51
|
Shukla K, Idanwekhai K, Naradikian M, Ting S, Schoenberger SP, Brunk E. Machine Learning of Three-Dimensional Protein Structures to Predict the Functional Impacts of Genome Variation. J Chem Inf Model 2024; 64:5328-5343. [PMID: 38635316 DOI: 10.1021/acs.jcim.3c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Research in the human genome sciences generates a substantial amount of genetic data for hundreds of thousands of individuals, which concomitantly increases the number of variants of unknown significance (VUS). Bioinformatic analyses can successfully reveal rare variants and variants with clear associations with disease-related phenotypes. These studies have had a significant impact on how clinical genetic screens are interpreted and how patients are stratified for treatment. There are few, if any, computational methods for variants comparable to biological activity predictions. To address this gap, we developed a machine learning method that uses protein three-dimensional structures from AlphaFold to predict how a variant will influence changes to a gene's downstream biological pathways. We trained state-of-the-art machine learning classifiers to predict which protein regions will most likely impact transcriptional activities of two proto-oncogenes, nuclear factor erythroid 2 (NFE2L2)-related factor 2 (NRF2) and c-Myc. We have identified classifiers that attain accuracies higher than 80%, which have allowed us to identify a set of key protein regions that lead to significant perturbations in c-Myc or NRF2 transcriptional pathway activities.
Collapse
Affiliation(s)
- Kriti Shukla
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Kelvin Idanwekhai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Martin Naradikian
- La Jolla Institute for Immunology, San Diego, California 92093, United States
| | - Stephanie Ting
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | | | - Elizabeth Brunk
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Integrative Program for Biological and Genome Sciences (IBGS), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| |
Collapse
|
52
|
Gallucci Figorelle L, Galvão PT, de Lima FMR, Marimon P, Pentagna N, Milito C, Schaffel R, Carneiro K. Mantle Cell Lymphoma Under the Scope of Personalized Medicine: Perspective and Directions. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:433-445. [PMID: 38641485 DOI: 10.1016/j.clml.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/24/2024] [Indexed: 04/21/2024]
Abstract
Mantle cell lymphoma (MCL) is a rare, incurable non-Hodgkin's lymphoma characterized by naive B cells infiltrating the lymphoid follicle's mantle zone. A key feature of MCL is the cytogenetic abnormality t(11;14) (q13:q14), found in 95% of cases, leading to Cyclin D1 overexpression resulting in uncontrolled cell cycle progression and genetic instability. Occasionally, Cyclin D2 or D3 overexpression can substitute for Cyclin D1, causing similar effects. The transcription factor SOX11 is a hallmark of classical Cyclin D1-positive MCL and also in cases without the typical t(11;14) abnormality, making it an important diagnostic marker. MCL's development necessitates secondary genetic changes, including mutations in the ATM, TP53, and NOTCH1 genes, with the TP53 mutation being the only genetic biomarker with established clinical prognostic value. The Mantle Cell Lymphoma International Prognostic Index (MIPI) score, which considers age, performance status, serum LDH levels, and leukocyte count, stratifies patients into risk groups. Histologic variants of MCL, such as classic, blastoid, and pleomorphic, offer additional prognostic information. Recent research highlights new mutations potentially tied to specific populations among MCL patients, suggesting the benefit of personalized management for better predicting outcomes like progression-free survival. This approach could lead to more effective, risk-adapted treatment strategies. However, challenges remain in patient stratification and in developing new therapeutic targets for MCL. This review synthesizes current knowledge on genetic mutations in MCL and their impact on prognosis. It aims to explore the prognostic value of genetic markers related to population traits, emphasizing the importance of tailored molecular medicine in MCL.
Collapse
Affiliation(s)
- Lara Gallucci Figorelle
- Laboratório de Proliferação e Diferenciação Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peterson Tiago Galvão
- Laboratório de Proliferação e Diferenciação Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Patricia Marimon
- Laboratório de Proliferação e Diferenciação Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalia Pentagna
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Milito
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rony Schaffel
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia Carneiro
- Programa de Pós-graduação em Medicina (Anatomia Patológica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
53
|
Malcikova J, Pavlova S, Baliakas P, Chatzikonstantinou T, Tausch E, Catherwood M, Rossi D, Soussi T, Tichy B, Kater AP, Niemann CU, Davi F, Gaidano G, Stilgenbauer S, Rosenquist R, Stamatopoulos K, Ghia P, Pospisilova S. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-2024 update. Leukemia 2024; 38:1455-1468. [PMID: 38755420 PMCID: PMC11217004 DOI: 10.1038/s41375-024-02267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
In chronic lymphocytic leukemia (CLL), analysis of TP53 aberrations (deletion and/or mutation) is a crucial part of treatment decision-making algorithms. Technological and treatment advances have resulted in the need for an update of the last recommendations for TP53 analysis in CLL, published by ERIC, the European Research Initiative on CLL, in 2018. Based on the current knowledge of the relevance of low-burden TP53-mutated clones, a specific variant allele frequency (VAF) cut-off for reporting TP53 mutations is no longer recommended, but instead, the need for thorough method validation by the reporting laboratory is emphasized. The result of TP53 analyses should always be interpreted within the context of available laboratory and clinical information, treatment indication, and therapeutic options. Methodological aspects of introducing next-generation sequencing (NGS) in routine practice are discussed with a focus on reliable detection of low-burden clones. Furthermore, potential interpretation challenges are presented, and a simplified algorithm for the classification of TP53 variants in CLL is provided, representing a consensus based on previously published guidelines. Finally, the reporting requirements are highlighted, including a template for clinical reports of TP53 aberrations. These recommendations are intended to assist diagnosticians in the correct assessment of TP53 mutation status, but also physicians in the appropriate understanding of the lab reports, thus decreasing the risk of misinterpretation and incorrect management of patients in routine practice whilst also leading to improved stratification of patients with CLL in clinical trials.
Collapse
Affiliation(s)
- Jitka Malcikova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarka Pavlova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Eugen Tausch
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Mark Catherwood
- Haematology Department, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Thierry Soussi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Hematopoietic and Leukemic Development, UMRS_938, Sorbonne University, Paris, France
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Frederic Davi
- Sorbonne Université, Paris, France
- Department of Hematology, Hôpital Pitié-Salpêtière, AP-HP, Paris, France
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Stephan Stilgenbauer
- Division of CLL, Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Paolo Ghia
- Università Vita-Salute San Raffaele, Milan, Italy.
- Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Sarka Pospisilova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and Genomics, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
54
|
Montemorano L, Shultz ZB, Farooque A, Hyun M, Chappell RJ, Hartenbach EM, Lang JD. TP53 mutations and the association with platinum resistance in high grade serous ovarian carcinoma. Gynecol Oncol 2024; 186:26-34. [PMID: 38555766 PMCID: PMC11216889 DOI: 10.1016/j.ygyno.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES Alterations in the tumor suppressor TP53 gene are the most common mutations in high grade serous ovarian carcinoma. The impact of TP53 mutations on clinical outcomes and platinum resistance is controversial. We sought to evaluate the genomic profile of high grade serous ovarian carcinoma and explore the association of TP53 mutations with platinum resistance. METHODS Next generation sequencing data was obtained from our institutional database for patients with high grade serous ovarian carcinoma undergoing primary treatment. Sequencing data, demographic, and clinical information was reviewed. The primary outcome analyzed was time to recurrence or refractory diagnosis. Associations between the primary outcome and different classification schemes for TP53 mutations (structural, functional, hot spot, pathogenicity scores, immunohistochemical staining patterns) were performed. RESULTS 209 patients met inclusion criteria. TP53 mutations were the most common mutation. There were no differences in platinum response with TP53 hotspot mutations or high pathogenicity scores. Presence of TP53 gain-of-function mutations or measure of TP53 gain-of function activity were not associated with platinum resistance. Immunohistochemical staining patterns correlated with expected TP53 protein function and were not associated with platinum resistance. CONCLUSIONS TP53 hotspot mutations or high pathogenicity scores were not associated with platinum resistance or refractory disease. Contrary to prior studies, TP53 gain-of-function mutations were not associated with platinum resistance. Estimation of TP53 gain-of-function effect using missense mutation phenotype scores was not associated with platinum resistance. The polymorphic nature of TP53 mutations may be too complex to demonstrate effect using simple models, or response to platinum therapy may be independent of initiating TP53 mutation.
Collapse
Affiliation(s)
- Lauren Montemorano
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA.
| | - Zoey B Shultz
- Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, MN, USA
| | - Alma Farooque
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Meredith Hyun
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Richard J Chappell
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ellen M Hartenbach
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Jessica D Lang
- Center for Human Genomics & Precision Medicine, Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
55
|
Sueangoen N, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Public neoantigens in breast cancer immunotherapy (Review). Int J Mol Med 2024; 54:65. [PMID: 38904202 PMCID: PMC11188978 DOI: 10.3892/ijmm.2024.5388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Among women globally, breast cancer is the most prevalent cancer and the leading cause of cancer‑related death. Interestingly, though genetic mutations contribute to the disease, <15% of women diagnosed with breast cancer have a family history of the disease, suggesting a prevalence of sporadic genetic mutations in breast cancer development. In the rapidly rising field of cancer genomics, neoantigen‑based immunotherapy has come to the fore. The investigation of novel proteins arising from unique somatic mutations or neoantigens have opened a new pathway for both individualized and public cancer treatments. Because they are shared among individuals with similar genetic changes, public neoantigens provide an opportunity for 'off‑the‑shelf' anticancer therapies, potentially extending the benefits to a wider patient group. The present review aimed to highlight the role of shared or public neoantigens as therapeutic targets for patients with breast cancer, emphasizing common hotspot mutations of certain genes identified in breast cancer. The clinical utilization of public neoantigen‑based therapies for breast cancer treatment were also discussed.
Collapse
Affiliation(s)
- Natthaporn Sueangoen
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
56
|
Tsaousidou E, Chrzanowski J, Drané P, Lee GY, Bahour N, Wang ZB, Deng S, Cao Z, Huang K, He Y, Kaminski M, Michalek D, Güney E, Parmar K, Fendler W, Chowdhury D, Hotamışlıgil GS. Endogenous p53 inhibitor TIRR dissociates systemic metabolic health from oncogenic activity. Cell Rep 2024; 43:114337. [PMID: 38861384 PMCID: PMC11325268 DOI: 10.1016/j.celrep.2024.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
It is unclear whether metabolic health corresponds to reduced oncogenesis or vice versa. We study Tudor-interacting repair regulator (TIRR), an inhibitor of p53 binding protein 1 (53BP1)-mediated p53 activation, and the physiological consequences of enhancing tumor suppressor activity. Deleting TIRR selectively activates p53, significantly protecting against cancer but leading to a systemic metabolic imbalance in mice. TIRR-deficient mice are overweight and insulin resistant, even under normal chow diet. Similarly, reduced TIRR expression in human adipose tissue correlates with higher BMI and insulin resistance. Despite the metabolic challenges, TIRR loss improves p53 heterozygous (p53HET) mouse survival and correlates with enhanced progression-free survival in patients with various p53HET carcinomas. Finally, TIRR's oncoprotective and metabolic effects are dependent on p53 and lost upon p53 deletion in TIRR-deficient mice, with glucose homeostasis and orexigenesis being primarily regulated by TIRR expression in the adipose tissue and the CNS, respectively, as evidenced by tissue-specific models. In summary, TIRR deletion provides a paradigm of metabolic deregulation accompanied by reduced oncogenesis.
Collapse
Affiliation(s)
- Eva Tsaousidou
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jędrzej Chrzanowski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Pascal Drané
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Grace Y Lee
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Nadine Bahour
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zeqiu Branden Wang
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shijun Deng
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Zhe Cao
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kaimeng Huang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Yizhou He
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Mateusz Kaminski
- Department of General Surgery, Medical University of Lodz, 90-153 Lodz, Poland
| | - Dominika Michalek
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ekin Güney
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Wojciech Fendler
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Gökhan S Hotamışlıgil
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
57
|
Guo Y, Wu H, Wiesmüller L, Chen M. Canonical and non-canonical functions of p53 isoforms: potentiating the complexity of tumor development and therapy resistance. Cell Death Dis 2024; 15:412. [PMID: 38866752 PMCID: PMC11169513 DOI: 10.1038/s41419-024-06783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Full-length p53 (p53α) plays a pivotal role in maintaining genomic integrity and preventing tumor development. Over the years, p53 was found to exist in various isoforms, which are generated through alternative splicing, alternative initiation of translation, and internal ribosome entry site. p53 isoforms, either C-terminally altered or N-terminally truncated, exhibit distinct biological roles compared to p53α, and have significant implications for tumor development and therapy resistance. Due to a lack of part and/or complete C- or N-terminal domains, ectopic expression of some p53 isoforms failed to induce expression of canonical transcriptional targets of p53α like CDKN1A or MDM2, even though they may bind their promoters. Yet, p53 isoforms like Δ40p53α still activate subsets of targets including MDM2 and BAX. Furthermore, certain p53 isoforms transactivate even novel targets compared to p53α. More recently, non-canonical functions of p53α in DNA repair and of different isoforms in DNA replication unrelated to transcriptional activities were discovered, amplifying the potential of p53 as a master regulator of physiological and tumor suppressor functions in human cells. Both regarding canonical and non-canonical functions, alternative p53 isoforms frequently exert dominant negative effects on p53α and its partners, which is modified by the relative isoform levels. Underlying mechanisms include hetero-oligomerization, changes in subcellular localization, and aggregation. These processes ultimately influence the net activities of p53α and give rise to diverse cellular outcomes. Biological roles of p53 isoforms have implications for tumor development and cancer therapy resistance. Dysregulated expression of isoforms has been observed in various cancer types and is associated with different clinical outcomes. In conclusion, p53 isoforms have expanded our understanding of the complex regulatory network involving p53 in tumors. Unraveling the mechanisms underlying the biological roles of p53 isoforms provides new avenues for studies aiming at a better understanding of tumor development and developing therapeutic interventions to overcome resistance.
