51
|
Abramczyk H, Sobkiewicz B, Walczak-Jędrzejowska R, Marchlewska K, Surmacki J. Decoding the role of cytochrome c in metabolism of human spermatozoa by Raman imaging. Front Cell Dev Biol 2022; 10:983993. [PMID: 36506104 PMCID: PMC9732575 DOI: 10.3389/fcell.2022.983993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
The normal functioning of sperm cells requires cytochrome c in the redox balanced forms: reduced and oxidized. The oxidized form of cytochrome c is localized in the mitochondrial intermembrane space and is a part of the electron transport chain. This ensures that electron shuttling between the complex III, cytochrome c, and complex IV can occur leading to controlled effective oxidative phosphorylation (respiration) and ATP production needed for most steps in spermatozoal maturation, motility, hyperactivation and fertilization. We studied the biochemical composition of specific organelles in sperm cells by Raman imaging. The structures of the head consisting of the nucleus and acrosome, the midpiece representing mitochondria, and the tail characterized by the sperm axoneme surrounded by outer dense fiber and covered by the membrane were measured. Metabolic biochemical analysis of mitochondria, head and tail of sperm cells, and seminal plasma by using Raman imaging combined with chemometric classification method of Cluster Analysis has been obtained. Our results show that cytochrome c, which is a key protein that is needed to maintain life (respiration) and cell death (apoptosis), is located in sperm mitochondria in the oxidized or reduced form of the heme group. This work demonstrated that an application of Raman micro-spectroscopy can be extended to monitoring the redox state of mitochondrial cytochrome c in sperm cells.
Collapse
Affiliation(s)
- Halina Abramczyk
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz, Poland,*Correspondence: Halina Abramczyk, ; Jakub Surmacki,
| | | | | | - Katarzyna Marchlewska
- Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland
| | - Jakub Surmacki
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Lodz, Poland,*Correspondence: Halina Abramczyk, ; Jakub Surmacki,
| |
Collapse
|
52
|
Application of the Dynamical Network Biomarker Theory to Raman Spectra. Biomolecules 2022; 12:biom12121730. [PMID: 36551158 PMCID: PMC9776035 DOI: 10.3390/biom12121730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
The dynamical network biomarker (DNB) theory detects the early warning signals of state transitions utilizing fluctuations in and correlations between variables in complex systems. Although the DNB theory has been applied to gene expression in several diseases, destructive testing by microarrays is a critical issue. Therefore, other biological information obtained by non-destructive testing is desirable; one such piece of information is Raman spectra measured by Raman spectroscopy. Raman spectroscopy is a powerful tool in life sciences and many other fields that enable the label-free non-invasive imaging of live cells and tissues along with detailed molecular fingerprints. Naïve and activated T cells have recently been successfully distinguished from each other using Raman spectroscopy without labeling. In the present study, we applied the DNB theory to Raman spectra of T cell activation as a model case. The dataset consisted of Raman spectra of the T cell activation process observed at 0 (naïve T cells), 2, 6, 12, 24 and 48 h (fully activated T cells). In the DNB analysis, the F-test and hierarchical clustering were used to detect the transition state and identify DNB Raman shifts. We successfully detected the transition state at 6 h and related DNB Raman shifts during the T cell activation process. The present results suggest novel applications of the DNB theory to Raman spectra ranging from fundamental research on cellular mechanisms to clinical examinations.
Collapse
|
53
|
Davison PA, Tu W, Xu J, Della Valle S, Thompson IP, Hunter CN, Huang WE. Engineering a Rhodopsin-Based Photo-Electrosynthetic System in Bacteria for CO 2 Fixation. ACS Synth Biol 2022; 11:3805-3816. [PMID: 36264158 PMCID: PMC9680020 DOI: 10.1021/acssynbio.2c00397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A key goal of synthetic biology is to engineer organisms that can use solar energy to convert CO2 to biomass, chemicals, and fuels. We engineered a light-dependent electron transfer chain by integrating rhodopsin and an electron donor to form a closed redox loop, which drives rhodopsin-dependent CO2 fixation. A light-driven proton pump comprising Gloeobacter rhodopsin (GR) and its cofactor retinal have been assembled in Ralstonia eutropha (Cupriavidus necator) H16. In the presence of light, this strain fixed inorganic carbon (or bicarbonate) leading to 20% growth enhancement, when formate was used as an electron donor. We found that an electrode from a solar panel can replace organic compounds to serve as the electron donor, mediated by the electron shuttle molecule riboflavin. In this new autotrophic and photo-electrosynthetic system, GR is augmented by an external photocell for reductive CO2 fixation. We demonstrated that this hybrid photo-electrosynthetic pathway can drive the engineered R. eutropha strain to grow using CO2 as the sole carbon source. In this system, a bioreactor with only two inputs, light and CO2, enables the R. eutropha strain to perform a rhodopsin-dependent autotrophic growth. Light energy alone, supplied by a solar panel, can drive the conversion of CO2 into biomass with a maximum electron transfer efficiency of 20%.
Collapse
Affiliation(s)
- Paul A. Davison
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Weiming Tu
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Jiabao Xu
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Simona Della Valle
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Ian P. Thompson
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - C. Neil Hunter
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Wei E. Huang
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom,. Tel: +44 1865 283786
| |
Collapse
|
54
|
Watanabe TM, Sasaki K, Fujita H. Recent Advances in Raman Spectral Imaging in Cell Diagnosis and Gene Expression Prediction. Genes (Basel) 2022; 13:2127. [PMID: 36421802 PMCID: PMC9690875 DOI: 10.3390/genes13112127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 06/30/2024] Open
Abstract
Normal and tumor regions within cancer tissue can be distinguished using various methods, such as histological analysis, tumor marker testing, X-ray imaging, or magnetic resonance imaging. Recently, new discrimination methods utilizing the Raman spectra of tissues have been developed and put into practical use. Because Raman spectral microscopy is a non-destructive and non-labeling method, it is potentially compatible for use in the operating room. In this review, we focus on the basics of Raman spectroscopy and Raman imaging in live cells and cell type discrimination, as these form the bases for current Raman scattering-based cancer diagnosis. We also review recent attempts to estimate the gene expression profile from the Raman spectrum of living cells using simple machine learning. Considering recent advances in machine learning techniques, we speculate that cancer type discrimination using Raman spectroscopy will be possible in the near future.
Collapse
Affiliation(s)
- Tomonobu M. Watanabe
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Minami-ku, Hiroshima 734-8553, Japan
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Kobe 650-0047, Japan
| | - Kensuke Sasaki
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Kobe 650-0047, Japan
| | - Hideaki Fujita
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
55
|
Hu C, Jiang Z, Liu P, Yu Y, Chu K, Smith ZJ. Super-resolved Raman imaging via galvo-painted structured line illumination. OPTICS LETTERS 2022; 47:5949-5952. [PMID: 37219144 DOI: 10.1364/ol.469982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 05/24/2023]
Abstract
Traditional line-scan Raman imaging features a rapid imaging speed while preserving complete spectral information, yet has diffraction-limited resolution. Sinusoidally structured line excitation can yield an improvement in the lateral resolution of the Raman image along the line's direction. However, given the need for the line and spectrometer slit to be aligned, the resolution in the perpendicular direction remains diffraction limited. To overcome this, we present here a galvo-modulated structured line imaging system, where a system of three galvos can arbitrarily orient the structured line on the sample plane, while keeping the beam aligned to the spectrometer slit in the detection plane. Thus, a two-fold isotropic improvement in the lateral resolution fold is possible. We demonstrate the feasibility using mixtures of microspheres as chemical and size standards. The results prove an improvement in the lateral resolution of 1.8-fold (limited by line contrast at higher frequencies), while preserving complete spectral information of the sample.
Collapse
|
56
|
Dodo K, Fujita K, Sodeoka M. Raman Spectroscopy for Chemical Biology Research. J Am Chem Soc 2022; 144:19651-19667. [PMID: 36216344 PMCID: PMC9635364 DOI: 10.1021/jacs.2c05359] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Indexed: 11/29/2022]
Abstract
In chemical biology research, various fluorescent probes have been developed and used to visualize target proteins or molecules in living cells and tissues, yet there are limitations to this technology, such as the limited number of colors that can be detected simultaneously. Recently, Raman spectroscopy has been applied in chemical biology to overcome such limitations. Raman spectroscopy detects the molecular vibrations reflecting the structures and chemical conditions of molecules in a sample and was originally used to directly visualize the chemical responses of endogenous molecules. However, our initial research to develop "Raman tags" opens a new avenue for the application of Raman spectroscopy in chemical biology. In this Perspective, we first introduce the label-free Raman imaging of biomolecules, illustrating the biological applications of Raman spectroscopy. Next, we highlight the application of Raman imaging of small molecules using Raman tags for chemical biology research. Finally, we discuss the development and potential of Raman probes, which represent the next-generation probes in chemical biology.
