome 00133 , Italy . ;
| |
Collapse
|
62
|
Avcilar-Kucukgoze I, Ignatova Z. Rewiring host activities for synthetic circuit production: a translation view. Biotechnol Lett 2016; 39:25-31. [DOI: 10.1007/s10529-016-2229-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/30/2016] [Indexed: 11/30/2022]
|
63
|
Braff D, Shis D, Collins JJ. Synthetic biology platform technologies for antimicrobial applications. Adv Drug Deliv Rev 2016; 105:35-43. [PMID: 27089812 DOI: 10.1016/j.addr.2016.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels.
Collapse
Affiliation(s)
- Dana Braff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - David Shis
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James J Collins
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
64
|
MacDonald IC, Deans TL. Tools and applications in synthetic biology. Adv Drug Deliv Rev 2016; 105:20-34. [PMID: 27568463 DOI: 10.1016/j.addr.2016.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022]
Abstract
Advances in synthetic biology have enabled the engineering of cells with genetic circuits in order to program cells with new biological behavior, dynamic gene expression, and logic control. This cellular engineering progression offers an array of living sensors that can discriminate between cell states, produce a regulated dose of therapeutic biomolecules, and function in various delivery platforms. In this review, we highlight and summarize the tools and applications in bacterial and mammalian synthetic biology. The examples detailed in this review provide insight to further understand genetic circuits, how they are used to program cells with novel functions, and current methods to reliably interface this technology in vivo; thus paving the way for the design of promising novel therapeutic applications.
Collapse
Affiliation(s)
- I Cody MacDonald
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Tara L Deans
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
65
|
Kushwaha M, Rostain W, Prakash S, Duncan JN, Jaramillo A. Using RNA as Molecular Code for Programming Cellular Function. ACS Synth Biol 2016; 5:795-809. [PMID: 26999422 DOI: 10.1021/acssynbio.5b00297] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA is involved in a wide-range of important molecular processes in the cell, serving diverse functions: regulatory, enzymatic, and structural. Together with its ease and predictability of design, these properties can lead RNA to become a useful handle for biological engineers with which to control the cellular machinery. By modifying the many RNA links in cellular processes, it is possible to reprogram cells toward specific design goals. We propose that RNA can be viewed as a molecular programming language that, together with protein-based execution platforms, can be used to rewrite wide ranging aspects of cellular function. In this review, we catalogue developments in the use of RNA parts, methods, and associated computational models that have contributed to the programmability of biology. We discuss how RNA part repertoires have been combined to build complex genetic circuits, and review recent applications of RNA-based parts and circuitry. We explore the future potential of RNA engineering and posit that RNA programmability is an important resource for firmly establishing an era of rationally designed synthetic biology.
Collapse
Affiliation(s)
- Manish Kushwaha
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - William Rostain
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
- iSSB, Genopole,
CNRS, UEVE, Université Paris-Saclay, Évry, France
| | - Satya Prakash
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - John N. Duncan
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
| | - Alfonso Jaramillo
- Warwick
Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, U.K
- iSSB, Genopole,
CNRS, UEVE, Université Paris-Saclay, Évry, France
| |
Collapse
|
66
|
Roquet N, Soleimany AP, Ferris AC, Aaronson S, Lu TK. Synthetic recombinase-based state machines in living cells. Science 2016; 353:aad8559. [PMID: 27463678 DOI: 10.1126/science.aad8559] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/02/2016] [Indexed: 12/18/2022]
Abstract
State machines underlie the sophisticated functionality behind human-made and natural computing systems that perform order-dependent information processing. We developed a recombinase-based framework for building state machines in living cells by leveraging chemically controlled DNA excision and inversion operations to encode states in DNA sequences. This strategy enables convenient readout of states (by sequencing and/or polymerase chain reaction) as well as complex regulation of gene expression. We validated our framework by engineering state machines in Escherichia coli that used one, two, or three chemical inputs to control up to 16 DNA states. These state machines were capable of recording the temporal order of all inputs and performing multi-input, multi-output control of gene expression. We also developed a computational tool for the automated design of gene regulation programs using recombinase-based state machines. Our scalable framework should enable new strategies for recording and studying how combinational and temporal events regulate complex cell functions and for programming sophisticated cell behaviors.
Collapse
Affiliation(s)
- Nathaniel Roquet
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biophysics Program, Harvard University, Boston, MA 02115, USA
| | - Ava P Soleimany
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alyssa C Ferris
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| | - Scott Aaronson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biophysics Program, Harvard University, Boston, MA 02115, USA. Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
67
|
Lee YJ, Hoynes-O'Connor A, Leong MC, Moon TS. Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system. Nucleic Acids Res 2016; 44:2462-73. [PMID: 26837577 PMCID: PMC4797300 DOI: 10.1093/nar/gkw056] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 12/16/2022] Open
Abstract
A central goal of synthetic biology is to implement diverse cellular functions by predictably controlling gene expression. Though research has focused more on protein regulators than RNA regulators, recent advances in our understanding of RNA folding and functions have motivated the use of RNA regulators. RNA regulators provide an advantage because they are easier to design and engineer than protein regulators, potentially have a lower burden on the cell and are highly orthogonal. Here, we combine the CRISPR system from Streptococcus pyogenes and synthetic antisense RNAs (asRNAs) in Escherichia coli strains to repress or derepress a target gene in a programmable manner. Specifically, we demonstrate for the first time that the gene target repressed by the CRISPR system can be derepressed by expressing an asRNA that sequesters a small guide RNA (sgRNA). Furthermore, we demonstrate that tunable levels of derepression can be achieved (up to 95%) by designing asRNAs that target different regions of a sgRNA and by altering the hybridization free energy of the sgRNA-asRNA complex. This new system, which we call the combined CRISPR and asRNA system, can be used to reversibly repress or derepress multiple target genes simultaneously, allowing for rational reprogramming of cellular functions.