Collapse
Affiliation(s)
- Yitian Guo
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| | - Hang Wu
- Department of Rehabilitation Medicine, Zhongda Hospital Southeast University, Nanjing, China
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Ming Chen
- Department of Urology, Zhongda Hospital Southeast University, Nanjing, China.
| |
Collapse
|
58
|
Ea V, Berthozat C, Dreyfus H, Legrand C, Rousselet E, Peysselon M, Baudet L, Martinez G, Coutton C, Bidart M. BRCA1 Intragenic Duplication Combined with a Likely Pathogenic TP53 Variant in a Patient with Triple-Negative Breast Cancer: Clinical Risk and Management. Int J Mol Sci 2024; 25:6274. [PMID: 38892462 PMCID: PMC11173113 DOI: 10.3390/ijms25116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
For patients with hereditary breast and ovarian cancer, the probability of carrying two pathogenic variants (PVs) in dominant cancer-predisposing genes is rare. Using targeted next-generation sequencing (NGS), we investigated a 49-year-old Caucasian woman who developed a highly aggressive breast tumor. Our analyses identified an intragenic germline heterozygous duplication in BRCA1 with an additional likely PV in the TP53 gene. The BRCA1 variant was confirmed by multiplex ligation probe amplification (MLPA), and genomic breakpoints were characterized at the nucleotide level (c.135-2578_442-1104dup). mRNA extracted from lymphocytes was amplified by RT-PCR and then Sanger sequenced, revealing a tandem duplication r.135_441dup; p.(Gln148Ilefs*20). This duplication results in the synthesis of a truncated and, most likely, nonfunctional protein. Following functional studies, the TP53 exon 5 c.472C > T; p.(Arg158Cys) missense variant was classified as likely pathogenic by the Li-Fraumeni Syndrome (LFS) working group. This type of unexpected association will be increasingly identified in the future, with the switch from targeted BRCA sequencing to hereditary breast and ovarian cancer (HBOC) panel sequencing, raising the question of how these patients should be managed. It is therefore important to record and investigate these rare double-heterozygous genotypes.
Collapse
Affiliation(s)
- Vuthy Ea
- UM Génétique Moléculaire: Maladies Héréditaires et Oncologie, University Hospital Grenoble Alpes, 38000 Grenoble, France;
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble Alpes University, 38000 Grenoble, France; (G.M.); (C.C.)
| | - Claudine Berthozat
- Department of Medical Oncology, Cancer and Blood Diseases, Grenoble Alpes University Hospital, 38000 Grenoble, France;
| | - Hélène Dreyfus
- Genetic Service, Department of Genetics and Procreation, University Hospital Grenoble Alpes, 38000 Grenoble, France; (H.D.); (C.L.); (E.R.); (M.P.); (L.B.)
| | - Clémentine Legrand
- Genetic Service, Department of Genetics and Procreation, University Hospital Grenoble Alpes, 38000 Grenoble, France; (H.D.); (C.L.); (E.R.); (M.P.); (L.B.)
| | - Estelle Rousselet
- Genetic Service, Department of Genetics and Procreation, University Hospital Grenoble Alpes, 38000 Grenoble, France; (H.D.); (C.L.); (E.R.); (M.P.); (L.B.)
| | - Magalie Peysselon
- Genetic Service, Department of Genetics and Procreation, University Hospital Grenoble Alpes, 38000 Grenoble, France; (H.D.); (C.L.); (E.R.); (M.P.); (L.B.)
| | - Laura Baudet
- Genetic Service, Department of Genetics and Procreation, University Hospital Grenoble Alpes, 38000 Grenoble, France; (H.D.); (C.L.); (E.R.); (M.P.); (L.B.)
| | - Guillaume Martinez
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble Alpes University, 38000 Grenoble, France; (G.M.); (C.C.)
- UM de Génétique Chromosomique, University Hospital Grenoble Alpes, 38000 Grenoble, France
| | - Charles Coutton
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble Alpes University, 38000 Grenoble, France; (G.M.); (C.C.)
- UM de Génétique Chromosomique, University Hospital Grenoble Alpes, 38000 Grenoble, France
| | - Marie Bidart
- UM Génétique Moléculaire: Maladies Héréditaires et Oncologie, University Hospital Grenoble Alpes, 38000 Grenoble, France;
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble Alpes University, 38000 Grenoble, France; (G.M.); (C.C.)
| |
Collapse
|
59
|
Qiu Y, Huang T, Cai YD. Review of predicting protein stability changes upon variations. Proteomics 2024; 24:e2300371. [PMID: 38643379 DOI: 10.1002/pmic.202300371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
Forecasting alterations in protein stability caused by variations holds immense importance. Improving the thermal stability of proteins is important for biomedical and industrial applications. This review discusses the latest methods for predicting the effects of mutations on protein stability, databases containing protein mutations and thermodynamic parameters, and experimental techniques for efficiently assessing protein stability in high-throughput settings. Various publicly available databases for protein stability prediction are introduced. Furthermore, state-of-the-art computational approaches for anticipating protein stability changes due to variants are reviewed. Each method's types of features, base algorithm, and prediction results are also detailed. Additionally, some experimental approaches for verifying the prediction results of computational methods are introduced. Finally, the review summarizes the progress and challenges of protein stability prediction and discusses potential models for future research directions.
Collapse
Affiliation(s)
- Yiling Qiu
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
60
|
Timofeev O, Giron P, Lawo S, Pichler M, Noeparast M. ERK pathway agonism for cancer therapy: evidence, insights, and a target discovery framework. NPJ Precis Oncol 2024; 8:70. [PMID: 38485987 PMCID: PMC10940698 DOI: 10.1038/s41698-024-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
At least 40% of human cancers are associated with aberrant ERK pathway activity (ERKp). Inhibitors targeting various effectors within the ERKp have been developed and explored for over two decades. Conversely, a substantial body of evidence suggests that both normal human cells and, notably to a greater extent, cancer cells exhibit susceptibility to hyperactivation of ERKp. However, this vulnerability of cancer cells remains relatively unexplored. In this review, we reexamine the evidence on the selective lethality of highly elevated ERKp activity in human cancer cells of varying backgrounds. We synthesize the insights proposed for harnessing this vulnerability of ERK-associated cancers for therapeutical approaches and contextualize these insights within established pharmacological cancer-targeting models. Moreover, we compile the intriguing preclinical findings of ERK pathway agonism in diverse cancer models. Lastly, we present a conceptual framework for target discovery regarding ERKp agonism, emphasizing the utilization of mutual exclusivity among oncogenes to develop novel targeted therapies for precision oncology.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University, 35043, Marburg, Germany
| | - Philippe Giron
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Steffen Lawo
- CRISPR Screening Core Facility, Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Martin Pichler
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156, Augsburg, Germany
| | - Maxim Noeparast
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156, Augsburg, Germany.
| |
Collapse
|
61
|
Gould SI, Wuest AN, Dong K, Johnson GA, Hsu A, Narendra VK, Atwa O, Levine SS, Liu DR, Sánchez Rivera FJ. High-throughput evaluation of genetic variants with prime editing sensor libraries. Nat Biotechnol 2024:10.1038/s41587-024-02172-9. [PMID: 38472508 DOI: 10.1038/s41587-024-02172-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Tumor genomes often harbor a complex spectrum of single nucleotide alterations and chromosomal rearrangements that can perturb protein function. Prime editing has been applied to install and evaluate genetic variants, but previous approaches have been limited by the variable efficiency of prime editing guide RNAs. Here we present a high-throughput prime editing sensor strategy that couples prime editing guide RNAs with synthetic versions of their cognate target sites to quantitatively assess the functional impact of endogenous genetic variants. We screen over 1,000 endogenous cancer-associated variants of TP53-the most frequently mutated gene in cancer-to identify alleles that impact p53 function in mechanistically diverse ways. We find that certain endogenous TP53 variants, particularly those in the p53 oligomerization domain, display opposite phenotypes in exogenous overexpression systems. Our results emphasize the physiological importance of gene dosage in shaping native protein stoichiometry and protein-protein interactions, and establish a framework for studying genetic variants in their endogenous sequence context at scale.
Collapse
Affiliation(s)
- Samuel I Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra N Wuest
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kexin Dong
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Grace A Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alvin Hsu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Varun K Narendra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ondine Atwa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stuart S Levine
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Francisco J Sánchez Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
62
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
63
|
Bakker M, Sørensen HV, Skepö M. Exploring the Role of Globular Domain Locations on an Intrinsically Disordered Region of p53: A Molecular Dynamics Investigation. J Chem Theory Comput 2024; 20:1423-1433. [PMID: 38230670 PMCID: PMC10867847 DOI: 10.1021/acs.jctc.3c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
The pre-tetramerization loop (PTL) of the human tumor suppressor protein p53 is an intrinsically disordered region (IDR) necessary for the tetramerization process, and its flexibility contributes to the essential conformational changes needed. Although the IDR can be accurately simulated in the traditional manner of molecular dynamics (MD) with the end-to-end distance (EEdist) unhindered, we sought to explore the effects of restraining the EEdist to the values predicted by electron microscopy (EM) and other distances. Simulating the PTL trajectory with a restrained EEdist , we found an increased agreement of nuclear magnetic resonance (NMR) chemical shifts with experiments. Additionally, we observed a plethora of secondary structures and contacts that only appear when the trajectory is restrained. Our findings expand the understanding of the tetramerization of p53 and provide insight into how mutations could make the protein impotent. In particular, our findings demonstrate the importance of restraining the EEdist in studying IDRs and how their conformations change under different conditions. Our results provide a better understanding of the PTL and the conformational dynamics of IDRs in general, which are useful for further studies regarding mutations and their effects on the activity of p53.
Collapse
Affiliation(s)
- Michael
J. Bakker
- Faculty
of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Henrik V. Sørensen
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
- MAX
IV Laboratory, Lund Institute of Advanced
Neutron and X-ray Science, Scheelevägen 19, SE-223 770 Lund, Sweden
| | - Marie Skepö
- Division
of Computational Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
- LINXS
- Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-233 70 Lund, Sweden
| |
Collapse
|
64
|
Richau CS, Scherer NDM, Matta BP, de Armas EM, de Barros Moreira FC, Bergmann A, Pereira Chaves CB, Boroni M, dos Santos ACE, Moreira MAM. BRCA1, BRCA2, and TP53 germline and somatic variants and clinicopathological characteristics of Brazilian patients with epithelial ovarian cancer. Cancer Med 2024; 13:e6729. [PMID: 38308422 PMCID: PMC10905552 DOI: 10.1002/cam4.6729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Approximately 3/4 of ovarian cancers are diagnosed in advanced stages, with the high-grade epithelial ovarian carcinoma (EOC) accounting for 90% of the cases. EOC present high genomic instability and somatic loss-of-function variants in genes associated with homologous recombination mutational repair pathway (HR), such as BRCA1 and BRCA2, and in TP53. The identification of germline variants in HR genes in EOC is relevant for treatment of platinum resistant tumors and relapsed tumors with therapies based in synthetic lethality such as PARP inhibitors. Patients with somatic variants in HR genes may also benefit from these therapies. In this work was analyzed the frequency of somatic variants in BRCA1, BRCA2, and TP53 in an EOC cohort of Brazilian patients, estimating the proportion of variants in tumoral tissue and their association with progression-free survival and overall survival. METHODS The study was conducted with paired blood/tumor samples from 56 patients. Germline and tumoral sequences of BRCA1, BRCA2, and TP53 were obtained by massive parallel sequencing. The HaplotypeCaller method was used for calling germline variants, and somatic variants were called with Mutect2. RESULTS A total of 26 germline variants were found, and seven patients presented germline pathogenic or likely pathogenic variants in BRCA1 or BRCA2. The analysis of tumoral tissue identified 52 somatic variants in 41 patients, being 43 somatic variants affecting or likely affecting protein functionality. Survival analyses showed that tumor staging was associated with overall survival (OS), while the presence of somatic mutation in TP53 was not associated with OS or progression-free survival. CONCLUSION Frequency of pathogenic or likely pathogenic germline variants in BRCA1 and BRCA2 (12.5%) was lower in comparison with other studies. TP53 was the most altered gene in tumors, with 62.5% presenting likely non-functional or non-functional somatic variants, while eight 14.2% presented likely non-functional or non-functional somatic variants in BRCA1 or BRCA2.