Collapse
Affiliation(s)
- Kosuke Dodo
- Synthetic
Organic Chemistry Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis
and Integrated Research Group, RIKEN Center
for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsumasa Fujita
- Department
of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute
for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- AIST-Osaka
University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science
and Technology (AIST), Suita, Osaka 565-0871, Japan
| | - Mikiko Sodeoka
- Synthetic
Organic Chemistry Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Catalysis
and Integrated Research Group, RIKEN Center
for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
57
|
Su HS, Chang X, Xu B. Surface-enhanced vibrational spectroscopies in electrocatalysis: Fundamentals, challenges, and perspectives. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Li M, Nawa Y, Ishida S, Kanda Y, Fujita S, Fujita K. Label-free chemical imaging of cytochrome P450 activity by Raman microscopy. Commun Biol 2022; 5:778. [PMID: 35995965 PMCID: PMC9395422 DOI: 10.1038/s42003-022-03713-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/13/2022] [Indexed: 12/27/2022] Open
Abstract
Although investigating drug modulation of cytochrome P450 (CYP) activity under physiological conditions is crucial in drug development to avoid severe adverse drug reactions, the current evaluation approaches that rely on the destructive and end-point analysis can be misleading due to invasive treatments and cellular heterogeneity. Here, we propose a non-destructive and high-content method for visualizing and quantifying intracellular CYP activity under drug administration by Raman microscopy. The redox-state and spin-state sensitive Raman measurement indicated that the induced CYPs in living hepatocytes were in oxidized and low-spin state, which is related to monooxygenase function of CYP. Moreover, glycogen depletion associated with CYP induction was simultaneously observed, indicating a relevant effect on glucose metabolism. By deciphering the overall changes in the biochemical fingerprints of hepatocytes, Raman microscopy offers a non-destructive and quantitative chemical imaging method to evaluate CYP activity at the single-cell level with the potential to facilitate future drug development schemes.
Collapse
Affiliation(s)
- Menglu Li
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasunori Nawa
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiichi Ishida
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Applied Life Science, Graduate School of Engineering, Sojo University, 4-22-1, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Yasunari Kanda
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Satoshi Fujita
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Katsumasa Fujita
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
59
|
Yu Y, Tang Y, Chu K, Gao T, Smith ZJ. High-Resolution Low-Power Hyperspectral Line-Scan Imaging of Fast Cellular Dynamics Using Azo-Enhanced Raman Scattering Probes. J Am Chem Soc 2022; 144:15314-15323. [PMID: 35969674 DOI: 10.1021/jacs.2c06275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small-molecule Raman probes for cellular imaging have attracted great attention owing to their sharp peaks that are sensitive to environmental changes. The small cross section of molecular Raman scattering limits dynamic cellular Raman imaging to expensive and complex coherent approaches that acquire single-channel images and lose hyperspectral Raman information. We introduce a new method, dynamic azo-enhanced Raman imaging (DAERI), to couple the new class of azo-enhanced Raman probes with a high-speed line-scan Raman imaging system. DAERI achieved high-resolution low-power imaging of fast cellular dynamics resolved at ∼270 nm along the confocal direction, 75 μW/μm2 and 3.5 s/frame. Based on the azo-enhanced Raman probes with characteristic signals 102-104 stronger than classic Raman labels, DAERI was not restricted to the cellular Raman-silent region as in prior work and enabled multiplex visualization of organelle motions and interactions. We anticipate DAERI to be a powerful tool for future studies in biophysics and cell biology.
Collapse
Affiliation(s)
- Yajun Yu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yuchen Tang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Kaiqin Chu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
60
|
Li M, Liao HX, Bando K, Nawa Y, Fujita S, Fujita K. Label-Free Monitoring of Drug-Induced Cytotoxicity and Its Molecular Fingerprint by Live-Cell Raman and Autofluorescence Imaging. Anal Chem 2022; 94:10019-10026. [PMID: 35786862 DOI: 10.1021/acs.analchem.2c00293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Simultaneous observation of drug distribution at the effector site and subsequent cell response are essential in the drug development process. However, few studies have visualized the drug itself and biomolecular interactions in living cells. Here, we used label-free Raman microscopy to investigate drug-induced cytotoxicity and visualize drug uptake and subcellular localization by its specific molecular fingerprint. A redox-sensitive Raman microscope detected the decrease of reduced cytochrome c (cyt c) after Actinomycin D (ActD) treatment in a time-dependent and dose-dependent format. Immunofluorescence staining of cyt c suggested that the release of cyt c was not the major cause. Combining Raman microscopy with conventional biological methods, we reported that the oxidization of cyt c is an early cytotoxicity marker prior to the release of cyt c. Moreover, as the spectral properties of ActD are sensitive to the surrounding environment, subcellular localization of ActD was visualized sensitively by the weak autofluorescence, and the intercalation of ActD into DNA was detected by shifted Raman peaks, allowing for parallel observation of drug uptake and the mechanism of action. In this research, we achieved simultaneous observation of cytotoxicity and cellular drug uptake by Raman microscopy, which could facilitate a precise understanding of pharmacological effects and predict potential drug toxicity in the future.
Collapse
Affiliation(s)
- Menglu Li
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 YamadaokaSuita, Osaka 565-0871, Japan
| | - Hao-Xiang Liao
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuki Bando
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasunori Nawa
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 YamadaokaSuita, Osaka 565-0871, Japan
| | - Satoshi Fujita
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 YamadaokaSuita, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 YamadaokaSuita, Osaka 565-0871, Japan.,Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
61
|
Krishna R, Colak I. Advances in Biomedical Applications of Raman Microscopy and Data Processing: A Mini Review. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2094391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ram Krishna
- Department of Mechanical Engineering, Madanapalle Institute of Technology & Science, Madanapalle, Andhra Pradesh, India
- Electrical and Electronics Engineering, Nisantasi University, Istanbul, Turkey
- Ohm Janki Biotech Research Private Limited, India
| | - Ilhami Colak
- Electrical and Electronics Engineering, Nisantasi University, Istanbul, Turkey
| |
Collapse
|
62
|
Zahn J, Germond A, Lundgren AY, Cicerone MT. Discriminating cell line specific features of antibiotic-resistant strains of Escherichia coli from Raman spectra via machine learning analysis. JOURNAL OF BIOPHOTONICS 2022; 15:e202100274. [PMID: 35238159 PMCID: PMC9262779 DOI: 10.1002/jbio.202100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
While Raman spectroscopy can provide label-free discrimination between highly similar biological species, the discrimination is often marginal, and optimal use of spectral information is imperative. Here, we compare two machine learning models, an artificial neural network and a support vector machine, for discriminating between Raman spectra of 11 bacterial mutants of Escherichia coli MDS42. While we find that both models discriminate the 11 bacterial strains with similarly high accuracy, sensitivity and specificity, it is clear that the models form different class boundaries. By extracting strain-specific (and function-specific) spectral features utilized by the models, we find that both models utilize a small subset of high intensity peaks while separate subsets of lower intensity peaks are utilized by only one method or the other. This analysis highlights the need for methods to use the complete spectral information more effectively, beginning with a better understanding of the distinct information gained from each model.
Collapse
Affiliation(s)
- Jessica Zahn
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA 30332, USA
| | - Arno Germond
- INRAE, UR 370 Qualité des Produits Animaux (QuaPA) Équipe Imagerie & Transferts (IT), 63122 Saint-Gènes-Champanelle, France
| | - Alice Y Lundgren
- Department of Mathematics, Brigham Young University, 275 TMCB, Provo, UT 84602, USA
| | - Marcus T Cicerone
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA 30332, USA
| |
Collapse
|
63
|
Frederick AK, Thompson SL, Vakharia ZM, Cherney MM, Lei H, Evenson G, Bowler BE. Effect on intrinsic peroxidase activity of substituting coevolved residues from Ω-loop C of human cytochrome c into yeast iso-1-cytochrome c. J Inorg Biochem 2022; 232:111819. [PMID: 35428021 PMCID: PMC9162143 DOI: 10.1016/j.jinorgbio.2022.111819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 11/15/2022]
Abstract
Naturally-occurring variants of human cytochrome c (Cytc) that induce thrombocytopenia IV occur within Ω-loop C (residues 40-57). These variants enhance the peroxidase activity of human Cytc apparently by facilitating access to the heme by destabilizing Ω-loops C and D (residues 70-85). Given the importance of peroxidase activity in the early stages of apoptosis, we identified three sites with the EVmutation algorithm in or near Ω-loop C that coevolve and differ between yeast iso-1-Cytc and human Cytc. We prepared iso-1-Cytc variants with all possible combinations of the S40T, V57I and N63T substitutions to determine if these residues decrease the peroxidase activity of iso-1-Cytc to that of human Cytc producing an effective off state for a peroxidase signaling switch. At pH 6 and above, all variants significantly decreased peroxidase activity. However, the correlation of peroxidase activity with local and global stability, expected if cooperative unfolding of Ω-loops C and D is required for peroxidase activity, was generally poor. The m-values derived from the guanidine hydrochloride dependence of the kinetics of imidazole binding to horse Cytc, which is well-characterized by native-state hydrogen exchange methods, and K72A/K73A/K79A iso-1-Cytc show that local structural fluctuations and not subglobal cooperative unfolding of Ω-loops C and D are sufficient to permit binding of a small molecule like peroxide to the heme. A 2.46 Å structure of N63T iso-1-Cytc identifies a change to a hydrogen bond network linking Ω-loops C and D that could modulate the local fluctuations needed for the intrinsic peroxidase activity of Cytc.
Collapse
Affiliation(s)
- Ariel K Frederick
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Sidney L Thompson
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Zahra M Vakharia
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Melisa M Cherney
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Haotian Lei
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Garrett Evenson
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Bruce E Bowler
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
64
|
Trans-cinnamaldehyde inhibits Penicillium italicum by damaging mitochondria and inducing apoptosis mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
65
|
Cui D, Kong L, Wang Y, Zhu Y, Zhang C. In situ identification of environmental microorganisms with Raman spectroscopy. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100187. [PMID: 36158754 PMCID: PMC9488013 DOI: 10.1016/j.ese.2022.100187] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 05/28/2023]
Abstract
Microorganisms in natural environments are crucial in maintaining the material and energy cycle and the ecological balance of the environment. However, it is challenging to delineate environmental microbes' actual metabolic pathways and intraspecific heterogeneity because most microorganisms cannot be cultivated. Raman spectroscopy is a culture-independent technique that can collect molecular vibration profiles from cells. It can reveal the physiological and biochemical information at the single-cell level rapidly and non-destructively in situ. The first part of this review introduces the principles, advantages, progress, and analytical methods of Raman spectroscopy applied in environmental microbiology. The second part summarizes the applications of Raman spectroscopy combined with stable isotope probing (SIP), fluorescence in situ hybridization (FISH), Raman-activated cell sorting and genomic sequencing, and machine learning in microbiological studies. Finally, this review discusses expectations of Raman spectroscopy and future advances to be made in identifying microorganisms, especially for uncultured microorganisms.