Collapse
Affiliation(s)
- Young Je Lee
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Allison Hoynes-O'Connor
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew C Leong
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
68
|
Rodrigo G, Prakash S, Cordero T, Kushwaha M, Jaramillo A. Functionalization of an Antisense Small RNA. J Mol Biol 2016; 428:889-92. [PMID: 26756967 PMCID: PMC4819895 DOI: 10.1016/j.jmb.2015.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/24/2022]
Abstract
In order to explore the possibility of adding new functions to preexisting genes, we considered a framework of riboregulation. We created a new riboregulator consisting of the reverse complement of a known riboregulator. Using computational design, we engineered a cis-repressing 5′ untranslated region that can be activated by this new riboregulator. As a result, both RNAs can orthogonally trans-activate translation of their cognate, independent targets. The two riboregulators can also repress each other by antisense interaction, although not symmetrically. Our work highlights that antisense small RNAs can work as regulatory agents beyond the antisense paradigm and that, hence, they could be interfaced with other circuits used in synthetic biology. We have engineered a riboregulator as the negative-sense strand of another riboregulator. This new RNA molecule performs the cellular function of titration of a functional molecule or trans-activation of gene expression. We have followed a computational design approach with energetic and structural criteria to obtain the nucleotide sequence of a 5′ untranslated region responding to the new riboregulator. We have engineered different regulatory circuits with trans-activating and anti-trans-activating small RNAs and characterized them at the population and single-cell levels.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Satya Prakash
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Teresa Cordero
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Manish Kushwaha
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alfonso Jaramillo
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom; Institute of Systems and Synthetic Biology, Centre National de la Recherche Scientifique, Université d'Evry val d'Essonne, 91000 Évry, France.
| |
Collapse
|
69
|
Krishnamurthy M, Hennelly SP, Dale T, Starkenburg SR, Martí-Arbona R, Fox DT, Twary SN, Sanbonmatsu KY, Unkefer CJ. Tunable Riboregulator Switches for Post-transcriptional Control of Gene Expression. ACS Synth Biol 2015; 4:1326-34. [PMID: 26165796 DOI: 10.1021/acssynbio.5b00041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Until recently, engineering strategies for altering gene expression have focused on transcription control using strong inducible promoters or one of several methods to knock down wasteful genes. Recently, synthetic riboregulators have been developed for translational regulation of gene expression. Here, we report a new modular synthetic riboregulator class that has the potential to finely tune protein expression and independently control the concentration of each enzyme in an engineered metabolic pathway. This development is important because the most straightforward approach to altering the flux through a particular metabolic step is to increase or decrease the concentration of the enzyme. Our design includes a cis-repressor at the 5' end of the mRNA that forms a stem-loop helix, occluding the ribosomal binding sequence and blocking translation. A trans-expressed activating-RNA frees the ribosomal-binding sequence, which turns on translation. The overall architecture of the riboregulators is designed using Watson-Crick base-pairing stability. We describe here a cis-repressor that can completely shut off translation of antibiotic-resistance reporters and a trans-activator that restores translation. We have established that it is possible to use these riboregulators to achieve translational control of gene expression over a wide dynamic range. We have also found that a targeting sequence can be modified to develop riboregulators that can, in principle, independently regulate translation of many genes. In a selection experiment, we demonstrated that by subtly altering the sequence of the trans-activator it is possible to alter the ratio of the repressed and activated states and to achieve intermediate translational control.
Collapse
Affiliation(s)
- Malathy Krishnamurthy
- Bioenergy and Biome Sciences, Bioscience
Division, ‡Theoretical Biology and Biophysics,
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Scott P. Hennelly
- Bioenergy and Biome Sciences, Bioscience
Division, ‡Theoretical Biology and Biophysics,
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Taraka Dale
- Bioenergy and Biome Sciences, Bioscience
Division, ‡Theoretical Biology and Biophysics,
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shawn R. Starkenburg
- Bioenergy and Biome Sciences, Bioscience
Division, ‡Theoretical Biology and Biophysics,
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ricardo Martí-Arbona
- Bioenergy and Biome Sciences, Bioscience
Division, ‡Theoretical Biology and Biophysics,
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - David T. Fox
- Bioenergy and Biome Sciences, Bioscience
Division, ‡Theoretical Biology and Biophysics,
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Scott N. Twary
- Bioenergy and Biome Sciences, Bioscience
Division, ‡Theoretical Biology and Biophysics,
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Karissa Y. Sanbonmatsu
- Bioenergy and Biome Sciences, Bioscience
Division, ‡Theoretical Biology and Biophysics,
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Clifford J. Unkefer
- Bioenergy and Biome Sciences, Bioscience
Division, ‡Theoretical Biology and Biophysics,
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
70
|
Chan CTY, Lee JW, Cameron DE, Bashor CJ, Collins JJ. 'Deadman' and 'Passcode' microbial kill switches for bacterial containment. Nat Chem Biol 2015; 12:82-6. [PMID: 26641934 PMCID: PMC4718764 DOI: 10.1038/nchembio.1979] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/20/2015] [Indexed: 12/30/2022]
Abstract
Biocontainment systems that couple environmental sensing with circuit-based control of cell viability could be used to prevent escape of genetically modified microbes into the environment. Here we present two engineered safe-guard systems: the Deadman and Passcode kill switches. The Deadman kill switch uses unbalanced reciprocal transcriptional repression to couple a specific input signal with cell survival. The Passcode kill switch uses a similar two-layered transcription design and incorporates hybrid LacI/GalR family transcription factors to provide diverse and complex environmental inputs to control circuit function. These synthetic gene circuits efficiently kill Escherichia coli and can be readily reprogrammed to change their environmental inputs, regulatory architecture and killing mechanism.
Collapse
Affiliation(s)
- Clement T Y Chan
- Institute for Medical Engineering &Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jeong Wook Lee
- Institute for Medical Engineering &Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - D Ewen Cameron
- Institute for Medical Engineering &Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Caleb J Bashor
- Institute for Medical Engineering &Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James J Collins
- Institute for Medical Engineering &Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
71
|
Abstract
Synthetic biology (SB) is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell-cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity.