Collapse
Affiliation(s)
| | | | - Bruna Palma Matta
- Tumoral Genetics and Virology ProgramInstituto Nacional de CâncerRio de JaneiroBrazil
- Present address:
Hospital BP ‐ A Beneficência Portuguesa de São PauloSão PauloBrazil
| | | | | | - Anke Bergmann
- Clinical EpidemiologyInstituto Nacional de CâncerRio de JaneiroBrazil
| | | | - Mariana Boroni
- Bioinformatics and Computational Biology LaboratoryInstituto Nacional de CâncerRio de JaneiroBrazil
| | | | | |
Collapse
|
65
|
Montagud‐Martínez R, Márquez‐Costa R, Heras‐Hernández M, Dolcemascolo R, Rodrigo G. On the ever-growing functional versatility of the CRISPR-Cas13 system. Microb Biotechnol 2024; 17:e14418. [PMID: 38381083 PMCID: PMC10880580 DOI: 10.1111/1751-7915.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
CRISPR-Cas systems evolved in prokaryotes to implement a powerful antiviral immune response as a result of sequence-specific targeting by ribonucleoproteins. One of such systems consists of an RNA-guided RNA endonuclease, known as CRISPR-Cas13. In very recent years, this system is being repurposed in different ways in order to decipher and engineer gene expression programmes. Here, we discuss the functional versatility of the CRISPR-Cas13 system, which includes the ability for RNA silencing, RNA editing, RNA tracking, nucleic acid detection and translation regulation. This functional palette makes the CRISPR-Cas13 system a relevant tool in the broad field of systems and synthetic biology.
Collapse
Affiliation(s)
- Roser Montagud‐Martínez
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - Rosa Márquez‐Costa
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - María Heras‐Hernández
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - Roswitha Dolcemascolo
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio)CSIC – University of ValenciaPaternaSpain
| |
Collapse
|
66
|
Tuval A, Strandgren C, Heldin A, Palomar-Siles M, Wiman KG. Pharmacological reactivation of p53 in the era of precision anticancer medicine. Nat Rev Clin Oncol 2024; 21:106-120. [PMID: 38102383 DOI: 10.1038/s41571-023-00842-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
p53, which is encoded by the most frequently mutated gene in cancer, TP53, is an attractive target for novel cancer therapies. Despite major challenges associated with this approach, several compounds that either augment the activity of wild-type p53 or restore all, or some, of the wild-type functions to p53 mutants are currently being explored. In wild-type TP53 cancer cells, p53 function is often abrogated by overexpression of the negative regulator MDM2, and agents that disrupt p53-MDM2 binding can trigger a robust p53 response, albeit potentially with induction of p53 activity in non-malignant cells. In TP53-mutant cancer cells, compounds that promote the refolding of missense mutant p53 or the translational readthrough of nonsense mutant TP53 might elicit potent cell death. Some of these compounds have been, or are being, tested in clinical trials involving patients with various types of cancer. Nonetheless, no p53-targeting drug has so far been approved for clinical use. Advances in our understanding of p53 biology provide some clues as to the underlying reasons for the variable clinical activity of p53-restoring therapies seen thus far. In this Review, we discuss the intricate interactions between p53 and its cellular and microenvironmental contexts and factors that can influence p53's activity. We also propose several strategies for improving the clinical efficacy of these agents through the complex perspective of p53 functionality.
Collapse
Affiliation(s)
- Amos Tuval
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Angelos Heldin
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | | | - Klas G Wiman
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden.
| |
Collapse
|
67
|
Vieira IA, Viola GD, Pezzi EH, Kowalski TW, Fernandes BV, Andreis TF, Bom N, Sonnenstrahl G, Rocha YMDA, Corrêa BDS, Donatti LM, Sant’Anna GDS, Corleta HVE, Brum IS, Rosset C, Vianna FSL, Macedo GS, Palmero EI, Ashton-Prolla P. Exploring the frequency of a TP53 polyadenylation signal variant in tumor DNA from patients diagnosed with lung adenocarcinomas, sarcomas and uterine leiomyomas. Genet Mol Biol 2024; 46:e20230133. [PMID: 38252059 PMCID: PMC10802224 DOI: 10.1590/1678-4685-gmb-2023-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/16/2023] [Indexed: 01/23/2024] Open
Abstract
The TP53 3'UTR variant rs78378222 A>C has been detected in different tumor types as a somatic alteration that reduces p53 expression through modification of polyadenylation and miRNA regulation. Its prevalence is not yet known in all tumors. Herein, we examine tumor tissue prevalence of rs7837822 in Brazilian cohorts of patients from south and southeast regions diagnosed with lung adenocarcinoma (LUAD, n=586), sarcoma (SARC, n=188) and uterine leiomyoma (ULM, n=41). The minor allele (C) was identified in heterozygosity in 6/586 LUAD tumors (prevalence = 1.02 %) and none of the SARC and ULM samples. Additionally, next generation sequencing analysis revealed that all variant-positive tumors (n=4) with sample availability had additional pathogenic or likely pathogenic somatic variants in the TP53 coding regions. Among them, 3/4 (75 %) had the same pathogenic or likely pathogenic sequence variant (allele frequency <0.05 in tumor DNA) namely c.751A>C (p.Ile251Leu). Our results indicate a low somatic prevalence of rs78378222 in LUAD, ULM and SARC tumors from Brazilian patients, which suggests that no further analysis of this variant in the specific studied regions of Brazil is warranted. However, these findings should not exclude tumor molecular testing of this TP53 3'UTR functional variant for different populations.
Collapse
Affiliation(s)
- Igor Araujo Vieira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade do Vale do Rio dos Sinos (UNISINOS), Escola de Saúde, São Leopoldo, RS, Brazil
| | - Guilherme Danielski Viola
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Eduarda Heidrich Pezzi
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Thayne Woycinck Kowalski
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Genética Médica e Populacional, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Sistema Nacional de Informações sobre Agentes Teratogênicos (SIAT), Porto Alegre, RS, Brazil
- Complexo de Ensino Superior de Cachoeirinha (CESUCA), Cachoeirinha, RS, Brazil
| | - Bruna Vieira Fernandes
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Tiago Finger Andreis
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Natascha Bom
- Universidade do Vale do Rio dos Sinos (UNISINOS), Curso de Graduação em Biomedicina, São Leopoldo, RS, Brazil
| | - Giulianna Sonnenstrahl
- Universidade do Vale do Rio dos Sinos (UNISINOS), Curso de Graduação em Biomedicina, São Leopoldo, RS, Brazil
| | - Yasminne Marinho de Araújo Rocha
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Bruno da Silveira Corrêa
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
| | - Luiza Mezzomo Donatti
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Porto Alegre, RS, Brazil
| | - Gabriela dos Santos Sant’Anna
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
| | - Helena von Eye Corleta
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Ginecologia e Obstetrícia, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Ginecologia e Obstetrícia, Porto Alegre, RS, Brazil
| | - Ilma Simoni Brum
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Fisiologia, Laboratório de Biologia Molecular Endócrino e Tumoral, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Porto Alegre, RS, Brazil
| | - Clévia Rosset
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Ciências Médicas: Medicina (PPGCM), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Unidade de Pesquisa Laboratorial (UPL), Porto Alegre, RS, Brazil
| | - Fernanda Sales Luiz Vianna
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Laboratório de Genética Médica e Populacional, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INAGEMP), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Sistema Nacional de Informações sobre Agentes Teratogênicos (SIAT), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Ciências Médicas: Medicina (PPGCM), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
| | - Gabriel S. Macedo
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Programa de Medicina Personalizada, Porto Alegre, RS, Brazil
| | - Edenir Inez Palmero
- Instituto Nacional de Câncer (INCA), Departamento de Genética, Rio de Janeiro, RJ, Brazil
- Hospital de Câncer de Barretos, Centro de Pesquisa em Oncologia Molecular, Barretos, SP, Brazil
| | - Patricia Ashton-Prolla
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Ciências Médicas: Medicina (PPGCM), Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre (HCPA), Programa de Medicina Personalizada, Porto Alegre, RS, Brazil
- Hospital de Clínicas de Porto Alegre, Serviço de Genética Médica, Porto Alegre, RS, Brazil
| |
Collapse
|
68
|
Balsera-Manzanero M, Ghirga F, Ruiz-Molina A, Mori M, Pachón J, Botta B, Cordero E, Quaglio D, Sánchez-Céspedes J. Inhibition of adenovirus transport from the endosome to the cell nucleus by rotenone. Front Pharmacol 2024; 14:1293296. [PMID: 38273842 PMCID: PMC10808720 DOI: 10.3389/fphar.2023.1293296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Regardless of the clinical impact of human adenovirus (HAdV) infections in the healthy population and its high morbidity in immunosuppressed patients, a specific treatment is still not yet available. In this study, we screened the CM1407 COST Action's chemical library, comprising 1,233 natural products to identify compounds that restrict HAdV infection. Among them, we identified rotenolone, a compound that significantly inhibited HAdV infection. Next, we selected four isoflavonoid-type compounds (e.g., rotenone, deguelin, millettone, and tephrosin), namely rotenoids, structurally related to rotenolone in order to evaluate and characterized in vitro their antiviral activities against HAdV and human cytomegalovirus (HCMV). Their IC50 values for HAdV ranged from 0.0039 µM for rotenone to 0.07 µM for tephrosin, with selective indices ranging from 164.1 for rotenone to 2,429.3 for deguelin. In addition, the inhibition of HCMV replication ranged from 50% to 92.1% at twice the IC50 concentrations obtained in the plaque assay for each compound against HAdV. Our results indicated that the mechanisms of action of rotenolone, deguelin, and tephrosin involve the late stages of the HAdV replication cycle. However, the antiviral mechanism of action of rotenone appears to involve the alteration of the microtubular polymerization, which prevents HAdV particles from reaching the nuclear membrane of the cell. These isoflavonoid-type compounds exert high antiviral activity against HAdV at nanomolar concentrations, and can be considered strong hit candidates for the development of a new class of broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- María Balsera-Manzanero
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Ana Ruiz-Molina
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Jerónimo Pachón
- Instituto de Biomedicina de Sevilla (IBiS), Hospitales Universitarios Virgen del Rocío y Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Elisa Cordero
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Javier Sánchez-Céspedes
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Parasitología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
69
|
Viscuse PV, Slack-Tidwell RS, Zhang M, Rohra P, Zhu K, San Lucas FA, Konnick E, Pilie PG, Siddiqui B, Logothetis CJ, Corn P, Subudhi SK, Pritchard CC, Soundararajan R, Aparicio A. Evaluation of the Aggressive-Variant Prostate Cancer Molecular Signature in Clinical Laboratory Improvement Amendments (CLIA) Environments. Cancers (Basel) 2023; 15:5843. [PMID: 38136389 PMCID: PMC10741546 DOI: 10.3390/cancers15245843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Aggressive-variant prostate cancers (AVPCs) are a subset of metastatic castrate-resistant prostate cancers (mCRPCs) characterized by defects in ≥ two of three of TP53, RB1, and PTEN (AVPCm), a profile linked to lineage plasticity, androgen indifference, and platinum sensitivity. Men with mCRPC undergoing biopsies for progression were assessed for AVPCm using immunohistochemistry (IHC), next-generation sequencing (NGS) of solid tumor DNA (stDNA), and NGS of circulating tumor DNA (ctDNA) assays in CLIA-certified labs. Biopsy characteristics, turnaround times, inter-reader concordance, and inter-assay concordance were assessed. AVPCm was detected in 13 (27%) patients via IHC, two (6%) based on stDNA, and seven (39%) based on ctDNA. The concordance of the IHC reads between pathologists was variable. IHC had a higher detection rate of AVPCm+ tumors with the shortest turnaround times. stDNA had challenges with copy number loss detection, limiting its detection rate. ctDNA detected the greatest proportion of AVPCm+ tumors but had a low tumor content in two thirds of patients. These data show the operational characteristics of AVPCm detection using various assays, and inform trial design using AVPCm as a criterion for patient selection or stratification.
Collapse
Affiliation(s)
- Paul V. Viscuse
- Department of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | - Rebecca S. Slack-Tidwell
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Miao Zhang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.Z.)
| | - Prih Rohra
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.Z.)
| | - Keyi Zhu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.Z.)
| | - F. Anthony San Lucas
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (E.K.)
| | - Patrick G. Pilie
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bilal Siddiqui
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul Corn
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sumit K. Subudhi
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Colin C. Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (E.K.)