Collapse
Affiliation(s)
- Dongyu Cui
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanqing Zhu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai, 200062, China
| | - Chuanlun Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, University of Southern University of Science and Technology, Shenzhen, 518055, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai, 200062, China
| |
Collapse
|
66
|
Xu Y, Hou X, Zhu Q, Mao S, Ren J, Lin J, Xu N. Phenotype Identification of HeLa Cells Knockout CDK6 Gene Based on Label-Free Raman Imaging. Anal Chem 2022; 94:8890-8898. [PMID: 35704426 DOI: 10.1021/acs.analchem.2c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying cell phenotypes is essential for understanding the function of biological macromolecules and molecular biology. We developed a noninvasive, label-free, single-cell Raman imaging analysis platform to distinguish between the cell phenotypes of the HeLa cell wild type (WT) and cyclin-dependent kinase 6 (CDK6) gene knockout (KO) type. Via large-scale Raman spectral and imaging analysis, two phenotypes of the HeLa cells were distinguished by their intrinsic biochemical profiles. A significant difference was found between the two cell lines: large lipid droplets formed in the knockout HeLa cells but were not observed in the WT cells, which was confirmed by Oil Red O staining. The band ratio of the Raman spectrum of saturated/unsaturated fatty acids was identified as the Raman spectral marker for HeLa cell WT or gene knockout type differentiation. The interaction between organelles involved in lipid metabolism was revealed by Raman imaging and Lorentz fitting, where the distribution intensity of the mitochondria and the endoplasmic reticulum membrane decreased. At the same time, lysosomes increased after the CDK6 gene knockout. The parameters obtained from Raman spectroscopy are based on hierarchical cluster analysis and one-way ANOVA, enabling highly accurate cell classification.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, Zhejiang 313200, People's Republic of China
| | - Xiaoli Hou
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Qiaoqiao Zhu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, Zhejiang 313200, People's Republic of China
| | - Shijie Mao
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, Zhejiang 313200, People's Republic of China
| | - Jie Ren
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, Zhejiang 313200, People's Republic of China
| | - Jidong Lin
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, Zhejiang 313200, People's Republic of China
| | - Ning Xu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Huzhou, Zhejiang 313200, People's Republic of China
| |
Collapse
|
67
|
Wang W, Mu M, Zou Y, Li B, Cao H, Hu D, Tao X. Inflammation and fibrosis in the coal dust-exposed lung described by confocal Raman spectroscopy. PeerJ 2022; 10:e13632. [PMID: 35765591 PMCID: PMC9233900 DOI: 10.7717/peerj.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 01/17/2023] Open
Abstract
Background Coal workers' pneumoconiosis (CWP) is an occupational disease that severely damages the life and health of miners. However, little is known about the molecular and cellular mechanisms changes associated with lung inflammation and fibrosis induced by coal dust. As a non-destructive technique for measuring biological tissue, confocal Raman spectroscopy provides accurate molecular fingerprints of label-free tissues and cells. Here, the progression of lung inflammation and fibrosis in a murine model of CWP was evaluated using confocal Raman spectroscopy. Methods A mouse model of CWP was constructed and biochemical analysis in lungs exposed to coal dust after 1 month (CWP-1M) and 3 months (CWP-3M) vs control tissues (NS) were used by confocal Raman spectroscopy. H&E, immunohistochemical and collagen staining were used to evaluate the histopathology alterations in the lung tissues. Results The CWP murine model was successfully constructed, and the mouse lung tissues showed progression of inflammation and fibrosis, accompanied by changes in NF-κB, p53, Bax, and Ki67. Meanwhile, significant differences in Raman bands were observed among the different groups, particularly changes at 1,248, 1,448, 1,572, and 746 cm-1. These changes were consistent with collagen, Ki67, and Bax levels in the CWP and NS groups. Conclusion Confocal Raman spectroscopy represented a novel approach to the identification of the biochemical changes in CWP lungs and provides potential biomarkers of inflammation and fibrosis.
Collapse
Affiliation(s)
- Wenyang Wang
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Min Mu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Yuanjie Zou
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Bing Li
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Hangbing Cao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Dong Hu
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| | - Xinrong Tao
- Key Laboratory of Industrial Dust Control and Occupational Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China,Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China,Anhui University of Science and Technology, Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China,Anhui University of Science and Technology, School of Medicine, Department of Medical Frontier Experimental Center, Huainan, Anhui, China
| |
Collapse
|
68
|
Popov A, Brazhe N, Fedotova A, Tiaglik A, Bychkov M, Morozova K, Brazhe A, Aronov D, Lyukmanova E, Lazareva N, Li L, Ponimaskin E, Verkhratsky A, Semyanov A. A high-fat diet changes astrocytic metabolism to promote synaptic plasticity and behavior. Acta Physiol (Oxf) 2022; 236:e13847. [PMID: 35653278 DOI: 10.1111/apha.13847] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022]
Abstract
AIM A high-fat diet (HFD) is generally considered to negatively influence the body, the brain, and cognition. Nonetheless, fat and fatty acids are essential for nourishing and constructing brain tissue. Astrocytes are central for lipolysis and fatty acids metabolism. We tested how HFD affects astrocyte metabolism, morphology, and physiology. METHODS We used Raman microspectroscopy to assess the redox state of mitochondria and lipid content in astrocytes and neurons in hippocampal slices of mice subjected to HFD. Astrocytes were loaded with fluorescent dye through patch pipette for morphological analysis. Whole-cell voltage-clamp recordings were performed to measure transporter and potassium currents. Western blot analysis quantified the expression of astrocyte-specific proteins. Field potential recordings measured the magnitude of long-term potentiation (LTP). Open filed test was performed to evaluate the effect of HFD on animal behavior. RESULTS We found that exposure of young mice to 1 month of HFD increases lipid content and relative amount of reduced cytochromes in astrocytes but not in neurons. Metabolic changes were paralleled with an enlargement of astrocytic territorial domains due to an increased outgrowth of branches and leaflets. Astrocyte remodeling was associated with an increase in expression of ezrin and with no changes in glial fibrillary acidic protein (GFAP), glutamate transporter-1 (GLT-1), and glutamine synthetase (GS). Such physiological (non-reactive) enlargement of astrocytes in the brain active milieu promoted glutamate clearance and LTP and translated into behavioral changes. CONCLUSION Dietary fat intake is not invariably harmful and might exert beneficial effects depending on the biological context.
Collapse
Affiliation(s)
- Alexander Popov
- Department of Physiology Jiaxing University College of Medicine Jiaxing China
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| | - Nadezda Brazhe
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
| | - Anna Fedotova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
| | - Alisa Tiaglik
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
| | - Maxim Bychkov
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| | | | - Alexey Brazhe
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
| | - Dmitry Aronov
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| | - Ekaterina Lyukmanova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
- Moscow Institute of Physics and Technology (State University) Dolgoprudny Russia
| | | | - Li Li
- Department of Physiology Jiaxing University College of Medicine Jiaxing China
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
- Achucarro Center for Neuroscience IKERBASQUE, Basque Foundation for Science Bilbao Spain
- Department of Neurosciences University of the Basque Country UPV/EHU and CIBERNED Leioa Spain
| | - Alexey Semyanov
- Department of Physiology Jiaxing University College of Medicine Jiaxing China
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
- Sechenov First Moscow State Medical University Moscow Russia
| |
Collapse
|
69
|
Samuel AZ, Horii S, Nakashima T, Shibata N, Ando M, Takeyama H. Raman Microspectroscopy Imaging Analysis of Extracellular Vesicles Biogenesis by Filamentous Fungus Penicilium chrysogenum. Adv Biol (Weinh) 2022; 6:e2101322. [PMID: 35277945 DOI: 10.1002/adbi.202101322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/01/2022] [Indexed: 01/27/2023]
Abstract
The mechanism of production of extracellular vesicles (EVs) and their molecular contents are of great interest due to their diverse roles in biological systems and are far from being completely understood. Even though cellular cargo releases mediated by EVs have been demonstrated in several cases, their role in secondary metabolite production and release remains elusive. In this study, this aspect is investigated in detail using Raman microspectroscopic imaging. Considerable evidence is provided to suggest that the release of antibiotic penicillin by the filamentous fungus Penicillium chrysogenum involves EVs. Further, the study also reveals morphological modifications of the fungal body during biogenesis, changes in cell composition at the locus of biogenesis, and major molecular contents of the released EVs. The results suggest a possible general role of EVs in the release of antibiotics from the producing organisms.
Collapse
Affiliation(s)
- Ashok Zachariah Samuel
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Shumpei Horii
- Department of Advanced Science Engineering, Waseda University, Japan, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Japan, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Takuji Nakashima
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Naoko Shibata
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Masahiro Ando
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Japan, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
70
|
Bando K, Yabuuchi S, Li M, Kubo T, Oketani R, Smith NI, Fujita K. Bessel-beam illumination Raman microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:3161-3170. [PMID: 35781960 PMCID: PMC9208613 DOI: 10.1364/boe.456138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
We demonstrate the use of Bessel beams for side illumination slit-scanning Raman imaging for label-free and hyperspectral analysis of cell spheroids. The background elimination by the side illumination and the aberration-resistant Bessel beam drastically improves the image contrast in Raman observation, allowing label-free investigation of intracellular molecules in thick biological samples. Live cell spheroids were observed to confirm the improvement in image contrast and background reduction with Bessel illumination compared to conventional epi-line illumination.