Collapse
Affiliation(s)
| | - Pablo Carbonell
- Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Experimental and Health Sciences (DCEXS), Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
72
|
Programmable genetic circuits for pathway engineering. Curr Opin Biotechnol 2015; 36:115-21. [DOI: 10.1016/j.copbio.2015.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/04/2015] [Accepted: 08/09/2015] [Indexed: 02/06/2023]
|
73
|
Singh V, Braddick D. Recent advances and versatility of MAGE towards industrial applications. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:1-9. [PMID: 26702302 DOI: 10.1007/s11693-015-9184-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/31/2015] [Accepted: 11/04/2015] [Indexed: 01/11/2023]
Abstract
The genome engineering toolkit has expanded significantly in recent years, allowing us to study the functions of genes in cellular networks and assist in over-production of proteins, drugs, chemicals and biofuels. Multiplex automated genome engineering (MAGE) has been recently developed and gained more scientific interest towards strain engineering. MAGE is a simple, rapid and efficient tool for manipulating genes simultaneously in multiple loci, assigning genetic codes and integrating non-natural amino acids. MAGE can be further expanded towards the engineering of fast, robust and over-producing strains for chemicals, drugs and biofuels at industrial scales.
Collapse
Affiliation(s)
- Vijai Singh
- Institute of Systems and Synthetic Biology, Université d'Évry Val d'Essonne, Genopole Campus 1, Batiment Genavenir 6, 5 rue Henri Desbruères, 91030 Évry, France
| | - Darren Braddick
- Institute of Systems and Synthetic Biology, Université d'Évry Val d'Essonne, Genopole Campus 1, Batiment Genavenir 6, 5 rue Henri Desbruères, 91030 Évry, France
| |
Collapse
|
74
|
Peters G, Coussement P, Maertens J, Lammertyn J, De Mey M. Putting RNA to work: Translating RNA fundamentals into biotechnological engineering practice. Biotechnol Adv 2015; 33:1829-44. [PMID: 26514597 DOI: 10.1016/j.biotechadv.2015.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 11/19/2022]
Abstract
Synthetic biology, in close concert with systems biology, is revolutionizing the field of metabolic engineering by providing novel tools and technologies to rationally, in a standardized way, reroute metabolism with a view to optimally converting renewable resources into a broad range of bio-products, bio-materials and bio-energy. Increasingly, these novel synthetic biology tools are exploiting the extensive programmable nature of RNA, vis-à-vis DNA- and protein-based devices, to rationally design standardized, composable, and orthogonal parts, which can be scaled and tuned promptly and at will. This review gives an extensive overview of the recently developed parts and tools for i) modulating gene expression ii) building genetic circuits iii) detecting molecules, iv) reporting cellular processes and v) building RNA nanostructures. These parts and tools are becoming necessary armamentarium for contemporary metabolic engineering. Furthermore, the design criteria, technological challenges, and recent metabolic engineering success stories of the use of RNA devices are highlighted. Finally, the future trends in transforming metabolism through RNA engineering are critically evaluated and summarized.
Collapse
Affiliation(s)
- Gert Peters
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Pieter Coussement
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jo Maertens
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jeroen Lammertyn
- BIOSYST-MeBioS, KU Leuven, Willem de Croylaan 42, 3001 Louvain, Belgium
| | - Marjan De Mey
- Centre of Expertise Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
75
|
Zargar A, Payne GF, Bentley WE. A 'bioproduction breadboard': programming, assembling, and actuating cellular networks. Curr Opin Biotechnol 2015; 36:154-60. [PMID: 26342587 DOI: 10.1016/j.copbio.2015.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/07/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
With advances in synthetic biology and biofabrication, cellular networks can be functionalized and connected with unprecedented sophistication. We describe a platform for the creation of a 'bioproduction breadboard'. This would consist of physically isolated product-producing cell populations, product capture devices, and other unit operations that function as programmed in place, using unique, orthogonal inputs. For product synthesis, customized cell populations would be connected through standardized, generic inputs allowing 'plug and play' functionality and primary, user-mediated regulation. In addition, through autonomous pathway redirection and balancing, the cells themselves would provide secondary, self-directed regulation to optimize bioproduction. By leveraging specialization and division of labor, we envision diverse cell populations linked to create new pathway designs.
Collapse
Affiliation(s)
- Amin Zargar
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
76
|
McNerney MP, Watstein DM, Styczynski MP. Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems. Metab Eng 2015; 31:123-31. [PMID: 26189665 DOI: 10.1016/j.ymben.2015.06.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful.
Collapse
Affiliation(s)
- Monica P McNerney
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332-0100, USA
| | - Daniel M Watstein
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332-0100, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332-0100, USA.
| |
Collapse
|
77
|
Krom RJ, Bhargava P, Lobritz MA, Collins JJ. Engineered Phagemids for Nonlytic, Targeted Antibacterial Therapies. NANO LETTERS 2015; 15:4808-4813. [PMID: 26044909 DOI: 10.1021/acs.nanolett.5b01943] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The increasing incidence of antibiotic-resistant bacterial infections is creating a global public health threat. Because conventional antibiotic drug discovery has failed to keep pace with the rise of resistance, a growing need exists to develop novel antibacterial methodologies. Replication-competent bacteriophages have been utilized in a limited fashion to treat bacterial infections. However, this approach can result in the release of harmful endotoxins, leading to untoward side effects. Here, we engineer bacterial phagemids to express antimicrobial peptides (AMPs) and protein toxins that disrupt intracellular processes, leading to rapid, nonlytic bacterial death. We show that this approach is highly modular, enabling one to readily alter the number and type of AMPs and toxins encoded by the phagemids. Furthermore, we demonstrate the effectiveness of engineered phagemids in an in vivo murine peritonitis infection model. This work shows that targeted, engineered phagemid therapy can serve as a viable, nonantibiotic means to treat bacterial infections, while avoiding the health issues inherent to lytic and replicative bacteriophage use.