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
70
|
Tjader NP, Beer AJ, Ramroop J, Tai MC, Ping J, Gandhi T, Dauch C, Neuhausen SL, Ziv E, Sotelo N, Ghanekar S, Meadows O, Paredes M, Gillespie J, Aeilts A, Hampel H, Zheng W, Jia G, Hu Q, Wei L, Liu S, Ambrosone CB, Palmer JR, Carpten JD, Yao S, Stevens P, Ho WK, Pan JW, Fadda P, Huo D, Teo SH, McElroy JP, Toland AE. Association of ESR1 germline variants with TP53 somatic variants in breast tumors in a genome-wide study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.06.23299442. [PMID: 38106140 PMCID: PMC10723566 DOI: 10.1101/2023.12.06.23299442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background In breast tumors, somatic mutation frequencies in TP53 and PIK3CA vary by tumor subtype and ancestry. HER2 positive and triple negative breast cancers (TNBC) have a higher frequency of TP53 somatic mutations than other subtypes. PIK3CA mutations are more frequently observed in hormone receptor positive tumors. Emerging data suggest tumor mutation status is associated with germline variants and genetic ancestry. We aimed to identify germline variants that are associated with somatic TP53 or PIK3CA mutation status in breast tumors. Methods A genome-wide association study was conducted using breast cancer mutation status of TP53 and PIK3CA and functional mutation categories including TP53 gain of function (GOF) and loss of function mutations and PIK3CA activating/hotspot mutations. The discovery analysis consisted of 2850 European ancestry women from three datasets. Germline variants showing evidence of association with somatic mutations were selected for validation analyses based on predicted function, allele frequency, and proximity to known cancer genes or risk loci. Candidate variants were assessed for association with mutation status in a multi-ancestry validation study, a Malaysian study, and a study of African American/Black women with TNBC. Results The discovery Germline x Mutation (GxM) association study found five variants associated with one or more TP53 phenotypes with P values <1×10-6, 33 variants associated with one or more TP53 phenotypes with P values <1×10-5, and 44 variants associated with one or more PIK3CA phenotypes with P values <1×10-5. In the multi-ancestry and Malaysian validation studies, germline ESR1 locus variant, rs9383938, was associated with the presence of TP53 mutations overall (P values 6.8×10-5 and 9.8×10-8, respectively) and TP53 GOF mutations (P value 8.4×10-6). Multiple variants showed suggestive evidence of association with PIK3CA mutation status in the validation studies, but none were significant after correction for multiple comparisons. Conclusions We found evidence that germline variants were associated with TP53 and PIK3CA mutation status in breast cancers. Variants near the estrogen receptor alpha gene, ESR1, were significantly associated with overall TP53 mutations and GOF mutations. Larger multi-ancestry studies are needed to confirm these findings and determine if these variants contribute to ancestry-specific differences in mutation frequency.
Collapse
Affiliation(s)
- Nijole P. Tjader
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Abigail J. Beer
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Johnny Ramroop
- The City College of New York, City University of New York, New York, NY, USA
| | - Mei-Chee Tai
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Jie Ping
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Tanish Gandhi
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Medical School, Columbus, OH, 43210, USA
| | - Cara Dauch
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Wexner Medical Center, Clinical Trials Office, Columbus, OH 43210, USA
| | - Susan L. Neuhausen
- Beckman Research Institute of City of Hope, Department of Population Sciences, Duarte, CA, USA
| | - Elad Ziv
- University of California, Helen Diller Family Comprehensive Cancer Center, San Francisco, San Francisco, CA, USA
- University of California, Department of Medicine, San Francisco, San Francisco, CA, USA
- University of California San Francisco, Institute for Human Genetics, San Francisco, CA, USA
| | - Nereida Sotelo
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Shreya Ghanekar
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Owen Meadows
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Monica Paredes
- Biomedical Sciences, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jessica Gillespie
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Amber Aeilts
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Heather Hampel
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Guochong Jia
- Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B. Ambrosone
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - John D. Carpten
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Integrative Translational Sciences, City of Hope, Duarte, CA
| | - Song Yao
- Department of Cancer Control and Prevention, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Patrick Stevens
- The Ohio State University Comprehensive Cancer Center, Bioinformatics Shared Resource, Columbus, OH, USA
| | - Weang-Kee Ho
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Jia Wern Pan
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Paolo Fadda
- The Ohio State University Comprehensive Cancer Center, Genomics Shared Resource, Columbus, OH, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Soo-Hwang Teo
- Cancer Research Malaysia, Subang Jaya, Selangor 47500, Malaysia
- Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Joseph Paul McElroy
- The Ohio State University Center for Biostatistics, Department of Biomedical Informatics, Columbus, OH, USA
| | - Amanda Ewart Toland
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
71
|
Pinto EM, Ribeiro EMSF, Wang J, Phillips AH, Kriwacki RW, Zambetti GP. Clinical and functional analysis of the germline TP53 p.K164E acetylation site variant. Cold Spring Harb Mol Case Stud 2023; 9:a006290. [PMID: 38050059 PMCID: PMC10815290 DOI: 10.1101/mcs.a006290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
TP53 plays a critical role as a tumor suppressor by controlling cell cycle progression, DNA repair, and apoptosis. Post-translational modifications such as acetylation of specific lysine residues in the DNA binding and carboxy-terminus regulatory domains modulate its tumor suppressor activities. In this study, we addressed the functional consequences of the germline TP53 p.K164E (NM_000546.5: c.490A>G) variant identified in a patient with early-onset breast cancer and a significant family history of cancer. K164 is a conserved residue located in the L2 loop of the p53 DNA binding domain that is post-translationally modified by acetylation. In silico, in vitro, and in vivo analyses demonstrated that the glutamate substitution at K164 marginally destabilizes the p53 protein structure but significantly impairs sequence-specific DNA binding, transactivation, and tumor cell growth inhibition. Although p.K164E is currently considered a variant of unknown significance by different clinical genetic testing laboratories, the clinical and laboratory-based findings presented here provide strong evidence to reclassify TP53 p.K164E as a likely pathogenic variant.
Collapse
Affiliation(s)
- Emilia Modolo Pinto
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
| | - Enilze M S F Ribeiro
- Programa de Pós-graduação em Genética, Universidade Federal do Paraná, Curitiba, Paraná, 81531-980, Brazil;
| | - Jinling Wang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Gerard P Zambetti
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
| |
Collapse
|
72
|
Krueger KE. Neo-Darwinian Principles Exemplified in Cancer Genomics. Mol Cancer Res 2023; 21:1251-1260. [PMID: 37721477 DOI: 10.1158/1541-7786.mcr-23-0247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Within the last two decades, the advent of next-generation sequencing accompanied by single-cell technologies has enabled cancer researchers to study in detail mutations and other genetic aberrations that transpire during transformation of cells to a neoplastic state. This article covers the insights gained through these extensive studies where neo-Darwinian principles can be inferred to play roles throughout neoplastic transformation. The cells promoted during cancer development exhibit cancer hallmarks combined with the related enabling characteristics as outlined by Hanahan and Weinberg, analogous to natural selection and survival of the fittest. Selection of driver mutations that inactivate proteins encoded by tumor suppressor genes differs in profound ways from mutations that activate tumor promoter proteins. In most cases, the later stages of cancer development are characterized by sudden, extensive damage to chromosomes in a process that is not Darwinian in nature. Nevertheless, cells that survive these cataclysmic events remain subject to Darwinian selection promoting clones exhibiting the greatest rates of progression. Duplications of chromosomal segments containing oncogenes, deletions of segments harboring tumor suppressor genes, or distinctive chromosomal rearrangements are often found in cells progressing into later stages of cancer. In summary, the technological developments in genome sequencing since the start of the century have given us clear insights into genomic alterations promoting tumor progression where neo-Darwinian mechanisms of clonal selection can be inferred to play a primary role.
Collapse
|
73
|
Pan Q, Portelli S, Nguyen TB, Ascher DB. Characterization on the oncogenic effect of the missense mutations of p53 via machine learning. Brief Bioinform 2023; 25:bbad428. [PMID: 38018912 PMCID: PMC10685404 DOI: 10.1093/bib/bbad428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
Dysfunctions caused by missense mutations in the tumour suppressor p53 have been extensively shown to be a leading driver of many cancers. Unfortunately, it is time-consuming and labour-intensive to experimentally elucidate the effects of all possible missense variants. Recent works presented a comprehensive dataset and machine learning model to predict the functional outcome of mutations in p53. Despite the well-established dataset and precise predictions, this tool was trained on a complicated model with limited predictions on p53 mutations. In this work, we first used computational biophysical tools to investigate the functional consequences of missense mutations in p53, informing a bias of deleterious mutations with destabilizing effects. Combining these insights with experimental assays, we present two interpretable machine learning models leveraging both experimental assays and in silico biophysical measurements to accurately predict the functional consequences on p53 and validate their robustness on clinical data. Our final model based on nine features obtained comparable predictive performance with the state-of-the-art p53 specific method and outperformed other generalized, widely used predictors. Interpreting our models revealed that information on residue p53 activity, polar atom distances and changes in p53 stability were instrumental in the decisions, consistent with a bias of the properties of deleterious mutations. Our predictions have been computed for all possible missense mutations in p53, offering clinical diagnostic utility, which is crucial for patient monitoring and the development of personalized cancer treatment.
Collapse
Affiliation(s)
- Qisheng Pan
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - Stephanie Portelli
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - Thanh Binh Nguyen
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| | - David B Ascher
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane Queensland 4072, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne Victoria 3004, Australia
| |
Collapse
|
74
|
Brennan K, Espín-Pérez A, Chang S, Bedi N, Saumyaa S, Shin JH, Plevritis SK, Gevaert O, Sunwoo JB, Gentles AJ. Loss of p53-DREAM-mediated repression of cell cycle genes as a driver of lymph node metastasis in head and neck cancer. Genome Med 2023; 15:98. [PMID: 37978395 PMCID: PMC10656821 DOI: 10.1186/s13073-023-01236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The prognosis for patients with head and neck cancer (HNC) is poor and has improved little in recent decades, partially due to lack of therapeutic options. To identify effective therapeutic targets, we sought to identify molecular pathways that drive metastasis and HNC progression, through large-scale systematic analyses of transcriptomic data. METHODS We performed meta-analysis across 29 gene expression studies including 2074 primary HNC biopsies to identify genes and transcriptional pathways associated with survival and lymph node metastasis (LNM). To understand the biological roles of these genes in HNC, we identified their associated cancer pathways, as well as the cell types that express them within HNC tumor microenvironments, by integrating single-cell RNA-seq and bulk RNA-seq from sorted cell populations. RESULTS Patient survival-associated genes were heterogenous and included drivers of diverse tumor biological processes: these included tumor-intrinsic processes such as epithelial dedifferentiation and epithelial to mesenchymal transition, as well as tumor microenvironmental factors such as T cell-mediated immunity and cancer-associated fibroblast activity. Unexpectedly, LNM-associated genes were almost universally associated with epithelial dedifferentiation within malignant cells. Genes negatively associated with LNM consisted of regulators of squamous epithelial differentiation that are expressed within well-differentiated malignant cells, while those positively associated with LNM represented cell cycle regulators that are normally repressed by the p53-DREAM pathway. These pro-LNM genes are overexpressed in proliferating malignant cells of TP53 mutated and HPV + ve HNCs and are strongly associated with stemness, suggesting that they represent markers of pre-metastatic cancer stem-like cells. LNM-associated genes are deregulated in high-grade oral precancerous lesions, and deregulated further in primary HNCs with advancing tumor grade and deregulated further still in lymph node metastases. CONCLUSIONS In HNC, patient survival is affected by multiple biological processes and is strongly influenced by the tumor immune and stromal microenvironments. In contrast, LNM appears to be driven primarily by malignant cell plasticity, characterized by epithelial dedifferentiation coupled with EMT-independent proliferation and stemness. Our findings postulate that LNM is initially caused by loss of p53-DREAM-mediated repression of cell cycle genes during early tumorigenesis.
Collapse
Affiliation(s)
- Kevin Brennan
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Almudena Espín-Pérez
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Serena Chang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Nikita Bedi
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Saumyaa Saumyaa
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - June Ho Shin
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Andrew J Gentles
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
75
|
Fischer NW, Ma YHV, Gariépy J. Emerging insights into ethnic-specific TP53 germline variants. J Natl Cancer Inst 2023; 115:1145-1156. [PMID: 37352403 PMCID: PMC10560603 DOI: 10.1093/jnci/djad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/25/2023] Open
Abstract
The recent expansion of human genomics repositories has facilitated the discovery of novel TP53 variants in populations of different ethnic origins. Interpreting TP53 variants is a major clinical challenge because they are functionally diverse, confer highly variable predisposition to cancer (including elusive low-penetrance alleles), and interact with genetic modifiers that alter tumor susceptibility. Here, we discuss how a cancer risk continuum may relate to germline TP53 mutations on the basis of our current review of genotype-phenotype studies and an integrative analysis combining functional and sequencing datasets. Our study reveals that each ancestry contains a distinct TP53 variant landscape defined by enriched ethnic-specific alleles. In particular, the discovery and characterization of suspected low-penetrance ethnic-specific variants with unique functional consequences, including P47S (African), G334R (Ashkenazi Jewish), and rs78378222 (Icelandic), may provide new insights in terms of managing cancer risk and the efficacy of therapy. Additionally, our analysis highlights infrequent variants linked to milder cancer phenotypes in various published reports that may be underdiagnosed and require further investigation, including D49H in East Asians and R181H in Europeans. Overall, the sequencing and projected functions of TP53 variants arising within ethnic populations and their interplay with modifiers, as well as the emergence of CRISPR screens and AI tools, are now rapidly improving our understanding of the cancer susceptibility spectrum, leading toward more accurate and personalized cancer risk assessments.