Collapse
Affiliation(s)
- Kazuki Bando
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shumpei Yabuuchi
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Menglu Li
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiki Kubo
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryosuke Oketani
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nicholas I. Smith
- Immunology Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
71
|
Pezzotti G, Kobara M, Nakaya T, Imamura H, Miyamoto N, Adachi T, Yamamoto T, Kanamura N, Ohgitani E, Marin E, Zhu W, Nishimura I, Mazda O, Nakata T, Makimura K. Raman Spectroscopy of Oral Candida Species: Molecular-Scale Analyses, Chemometrics, and Barcode Identification. Int J Mol Sci 2022; 23:5359. [PMID: 35628169 PMCID: PMC9141024 DOI: 10.3390/ijms23105359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/19/2023] Open
Abstract
Oral candidiasis, a common opportunistic infection of the oral cavity, is mainly caused by the following four Candida species (in decreasing incidence rate): Candida albicans, Candida glabrata, Candida tropicalis, and Candida krusei. This study offers in-depth Raman spectroscopy analyses of these species and proposes procedures for an accurate and rapid identification of oral yeast species. We first obtained average spectra for different Candida species and systematically analyzed them in order to decode structural differences among species at the molecular scale. Then, we searched for a statistical validation through a chemometric method based on principal component analysis (PCA). This method was found only partially capable to mechanistically distinguish among Candida species. We thus proposed a new Raman barcoding approach based on an algorithm that converts spectrally deconvoluted Raman sub-bands into barcodes. Barcode-assisted Raman analyses could enable on-site identification in nearly real-time, thus implementing preventive oral control, enabling prompt selection of the most effective drug, and increasing the probability to interrupt disease transmission.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (E.O.); (O.M.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita 565-0854, Japan
| | - Miyuki Kobara
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan; (M.K.); (T.N.)
| | - Tamaki Nakaya
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (E.O.); (O.M.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (T.A.); (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (T.N.); (H.I.); (E.M.); (W.Z.)
| | - Ichiro Nishimura
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan; (E.O.); (O.M.)
| | - Tetsuo Nakata
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan; (M.K.); (T.N.)
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan;
| |
Collapse
|
72
|
Kukolj T, Lazarević J, Borojević A, Ralević U, Vujić D, Jauković A, Lazarević N, Bugarski D. A Single-Cell Raman Spectroscopy Analysis of Bone Marrow Mesenchymal Stem/Stromal Cells to Identify Inter-Individual Diversity. Int J Mol Sci 2022; 23:4915. [PMID: 35563306 PMCID: PMC9103070 DOI: 10.3390/ijms23094915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
The heterogeneity of stem cells represents the main challenge in regenerative medicine development. This issue is particularly pronounced when it comes to the use of primary mesenchymal stem/stromal cells (MSCs) due to a lack of identification markers. Considering the need for additional approaches in MSCs characterization, we applied Raman spectroscopy to investigate inter-individual differences between bone marrow MSCs (BM-MSCs). Based on standard biological tests, BM-MSCs of analyzed donors fulfill all conditions for their characterization, while no donor-related specifics were observed in terms of BM-MSCs morphology, phenotype, multilineage differentiation potential, colony-forming capacity, expression of pluripotency-associated markers or proliferative capacity. However, examination of BM-MSCs at a single-cell level by Raman spectroscopy revealed that despite similar biochemical background, fine differences in the Raman spectra of BM-MSCs of each donor can be detected. After extensive principal component analysis (PCA) of Raman spectra, our study revealed the possibility of this method to diversify BM-MSCs populations, whereby the grouping of cell populations was most prominent when cell populations were analyzed in pairs. These results indicate that Raman spectroscopy, as a label-free assay, could have a huge potential in understanding stem cell heterogeneity and sorting cell populations with a similar biochemical background that can be significant for the development of personalized therapy approaches.
Collapse
Affiliation(s)
- Tamara Kukolj
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (D.B.)
| | - Jasmina Lazarević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (J.L.); (U.R.); (N.L.)
| | - Ana Borojević
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (A.B.); (D.V.)
| | - Uroš Ralević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (J.L.); (U.R.); (N.L.)
| | - Dragana Vujić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (A.B.); (D.V.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (D.B.)
| | - Nenad Lazarević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (J.L.); (U.R.); (N.L.)
| | - Diana Bugarski
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (D.B.)
| |
Collapse
|
73
|
Takemura M, Mochizuki K, Harada Y, Okajima A, Hayakawa M, Dai P, Itoh Y, Tanaka H. Label-free Assessment of the Nascent State of Rat Non-alcoholic Fatty Liver Disease Using Spontaneous Raman Microscopy. Acta Histochem Cytochem 2022; 55:57-66. [PMID: 35509867 PMCID: PMC9043435 DOI: 10.1267/ahc.22-00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022] Open
Abstract
Spontaneous Raman microscopy, which can detect molecular vibrations in cells and tissues, could be a useful tool for the label-free assessment of non-alcoholic fatty liver disease (NAFLD). However, it is unclear whether it can be used to evaluate the nascent state of NAFLD. To address this, we analyzed the Raman spectra of rat liver tissues in the nascent state of NAFLD upon excitation at 532 nm. Raman and histochemical analyses were performed of liver tissues from rats fed a high-fat, high-cholesterol diet (HFHCD). Raman microscopic imaging analysis of formalin-fixed thin tissue slices showed hepatic steatosis, as revealed by the Raman band at 2,854 cm-1, whereas lipid droplets were not detectable by hematoxylin-eosin staining of images until 3 days after feeding a HFHCD. Raman signals of retinol at 1,588 cm-1 emitted from hepatic stellate cells were distributed alongside hepatic cords; the retinol content rapidly decreased after feeding a HFHCD, whereas hepatic lipid content increased inversely. Raman microscopic analysis of the surface of fresh ex vivo livers enabled early detection of lipid accumulation after a 1-day feeding a HFHCD. In conclusion, spontaneous Raman microscopy can be applied to the label-free evaluation of the nascent state of NAFLD liver tissues.
Collapse
Affiliation(s)
- Masashi Takemura
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
- Department of Molecular Gatroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Akira Okajima
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
- Department of Molecular Gatroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Michiyo Hayakawa
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gatroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602–8566, Japan
| |
Collapse
|
74
|
Feuerer N, Carvajal Berrio DA, Billing F, Segan S, Weiss M, Rothbauer U, Marzi J, Schenke-Layland K. Raman Microspectroscopy Identifies Biochemical Activation Fingerprints in THP-1- and PBMC-Derived Macrophages. Biomedicines 2022; 10:989. [PMID: 35625726 PMCID: PMC9139061 DOI: 10.3390/biomedicines10050989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/24/2022] Open
Abstract
(1) The monocytic leukemia cell line THP-1 and primary monocyte-derived macrophages (MDMs) are popular in vitro model systems to study human innate immunity, wound healing, and tissue regeneration. However, both cell types differ significantly in their origin and response to activation stimuli. (2) Resting THP-1 and MDMs were stimulated with lipopolysaccharide (LPS) and interferon γ (IFNγ) and analyzed by Raman microspectroscopy (RM) before and 48 h after activation. Raman data were subsequently analyzed using principal component analysis. (3) We were able to resolve and analyze the spatial distribution and molecular composition of proteins, nucleic acids, and lipids in resting and activated THP-1 and MDMs. Our findings reveal that proinflammatory activation-induced significant spectral alterations at protein and phospholipid levels in THP-1. In MDMs, we identified that nucleic acid and non-membrane-associated intracellular lipid composition were also affected. (4) Our results show that it is crucial to carefully choose the right cell type for an in vitro model as the nature of the cells itself may impact immune cell polarization or activation results. Moreover, we demonstrated that RM is a sensitive tool for investigating cell-specific responses to activation stimuli and monitoring molecular changes in subcellular structures.
Collapse
Affiliation(s)
- Nora Feuerer
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (N.F.); (D.A.C.B.); (K.S.-L.)
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
| | - Daniel A. Carvajal Berrio
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (N.F.); (D.A.C.B.); (K.S.-L.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Florian Billing
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
| | - Sören Segan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
| | - Martin Weiss
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
- Department of Women’s Health, Research Institute of Women’s Health, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (N.F.); (D.A.C.B.); (K.S.-L.)
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (N.F.); (D.A.C.B.); (K.S.-L.)
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Department of Medicine/Cardiology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
75
|
Hsieh HC, Lin PT, Sung KB. Characterization and identification of cell death dynamics by quantitative phase imaging. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:046502. [PMID: 35484694 PMCID: PMC9047449 DOI: 10.1117/1.jbo.27.4.046502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
SIGNIFICANCE Investigating cell death dynamics at the single-cell level plays an essential role in biological research. Quantitative phase imaging (QPI), a label-free method without adverse effects of exogenous labels, has been widely used to image many types of cells under various conditions. However, the dynamics of QPI features during cell death have not been thoroughly characterized. AIM We aim to develop a label-free technique to quantitatively characterize single-cell dynamics of cellular morphology and intracellular mass distribution of cells undergoing apoptosis and necrosis. APPROACH QPI was used to capture time-lapse phase images of apoptotic, necrotic, and normal cells. The dynamics of morphological and QPI features during cell death were fitted by a sigmoid function to quantify both the extent and rate of changes. RESULTS The two types of cell death mainly differed from normal cells in the lower phase of the central region and differed from each other in the sharp nuclear boundary shown in apoptotic cells. CONCLUSIONS The proposed method characterizes the dynamics of cellular morphology and intracellular mass distributions, which could be applied to studying cells undergoing state transition such as drug response.