Collapse
Affiliation(s)
- Russell J Krom
- †Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- ‡Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
- ∥Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- ⊥Department of Molecular and Translational Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Prerna Bhargava
- †Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- §Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- ∥Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Michael A Lobritz
- †Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- §Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- ∥Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- #Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - James J Collins
- †Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- ‡Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
- §Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- ∥Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
78
|
Fine-tuning of ecaA and pepc gene expression increases succinic acid production in Escherichia coli. Appl Microbiol Biotechnol 2015; 99:8575-86. [DOI: 10.1007/s00253-015-6734-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 05/04/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022]
|
79
|
Wong A, Wang H, Poh CL, Kitney RI. Layering genetic circuits to build a single cell, bacterial half adder. BMC Biol 2015; 13:40. [PMID: 26078033 PMCID: PMC4490610 DOI: 10.1186/s12915-015-0146-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene regulation in biological systems is impacted by the cellular and genetic context-dependent effects of the biological parts which comprise the circuit. Here, we have sought to elucidate the limitations of engineering biology from an architectural point of view, with the aim of compiling a set of engineering solutions for overcoming failure modes during the development of complex, synthetic genetic circuits. RESULTS Using a synthetic biology approach that is supported by computational modelling and rigorous characterisation, AND, OR and NOT biological logic gates were layered in both parallel and serial arrangements to generate a repertoire of Boolean operations that include NIMPLY, XOR, half adder and half subtractor logics in a single cell. Subsequent evaluation of these near-digital biological systems revealed critical design pitfalls that triggered genetic context-dependent effects, including 5' UTR interferences and uncontrolled switch-on behaviour of the supercoiled σ54 promoter. In particular, the presence of seven consecutive hairpins immediately downstream of the promoter transcription start site severely impeded gene expression. CONCLUSIONS As synthetic biology moves forward with greater focus on scaling the complexity of engineered genetic circuits, studies which thoroughly evaluate failure modes and engineering solutions will serve as important references for future design and development of synthetic biological systems. This work describes a representative case study for the debugging of genetic context-dependent effects through principles elucidated herein, thereby providing a rational design framework to integrate multiple genetic circuits in a single prokaryotic cell.
Collapse
Affiliation(s)
- Adison Wong
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore.,Centre for Synthetic Biology and Innovation, and Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.,Present Address: NUS Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, Singapore, 117456, Singapore
| | - Huijuan Wang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Chueh Loo Poh
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore.
| | - Richard I Kitney
- Centre for Synthetic Biology and Innovation, and Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
80
|
Caliando BJ, Voigt CA. Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nat Commun 2015; 6:6989. [PMID: 25988366 PMCID: PMC4479009 DOI: 10.1038/ncomms7989] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/20/2015] [Indexed: 12/13/2022] Open
Abstract
Once an engineered organism completes its task, it is useful to degrade the associated DNA to reduce environmental release and protect intellectual property. Here we present a genetically encoded device (DNAi) that responds to a transcriptional input and degrades user-defined DNA. This enables engineered regions to be obscured when the cell enters a new environment. DNAi is based on type-IE CRISPR biochemistry and a synthetic CRISPR array defines the DNA target(s). When the input is on, plasmid DNA is degraded 10(8)-fold. When the genome is targeted, this causes cell death, reducing viable cells by a factor of 10(8). Further, the CRISPR nuclease can direct degradation to specific genomic regions (for example, engineered or inserted DNA), which could be used to complicate recovery and sequencing efforts. DNAi can be stably carried in an engineered organism, with no impact on cell growth, plasmid stability or DNAi inducibility even after passaging for >2 months.
Collapse
Affiliation(s)
- Brian J. Caliando
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Christopher A. Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
81
|
Reeves AZ, Spears WE, Du J, Tan KY, Wagers AJ, Lesser CF. Engineering Escherichia coli into a protein delivery system for mammalian cells. ACS Synth Biol 2015; 4:644-54. [PMID: 25853840 PMCID: PMC4487226 DOI: 10.1021/acssynbio.5b00002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many Gram-negative pathogens encode type 3 secretion systems, sophisticated nanomachines that deliver proteins directly into the cytoplasm of mammalian cells. These systems present attractive opportunities for therapeutic protein delivery applications; however, their utility has been limited by their inherent pathogenicity. Here, we report the reengineering of a laboratory strain of Escherichia coli with a tunable type 3 secretion system that can efficiently deliver heterologous proteins into mammalian cells, thereby circumventing the need for virulence attenuation. We first introduced a 31 kB region of Shigella flexneri DNA that encodes all of the information needed to form the secretion nanomachine onto a plasmid that can be directly propagated within E. coli or integrated into the E. coli chromosome. To provide flexible control over type 3 secretion and protein delivery, we generated plasmids expressing master regulators of the type 3 system from either constitutive or inducible promoters. We then constructed a Gateway-compatible plasmid library of type 3 secretion sequences to enable rapid screening and identification of sequences that do not perturb function when fused to heterologous protein substrates and optimized their delivery into mammalian cells. Combining these elements, we found that coordinated expression of the type 3 secretion system and modified target protein substrates produces a nonpathogenic strain that expresses, secretes, and delivers heterologous proteins into mammalian cells. This reengineered system thus provides a highly flexible protein delivery platform with potential for future therapeutic applications.