Collapse
Affiliation(s)
- Nicholas W Fischer
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yu-Heng Vivian Ma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jean Gariépy
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
76
|
Shin DY. TP53 Mutation in Acute Myeloid Leukemia: An Old Foe Revisited. Cancers (Basel) 2023; 15:4816. [PMID: 37835510 PMCID: PMC10571655 DOI: 10.3390/cancers15194816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION TP53 is the most commonly mutated gene in human cancers and was the first tumor suppressor gene to be discovered in the history of medical science. Mutations in the TP53 gene occur at various genetic locations and exhibit significant heterogeneity among patients. Mutations occurring primarily within the DNA-binding domain of TP53 result in the loss of the p53 protein's DNA-binding capability. However, a complex phenotypic landscape often combines gain-of-function, dominant negative, or altered specificity features. This complexity poses a significant challenge in developing an effective treatment strategy, which eradicates TP53-mutated cancer clones. This review summarizes the current understanding of TP53 mutations in AML and their implications. TP53 mutation in AML: In patients with acute myeloid leukemia (AML), six hotspot mutations (R175H, G245S, R248Q/W, R249S, R273H/S, and R282W) within the DNA-binding domain are common. TP53 mutations are frequently associated with a complex karyotype and subgroups of therapy-related or secondary AML. The presence of TP53 mutation is considered as a poor prognostic factor. TP53-mutated AML is even classified as a distinct subgroup of AML by itself, as TP53-mutated AML exhibits a significantly distinct landscape in terms of co-mutation and gene expression profiles compared with wildtype (WT)-TP53 AML. CLINICAL IMPLICATIONS To better predict the prognosis in cancer patients with different TP53 mutations, several predictive scoring systems have been proposed based on screening experiments, to assess the aggressiveness of TP53-mutated cancer cells. Among those scoring systems, a relative fitness score (RFS) could be applied to AML patients with TP53 mutations in terms of overall survival (OS) and event-free survival (EFS). The current standard treatment, which includes cytotoxic chemotherapy and allogeneic hematopoietic stem cell transplantation, is largely ineffective for patients with TP53-mutated AML. Consequently, most patients with TP53-mutated AML succumb to leukemia within several months, despite active anticancer treatment. Decitabine, a hypomethylating agent, is known to be relatively effective in patients with AML. Numerous trials are ongoing to investigate the effects of novel drugs combined with hypomethylating agents, TP53-targeting agents or immunologic agents. CONCLUSIONS Developing an effective treatment strategy for TP53-mutated AML through innovative and multidisciplinary research is an urgent task. Directly targeting mutated TP53 holds promise as an approach to combating TP53-mutated AML, and recent developments in immunologic agents for AML offer hope in this field.
Collapse
Affiliation(s)
- Dong-Yeop Shin
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea; ; Tel.: +82-2-2072-7209; Fax: +82-2-762-9662
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
77
|
Kang S, Ahn IE. Prognostic Markers in the Era of Targeted Therapies. Acta Haematol 2023; 147:33-46. [PMID: 37703841 DOI: 10.1159/000533704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Small molecules targeting Bruton's tyrosine kinase (BTK) and B-cell lymphoma-2 have become the standard of care for the treatment of chronic lymphocytic leukemia (CLL), replacing chemoimmunotherapy (CIT) in most clinical settings. Ongoing trials explore targeted combinations and minimal residual disease-driven treatment cessation. These dramatic shifts in the current and upcoming treatment landscape of CLL raise the need to reevaluate existing prognostic markers and develop novel ones. SUMMARY This review examines prognostic markers in CLL patients treated with standard and investigational targeted therapies. Specifically, initial treatment of TP53 aberrant patients with a BTK inhibitor can achieve 70% progression-free survival (PFS) at 5 years, outperforming the 15% 5-year PFS with a CIT regimen containing fludarabine, cyclophosphamide, and rituximab (FCR). The prognostic implications of the immunoglobulin heavy chain variable gene (IGHV) mutation status have also changed. Unmutated IGHV is associated with inferior PFS and overall survival after FCR and inferior PFS with fixed-duration therapy with venetoclax and anti-CD20 monoclonal antibody but not with continuous BTK inhibitor treatment. KEY MESSAGES (1) Genetic variables (e.g., TP53 aberration, IGHV mutation, complex karyotype) have a prognostic significance in CLL patients treated with targeted therapy. (2) Understanding the prognostic and predictive values of these markers is critical for the development of a risk-adapted treatment strategy in CLL.
Collapse
Affiliation(s)
- Sorang Kang
- College of Medicine, Catholic University of Korea, Seoul, Republic of Korea
| | - Inhye E Ahn
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
78
|
Jambhekar A, Ackerman EE, Alpay BA, Lahav G, Lovitch SB. Comparison of TP53 Mutations in Myelodysplasia and Acute Leukemia Suggests Divergent Roles in Initiation and Progression. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.04.23295042. [PMID: 37732185 PMCID: PMC10508817 DOI: 10.1101/2023.09.04.23295042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
TP53 mutation predicts adverse prognosis in many cancers, including myeloid neoplasms, but the mechanisms by which specific mutations impact disease biology, and whether they differ between disease categories, remain unknown. We analyzed TP53 mutations in four myeloid neoplasm subtypes (MDS, AML, AML with myelodysplasia-related changes (AML-MRC), and therapy-related acute myeloid leukemia (tAML)), and identified differences in mutation types, spectrum, and hotspots between disease categories and compared to solid tumors. Missense mutations in the DNA-binding domain were most common across all categories, whereas inactivating mutations and mutations outside the DNA binding domain were more common in AML-MRC compared to MDS. TP53 mutations in MDS were more likely to retain transcriptional activity, and co-mutation profiles were distinct between disease categories and mutation types. Our findings suggest that mutated TP53 contributes to initiation and progression of neoplasia via distinct mechanisms, and support the utility of specific identification of TP53 mutations in myeloid malignancies.
Collapse
Affiliation(s)
- Ashwini Jambhekar
- Department of Systems Biology, Harvard Medical School, Boston, MA
- Ludwig Center at Harvard, Boston, MA
| | | | - Berk A. Alpay
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA
- Ludwig Center at Harvard, Boston, MA
| | - Scott B. Lovitch
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
79
|
Wakayama S, Ouchi K, Takahashi S, Yamada Y, Komatsu Y, Shimada K, Yamaguchi T, Shirota H, Takahashi M, Ishioka C. TP53 Gain-of-Function Mutation is a Poor Prognostic Factor in High-Methylated Metastatic Colorectal Cancer. Clin Colorectal Cancer 2023; 22:327-338. [PMID: 37355363 DOI: 10.1016/j.clcc.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Neither TP53 mutation nor DNA methylation status has been established as a biomarker alone of metastatic colorectal cancer. We analyzed the association between TP53 mutation functional subtypes and genome-wide DNA methylation status (GWMS) as combined prognostic markers. METHODS Patient clinical data were obtained from the TRICOLORE study, a randomized phase III trial. The TP53 mutations were classified into wild-type, gain-of-function (GOF) mutations, and non-gain-of-function (non-GOF) mutations. GWMS of the tumor tissues classified them into high-methylated colorectal cancer (HMCC) and low-methylated colorectal cancer (LMCC). Overall survival (OS) was compared based on these subgroups. RESULTS Of the 209 patients, 60 (28.7%) were HMCC and 149 (71.3%) were LMCC, 35 (16.7%) were TP53 wild-type and 174 (83.3%) were TP53 mutants including 79 (45.4%) GOF mutations and 95 (54.6%) non-GOF mutations. The OS of the HMCC group was shorter than that of the LMCC group (median 25.3 vs. 40.3 months, P < .001, hazard ratio 1.87) in the total cohort. The combined subgroup analyses of GWMS and TP53 mutation subtypes showed that the HMCC/GOF group had significantly shorter OS than the HMCC/non-GOF group, the LMCC/GOF group, and the LMCC/non-GOF group (median 17.7; 35.3, 40.3, and 41.2 months, P = .007, P < .001, and P < .001, respectively), regardless of the primary tumor location. By the multivariate analysis, only HMCC (P = .009) was a poor prognostic factor in the GOF mutation group. CONCLUSIONS TP53 GOF with HMCC is a newly identified poorest prognostic molecular subset in metastatic colorectal cancer.
Collapse
Affiliation(s)
- Shonosuke Wakayama
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Kota Ouchi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Shin Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuhide Yamada
- Comprehensive Cancer Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoshito Komatsu
- Department of Cancer Chemotherapy, Hokkaido University Hospital Cancer Center, Sapporo, Hokkaido, Japan
| | - Ken Shimada
- Department of Internal Medicine, Division of Medical Oncology, Showa University Koto Toyosu Hospital, Koto-ku, Tokyo, Japan
| | - Tatsuro Yamaguchi
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hidekazu Shirota
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Masanobu Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan; Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan; Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
80
|
Vitting-Seerup K. Most protein domains exist as variants with distinct functions across cells, tissues and diseases. NAR Genom Bioinform 2023; 5:lqad084. [PMID: 37745975 PMCID: PMC10516350 DOI: 10.1093/nargab/lqad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023] Open
Abstract
Protein domains are the active subunits that provide proteins with specific functions through precise three-dimensional structures. Such domains facilitate most protein functions, including molecular interactions and signal transduction. Currently, these protein domains are described and analyzed as invariable molecular building blocks with fixed functions. Here, I show that most human protein domains exist as multiple distinct variants termed 'domain isotypes'. Domain isotypes are used in a cell, tissue and disease-specific manner and have surprisingly different 3D structures. Accordingly, domain isotypes, compared to each other, modulate or abolish the functionality of protein domains. These results challenge the current view of protein domains as invariable building blocks and have significant implications for both wet- and dry-lab workflows. The extensive use of protein domain isotypes within protein isoforms adds to the literature indicating we need to transition to an isoform-centric research paradigm.
Collapse
Affiliation(s)
- Kristoffer Vitting-Seerup
- The Bioinformatics Section, Department of Health Technology, The Technical University of Denmark (DTU), Denmark
| |
Collapse
|
81
|
Kou SH, Li J, Tam B, Lei H, Zhao B, Xiao F, Wang S. TP53 germline pathogenic variants in modern humans were likely originated during recent human history. NAR Cancer 2023; 5:zcad025. [PMID: 37304756 PMCID: PMC10251638 DOI: 10.1093/narcan/zcad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
TP53 is crucial for maintaining genome stability and preventing oncogenesis. Germline pathogenic variation in TP53 damages its function, causing genome instability and increased cancer risk. Despite extensive study in TP53, the evolutionary origin of the human TP53 germline pathogenic variants remains largely unclear. In this study, we applied phylogenetic and archaeological approaches to identify the evolutionary origin of TP53 germline pathogenic variants in modern humans. In the phylogenic analysis, we searched 406 human TP53 germline pathogenic variants in 99 vertebrates distributed in eight clades of Primate, Euarchontoglires, Laurasiatheria, Afrotheria, Mammal, Aves, Sarcopterygii and Fish, but we observed no direct evidence for the cross-species conservation as the origin; in the archaeological analysis, we searched the variants in 5031 ancient human genomes dated between 45045 and 100 years before present, and identified 45 pathogenic variants in 62 ancient humans dated mostly within the last 8000 years; we also identified 6 pathogenic variants in 3 Neanderthals dated 44000 to 38515 years before present and 1 Denisovan dated 158 550 years before present. Our study reveals that TP53 germline pathogenic variants in modern humans were likely originated in recent human history and partially inherited from the extinct Neanderthals and Denisovans.
Collapse
Affiliation(s)
- Si Hoi Kou
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Huijun Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Fengxia Xiao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
82
|
Sánchez-Heras AB, Ramon y Cajal T, Pineda M, Aguirre E, Graña B, Chirivella I, Balmaña J, Brunet J, the SEOM Hereditary Cancer Working Group and AEGH Hereditary Cancer Committee. SEOM clinical guideline on heritable TP53-related cancer syndrome (2022). Clin Transl Oncol 2023; 25:2627-2633. [PMID: 37133731 PMCID: PMC10425559 DOI: 10.1007/s12094-023-03202-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Li-Fraumeni syndrome is caused by heterozygous germline pathogenic variants in the TP53 gene. It involves a high risk of a variety of malignant tumors in childhood and adulthood, the main ones being premenopausal breast cancer, soft tissue sarcomas and osteosarcomas, central nervous system tumors, and adrenocortical carcinomas. The variability of the associated clinical manifestations, which do not always fit the classic criteria of Li-Fraumeni syndrome, has led the concept of SLF to extend to a more overarching cancer predisposition syndrome, termed hereditable TP53-related cancer syndrome (hTP53rc). However, prospective studies are needed to assess genotype-phenotype characteristics, as well as to evaluate and validate risk-adjusted recommendations. This guideline aims to establish the basis for interpreting pathogenic variants in the TP53 gene and provide recommendations for effective screening and prevention of associated cancers in carrier individuals.