Collapse
Affiliation(s)
- Huai-Ching Hsieh
- National Taiwan University, Department of Life Science, Taipei, Taiwan
- National Taiwan University, Department of Electrical Engineering, Taipei, Taiwan
| | - Po-Ting Lin
- National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei, Taiwan
| | - Kung-Bin Sung
- National Taiwan University, Department of Electrical Engineering, Taipei, Taiwan
- National Taiwan University, Graduate Institute of Biomedical Electronics and Bioinformatics, Taipei, Taiwan
- National Taiwan University, Molecular Imaging Center, Taipei, Taiwan
| |
Collapse
|
76
|
Wang E, Whitcomb LA, Chicco AJ, Wilson JW. Transient absorption spectroscopy and imaging of redox in muscle mitochondria. BIOMEDICAL OPTICS EXPRESS 2022; 13:2103-2116. [PMID: 35519286 PMCID: PMC9045930 DOI: 10.1364/boe.452559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Mitochondrial redox is an important indicator of cell metabolism and health, with implications in cancer, diabetes, aging, neurodegenerative diseases, and mitochondrial disease. The most common method to observe redox of individual cells and mitochondria is through fluorescence of NADH and FAD+, endogenous cofactors serve as electron transport inputs to the mitochondrial respiratory chain. Yet this leaves out redox within the respiratory chain itself. To a degree, the missing information can be filled in by exogenous fluorophores, but at the risk of disturbed mitochondrial permeability and respiration. Here we show that variations in respiratory chain redox can be detected up by visible-wavelength transient absorption microscopy (TAM). In TAM, the selection of pump and probe wavelengths can provide multiphoton imaging contrast between non-fluorescent molecules. Here, we applied TAM with a pump at 520nm and probe at 450nm, 490nm, and 620nm to elicit redox contrast from mitochondrial respiratory chain hemeproteins. Experiments were performed with reduced and oxidized preparations of isolated mitochondria and whole muscle fibers, using mitochondrial fuels (malate, pyruvate, and succinate) to set up physiologically relevant oxidation levels. TAM images of muscle fibers were analyzed with multivariate curve resolution (MCR), revealing that the response at 620nm probe provides the best redox contrast and the most consistent response between whole cells and isolated mitochondria.
Collapse
Affiliation(s)
- Erkang Wang
- Department of Electrical & Computer
Engineering, Colorado State University,
1373 Campus Delivery, Fort Collins, CO 80523, USA
| | - Luke A. Whitcomb
- Department of Biomedical Sciences,
Colorado State University, 1601 Campus
Delivery, Fort Collins, CO 80523, USA
| | - Adam J. Chicco
- Department of Biomedical Sciences,
Colorado State University, 1601 Campus
Delivery, Fort Collins, CO 80523, USA
| | - Jesse W. Wilson
- Department of Electrical & Computer
Engineering, Colorado State University,
1373 Campus Delivery, Fort Collins, CO 80523, USA
- School of Biomedical Engineering,
Colorado State University, 1301 Campus
Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
77
|
Gaba F, Tipping WJ, Salji M, Faulds K, Graham D, Leung HY. Raman Spectroscopy in Prostate Cancer: Techniques, Applications and Advancements. Cancers (Basel) 2022; 14:1535. [PMID: 35326686 PMCID: PMC8946151 DOI: 10.3390/cancers14061535] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Optical techniques are widely used tools in the visualisation of biological species within complex matrices, including biopsies, tissue resections and biofluids. Raman spectroscopy is an emerging analytical approach that probes the molecular signature of endogenous cellular biomolecules under biocompatible conditions with high spatial resolution. Applications of Raman spectroscopy in prostate cancer include biopsy analysis, assessment of surgical margins and monitoring of treatment efficacy. The advent of advanced Raman imaging techniques, such as stimulated Raman scattering, is creating opportunities for real-time in situ evaluation of prostate cancer. This review provides a focus on the recent preclinical and clinical achievements in implementing Raman-based techniques, highlighting remaining challenges for clinical applications. The research and clinical results achieved through in vivo and ex vivo Raman spectroscopy illustrate areas where these evolving technologies can be best translated into clinical practice.
Collapse
Affiliation(s)
- Fortis Gaba
- Department of Urology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- School of Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - William J Tipping
- Department for Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Mark Salji
- Department of Urology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| | - Karen Faulds
- Department for Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Duncan Graham
- Department for Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Hing Y Leung
- Department of Urology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow G51 4TF, UK
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK
| |
Collapse
|
78
|
Redox state changes of mitochondrial cytochromes in brain and breast cancers by Raman spectroscopy and imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
79
|
Allakhverdiev ES, Khabatova VV, Kossalbayev BD, Zadneprovskaya EV, Rodnenkov OV, Martynyuk TV, Maksimov GV, Alwasel S, Tomo T, Allakhverdiev SI. Raman Spectroscopy and Its Modifications Applied to Biological and Medical Research. Cells 2022; 11:cells11030386. [PMID: 35159196 PMCID: PMC8834270 DOI: 10.3390/cells11030386] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, there is an interest in biomedical and nanobiotechnological studies, such as studies on carotenoids as antioxidants and studies on molecular markers for cardiovascular, endocrine, and oncological diseases. Moreover, interest in industrial production of microalgal biomass for biofuels and bioproducts has stimulated studies on microalgal physiology and mechanisms of synthesis and accumulation of valuable biomolecules in algal cells. Biomolecules such as neutral lipids and carotenoids are being actively explored by the biotechnology community. Raman spectroscopy (RS) has become an important tool for researchers to understand biological processes at the cellular level in medicine and biotechnology. This review provides a brief analysis of existing studies on the application of RS for investigation of biological, medical, analytical, photosynthetic, and algal research, particularly to understand how the technique can be used for lipids, carotenoids, and cellular research. First, the review article shows the main applications of the modified Raman spectroscopy in medicine and biotechnology. Research works in the field of medicine and biotechnology are analysed in terms of showing the common connections of some studies as caretenoids and lipids. Second, this article summarises some of the recent advances in Raman microspectroscopy applications in areas related to microalgal detection. Strategies based on Raman spectroscopy provide potential for biochemical-composition analysis and imaging of living microalgal cells, in situ and in vivo. Finally, current approaches used in the papers presented show the advantages, perspectives, and other essential specifics of the method applied to plants and other species/objects.
Collapse
Affiliation(s)
- Elvin S. Allakhverdiev
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, 119991 Moscow, Russia;
| | - Venera V. Khabatova
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
| | - Bekzhan D. Kossalbayev
- Geology and Oil-gas Business Institute Named after K. Turyssov, Satbayev University, Satpaeva, 22, Almaty 050043, Kazakhstan;
- Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, Almaty 050038, Kazakhstan
| | - Elena V. Zadneprovskaya
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
| | - Oleg V. Rodnenkov
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
| | - Tamila V. Martynyuk
- Russian National Medical Research Center of Cardiology, 3rd Cherepkovskaya St., 15A, 121552 Moscow, Russia; (E.S.A.); (O.V.R.); (T.V.M.)
| | - Georgy V. Maksimov
- Biology Faculty, Lomonosov Moscow State University, Leninskie Gory 1/12, 119991 Moscow, Russia;
- Department of Physical Materials Science, Technological University “MISiS”, Leninskiy Prospekt 4, Office 626, 119049 Moscow, Russia
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan;
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, RAS, Botanicheskaya str., 35, 127276 Moscow, Russia; (V.V.K.); (E.V.Z.)
- Zoology Department, College of Science, King Saud University, Riyadh 12372, Saudi Arabia;
- Institute of Basic Biological Problems, RAS, Pushchino, 142290 Moscow, Russia
- Correspondence:
| |
Collapse
|
80
|
Shigeto S, Takeshita N. Raman Micro-spectroscopy and Imaging of Filamentous Fungi. Microbes Environ 2022; 37. [PMID: 35387945 PMCID: PMC10037093 DOI: 10.1264/jsme2.me22006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Filamentous fungi grow by the elongation of tubular cells called hyphae and form mycelia through repeated hyphal tip growth and branching. Since hyphal growth is closely related to the ability to secrete large amounts of enzymes or invade host cells, a more detailed understanding and the control of its growth are important in fungal biotechnology, ecology, and pathogenesis. Previous studies using fluorescence imaging revealed many of the molecular mechanisms involved in hyphal growth. Raman microspectroscopy and imaging methods are now attracting increasing attention as powerful alternatives due to their high chemical specificity and label-free, non-destructive properties. Spatially resolved information on the relative abundance, structure, and chemical state of multiple intracellular components may be simultaneously obtained. Although Raman studies on filamentous fungi are still limited, this review introduces recent findings from Raman studies on filamentous fungi and discusses their potential use in the future.