Collapse
Affiliation(s)
- Analise Z. Reeves
- Department
of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02138, United States
| | - William E. Spears
- Department
of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts 02139, United States
| | - Juan Du
- Department
of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02138, United States
| | - Kah Yong Tan
- Howard
Hughes Medical Institute and Department of Stem Cell and Regenerative
Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, United States
- Joslin Diabetes Center, Boston, Massachusetts 02215, United States
| | - Amy J. Wagers
- Howard
Hughes Medical Institute and Department of Stem Cell and Regenerative
Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, United States
- Joslin Diabetes Center, Boston, Massachusetts 02215, United States
| | - Cammie F. Lesser
- Department
of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02138, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
82
|
Shen S, Rodrigo G, Prakash S, Majer E, Landrain TE, Kirov B, Daròs JA, Jaramillo A. Dynamic signal processing by ribozyme-mediated RNA circuits to control gene expression. Nucleic Acids Res 2015; 43:5158-70. [PMID: 25916845 PMCID: PMC4446421 DOI: 10.1093/nar/gkv287] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 03/24/2015] [Indexed: 11/12/2022] Open
Abstract
Organisms have different circuitries that allow converting signal molecule levels to changes in gene expression. An important challenge in synthetic biology involves the de novo design of RNA modules enabling dynamic signal processing in live cells. This requires a scalable methodology for sensing, transmission, and actuation, which could be assembled into larger signaling networks. Here, we present a biochemical strategy to design RNA-mediated signal transduction cascades able to sense small molecules and small RNAs. We design switchable functional RNA domains by using strand-displacement techniques. We experimentally characterize the molecular mechanism underlying our synthetic RNA signaling cascades, show the ability to regulate gene expression with transduced RNA signals, and describe the signal processing response of our systems to periodic forcing in single live cells. The engineered systems integrate RNA–RNA interaction with available ribozyme and aptamer elements, providing new ways to engineer arbitrary complex gene circuits.
Collapse
Affiliation(s)
- Shensi Shen
- Institute of Systems and Synthetic Biology, Université d'Évry-Val-d'Essonne, CNRS, F-91000 Évry, France
| | - Guillermo Rodrigo
- Institute of Systems and Synthetic Biology, Université d'Évry-Val-d'Essonne, CNRS, F-91000 Évry, France
| | - Satya Prakash
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Eszter Majer
- Instituto de Biología Molecular y Celular de Plantas, CSIC - Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Thomas E Landrain
- Institute of Systems and Synthetic Biology, Université d'Évry-Val-d'Essonne, CNRS, F-91000 Évry, France
| | - Boris Kirov
- Institute of Systems and Synthetic Biology, Université d'Évry-Val-d'Essonne, CNRS, F-91000 Évry, France
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, CSIC - Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Alfonso Jaramillo
- Institute of Systems and Synthetic Biology, Université d'Évry-Val-d'Essonne, CNRS, F-91000 Évry, France School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
83
|
Sakai Y, Abe K, Nakashima S, Ellinger JJ, Ferri S, Sode K, Ikebukuro K. Scaffold-fused riboregulators for enhanced gene activation in Synechocystis sp. PCC 6803. Microbiologyopen 2015; 4:533-40. [PMID: 25865486 PMCID: PMC4554450 DOI: 10.1002/mbo3.257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/27/2015] [Accepted: 03/09/2015] [Indexed: 12/29/2022] Open
Abstract
Cyanobacteria are an attractive host for biofuel production because they can produce valuable chemical compounds from CO2 fixed by photosynthesis. However, the available genetic tools that enable precise gene regulation for the applications of synthetic biology are insufficient. Previously, we engineered an RNA-based posttranscriptional regulator, termed riboregulator, for the control of target gene expression in cyanobacterium Synechocystis sp. PCC 6803. Moreover, we enhanced the gene regulation ability of the riboregulators in Escherichia coli by fusing and engineering a scaffold sequence derived from naturally occurring E. coli noncoding small RNAs. Here, we demonstrated that the scaffold sequence fused to the riboregulators improved their gene regulation ability in Synechocystis sp. PCC 6803. To further improve gene regulation, we expressed an exogenous RNA chaperone protein that is responsible for noncoding small RNA-mediated gene regulation, which resulted in higher target gene expression. The scaffold sequence derived from natural E. coli noncoding small RNAs is effective for designing RNA-based genetic tools and scaffold-fused riboregulators are a strong RNA-tool to regulate gene expression in cyanobacteria.
Collapse
Affiliation(s)
- Yuta Sakai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.,CREST, Japan Science and Technology Agency, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Koichi Abe
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.,CREST, Japan Science and Technology Agency, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Saki Nakashima
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.,CREST, Japan Science and Technology Agency, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - James J Ellinger
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.,CREST, Japan Science and Technology Agency, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Stefano Ferri
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.,CREST, Japan Science and Technology Agency, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.,CREST, Japan Science and Technology Agency, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.,CREST, Japan Science and Technology Agency, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
84
|
Wright O, Delmans M, Stan GB, Ellis T. GeneGuard: A modular plasmid system designed for biosafety. ACS Synth Biol 2015; 4:307-16. [PMID: 24847673 DOI: 10.1021/sb500234s] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Synthetic biology applications in biosensing, bioremediation, and biomining envision the use of engineered microbes beyond a contained laboratory. Deployment of such microbes in the environment raises concerns of unchecked cellular proliferation or unwanted spread of synthetic genes. While antibiotic-resistant plasmids are the most utilized vectors for introducing synthetic genes into bacteria, they are also inherently insecure, acting naturally to propagate DNA from one cell to another. To introduce security into bacterial synthetic biology, we here took on the task of completely reformatting plasmids to be dependent on their intended host strain and inherently disadvantageous for others. Using conditional origins of replication, rich-media compatible auxotrophies, and toxin-antitoxin pairs we constructed a mutually dependent host-plasmid platform, called GeneGuard. In this, replication initiators for the R6K or ColE2-P9 origins are provided in trans by a specified host, whose essential thyA or dapA gene is translocated from a genomic to a plasmid location. This reciprocal arrangement is stable for at least 100 generations without antibiotic selection and is compatible for use in LB medium and soil. Toxin genes ζ or Kid are also employed in an auxiliary manner to make the vector disadvantageous for strains not expressing their antitoxins. These devices, in isolation and in concert, severely reduce unintentional plasmid propagation in E. coli and B. subtilis and do not disrupt the intended E. coli host's growth dynamics. Our GeneGuard system comprises several versions of modular cargo-ready vectors, along with their requisite genomic integration cassettes, and is demonstrated here as an efficient vector for heavy-metal biosensors.