Collapse
Affiliation(s)
| | | | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Cancer, CIBERONC, Carlos III Institute of Health, Madrid, Spain
| | - Elena Aguirre
- Medical Oncology Department, Hospital Quironsalud, Zaragoza, Spain
| | - Begoña Graña
- Medical Oncology Department, University Hospital A Coruña, 15006 A Coruña, Spain
| | - Isabel Chirivella
- Medical Oncology Department, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - Judit Balmaña
- Medical Oncology Department, Hospital Vall d’Hebron, and Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Cancer, CIBERONC, Carlos III Institute of Health, Madrid, Spain
- Medical Oncology Department, Catalan Institute of Oncology, University Hospital Josep Trueta, University of Girona, Girona, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, Girona Biomedical Research Instiute (IDIBGI), Girona, Spain
| | - the SEOM Hereditary Cancer Working Group and AEGH Hereditary Cancer Committee
- Medical Oncology Department, Hospital General Universitario de Elche, Elche, Alicante, Spain
- Medical Oncology Service, Hospital Sant Pau, Barcelona, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Cancer, CIBERONC, Carlos III Institute of Health, Madrid, Spain
- Medical Oncology Department, Hospital Quironsalud, Zaragoza, Spain
- Medical Oncology Department, University Hospital A Coruña, 15006 A Coruña, Spain
- Medical Oncology Department, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
- Medical Oncology Department, Hospital Vall d’Hebron, and Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology, University Hospital Josep Trueta, University of Girona, Girona, Spain
- Hereditary Cancer Program, Catalan Institute of Oncology, Girona Biomedical Research Instiute (IDIBGI), Girona, Spain
| |
Collapse
|
83
|
Lock IC, Leisenring NH, Floyd W, Xu ES, Luo L, Ma Y, Mansell EC, Cardona DM, Lee CL, Kirsch DG. Mis-splicing Drives Loss of Function of p53 E224D Point Mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551439. [PMID: 37577531 PMCID: PMC10418211 DOI: 10.1101/2023.08.01.551439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background Tp53 is the most commonly mutated gene in cancer. Canonical Tp53 DNA damage response pathways are well characterized and classically thought to underlie the tumor suppressive effect of Tp53. Challenging this dogma, mouse models have revealed that p53 driven apoptosis and cell cycle arrest are dispensable for tumor suppression. Here, we investigated the inverse context of a p53 mutation predicted to drive expression of canonical targets, but is detected in human cancer. Methods We established a novel mouse model with a single base pair mutation (GAG>GAC, p53E221D) in the DNA-Binding domain that has wild-type function in screening assays, but is paradoxically found in human cancer in Li-Fraumeni syndrome. Using mouse p53E221D and the analogous human p53E224D mutant, we evaluated expression, transcriptional activation, and tumor suppression in vitro and in vivo. Results Expression of human p53E224D from cDNA translated to a fully functional p53 protein. However, p53E221D/E221D RNA transcribed from the endogenous locus is mis-spliced resulting in nonsense mediated decay. Moreover, fibroblasts derived from p53E221D/E221D mice do not express a detectable protein product. Mice homozygous for p53E221D exhibited increased tumor penetrance and decreased life expectancy compared to p53 WT animals. Conclusions Mouse p53E221D and human p53E224D mutations lead to splice variation and a biologically relevant p53 loss of function in vitro and in vivo.
Collapse
Affiliation(s)
- Ian C. Lock
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nathan H. Leisenring
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710, USA
| | - Warren Floyd
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric S. Xu
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin C. Mansell
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Diana M. Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Chang-Lung Lee
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - David G. Kirsch
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
84
|
Bilyalov A, Nikolaev S, Danishevich A, Khatkov I, Makhmudov K, Isakova Z, Bakirov N, Omurbaev E, Osipova A, Ramaldanov R, Shagimardanova E, Kiyasov A, Gusev O, Bodunova N. The Spectrum of Germline Nucleotide Variants in Gastric Cancer Patients in the Kyrgyz Republic. Curr Issues Mol Biol 2023; 45:6383-6394. [PMID: 37623222 PMCID: PMC10453583 DOI: 10.3390/cimb45080403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
Gastric cancer is a major challenge in modern oncology due to its high detection rate and prevalence. While sporadic cases make up the majority of gastric cancer, hereditary gastric cancer is caused by germline mutations in several genes linked to different syndromes. Thus, identifying hereditary forms of gastric cancer is considered crucial globally. A survey study using NGS-based analysis was conducted to determine the frequency of different types of hereditary gastric cancer in the yet-unstudied Kyrgyz population. The study cohort included 113 patients with diagnosed gastric cancer from Kyrgyzstan. The age of patients was 57.6 ± 8.9. Next-generation sequencing analysis of genomic DNA was performed using a custom Roche NimbleGen enrichment panel. The results showed that 6.2% (7/113) of the patients had pathogenic or likely pathogenic genetic variants. Additionally, 3.5% (4/113) of the patients carried heterozygous pathogenic/likely pathogenic variants in high penetrance genes, such as TP53, POLD1, RET, and BRCA2. Moreover, 2.7% (3/113) of the patients carried heterozygous mutations in genes linked to autosomal recessive conditions, specifically PALB2, FANCA, and FANCD2. We have not identified any genetic variants in hereditary GC-associated genes: CDH1, STK11, SMAD4, BMPRIA, APC, MLH1, and others. Our study included patients with sporadic features of GC. The use of recognized criteria (NCCN, Gastric Cancer, Version 2.2022) would increase the number of identified genetic variants in hereditary GC-associated genes. Further research is required to determine the clinical relevance of the genetic variants identified in the current study.
Collapse
Affiliation(s)
- Airat Bilyalov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.M.); (E.S.); (A.K.); (O.G.)
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia; (S.N.); (A.D.); (I.K.); (A.O.); (N.B.)
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia; (S.N.); (A.D.); (I.K.); (A.O.); (N.B.)
| | - Anastasiia Danishevich
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia; (S.N.); (A.D.); (I.K.); (A.O.); (N.B.)
| | - Igor Khatkov
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia; (S.N.); (A.D.); (I.K.); (A.O.); (N.B.)
| | - Komron Makhmudov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.M.); (E.S.); (A.K.); (O.G.)
| | - Zhainagul Isakova
- Research Institute of Molecular Biology and Medicine, Bishkek 720005, Kyrgyzstan;
| | - Nurbek Bakirov
- National Center of Oncology and Hematology of the Ministry of Health of the Kyrgyz Republic, Bishkek 720055, Kyrgyzstan; (N.B.); (E.O.); (R.R.)
| | - Ernis Omurbaev
- National Center of Oncology and Hematology of the Ministry of Health of the Kyrgyz Republic, Bishkek 720055, Kyrgyzstan; (N.B.); (E.O.); (R.R.)
| | - Alena Osipova
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia; (S.N.); (A.D.); (I.K.); (A.O.); (N.B.)
- Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ramaldan Ramaldanov
- National Center of Oncology and Hematology of the Ministry of Health of the Kyrgyz Republic, Bishkek 720055, Kyrgyzstan; (N.B.); (E.O.); (R.R.)
| | - Elena Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.M.); (E.S.); (A.K.); (O.G.)
| | - Andrey Kiyasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.M.); (E.S.); (A.K.); (O.G.)
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (K.M.); (E.S.); (A.K.); (O.G.)
- Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
- Endocrinology Research Centre, 117036 Moscow, Russia
| | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center Named after Loginov MHD, 111123 Moscow, Russia; (S.N.); (A.D.); (I.K.); (A.O.); (N.B.)
| |
Collapse
|
85
|
Indeglia A, Leung JC, Miller SA, Leu JIJ, Dougherty JF, Clarke NL, Kirven NA, Shao C, Ke L, Lovell S, Barnoud T, Lu DY, Lin C, Kannan T, Battaile KP, Yang THL, Batista Oliva I, Claiborne DT, Vogel P, Liu L, Liu Q, Nefedova Y, Cassel J, Auslander N, Kossenkov AV, Karanicolas J, Murphy ME. An African-Specific Variant of TP53 Reveals PADI4 as a Regulator of p53-Mediated Tumor Suppression. Cancer Discov 2023; 13:1696-1719. [PMID: 37140445 PMCID: PMC10326602 DOI: 10.1158/2159-8290.cd-22-1315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 05/05/2023]
Abstract
TP53 is the most frequently mutated gene in cancer, yet key target genes for p53-mediated tumor suppression remain unidentified. Here, we characterize a rare, African-specific germline variant of TP53 in the DNA-binding domain Tyr107His (Y107H). Nuclear magnetic resonance and crystal structures reveal that Y107H is structurally similar to wild-type p53. Consistent with this, we find that Y107H can suppress tumor colony formation and is impaired for the transactivation of only a small subset of p53 target genes; this includes the epigenetic modifier PADI4, which deiminates arginine to the nonnatural amino acid citrulline. Surprisingly, we show that Y107H mice develop spontaneous cancers and metastases and that Y107H shows impaired tumor suppression in two other models. We show that PADI4 is itself tumor suppressive and that it requires an intact immune system for tumor suppression. We identify a p53-PADI4 gene signature that is predictive of survival and the efficacy of immune-checkpoint inhibitors. SIGNIFICANCE We analyze the African-centric Y107H hypomorphic variant and show that it confers increased cancer risk; we use Y107H in order to identify PADI4 as a key tumor-suppressive p53 target gene that contributes to an immune modulation signature and that is predictive of cancer survival and the success of immunotherapy. See related commentary by Bhatta and Cooks, p. 1518. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Alexandra Indeglia
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jessica C. Leung
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Sven A. Miller
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Julia I-Ju Leu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James F. Dougherty
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nicole L. Clarke
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nicole A. Kirven
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Chunlei Shao
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Lei Ke
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Scott Lovell
- Del Shankel Structural Biology Center, The University of Kansas, Lawrence, Kansas
| | - Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - David Y. Lu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Cindy Lin
- Program in Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Toshitha Kannan
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Tyler Hong Loong Yang
- Program in Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Isabela Batista Oliva
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Daniel T. Claiborne
- Program in Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lijun Liu
- Del Shankel Structural Biology Center, The University of Kansas, Lawrence, Kansas
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Yulia Nefedova
- Program in Immunology, Microenvironment and Metastasis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joel Cassel
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Noam Auslander
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V. Kossenkov
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
86
|
Pellot Ortiz KI, Rechberger JS, Nonnenbroich LF, Daniels DJ, Sarkaria JN. MDM2 Inhibition in the Treatment of Glioblastoma: From Concept to Clinical Investigation. Biomedicines 2023; 11:1879. [PMID: 37509518 PMCID: PMC10377337 DOI: 10.3390/biomedicines11071879] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Inhibition of the interaction between MDM2 and p53 has emerged as a promising strategy for combating cancer, including the treatment of glioblastoma (GBM). Numerous MDM2 inhibitors have been developed and are currently undergoing rigorous testing for their potential in GBM therapy. Encouraging results from studies conducted in cell culture and animal models suggest that MDM2 inhibitors could effectively treat a specific subset of GBM patients with wild-type TP53 or functional p53. Combination therapy with clinically established treatment modalities such as radiation and chemotherapy offers the potential to achieve a more profound therapeutic response. Furthermore, an increasing array of other molecularly targeted therapies are being explored in combination with MDM2 inhibitors to increase the effects of individual treatments. While some MDM2 inhibitors have progressed to early phase clinical trials in GBM, their efficacy, alone and in combination, is yet to be confirmed. In this article, we present an overview of MDM2 inhibitors currently under preclinical and clinical investigation, with a specific focus on the drugs being assessed in ongoing clinical trials for GBM patients.
Collapse
Affiliation(s)
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Leo F Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
87
|
Nicolini F, Todorovski T, Puig E, Díaz-Lobo M, Vilaseca M, García J, Andreu D, Giralt E. How Do Cancer-Related Mutations Affect the Oligomerisation State of the p53 Tetramerisation Domain? Curr Issues Mol Biol 2023; 45:4985-5004. [PMID: 37367066 DOI: 10.3390/cimb45060317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Tumour suppressor p53 plays a key role in the development of cancer and has therefore been widely studied in recent decades. While it is well known that p53 is biologically active as a tetramer, the tetramerisation mechanism is still not completely understood. p53 is mutated in nearly 50% of cancers, and mutations can alter the oligomeric state of the protein, having an impact on the biological function of the protein and on cell fate decisions. Here, we describe the effects of a number of representative cancer-related mutations on tetramerisation domain (TD) oligomerisation defining a peptide length that permits having a folded and structured domain, thus avoiding the effect of the flanking regions and the net charges at the N- and C-terminus. These peptides have been studied under different experimental conditions. We have applied a variety of techniques, including circular dichroism (CD), native mass spectrometry (MS) and high-field solution NMR. Native MS allows us to detect the native state of complexes maintaining the peptide complexes intact in the gas phase; the secondary and quaternary structures were analysed in solution by NMR, and the oligomeric forms were assigned by diffusion NMR experiments. A significant destabilising effect and a variable monomer population were observed for all the mutants studied.