Collapse
Affiliation(s)
- Shinsuke Shigeto
- Department of Chemistry, School of Science, Kwansei Gakuin University
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
81
|
Lima C, Ahmed S, Xu Y, Muhamadali H, Parry C, McGalliard RJ, Carrol ED, Goodacre R. Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level. Chem Sci 2022; 13:8171-8179. [PMID: 35919437 PMCID: PMC9278432 DOI: 10.1039/d2sc02493d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a life-threatening clinical condition responsible for approximately 11 million deaths worldwide. Rapid and accurate identification of pathogenic bacteria and its antimicrobial susceptibility play a critical role in reducing the morbidity and mortality rates related to sepsis. Raman and infrared spectroscopies have great potential to be used as diagnostic tools for rapid and culture-free detection of bacterial infections. Despite numerous reports using both methods to analyse bacterial samples, there is to date no study collecting both Raman and infrared signatures from clinical samples simultaneously due to instrument incompatibilities. Here, we report for the first time the use of an emerging technology that provides infrared signatures via optical photothermal infrared (O-PTIR) spectroscopy and Raman spectra simultaneously. We use this approach to analyse 12 bacterial clinical isolates including six isolates of Gram-negative and six Gram-positive bacteria commonly associated with bloodstream infection in humans. To benchmark the single cell spectra obtained by O-PTIR spectroscopy, infrared signatures were also collected from bulk samples via both FTIR and O-PTIR spectroscopies. Our findings showed significant similarity and high reproducibility in the infrared signatures obtained by all three approaches, including similar discrimination patterns when subjected to clustering algorithms. Principal component analysis (PCA) showed that O-PTIR and Raman data acquired simultaneously from bulk bacterial isolates displayed different clustering patterns due to the ability of both methods to probe metabolites produced by bacteria. By contrast, signatures of microbial pigments were identified in Raman spectra, providing complementary and orthogonal information compared to infrared, which may be advantageous as it has been demonstrated that certain pigments play an important role in bacterial virulence. We found that infrared spectroscopy showed higher sensitivity than Raman for the analysis of individual cells. Despite the different patterns obtained by using Raman and infrared spectral data as input for clustering algorithms, our findings showed high data reproducibility in both approaches as the biological replicates from each bacterial strain clustered together. Overall, we show that Raman and infrared spectroscopy offer both advantages and disadvantages and, therefore, having both techniques combined in one single technology is a powerful tool with promising applications in clinical microbiology. O-PTIR was used for simultaneous collection of infrared and Raman spectra from clinical pathogens associated with bloodstream infections.![]()
Collapse
Affiliation(s)
- Cassio Lima
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Shwan Ahmed
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Department of Environment and Quality Control, Kurdistan Institution for Strategic Studies and Scientific Research, Kurdistan Region, Iraq
| | - Yun Xu
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Howbeer Muhamadali
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Christopher Parry
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Rachel J. McGalliard
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Enitan D. Carrol
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
82
|
Hirota S, Chiu CL, Chang CJ, Lo PH, Chen T, Yang H, Yamanaka M, Mashima T, Xie C, Masuhara H, Sugiyama T. Structural region essential for amyloid fibril formation in cytochrome c elucidated by optical trapping. Chem Commun (Camb) 2022; 58:12839-12842. [DOI: 10.1039/d2cc04647d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Amyloid fibril formation of cytochrome c is spatially and temporally controlled by the optical trapping method, identifying that the structural change in the region containing Ala83 is essential for the amyloid fibril formation.
Collapse
Affiliation(s)
- Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Chun-Liang Chiu
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Chieh-Ju Chang
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Pei-Hua Lo
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Tien Chen
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Hongxu Yang
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Cheng Xie
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Masuhara
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| | - Teruki Sugiyama
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 300093, Taiwan
| |
Collapse
|
83
|
Akaji S, Sagawa T, Honda A, Miyasaka N, Sadakane K, Ichinose T, Takano H. Post-staining Raman analysis of histological sections following decolorization. Analyst 2022; 147:4473-4479. [DOI: 10.1039/d2an01138g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study proposed to observe HE-stained tissue structure and Raman fingerprint mapping on the identical tissue slide after a decolorizing step.
Collapse
Affiliation(s)
- Sakiko Akaji
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomoya Sagawa
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Akiko Honda
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Natsuko Miyasaka
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Kaori Sadakane
- Department of Health Science, Oita University of Nursing and Health Sciences, Oita 870-1201, Japan
| | - Takamichi Ichinose
- Department of Health Science, Oita University of Nursing and Health Sciences, Oita 870-1201, Japan
| | - Hirohisa Takano
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
84
|
El-Mashtoly SF, Gerwert K. Diagnostics and Therapy Assessment Using Label-Free Raman Imaging. Anal Chem 2021; 94:120-142. [PMID: 34852454 DOI: 10.1021/acs.analchem.1c04483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Samir F El-Mashtoly
- Center for Protein Diagnostics, Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Klaus Gerwert
- Center for Protein Diagnostics, Ruhr University Bochum, 44801 Bochum, Germany.,Department of Biophysics, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
85
|
Ishigaki M, Kashiwagi S, Wakabayashi S, Hoshino Y. In situ assessment of mitochondrial respiratory activity and lipid metabolism of mouse oocytes using resonance Raman spectroscopy. Analyst 2021; 146:7265-7273. [PMID: 34735555 DOI: 10.1039/d1an01106e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to develop a method to determine the degree of oocyte maturation in metaphase II in situ based on the balance between mitochondrial respiratory activity and lipid metabolism using resonance Raman spectroscopy. A decrease in the respiratory activity of overmatured oocytes was indicated by the reduced intensities of the resonance Raman bands corresponding to reduced cytochrome c in the cytoplasm. Moreover, the increased lipid concentration in overmature oocytes indicated lower lipid metabolism with a decreased mitochondrial function. New indexes were defined in terms of the ratios of the representative Raman peak intensities of reduced cytochrome c (750 and 1127 cm-1) to those of lipids (1438 cm-1 ) and they successfully classify the oocytes into groups based on their quality, which varied with their maturation degree. The high development rate of embryos that were fertilized in vitro after laser irradiation showed that laser irradiation was noninvasive to oocytes. The evaluation of two factors in situ, the active respiration and lipid metabolism, means to catch the most fundamental biochemical reactions of life activities. Our results demonstrate the potential application of resonance Raman spectroscopy as a new, noninvasive, and universal cell evaluation technology, for not only oocytes but also more general cells such as somatic cells and iPS cells.
Collapse
Affiliation(s)
- Mika Ishigaki
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan. .,Raman Project Center for Medical and Biological Applications, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Shinsuke Kashiwagi
- Bio/Life Science Project, Sales Division, HORIBA, Ltd, 2 Miyanohigashi-cho, Kisshoin, Minami-ku, Kyoto 601-8510, Japan
| | - Satoru Wakabayashi
- Bio/Life Science Project, Sales Division, HORIBA, Ltd, 2 Miyanohigashi-cho, Kisshoin, Minami-ku, Kyoto 601-8510, Japan
| | - Yumi Hoshino
- Laboratory of Animal Reproduction, Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan.
| |
Collapse
|
86
|
Zhao R, Ning X, Wang M, Yu A, Wang Y. A multifunctional nano-delivery system enhances the chemo- co-phototherapy of tumor multidrug resistance via mitochondrial-targeting and inhibiting P-glycoprotein-mediated efflux. J Mater Chem B 2021; 9:9174-9182. [PMID: 34698329 DOI: 10.1039/d1tb01658j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite the excellent progress of chemotherapy and phototherapy in tumor treatment, their effectiveness on multidrug-resistant (MDR) tumors is still unsatisfactory. One of the main obstacles is drug efflux caused by P-glycoprotein in MDR cells. Herein, we developed a nano-delivery system that combines a P-glycoprotein inhibitor with chemotherapy and phototherapy to overcome MDR. Briefly, the system is prepared by the self-assembly of a ROS-triggered doxorubicin prodrug (PTD) and mitochondrial-targeted D-α-tocopherol polyethyleneglycol succinate (TPP-TPGS), in which a photoactive drug, IR780, is encapsulated (PTD/TT/IR780). PTD/TT/IR780 can target the release of TPP-TPGS, doxorubicin and IR780 at the mitochondrial site of MDR cells through ROS trigger. D-α-Tocopherol polyethyleneglycol succinate (TPGS) is a P-glycoprotein inhibitor, which will reduce the efflux of doxorubicin and IR780 from MDR cells. Under irradiation of an 808 nm near-infrared laser, IR780 generates heat and ROS, causing mitochondrial damage and prompting MDR cell apoptosis. At the same time, ROS can reduce the ATP content, which inhibits the P-glycoprotein function. In addition, an increase in the ROS generates positive feedback, allowing more nanoparticles to be cleaved and further promoting payload release in MDR cells, thereby enhancing the synergistic efficacy of chemotherapy and phototherapy. The in vitro cellular assay showed that PTD/TT/IR780 significantly inhibited MDR cell proliferation at a very low drug concentration (IC50 = 0.27 μg mL-1 doxorubicin-equivalent concentration). In vivo animal experiments based on BALB/c nude mice bearing MCF-7/ADR tumors confirmed a superior antitumor efficacy and an excellent biosafety profile. These findings demonstrate that this multifunctional nanoplatform provides a new approach for the treatment of MDR tumors.
Collapse
Affiliation(s)
- Runze Zhao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Xiaoyue Ning
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Mengqi Wang
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ao Yu
- Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yongjian Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
87
|
Armento A, Murali A, Marzi J, Almansa-Garcia AC, Arango-Gonzalez B, Kilger E, Clark SJ, Schenke-Layland K, Ramlogan-Steel CA, Steel JC, Ueffing M. Complement Factor H Loss in RPE Cells Causes Retinal Degeneration in a Human RPE-Porcine Retinal Explant Co-Culture Model. Biomolecules 2021; 11:1621. [PMID: 34827622 PMCID: PMC8615889 DOI: 10.3390/biom11111621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
Age-related Macular degeneration (AMD) is a degenerative disease of the macula affecting the elderly population. Treatment options are limited, partly due to the lack of understanding of AMD pathology and the lack of suitable research models that replicate the complexity of the human macula and the intricate interplay of the genetic, aging and lifestyle risk factors contributing to AMD. One of the main genetic risks associated with AMD is located on the Complement Factor H (CFH) gene, leading to an amino acid substitution in the Factor H (FH) protein (Y402H). However, the mechanism of how this FH variant promotes the onset of AMD remains unclear. Previously, we have shown that FH deprivation in RPE cells, via CFH silencing, leads to increased inflammation, metabolic impairment and vulnerability toward oxidative stress. In this study, we established a novel co-culture model comprising CFH silenced RPE cells and porcine retinal explants derived from the visual streak of porcine eyes, which closely resemble the human macula. We show that retinae exposed to FH-deprived RPE cells show signs of retinal degeneration, with rod cells being the first cells to undergo degeneration. Moreover, via Raman analyses, we observed changes involving the mitochondria and lipid composition of the co-cultured retinae upon FH loss. Interestingly, the detrimental effects of FH loss in RPE cells on the neuroretina were independent of glial cell activation and external complement sources. Moreover, we show that the co-culture model is also suitable for human retinal explants, and we observed a similar trend when RPE cells deprived of FH were co-cultured with human retinal explants from a single donor eye. Our findings highlight the importance of RPE-derived FH for retinal homeostasis and provide a valuable model for AMD research.