Collapse
Affiliation(s)
- Oliver Wright
- Centre
for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mihails Delmans
- Centre
for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Guy-Bart Stan
- Centre
for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tom Ellis
- Centre
for Synthetic Biology and Innovation, Imperial College London, London SW7 2AZ, United Kingdom
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
85
|
Bouchie A, DeFrancesco L. Nature Biotechnology's academic spinouts of 2014. Nat Biotechnol 2015; 33:247-55. [DOI: 10.1038/nbt.3163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
86
|
Abstract
ABSTRACT
The study of the bacterial transposons Tn
10
and Tn
5
has provided a wealth of information regarding steps in nonreplicative DNA transposition, transpososome dynamics and structure, as well as mechanisms employed to regulate transposition. The focus of ongoing research on these transposons is mainly on host regulation and the use of the Tn
10
antisense system as a platform to develop riboregulators for applications in synthetic biology. Over the past decade two new regulators of both Tn
10
and Tn
5
transposition have been identified, namely H-NS and Hfq proteins. These are both global regulators of gene expression in enteric bacteria with functions linked to stress-response pathways and virulence and potentially could link the Tn
10
and Tn
5
systems (and thus the transfer of antibiotic resistance genes) to environmental cues. Work summarized here is consistent with the H-NS protein working directly on transposition complexes to upregulate both Tn
10
and Tn
5
transposition. In contrast, evidence is discussed that is consistent with Hfq working at the level of transposase expression to downregulate both systems. With regard to Tn
10
and synthetic biology, some recent work that incorporates the Tn
10
antisense RNA into both transcriptional and translational riboswitches is summarized.
Collapse
|
87
|
Mellin JR, Cossart P. Unexpected versatility in bacterial riboswitches. Trends Genet 2015; 31:150-6. [PMID: 25708284 DOI: 10.1016/j.tig.2015.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 12/11/2022]
Abstract
Bacterial riboswitches are elements present in the 5'-untranslated regions (UTRs) of mRNA molecules that bind to ligands and regulate the expression of downstream genes. Riboswitches typically regulate the expression of protein-coding genes. However, mechanisms of riboswitch-mediated regulation have recently been shown to be more diverse than originally thought, with reports showing that riboswitches can regulate the expression of noncoding RNAs and control the access of proteins, such as transcription termination factor Rho and RNase E, to a nascent RNA. Riboswitches are also increasingly used in biotechnology, with advances in the engineering of synthetic riboswitches and the development of riboswitch-based sensors. In this review we address the emerging roles and mechanisms of riboswitch-mediated regulation in natura and recent progress in the development of riboswitch-based technology.
Collapse
Affiliation(s)
- J R Mellin
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 604, 75015 Paris, France; Institut National de la Recherche Agronomique (INRA) Unité USC2020, 75015 Paris, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 604, 75015 Paris, France; Institut National de la Recherche Agronomique (INRA) Unité USC2020, 75015 Paris, France.
| |
Collapse
|
88
|
Gallagher RR, Patel JR, Interiano AL, Rovner AJ, Isaacs FJ. Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res 2015; 43:1945-54. [PMID: 25567985 PMCID: PMC4330353 DOI: 10.1093/nar/gku1378] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/20/2014] [Accepted: 12/20/2014] [Indexed: 12/29/2022] Open
Abstract
Genetically modified organisms (GMOs) are commonly used to produce valuable compounds in closed industrial systems. However, their emerging applications in open clinical or environmental settings require enhanced safety and security measures. Intrinsic biocontainment, the creation of bacterial hosts unable to survive in natural environments, remains a major unsolved biosafety problem. We developed a new biocontainment strategy containing overlapping 'safeguards'-engineered riboregulators that tightly control expression of essential genes, and an engineered addiction module based on nucleases that cleaves the host genome-to restrict viability of Escherichia coli cells to media containing exogenously supplied synthetic small molecules. These multilayered safeguards maintain robust growth in permissive conditions, eliminate persistence and limit escape frequencies to <1.3 × 10(-12). The staged approach to safeguard implementation revealed mechanisms of escape and enabled strategies to overcome them. Our safeguarding strategy is modular and employs conserved mechanisms that could be extended to clinically or industrially relevant organisms and undomesticated species.
Collapse
Affiliation(s)
- Ryan R Gallagher
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jaymin R Patel
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Alexander L Interiano
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Alexis J Rovner
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
89
|
Lapique N, Benenson Y. Digital switching in a biosensor circuit via programmable timing of gene availability. Nat Chem Biol 2014; 10:1020-7. [PMID: 25306443 PMCID: PMC4232471 DOI: 10.1038/nchembio.1680] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/22/2014] [Indexed: 12/23/2022]
Abstract
Transient delivery of gene circuits is required in many potential applications of synthetic biology, yet the pre-steady-state processes that dominate this delivery route pose major challenges for robust circuit deployment. Here we show that site-specific recombinases can rectify undesired effects by programmable timing of gene availability in multigene circuits. We exemplify the concept with a proportional sensor for endogenous microRNA (miRNA) and show a marked reduction in its ground state leakage due to desynchronization of the circuit's repressor components and their repression target. The new sensors display a dynamic range of up to 1,000-fold compared to 20-fold in the standard configuration. We applied the approach to classify cell types on the basis of miRNA expression profile and measured >200-fold output differential between positively and negatively identified cells. We also showed major improvements in specificity with cytotoxic output. Our study opens new venues in gene circuit design via judicious temporal control of circuits' genetic makeup.