Collapse
Affiliation(s)
- Federica Nicolini
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Toni Todorovski
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Eduard Puig
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Mireia Díaz-Lobo
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Inorganic and Organic Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
88
|
Chen J, Baxi K, Lipsitt AE, Hensch NR, Wang L, Sreenivas P, Modi P, Zhao XR, Baudin A, Robledo DG, Bandyopadhyay A, Sugalski A, Challa AK, Kurmashev D, Gilbert AR, Tomlinson GE, Houghton P, Chen Y, Hayes MN, Chen EY, Libich DS, Ignatius MS. Defining function of wild-type and three patient-specific TP53 mutations in a zebrafish model of embryonal rhabdomyosarcoma. eLife 2023; 12:e68221. [PMID: 37266578 PMCID: PMC10322150 DOI: 10.7554/elife.68221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/01/2023] [Indexed: 06/03/2023] Open
Abstract
In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss- or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153Δ and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153Δ unexpectedly also predisposes to hedgehog-expressing medulloblastomas in the kRASG12D-driven ERMS-model.
Collapse
Affiliation(s)
- Jiangfei Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical UniversityWenzhouChina
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Kunal Baxi
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Amanda E Lipsitt
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Nicole Rae Hensch
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Long Wang
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Prethish Sreenivas
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Paulomi Modi
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Xiang Ru Zhao
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Antoine Baudin
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health Sciences CenterSan AntonioUnited States
| | - Daniel G Robledo
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Abhik Bandyopadhyay
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Aaron Sugalski
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Anil K Challa
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Dias Kurmashev
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Gail E Tomlinson
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Peter Houghton
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Yidong Chen
- Department of Population Health Sciences, UT Health Sciences CenterSan AntonioUnited States
| | - Madeline N Hayes
- Developmental and Stem Cell Biology, Hospital for Sick ChildrenTorontoCanada
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - David S Libich
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health Sciences CenterSan AntonioUnited States
| | - Myron S Ignatius
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| |
Collapse
|
89
|
Brannon JR, Reasoner SA, Bermudez TA, Dunigan TL, Wiebe MA, Beebout CJ, Ross T, Bamidele A, Hadjifrangiskou M. Mapping Niche-specific Two-Component System Requirements in Uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541942. [PMID: 37292752 PMCID: PMC10245908 DOI: 10.1101/2023.05.23.541942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sensory systems allow pathogens to differentiate between different niches and respond to stimuli within them. A major mechanism through which bacteria sense and respond to stimuli in their surroundings is two-component systems (TCSs). TCSs allow for the detection of multiple stimuli to lead to a highly controlled and rapid change in gene expression. Here, we provide a comprehensive list of TCSs important for the pathogenesis of uropathogenic Escherichia coli (UPEC). UPEC accounts for >75% of urinary tract infections (UTIs) worldwide. UTIs are most prevalent among people assigned female at birth, with the vagina becoming colonized by UPEC in addition to the gut and the bladder. In the bladder, adherence to the urothelium triggers E. coli invasion of bladder cells and an intracellular pathogenic cascade. Intracellular E. coli are safely hidden from host neutrophils, competition from the microbiota, and antibiotics that kill extracellular E. coli. To survive in these intimately connected, yet physiologically diverse niches E. coli must rapidly coordinate metabolic and virulence systems in response to the distinct stimuli encountered in each environment. We hypothesized that specific TCSs allow UPEC to sense these diverse environments encountered during infection with built-in redundant safeguards. Here, we created a library of isogenic TCS deletion mutants that we leveraged to map distinct TCS contributions to infection. We identify - for the first time - a comprehensive panel of UPEC TCSs that are critical for infection of the genitourinary tract and report that the TCSs mediating colonization of the bladder, kidneys, or vagina are distinct.
Collapse
Affiliation(s)
- John R. Brannon
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth A. Reasoner
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tomas A. Bermudez
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taryn L. Dunigan
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle A. Wiebe
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Connor J. Beebout
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tamia Ross
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adebisi Bamidele
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
90
|
Zakaria NH, Hashad D, Saied MH, Hegazy N, Elkayal A, Tayae E. Genetic mutations in HER2-positive breast cancer: possible association with response to trastuzumab therapy. Hum Genomics 2023; 17:43. [PMID: 37202799 DOI: 10.1186/s40246-023-00493-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND HER2-positive breast cancer occurs in 15-20% of breast cancer patients and is characterized by poor prognosis. Trastuzumab is considered the key drug for treatment of HER2-positive breast cancer patients. It improves patient survival; however, resistance to trastuzumab remains a challenge in HER2-positive breast cancer patients. Therefore, the prediction of response to trastuzumab is crucial to choose optimal treatment regimens. The aim of the study was to identify genetic variants that could predict response to anti-HER2-targeted therapy (trastuzumab) using next-generation sequencing. METHOD Genetic variants in the hotspot regions of 17 genes were studied in 24 Formalin-Fixed Paraffin-Embedded (FFPE) samples using Ion S5 next-generation sequencing system. FFPE samples were collected from HER2‑positive breast cancer patients previously treated with anti‑HER2‑targeted treatment (Trastuzumab). Patients were divided into two groups; trastuzumab-sensitive group and trastuzumab-resistant group based on their response to targeted therapy. RESULTS We identified 29 genetic variants in nine genes that only occurred in trastuzumab-resistant patients and could be associated with resistance to targeted therapy including TP53, ATM, RB1, MLH1, SMARCB1, SMO, GNAS, CDH1, and VHL. Four variants out of these 29 variants were repeated in more than one patient; two variants in TP53, one variant in ATM gene, and the last variant in RB1 gene. In addition, three genes were found to be mutated only in resistant patients; MLH1, SMARCB1 and SMO genes. Moreover, one novel allele (c.407A > G, p. Gln136Arg) was detected within exon 4 of TP53 gene in one resistant patient. CONCLUSION NGS sequencing is a useful tool to detect genetic variants that could predict response to trastuzumab therapy.
Collapse
Affiliation(s)
- Nermine H Zakaria
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Doaa Hashad
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Marwa H Saied
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Neamat Hegazy
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Alyaa Elkayal
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Eman Tayae
- Department of Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
91
|
Lo RS, Cromie GA, Tang M, Teng K, Owens K, Sirr A, Kutz JN, Morizono H, Caldovic L, Ah Mew N, Gropman A, Dudley AM. The functional impact of 1,570 individual amino acid substitutions in human OTC. Am J Hum Genet 2023; 110:863-879. [PMID: 37146589 PMCID: PMC10183466 DOI: 10.1016/j.ajhg.2023.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/30/2023] [Indexed: 05/07/2023] Open
Abstract
Deleterious mutations in the X-linked gene encoding ornithine transcarbamylase (OTC) cause the most common urea cycle disorder, OTC deficiency. This rare but highly actionable disease can present with severe neonatal onset in males or with later onset in either sex. Individuals with neonatal onset appear normal at birth but rapidly develop hyperammonemia, which can progress to cerebral edema, coma, and death, outcomes ameliorated by rapid diagnosis and treatment. Here, we develop a high-throughput functional assay for human OTC and individually measure the impact of 1,570 variants, 84% of all SNV-accessible missense mutations. Comparison to existing clinical significance calls, demonstrated that our assay distinguishes known benign from pathogenic variants and variants with neonatal onset from late-onset disease presentation. This functional stratification allowed us to identify score ranges corresponding to clinically relevant levels of impairment of OTC activity. Examining the results of our assay in the context of protein structure further allowed us to identify a 13 amino acid domain, the SMG loop, whose function appears to be required in human cells but not in yeast. Finally, inclusion of our data as PS3 evidence under the current ACMG guidelines, in a pilot reclassification of 34 variants with complete loss of activity, would change the classification of 22 from variants of unknown significance to clinically actionable likely pathogenic variants. These results illustrate how large-scale functional assays are especially powerful when applied to rare genetic diseases.
Collapse
Affiliation(s)
- Russell S Lo
- Pacific Northwest Research Institute, Seattle, WA, USA
| | | | - Michelle Tang
- Pacific Northwest Research Institute, Seattle, WA, USA
| | - Kevin Teng
- Pacific Northwest Research Institute, Seattle, WA, USA
| | - Katherine Owens
- Pacific Northwest Research Institute, Seattle, WA, USA; Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Amy Sirr
- Pacific Northwest Research Institute, Seattle, WA, USA
| | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Hiroki Morizono
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Nicholas Ah Mew
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Andrea Gropman
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Hospital, Washington, DC, USA; Department of Genomics and Precision Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA; Department of Neurology, Division of Neurogenetics and Neurodevelopmental Disabilities, Children's National Hospital, Washington, DC, USA; Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC, USA
| | | |
Collapse
|
92
|
Gencel-Augusto J, Su X, Qi Y, Whitley EM, Pant V, Xiong S, Shah V, Lin J, Perez E, Fiorotto ML, Mahmud I, Jain AK, Lorenzi PL, Navin NE, Richie ER, Lozano G. Dimeric p53 Mutant Elicits Unique Tumor-Suppressive Activities through an Altered Metabolic Program. Cancer Discov 2023; 13:1230-1249. [PMID: 37067911 PMCID: PMC10164062 DOI: 10.1158/2159-8290.cd-22-0872] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 04/18/2023]
Abstract
Cancer-related alterations of the p53 tetramerization domain (TD) abrogate wild-type (WT) p53 function. They result in a protein that preferentially forms monomers or dimers, which are also normal p53 states under basal cellular conditions. However, their physiologic relevance is not well understood. We have established in vivo models for monomeric and dimeric p53, which model Li-Fraumeni syndrome patients with germline p53 TD alterations. p53 monomers are inactive forms of the protein. Unexpectedly, p53 dimers conferred some tumor suppression that is not mediated by canonical WT p53 activities. p53 dimers upregulate the PPAR pathway. These activities are associated with lower prevalence of thymic lymphomas and increased CD8+ T-cell differentiation. Lymphomas derived from dimeric p53 mice show cooperating alterations in the PPAR pathway, further implicating a role for these activities in tumor suppression. Our data reveal novel functions for p53 dimers and support the exploration of PPAR agonists as therapies. SIGNIFICANCE New mouse models with TP53R342P (monomer) or TP53A347D (dimer) mutations mimic Li-Fraumeni syndrome. Although p53 monomers lack function, p53 dimers conferred noncanonical tumor-suppressive activities. We describe novel activities for p53 dimers facilitated by PPARs and propose these are "basal" p53 activities. See related commentary by Stieg et al., p. 1046. See related article by Choe et al., p. 1250. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, MDACC
| | - Yuan Qi
- Department of Bioinformatics and Computational Biology, MDACC
| | | | - Vinod Pant
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| | - Shunbin Xiong
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| | - Vrutant Shah
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| | - Jerome Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| | | | - Marta L. Fiorotto
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, MDACC
- Metabolomics Core Facility, MDACC
| | - Abhinav K. Jain
- Department of Epigenetics and Molecular Carcinogenesis, MDACC
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, MDACC
- Metabolomics Core Facility, MDACC
| | - Nicholas E. Navin
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| | - Ellen R. Richie
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Department of Epigenetics and Molecular Carcinogenesis, MDACC
| | - Guillermina Lozano
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| |
Collapse
|
93
|
Lorrine OE, Rahman RNZRA, Joo Shun T, Salleh AB, Oslan SN. In silico structural exploration of serine protease from a CTG-clade yeast Meyerozyma guilliermondii strain SO. Anal Biochem 2023; 668:115092. [PMID: 36889624 DOI: 10.1016/j.ab.2023.115092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
In eukaryotes, serine proteases are cellular localized hydrolases reported to regulate essential biological reactions. Improved industrial applications of proteins are aided by prediction and analysis of their 3-dimensional structures (3D). A serine protease was identified from CTG-clade yeast Meyerozyma guilliermondii strain SO and its 3D structure as well as its catalytic attributes have not been fully understood yet, thus we seek to report on the catalytic mechanism of M. guilliermondii strain SO MgPRB1 using substrate PMSF via in silico docking as well as its stability by way of disulfide bonds formation. Herein, bioinformatics tools and techniques were used to predict, validate and analyze the possible changes of CUG ambiguity (if any) in strain SO using template PDB ID: 3F7O. Structural assessments confirmed the classic catalytic triad Asp305, His337, and Ser499. Superimposition of MgPRB1 and template 3F7O structures revealed the unlinked cysteine residues between Cys341, Cys440, Cys471 and Cys506 of MgPRB1 compared to template 3F7O with two disulfide bonds formation, which confers structural stability. In conclusion, serine protease structure from strain SO was successfully predicted and studies towards understanding at the molecular level may be undertaken for its potential applications in the degradation of peptide bonds.