Collapse
Affiliation(s)
- Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
| | - Aparna Murali
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia; (C.A.R.-S.); (J.C.S.)
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (J.M.); (K.S.-L.)
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ana C Almansa-Garcia
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
| | - Blanca Arango-Gonzalez
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
| | - Ellen Kilger
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (J.M.); (K.S.-L.)
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Charmaine A Ramlogan-Steel
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia; (C.A.R.-S.); (J.C.S.)
- School of Health, Medical and Applied Sciences, Central Queensland University, Brisbane, QLD 4000, Australia
| | - Jason C Steel
- Faculty of Medicine, University of Queensland, Herston, QLD 4006, Australia; (C.A.R.-S.); (J.C.S.)
- School of Health, Medical and Applied Sciences, Central Queensland University, Brisbane, QLD 4000, Australia
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (A.M.); (A.C.A.-G.); (B.A.-G.); (E.K.); (S.J.C.)
| |
Collapse
|
88
|
Li D, Zheng X, Yang Y, Kong G, Xu M. Electrochemical Activity Produced from Abundant Expression of C‐Type Cytochromes in a Filamentous Gram‐Positive Bacterium. ChemElectroChem 2021. [DOI: 10.1002/celc.202101023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daobo Li
- Institute of Microbiology Guangdong Academy of Sciences Guangzhou 510070 China
- State Key Laboratory of Applied Microbiology Southern China Guangzhou 510070 China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application Guangzhou 510070 China
| | - Xiaodan Zheng
- Institute of Microbiology Guangdong Academy of Sciences Guangzhou 510070 China
| | - Yonggang Yang
- Institute of Microbiology Guangdong Academy of Sciences Guangzhou 510070 China
- State Key Laboratory of Applied Microbiology Southern China Guangzhou 510070 China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application Guangzhou 510070 China
| | - Guannan Kong
- Institute of Microbiology Guangdong Academy of Sciences Guangzhou 510070 China
| | - Meiying Xu
- Institute of Microbiology Guangdong Academy of Sciences Guangzhou 510070 China
- State Key Laboratory of Applied Microbiology Southern China Guangzhou 510070 China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application Guangzhou 510070 China
| |
Collapse
|
89
|
Leszczenko P, Borek-Dorosz A, Nowakowska AM, Adamczyk A, Kashyrskaya S, Jakubowska J, Ząbczyńska M, Pastorczak A, Ostrowska K, Baranska M, Marzec KM, Majzner K. Towards Raman-Based Screening of Acute Lymphoblastic Leukemia-Type B (B-ALL) Subtypes. Cancers (Basel) 2021; 13:cancers13215483. [PMID: 34771646 PMCID: PMC8582787 DOI: 10.3390/cancers13215483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy originating from abnormal lymphoid progenitor cells. Since ALL is genetically highly heterogenous, more sensitive and rapid methods for identifying the molecular subtype of ALL are still being searched, and Raman spectroscopy (RS) has a chance of becoming a valuable tool for this purpose. Herein, the RS was applied to analyze normal B cells and three subtypes of B-ALL, characterized by the presence of the product of gene fusion, i.e., BCR-ABL1, TEL-AML1, and TCF3-PBX1. The classification and discrimination of normal and neoplastic cells were carried out with the chemometric approach. Normal B cells were characterized mostly by bands assigned to nucleic acids and proteins, whereas three subtypes of ALL appeared to contain a higher lipid content. Spectral differences between particular ALL subtypes were modest. The results lead to the conclusion that RS has the potential as a diagnostic tool in clinical practice. Abstract Acute lymphoblastic leukemia (ALL) is the most common type of malignant neoplasms in the pediatric population. B-cell precursor ALLs (BCP-ALLs) are derived from the progenitors of B lymphocytes. Traditionally, risk factors stratifying therapy in ALL patients included age at diagnosis, initial leukocytosis, and the response to chemotherapy. Currently, treatment intensity is modified according to the presence of specific gene alterations in the leukemic genome. Raman imaging is a promising diagnostic tool, which enables the molecular characterization of cells and differentiation of subtypes of leukemia in clinical samples. This study aimed to characterize and distinguish cells isolated from the bone marrow of patients suffering from three subtypes of BCP-ALL, defined by gene rearrangements, i.e., BCR-ABL1 (Philadelphia-positive, t(9;22)), TEL-AML1 (t(12;21)) and TCF3-PBX1 (t(1;19)), using single-cell Raman imaging combined with multivariate statistical analysis. Spectra collected from clinical samples were compared with single-cell spectra of B-cells collected from healthy donors, constituting the control group. We demonstrated that Raman spectra of normal B cells strongly differ from spectra of their malignant counterparts, especially in the intensity of bands, which can be assigned to nucleic acids. We also showed that the identification of leukemia subtypes could be automated with the use of chemometric methods. Results prove the clinical suitability of Raman imaging for the identification of spectroscopic markers characterizing leukemia cells.
Collapse
Affiliation(s)
- Patrycja Leszczenko
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
| | - Aleksandra Borek-Dorosz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Anna Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
| | - Adriana Adamczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
| | - Sviatlana Kashyrskaya
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
| | - Justyna Jakubowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland; (J.J.); (M.Z.); (A.P.); (K.O.)
| | - Marta Ząbczyńska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland; (J.J.); (M.Z.); (A.P.); (K.O.)
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland; (J.J.); (M.Z.); (A.P.); (K.O.)
| | - Kinga Ostrowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland; (J.J.); (M.Z.); (A.P.); (K.O.)
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Katarzyna Maria Marzec
- Lukasiewicz Research Network—Krakow Institute of Technology, Zakopiańska 73, 30-418 Krakow, Poland
- Correspondence: (K.M.M.); (K.M.)
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (P.L.); (A.B.-D.); (A.M.N.); (A.A.); (S.K.); (M.B.)
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
- Correspondence: (K.M.M.); (K.M.)
| |
Collapse
|
90
|
Paidi SK, Raj P, Bordett R, Zhang C, Karandikar SH, Pandey R, Barman I. Raman and quantitative phase imaging allow morpho-molecular recognition of malignancy and stages of B-cell acute lymphoblastic leukemia. Biosens Bioelectron 2021; 190:113403. [PMID: 34130086 PMCID: PMC8492164 DOI: 10.1016/j.bios.2021.113403] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/15/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most common malignancies that account for nearly one-third of all pediatric cancers. The current diagnostic assays are time-consuming, labor-intensive, and require expensive reagents. Here, we report a label-free approach featuring diffraction phase imaging and Raman microscopy that can retrieve both morphological and molecular attributes for label-free optical phenotyping of individual B cells. By investigating leukemia cell lines of early and late stages along with the healthy B cells, we show that phase images can capture subtle morphological differences among the healthy, early, and late stages of leukemic cells. By exploiting its biomolecular specificity, we demonstrate that Raman microscopy is capable of accurately identifying not only different stages of leukemia cells but also individual cell lines at each stage. Overall, our study provides a rationale for employing this hybrid modality to screen leukemia cells using the widefield QPI and using Raman microscopy for accurate differentiation of early and late-stage phenotypes. This contrast-free and rapid diagnostic tool exhibits great promise for clinical diagnosis and staging of leukemia in the near future.
Collapse
Affiliation(s)
- Santosh Kumar Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rosalie Bordett
- Connecticut Children's Innovation Center, University of Connecticut School of Medicine, Farmington, CT, 06032, USA
| | - Chi Zhang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sukrut H Karandikar
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Rishikesh Pandey
- Connecticut Children's Innovation Center, University of Connecticut School of Medicine, Farmington, CT, 06032, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
91
|
Lee H, Yoo H, Moon G, Toh KA, Mochizuki K, Fujita K, Kim D. Super-resolved Raman microscopy using random structured light illumination: Concept and feasibility. J Chem Phys 2021; 155:144202. [PMID: 34654313 DOI: 10.1063/5.0064082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this article, we report the use of randomly structured light illumination for chemical imaging of molecular distribution based on Raman microscopy with improved image resolution. Random structured basis images generated from temporal and spectral characteristics of the measured Raman signatures were superposed to perform structured illumination microscopy (SIM) with the blind-SIM algorithm. For experimental validation, Raman signatures corresponding to Rhodamine 6G (R6G) in the waveband of 730-760 nm and Raman shift in the range of 1096-1634 cm-1 were extracted and reconstructed to build images of R6G. The results confirm improved image resolution using the concept and hints at super-resolution by almost twice better than the diffraction-limit.