Collapse
Affiliation(s)
- Nicolas Lapique
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Mattenstrasse 26, Basel 4058 Switzerland
| | - Yaakov Benenson
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Mattenstrasse 26, Basel 4058 Switzerland
| |
Collapse
|
90
|
Abstract
Tunable control of protein degradation in bacteria would provide a powerful research tool. We use components of the Mesoplasma florum tmRNA system to create a synthetic degradation system that provides both independent control of the steady-state protein level and inducible degradation of targeted proteins in Escherichia coli. We demonstrate application of this system in synthetic circuit development and control of core bacterial processes and antibacterial targets, and transfer the system to Lactococcus lactis to establish its broad functionality in bacteria. We create a 238-member library of tagged essential proteins in E. coli that can serve as both a research tool to study essential gene function and an applied system for antibiotic discovery. Our synthetic protein degradation system is modular, does not require disruption of host systems, and can be transferred to diverse bacteria with minimal modification.
Collapse
|
91
|
Pardee K, Green AA, Ferrante T, Cameron DE, DaleyKeyser A, Yin P, Collins JJ. Paper-based synthetic gene networks. Cell 2014; 159:940-54. [PMID: 25417167 PMCID: PMC4243060 DOI: 10.1016/j.cell.2014.10.004] [Citation(s) in RCA: 490] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 09/29/2014] [Accepted: 10/03/2014] [Indexed: 01/21/2023]
Abstract
Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides an alternate, versatile venue for synthetic biologists to operate and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze dried onto paper, enabling the inexpensive, sterile, and abiotic distribution of synthetic-biology-based technologies for the clinic, global health, industry, research, and education. For field use, we create circuits with colorimetric outputs for detection by eye and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small-molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors.
Collapse
Affiliation(s)
- Keith Pardee
- Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA
| | - Alexander A Green
- Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA
| | - Tom Ferrante
- Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - D Ewen Cameron
- Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Ajay DaleyKeyser
- Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Peng Yin
- Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - James J Collins
- Wyss Institute for Biological Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
92
|
Green AA, Silver PA, Collins JJ, Yin P. Toehold switches: de-novo-designed regulators of gene expression. Cell 2014; 159:925-39. [PMID: 25417166 DOI: 10.1016/j.cell.2014.10.002] [Citation(s) in RCA: 547] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 07/15/2014] [Accepted: 09/25/2014] [Indexed: 01/30/2023]
Abstract
Efforts to construct synthetic networks in living cells have been hindered by the limited number of regulatory components that provide wide dynamic range and low crosstalk. Here, we report a class of de-novo-designed prokaryotic riboregulators called toehold switches that activate gene expression in response to cognate RNAs with arbitrary sequences. Toehold switches provide a high level of orthogonality and can be forward engineered to provide average dynamic range above 400. We show that switches can be integrated into the genome to regulate endogenous genes and use them as sensors that respond to endogenous RNAs. We exploit the orthogonality of toehold switches to regulate 12 genes independently and to construct a genetic circuit that evaluates 4-input AND logic. Toehold switches, with their wide dynamic range, orthogonality, and programmability, represent a versatile and powerful platform for regulation of translation, offering diverse applications in molecular biology, synthetic biology, and biotechnology.
Collapse
Affiliation(s)
- Alexander A Green
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
93
|
Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli. Appl Environ Microbiol 2014; 80:7283-92. [PMID: 25239896 DOI: 10.1128/aem.02411-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/12/2014] [Indexed: 12/26/2022] Open
Abstract
Malonyl coenzyme A (malonyl-CoA) is an important precursor for the synthesis of natural products, such as polyketides and flavonoids. The majority of this cofactor often is consumed for producing fatty acids and phospholipids, leaving only a small amount of cellular malonyl-CoA available for producing the target compound. The tuning of malonyl-CoA into heterologous pathways yields significant phenotypic effects, such as growth retardation and even cell death. In this study, fine-tuning of the fatty acid pathway in Escherichia coli with antisense RNA (asRNA) to balance the demands on malonyl-CoA for target-product synthesis and cell health was proposed. To establish an efficient asRNA system, the relationship between sequence and function for asRNA was explored. It was demonstrated that the gene-silencing effect of asRNA could be tuned by directing asRNA to different positions in the 5'-UTR (untranslated region) of the target gene. Based on this principle, the activity of asRNA was quantitatively tailored to balance the need for malonyl-CoA in cell growth and the production of the main flavonoid precursor, (2S)-naringenin. Appropriate inhibitory efficiency of the anti-fabB/fabF asRNA improved the production titer by 431% (391 mg/liter). Therefore, the strategy presented in this study provided a useful tool for the fine-tuning of endogenous gene expression in bacteria.
Collapse
|
94
|
Brophy JAN, Voigt CA. Principles of genetic circuit design. Nat Methods 2014; 11:508-20. [PMID: 24781324 DOI: 10.1038/nmeth.2926] [Citation(s) in RCA: 617] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/18/2014] [Indexed: 12/17/2022]
Abstract
Cells navigate environments, communicate and build complex patterns by initiating gene expression in response to specific signals. Engineers seek to harness this capability to program cells to perform tasks or create chemicals and materials that match the complexity seen in nature. This Review describes new tools that aid the construction of genetic circuits. Circuit dynamics can be influenced by the choice of regulators and changed with expression 'tuning knobs'. We collate the failure modes encountered when assembling circuits, quantify their impact on performance and review mitigation efforts. Finally, we discuss the constraints that arise from circuits having to operate within a living cell. Collectively, better tools, well-characterized parts and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
95
|
Way JC, Collins JJ, Keasling JD, Silver PA. Integrating biological redesign: where synthetic biology came from and where it needs to go. Cell 2014; 157:151-61. [PMID: 24679533 DOI: 10.1016/j.cell.2014.02.039] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/26/2013] [Accepted: 02/19/2014] [Indexed: 01/17/2023]
Abstract
Synthetic biology seeks to extend approaches from engineering and computation to redesign of biology, with goals such as generating new chemicals, improving human health, and addressing environmental issues. Early on, several guiding principles of synthetic biology were articulated, including design according to specification, separation of design from fabrication, use of standardized biological parts and organisms, and abstraction. We review the utility of these principles over the past decade in light of the field's accomplishments in building complex systems based on microbial transcription and metabolism and describe the progress in mammalian cell engineering.