Collapse
Affiliation(s)
- Okojie Eseoghene Lorrine
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Tan Joo Shun
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
94
|
Song H, Wu J, Tang Y, Dai Y, Xiang X, Li Y, Wu L, Wu J, Liang Y, Xing Y, Yan N, Li Y, Wang Z, Xiao S, Li J, Zheng D, Chen X, Fang H, Ye C, Ma Y, Wu Y, Wu W, Li J, Zhang S, Lu M. Diverse rescue potencies of p53 mutations to ATO are predetermined by intrinsic mutational properties. Sci Transl Med 2023; 15:eabn9155. [PMID: 37018419 DOI: 10.1126/scitranslmed.abn9155] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Tumor suppressor p53 is inactivated by thousands of heterogeneous mutations in cancer, but their individual druggability remains largely elusive. Here, we evaluated 800 common p53 mutants for their rescue potencies by the representative generic rescue compound arsenic trioxide (ATO) in terms of transactivation activity, cell growth inhibition, and mouse tumor-suppressive activities. The rescue potencies were mainly determined by the solvent accessibility of the mutated residue, a key factor determining whether a mutation is a structural one, and the temperature sensitivity, the ability to reassemble the wild-type DNA binding surface at a low temperature, of the mutant protein. A total of 390 p53 mutants were rescued to varying degrees and thus were termed as type 1, type 2a, and type 2b mutations, depending on the degree to which they were rescued. The 33 type 1 mutations were rescued to amounts comparable to the wild type. In PDX mouse trials, ATO preferentially inhibited growth of tumors harboring type 1 and type 2a mutants. In an ATO clinical trial, we report the first-in-human mutant p53 reactivation in a patient harboring the type 1 V272M mutant. In 47 cell lines derived from 10 cancer types, ATO preferentially and effectively rescued type 1 and type 2a mutants, supporting the broad applicability of ATO in rescuing mutant p53. Our study provides the scientific and clinical communities with a resource of the druggabilities of numerous p53 mutations (www.rescuep53.net) and proposes a conceptual p53-targeting strategy based on individual mutant alleles rather than mutation type.
Collapse
Affiliation(s)
- Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinrong Xiang
- Hematology Research Laboratory, West China Hospital, Department of Hematology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lili Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiaqi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yangfei Xing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ni Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuntong Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengyuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiabing Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Derun Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinjie Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenjing Ye
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yu Wu
- Hematology Research Laboratory, West China Hospital, Department of Hematology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wen Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junming Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
95
|
Gao N, Tang AL, Liu XY, Chen J, Zhang GQ. p53-Dependent ferroptosis pathways in sepsis. Int Immunopharmacol 2023; 118:110083. [PMID: 37028271 DOI: 10.1016/j.intimp.2023.110083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Sepsis is caused by complex infections, trauma, and major surgery that results in high morbidity and mortality. As one of the leading causes of death in the intensive care unit (ICU), sepsis causes organ dysfunction and death via a vicious cycle of uncontrolled inflammatory responses and immunosuppression. Ferroptosis is an iron-dependent cellular death pathway driven by the accumulation of lipid peroxides, which occurs in sepsis. p53 is an important regulator of ferroptosis. Under intracellular/extracellular stimulation and pressure, p53 acts as a transcription factor to regulate the expression of downstream genes, which help cells/bodies to resist stimuli. p53 can also function independently as an important mediator. The understanding of key cellular and molecular mechanisms of ferroptosis facilitates the prognosis of sepsis. This article describes the molecular mechanism and role of p53 in sepsis-induced ferroptosis, and introduces some potential therapeutic targets for sepsis-induced ferroptosis, which highlights the dominant and potential therapeutic role of p53 in sepsis. Keywords: p53, acetylation, Sirt3, ferroptosis, sepsis, therapy.
Collapse
Affiliation(s)
- Nan Gao
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing 100029, China
| | - A-Ling Tang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Yu Liu
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing 100029, China
| | - Jie Chen
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing 100029, China
| | - Guo-Qiang Zhang
- Department of Emergency, China-Japan Friendship Hospital, No. 2 Yinghua Dongjie, Beijing 100029, China.
| |
Collapse
|
96
|
Jiang B, Zhou X, Yang T, Wang L, Feng L, Wang Z, Xu J, Jing W, Wang T, Su H, Yang G, Zhang Z. The role of autophagy in cardiovascular disease: Cross-interference of signaling pathways and underlying therapeutic targets. Front Cardiovasc Med 2023; 10:1088575. [PMID: 37063954 PMCID: PMC10090687 DOI: 10.3389/fcvm.2023.1088575] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is a conserved lysosomal pathway for the degradation of cytoplasmic proteins and organelles, which realizes the metabolic needs of cells and the renewal of organelles. Autophagy-related genes (ATGs) are the main molecular mechanisms controlling autophagy, and their functions can coordinate the whole autophagic process. Autophagy can also play a role in cardiovascular disease through several key signaling pathways, including PI3K/Akt/mTOR, IGF/EGF, AMPK/mTOR, MAPKs, p53, Nrf2/p62, Wnt/β-catenin and NF-κB pathways. In this paper, we reviewed the signaling pathway of cross-interference between autophagy and cardiovascular diseases, and analyzed the development status of novel cardiovascular disease treatment by targeting the core molecular mechanism of autophagy as well as the critical signaling pathway. Induction or inhibition of autophagy through molecular mechanisms and signaling pathways can provide therapeutic benefits for patients. Meanwhile, we hope to provide a unique insight into cardiovascular treatment strategies by understanding the molecular mechanism and signaling pathway of crosstalk between autophagy and cardiovascular diseases.
Collapse
Affiliation(s)
- Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Yang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Linlin Wang
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Longfei Feng
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zheng Wang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jin Xu
- Department of First Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Wang
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Haixiang Su
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - GuoWei Yang
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
97
|
Sasaki K, Takahashi S, Ouchi K, Otsuki Y, Wakayama S, Ishioka C. Different impacts of TP53 mutations on cell cycle-related gene expression among cancer types. Sci Rep 2023; 13:4868. [PMID: 36964217 PMCID: PMC10039000 DOI: 10.1038/s41598-023-32092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/22/2023] [Indexed: 03/26/2023] Open
Abstract
Functional properties caused by TP53 mutations are involved in cancer development and progression. Although most of the mutations lose normal p53 functions, some of them, gain-of-function (GOF) mutations, exhibiting novel oncogenic functions. No reports have analyzed the impact of TP53 mutations on the gene expression profile of the p53 signaling pathway across cancer types. This study is a cross-cancer type analysis of the effects of TP53 mutations on gene expression. A hierarchical cluster analysis of the expression profile of the p53 signaling pathway classified 21 cancer types into two clusters (A1 and A2). Changes in the expression of cell cycle-related genes and MKI67 by TP53 mutations were greater in cluster A1 than in cluster A2. There was no distinct difference in the effects between GOF and non-GOF mutations on the gene expression profile of the p53 signaling pathway.
Collapse
Affiliation(s)
- Keiju Sasaki
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shin Takahashi
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Kota Ouchi
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Yasufumi Otsuki
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shonosuke Wakayama
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Chikashi Ishioka
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan.
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Miyagi, Japan.
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
98
|
Chen B, Huang Y, He S, Yu P, Wu L, Peng H. N 6-methyladenosine modification in 18S rRNA promotes tumorigenesis and chemoresistance via HSF4b/HSP90B1/mutant p53 axis. Cell Chem Biol 2023; 30:144-158.e10. [PMID: 36800991 DOI: 10.1016/j.chembiol.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
Aberrant N6-methyladenosine (m6A) modification on mRNA is correlated with cancer progression. However, the role of m6A on ribosomal RNA (rRNA) in cancer remains poorly understood. Our current study reveals that METTL5/TRMT112 and their mediated m6A modification at the 18S rRNA 1832 site (m6A1832) are elevated in nasopharyngeal carcinoma (NPC) and promote oncogenic transformation in vitro and in vivo. Moreover, loss of catalytic activity of METTL5 abolishes its oncogenic functions. Mechanistically, m6A1832 18S rRNA modification facilitates the assembly of 80S ribosome via bridging the RPL24-18S rRNA interaction, therefore promoting the translation of mRNAs with 5' terminal oligopyrimidine (5' TOP) motifs. Further mechanistic analysis reveals that METTL5 enhances HSF4b translation to activate the transcription of HSP90B1, which binds with oncogenic mutant p53 (mutp53) protein and prevents it from undergoing ubiquitination-dependent degradation, therefore facilitating NPC tumorigenesis and chemoresistance. Overall, our findings uncover an innovative mechanism underlying rRNA epigenetic modification in regulating mRNA translation and the mutp53 pathway in cancer.
Collapse
Affiliation(s)
- Binbin Chen
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou 510080, P.R. China; State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ying Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Shuiqing He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Peng Yu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou 510095, P.R. China
| | - Lirong Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, P.R. China.
| | - Hao Peng
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou 510080, P.R. China.
| |
Collapse
|
99
|
Leung JC, Leu JIJ, Indeglia A, Kannan T, Clarke NL, Kirven NA, Dweep H, Garlick D, Barnoud T, Kossenkov AV, George DL, Murphy ME. Common activities and predictive gene signature identified for genetic hypomorphs of TP53. Proc Natl Acad Sci U S A 2023; 120:e2212940120. [PMID: 36749725 PMCID: PMC9962931 DOI: 10.1073/pnas.2212940120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023] Open
Abstract
Missense mutations that inactivate p53 occur commonly in cancer, and germline mutations in TP53 cause Li Fraumeni syndrome, which is associated with early-onset cancer. In addition, there are over two hundred germline missense variants of p53 that remain uncharacterized. In some cases, these germline variants have been shown to encode lesser-functioning, or hypomorphic, p53 protein, and these alleles are associated with increased cancer risk in humans and mouse models. However, most hypomorphic p53 variants remain un- or mis-classified in clinical genetics databases. There thus exists a significant need to better understand the behavior of p53 hypomorphs and to develop a functional assay that can distinguish hypomorphs from wild-type p53 or benign variants. We report the surprising finding that two different African-centric genetic hypomorphs of p53 that occur in distinct functional domains of the protein share common activities. Specifically, the Pro47Ser variant, located in the transactivation domain, and the Tyr107His variant, located in the DNA binding domain, both share increased propensity to misfold into a conformation specific for mutant, misfolded p53. Additionally, cells and tissues containing these hypomorphic variants show increased NF-κB activity. We identify a common gene expression signature from unstressed lymphocyte cell lines that is shared between multiple germline hypomorphic variants of TP53, and which successfully distinguishes wild-type p53 and a benign variant from lesser-functioning hypomorphic p53 variants. Our findings will allow us to better understand the contribution of p53 hypomorphs to disease risk and should help better inform cancer risk in the carriers of p53 variants.
Collapse
Affiliation(s)
- Jessica C. Leung
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA19104
| | - Julia I-Ju Leu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Alexandra Indeglia
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA19104
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Toshitha Kannan
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA19104
| | - Nicole L. Clarke
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA19104
| | - Nicole A. Kirven
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA19104
| | - Harsh Dweep
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA19104
| | | | - Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA19104
| | - Andrew V. Kossenkov
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA19104
| | - Donna L. George
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA19104
| |
Collapse
|
100
|
Lei T, Shi YQ, Chen TB. Mammary mucinous cystadenocarcinoma with long-term follow-up: molecular information and literature review. Diagn Pathol 2023; 18:13. [PMID: 36737820 PMCID: PMC9898891 DOI: 10.1186/s13000-023-01302-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Mucinous cystadenocarcinoma (MCA) is a very rare form of breast cancer that was first described in 1998. Only 33 cases of primary MCA, including our present case, have been reported thus far. As a consequence, its molecular features, prognosis and treatment regimen are poorly known. Here, we describe a less common presentation of MCA, detail its molecular features, discuss the major differential diagnosis, and provide a brief review of the literature. CASE PRESENTATION A 59-year-old woman presented with a breast lump in which mammography showed a well-defined nodule. Core needle biopsy (CNB) revealed several lesions lined by tall columnar cells with stratification and abundant mucinous secretion; excision was recommended for final diagnosis. The resected specimens showed cavities of different sizes without surrounding myoepithelial cells. The cavities were rich in mucus, and the nuclei were located at the base of the cells, containing intracellular mucus. Immunohistochemical analysis revealed that it was triple-negative breast cancer (TNBC). Next-generation sequencing (NGS) revealed pathogenic mutations in the PIK3CA, KRAS, MAP2K4, RB1, KDR, PKHD1, TERT, and TP53 genes. A diagnosis of MCA was rendered. The patient has been followed up for 108 months to date and showed no signs of recurrence or metastasis. CONCLUSION Our study presents the gene profile of an MCA case with no recurrence or metastatic tendency after 108 months of follow-up, and a review of the literature helps us better understand the clinical, pathologic, and molecular features of this tumor.
Collapse
Affiliation(s)
- Ting Lei
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Ju Qian Street 185, Changzhou, 213003 Jiangsu China
| | - Yong Qiang Shi
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Ju Qian Street 185, Changzhou, 213003 Jiangsu China
| | - Tong Bing Chen
- grid.452253.70000 0004 1804 524XDepartment of Pathology, The Third Affiliated Hospital of Soochow University, Ju Qian Street 185, Changzhou, 213003 Jiangsu China
| |
Collapse
|