Collapse
Affiliation(s)
- Hongki Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Hajun Yoo
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Gwiyeong Moon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Kar-Ann Toh
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Kentaro Mochizuki
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Katsumasa Fujita
- Department of Applied Physics, Osaka University, Osaka 565-0871, Japan and Advanced Photonics and Biosensing Open Innovation Laboratory, AIST-Osaka University, Osaka 565-0871, Japan
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
92
|
Priemel T, Palia G, Förste F, Jehle F, Sviben S, Mantouvalou I, Zaslansky P, Bertinetti L, Harrington MJ. Microfluidic-like fabrication of metal ion-cured bioadhesives by mussels. Science 2021; 374:206-211. [PMID: 34618575 DOI: 10.1126/science.abi9702] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tobias Priemel
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gurveer Palia
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Frank Förste
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Franziska Jehle
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.,Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Sanja Sviben
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ioanna Mantouvalou
- Institute of Optics and Atomic Physics, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, 14197 Berlin, Germany
| | - Luca Bertinetti
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Matthew J Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
93
|
Bakthavatsalam S, Dodo K, Sodeoka M. A decade of alkyne-tag Raman imaging (ATRI): applications in biological systems. RSC Chem Biol 2021; 2:1415-1429. [PMID: 34704046 PMCID: PMC8496067 DOI: 10.1039/d1cb00116g] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Alkyne functional groups have Raman signatures in a region (1800 cm-1 to 2800 cm-1) that is free from interference from cell components, known as the "silent region", and alkyne signals in this region were first utilized a decade ago to visualize the nuclear localization of a thymidine analogue EdU. Since then, the strategy of Raman imaging of biological samples by using alkyne functional groups, called alkyne-tag Raman imaging (ATRI), has become widely used. This article reviews the applications of ATRI in biological samples ranging from organelles to whole animal models, and briefly discusses the prospects for this technique.
Collapse
Affiliation(s)
- Subha Bakthavatsalam
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research Wako Saitama 351-0198 Japan
| | - Kosuke Dodo
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research Wako Saitama 351-0198 Japan
- RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research Wako Saitama 351-0198 Japan
- RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
94
|
Yang Q, Kajimoto S, Kobayashi Y, Hiramatsu H, Nakabayashi T. Regulation of Cell Volume by Nanosecond Pulsed Electric Fields. J Phys Chem B 2021; 125:10692-10700. [PMID: 34519209 DOI: 10.1021/acs.jpcb.1c06058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stimulation of cells by nanosecond pulsed electric fields (nsPEFs) has attracted attention as a technology for medical applications such as cancer treatment. nsPEFs have been shown to affect intracellular environments without significant damage to cell membranes; however, the mechanism underlying the effect of nsPEFs on cells remains unclear. In this study, we constructed electrodes for applying nsPEFs and analyzed the change in volume of a single cell due to nsPEFs using fluorescence and Raman microscopy. It was shown that the direction of the change depended on the applied electric field; expansion due to the influx of water was observed at high electric field, and cell shrinkage was observed at low electric field. The change in cell volume was correlated to the change in the intracellular Ca2+ concentration, and nsPEFs-induced shrinking was not observed when the Ca2+-free medium was used. This result suggests that the cell shrinkage is related to the regulatory volume decrease where the cell adjusts the increase in intracellular Ca2+ concentration, inducing the efflux of ions and water from the cell.
Collapse
Affiliation(s)
- Qi Yang
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,JST PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Kobayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001, Ta-Hsueh Road, Hsinchu 30010, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
95
|
Takei Y, Hirai R, Fukuda A, Miyazaki S, Shimada R, Okamatsu-Ogura Y, Saito M, Leproux P, Hisatake K, Kano H. Visualization of intracellular lipid metabolism in brown adipocytes by time-lapse ultra-multiplex CARS microspectroscopy with an onstage incubator. J Chem Phys 2021; 155:125102. [PMID: 34598561 DOI: 10.1063/5.0063250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We visualized a dynamic process of fatty acid uptake of brown adipocytes using a time-lapse ultra-broadband multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopic imaging system with an onstage incubator. Combined with the deuterium labeling technique, the intracellular uptake of saturated fatty acids was traced up to 9 h, a substantial advance over the initial multiplex CARS system, with an analysis time of 80 min. Characteristic metabolic activities of brown adipocytes, such as resistance to lipid saturation, were elucidated, supporting the utility of the newly developed system.
Collapse
Affiliation(s)
- Yuki Takei
- Department of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Rie Hirai
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Aya Fukuda
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinichi Miyazaki
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Rintaro Shimada
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Philippe Leproux
- Institut de Recherche XLIM, UMR CNRS No. 7252, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Koji Hisatake
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideaki Kano
- Department of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
96
|
Xia Q, Chen X, Liu C, Song RB, Chen Z, Zhang J, Zhu JJ. Label-Free Probing of Electron Transfer Kinetics of Single Microbial Cells on a Single-Layer Graphene via Structural Color Microscopy. NANO LETTERS 2021; 21:7823-7830. [PMID: 34470209 DOI: 10.1021/acs.nanolett.1c02828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Studies of electron transfer at the population level veil the nature of the cell itself; however, in situ probing of the electron transfer dynamics of individual cells is still challenging. Here we propose label-free structural color microscopy for this aim. We demonstrate that Shewanella oneidensis MR-1 cells show unique structural color scattering, changing with the redox state of cytochrome complexes in the outer membrane. It enables quantitatively and noninvasive studies of electron transfer in single microbial cells during bioelectrochemical activities, such as extracellular electron transfer (EET) on a transparent single-layer graphene electrode. Increasing the applied potential leads to the associated EET current, accompanied by more oxidized cytochromes. The high spatiotemporal resolution of the proposed method not only demonstrates the large diversity in EET activity among microbial cells but also reveals the subcellular asymmetric distribution of active cytochromes in a single cell. We anticipate that it provides a potential platform for further exploring the electron transfer mechanism of subcellular structure.
Collapse
Affiliation(s)
- Qing Xia
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, Nanjing 210023, PR China
| | - Xueqin Chen
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, Nanjing 210023, PR China
| | - Changhong Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, PR China
| | - Rong-Bin Song
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, Nanjing 210023, PR China
| | - Zixuan Chen
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, Nanjing 210023, PR China
| | - Jianrong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, Nanjing 210023, PR China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, Nanjing 210023, PR China
| |
Collapse
|
97
|
Samuel AZ, Horii S, Ando M, Takeyama H. Deconstruction of Obscure Features in SVD-Decomposed Raman Images from P. chrysogenum Reveals Complex Mixing of Spectra from Five Cellular Constituents. Anal Chem 2021; 93:12139-12146. [PMID: 34445869 DOI: 10.1021/acs.analchem.1c02942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman imaging has transcended in recent times from being an analytical tool to a molecular profiling technique. Biomedical applications of this technique often rely on singular-value decomposition (SVD), principal component analysis (PCA), etc. for data analysis. These methods, however, obliterate the molecular information contained in the original Raman data leading to speculative interpretations based on relative intensities. In the present study, SVD analysis of the Raman images from Penicillium chrysogenum resulted in 11 spectral components and corresponding images with highly distorted spectral features and complex image contrast, respectively. To interpret the SVD results in molecular terms, we have developed a combined multivariate approach. By applying this methodology, we have successfully extracted the contribution of five biomolecular constituents of the P. chrysogenum filamentous cell to the SVD vectors. Molecular interpretability will help SVD/PCA surpass the realm of variance-based classification to a more meaningful molecular domain.
Collapse
Affiliation(s)
- Ashok Zachariah Samuel
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Shumpei Horii
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Department of Advanced Science Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masahiro Ando
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Haruko Takeyama
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
98
|
Shibata D, Kajimoto S, Nakabayashi T. Label-free tracking of intracellular molecular crowding with cell-cycle progression using Raman microscopy. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
99
|
Li J, Li J, Wang H, Qin J, Zeng H, Wang K, Wang S. Unveiling osteosarcoma responses to DAPT combined with cisplatin by using confocal Raman microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:5514-5528. [PMID: 34692198 PMCID: PMC8515968 DOI: 10.1364/boe.432933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The aim of this study was to clarify the dose- and time-dependent effect of the γ-secretase inhibitor (DAPT) combined with cisplatin on osteosarcoma (OS) cells, evaluated by confocal Raman microspectral imaging (CRMI) technology. The intracellular composition significantly changed after combined drug action compared with the sole cisplatin treatment, proving the synergistic effect of DAPT combined with cisplatin on OS cells. The principal component analysis-linear discriminant analysis revealed the main compositional variations by distinguishing spectral characteristics. K-means cluster and univariate imaging were used to visualize the changes in subcellular morphology and biochemical distribution. The results showed that the increase of the DAPT dose and cisplatin treatment time in the combination treatment induced the division of the nucleus in OS cells, and other organelles also showed significant physiological changes compared with the effect of sole cisplatin treatment. After understanding the cellular response to the combined drug treatment at a molecular level, the achieved results provide an experimental fact for developing suitable individualized tumor treatment protocols.
Collapse
Affiliation(s)
- Jie Li
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
- These authors contributed equally to this work
| | - Jing Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
- These authors contributed equally to this work
| | - Haifeng Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jie Qin
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Haishan Zeng
- Imaging Unit-Integrative Oncology Department, BC Cancer Research Centre, Vancouver, BC, V5Z1L3, Canada
| | - Kaige Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shuang Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
100
|
Multiwell Raman plate reader for high-throughput biochemical screening. Sci Rep 2021; 11:15742. [PMID: 34344945 PMCID: PMC8333358 DOI: 10.1038/s41598-021-95139-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022] Open
Abstract
Although Raman spectroscopy has been used for the quantitative analysis of samples in many fields, including material science, biomedical, and pharmaceutical research, its low sensitivity hindered the application of the analytical capability for high-throughput screening. Here, we developed a high-throughput Raman screening system that can analyze hundreds of specimens in a multiwell plate simultaneously. Multiple high numerical aperture (NA) lenses are assembled under each well in the multiwell plate to detect Raman scattering simultaneously with high sensitivity. The Raman spectrum of 192 samples loaded on a standard 384-well plate can be analyzed simultaneously. With the developed system, the throughput of Raman measurement was significantly improved (about 100 times) compared to conventional Raman instruments based on a single-point measurement. By using the developed system, we demonstrated high-throughput Raman screening to investigate drug polymorphism and identify a small-molecule binding site in a protein. Furthermore, the same system was used to demonstrate high-speed chemical mapping of a centimeter-sized pork slice.
Collapse
|