Collapse
Affiliation(s)
- Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02115, USA
| | - Jay D Keasling
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint Bioenergy Institute, Emeryville, CA 94608, USA; Synthetic Biology Engineering Research Center (SynBERC), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Synthetic Biology Engineering Research Center (SynBERC), University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
96
|
Groher F, Suess B. Synthetic riboswitches - A tool comes of age. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:964-973. [PMID: 24844178 DOI: 10.1016/j.bbagrm.2014.05.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/29/2014] [Accepted: 05/08/2014] [Indexed: 12/14/2022]
Abstract
Within the last decade, it has become obvious that RNA plays an important role in regulating gene expression. This has led to a plethora of approaches aiming at exploiting the outstanding chemical properties of RNA to develop synthetic RNA regulators for conditional gene expression systems. Consequently, many different regulators have been developed to act on various stages of gene expression. They can be engineered to respond to almost any ligand of choice and are, therefore, of great interest for applications in synthetic biology. This review presents an overview of such engineered riboswitches, discusses their applicability and points out recent trends in their development. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Florian Groher
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany.
| |
Collapse
|
97
|
|
98
|
Sakai Y, Abe K, Nakashima S, Yoshida W, Ferri S, Sode K, Ikebukuro K. Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli. ACS Synth Biol 2014; 3:152-62. [PMID: 24328142 DOI: 10.1021/sb4000959] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Noncoding small RNAs are involved in transcriptional and post-transcriptional gene regulation of target mRNAs by modulating mRNA elongation, stability, or translational efficiency. Many natural trans-encoded small RNAs contain a scaffold that allows binding of the RNA chaperone protein Hfq for conditional gene regulation. Here, we improved the gene regulation abilities of small RNAs by directly fusing the natural Escherichia coli trans-encoded small RNA-derived scaffolds, including Hfq-binding and rho-independent transcription terminator sequences, to the 3' end of the small RNAs that mediate RNA-based gene regulation. As target small RNAs to improve their gene regulation abilities, we selected small RNAs of artificial post-transcriptional riboregulators and transcriptional attenuators. Four different small RNA scaffolds were fused to the riboregulator and attenuator-derived small RNAs. Mutations were introduced into the best small RNA scaffold to improve its gene-regulation ability further. As a result, mutations predicted to stabilize the secondary structures of the small RNA scaffolds dramatically increased its ability to regulate gene expression of both the post-transcriptional riboregulator and transcriptional attenuator systems. We believe our engineered small RNA scaffolds are applicable to other RNA regulators for improving regulatory activity, and engineered small RNA scaffolds may present a valuable strategy to regulate target gene expression strongly.
Collapse
Affiliation(s)
- Yuta Sakai
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Japan Science and Technology Agency, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koichi Abe
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Japan Science and Technology Agency, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Saki Nakashima
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Japan Science and Technology Agency, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Wataru Yoshida
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Japan Science and Technology Agency, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Stefano Ferri
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Japan Science and Technology Agency, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Sode
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Japan Science and Technology Agency, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazunori Ikebukuro
- Department
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Japan Science and Technology Agency, CREST, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
99
|
Roquet N, Lu TK. Digital and analog gene circuits for biotechnology. Biotechnol J 2014; 9:597-608. [PMID: 24677719 DOI: 10.1002/biot.201300258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/05/2013] [Accepted: 01/08/2014] [Indexed: 11/08/2022]
Abstract
Biotechnology offers the promise of valuable chemical production via microbial processing of renewable and inexpensive substrates. Thus far, static metabolic engineering strategies have enabled this field to advance industrial applications. However, the industrial scaling of statically engineered microbes inevitably creates inefficiencies due to variable conditions present in large-scale microbial cultures. Synthetic gene circuits that dynamically sense and regulate different molecules can resolve this issue by enabling cells to continuously adapt to variable conditions. These circuits also have the potential to enable next-generation production programs capable of autonomous transitioning between steps in a bioprocess. Here, we review the design and application of two main classes of dynamic gene circuits, digital and analog, for biotechnology. Within the context of these classes, we also discuss the potential benefits of digital-analog interconversion, memory, and multi-signal integration. Though synthetic gene circuits have largely been applied for cellular computation to date, we envision that utilizing them in biotechnology will enhance the efficiency and scope of biochemical production with living cells.
Collapse
Affiliation(s)
- Nathaniel Roquet
- Synthetic Biology Group, Research Lab of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard Biophysics Program, Boston, MA, USA
| | | |
Collapse
|
100
|
A secondary structure in the 5' untranslated region of adhE mRNA required for RNase G-dependent regulation. Biosci Biotechnol Biochem 2013; 77:2473-9. [PMID: 24317071 DOI: 10.1271/bbb.130618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Escherichia coli RNase G is involved in the degradation of several mRNAs, including adhE and eno, which encode alcohol dehydrogenase and enolase respectively. Previous research indicates that the 5' untranslated region (5'-UTR) of adhE mRNA gives RNase G-dependency to lacZ mRNA when tagged at the 5'-end, but it has not been elucidated yet how RNase G recognizes adhE mRNA. Primer extension analysis revealed that RNase G cleaved a phosphodiester bond between -19A and -18C in the 5'-UTR (the A of the start codon was defined as +1). Site-directed mutagenesis indicated that RNase G did not recognize the nucleotides at -19 and -18. Random deletion analysis indicated that the sequence from -145 to -125 was required for RNase G-dependent degradation. Secondary structure prediction and further site-directed deletion suggested that the stem-loop structure, with a bubble in the stem, is required for RNaseG-dependent degradation of adhE mRNA.
Collapse
|