51
|
Schmaier AA, Hurtado GP, Manickas-Hill ZJ, Sack KD, Chen SM, Bhambhani V, Quadir J, Nath AK, Collier ARY, Ngo D, Barouch DH, Gerszten RE, Yu XG, Peters K, Flaumenhaft R, Parikh SM. Tie2 activation protects against prothrombotic endothelial dysfunction in COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 34031665 DOI: 10.1101/2021.05.13.21257070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Profound endothelial dysfunction accompanies the microvascular thrombosis commonly observed in severe COVID-19. In the quiescent state, the endothelial surface is anticoagulant, a property maintained at least in part via constitutive signaling through the Tie2 receptor. During inflammation, the Tie2 antagonist angiopoietin-2 (Angpt-2) is released from activated endothelial cells and inhibits Tie2, promoting a prothrombotic phenotypic shift. We sought to assess whether severe COVID-19 is associated with procoagulant dysfunction of the endothelium and alterations in the Tie2-angiopoietin axis. Primary human endothelial cells treated with plasma from patients with severe COVID-19 upregulated the expression of thromboinflammatory genes, inhibited expression of antithrombotic genes, and promoted coagulation on the endothelial surface. Pharmacologic activation of Tie2 with the small molecule AKB-9778 reversed the prothrombotic state induced by COVID-19 plasma in primary endothelial cells. On lung autopsy specimens from COVID-19 patients, we found a prothrombotic endothelial signature as evidenced by increased von Willebrand Factor and loss of anticoagulant proteins. Assessment of circulating endothelial markers in a cohort of 98 patients with mild, moderate, or severe COVID-19 revealed profound endothelial dysfunction indicative of a prothrombotic state. Angpt-2 concentrations rose with increasing disease severity and highest levels were associated with worse survival. These data highlight the disruption of Tie2-angiopoietin signaling and procoagulant changes in endothelial cells in severe COVID-19. Moreover, our findings provide novel rationale for current trials of Tie2 activating therapy with AKB-9778 in severe COVID-19 disease.
Collapse
|
52
|
Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data. Eye (Lond) 2021; 35:1305-1316. [PMID: 33564135 PMCID: PMC8182896 DOI: 10.1038/s41433-020-01377-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
The angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) pathway is an emerging key regulator in vascular development and maintenance. Its relevance to clinicians and basic scientists as a potential therapeutic target in retinal and choroidal vascular diseases is highlighted by recent preclinical and clinical evidence. The Ang/Tie pathway plays an important role in the regulation of vascular stability, in angiogenesis under physiological and pathological conditions, as well as in inflammation. Under physiological conditions, angiopoietin-1 (Ang-1) binds to and phosphorylates the Tie2 receptor, leading to downstream signalling that promotes cell survival and vascular stability. Angiopoietin-2 (Ang-2) is upregulated under pathological conditions and acts as a context-dependent agonist/antagonist of the Ang-1/Tie2 axis, causing vascular destabilisation and sensitising blood vessels to the effects of vascular endothelial growth factor-A (VEGF-A). Ang-2 and VEGF-A synergistically drive vascular leakage, neovascularisation and inflammation, key components of retinal vascular diseases. Preclinical evidence suggests that modulating the Ang/Tie pathway restores vascular stabilisation and reduces inflammation. This review discusses how targeting the Ang/Tie pathway or applying Ang-2/VEGF-A combination therapy may be a valuable therapeutic strategy for restoring vascular stability and reducing inflammation in the treatment of retinal and choroidal vascular diseases.
Collapse
|
53
|
Baseline elevated serum angiopoietin-2 predicts long-term non-regression of liver fibrosis after direct-acting antiviral therapy for hepatitis C. Sci Rep 2021; 11:9207. [PMID: 33911145 PMCID: PMC8080679 DOI: 10.1038/s41598-021-88632-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
We previously revealed that Angiopoietin-2 (Ang2) predicts non-regression of liver fibrosis based on liver stiffness measurement (LSM) at 24 weeks after anti-hepatitis C virus (HCV) treatment. In this study, we extended the observational period to 96 weeks to investigate the factors associated with non-regression after treatment with direct-acting-antivirals (DAAs). Patients treated with DAAs who underwent transient elastography at baseline and 24 and 96 weeks after DAA therapy were included. Baseline and post-treatment serum Ang2 levels were measured. Liver fibrosis stages were defined based on LSM. Multivariate regression was used to evaluate factors associated with non-regression of liver fibrosis between various time points. In total, 110 patients were included. Of these, 11% showed non-regression of LSM-based fibrosis stage at 96 weeks after DAA therapy. In multivariate analysis, advanced liver fibrosis stage and high baseline Ang2 levels were significantly associated with non-regression at 96 weeks. In patients with advanced liver fibrosis (F3/4), baseline Ang2 levels were associated with non-regression of liver fibrosis stage. Between SVR24 and SVR96, post-treatment Ang2 levels and controlled attenuation parameter values at SVR24 were significantly associated with non-regression of liver fibrosis stage in patients with F3/4. Thus, serum Ang2 levels are an important target for monitoring and therapy.
Collapse
|
54
|
Koc M, Wald M, Varaliová Z, Ondrůjová B, Čížková T, Brychta M, Kračmerová J, Beranová L, Pala J, Šrámková V, Šiklová M, Gojda J, Rossmeislová L. Lymphedema alters lipolytic, lipogenic, immune and angiogenic properties of adipose tissue: a hypothesis-generating study in breast cancer survivors. Sci Rep 2021; 11:8171. [PMID: 33854130 PMCID: PMC8046998 DOI: 10.1038/s41598-021-87494-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
Later stages of secondary lymphedema are associated with the massive deposition of adipose tissue (AT). The factors driving lymphedema-associated AT (LAT) expansion in humans remain rather elusive. We hypothesized that LAT expansion could be based on alterations of metabolic, adipogenic, immune and/or angiogenic qualities of AT. AT samples were acquired from upper limbs of 11 women with unilateral breast cancer-related lymphedema and 11 healthy women without lymphedema. Additional control group of 11 female breast cancer survivors without lymphedema was used to assess systemic effects of lymphedema. AT was analysed for adipocyte size, lipolysis, angiogenesis, secretion of cytokines, immune and stem cell content and mRNA gene expression. Further, adipose precursors were isolated and tested for their proliferative and adipogenic capacity. The effect of undrained LAT- derived fluid on adipogenesis was also examined. Lymphedema did not have apparent systemic effect on metabolism and cytokine levels, but it was linked with higher lymphocyte numbers and altered levels of several miRNAs in blood. LAT showed higher basal lipolysis, (lymph)angiogenic capacity and secretion of inflammatory cytokines when compared to healthy AT. LAT contained more activated CD4+ T lymphocytes than healthy AT. mRNA levels of (lymph)angiogenic markers were deregulated in LAT and correlated with markers of lipolysis. In vitro, adipose cells derived from LAT did not differ in their proliferative, adipogenic, lipogenic and lipolytic potential from cells derived from healthy AT. Nevertheless, exposition of preadipocytes to LAT-derived fluid improved their adipogenic conversion when compared with the effect of serum. This study presents results of first complex analysis of LAT from upper limb of breast cancer survivors. Identified LAT alterations indicate a possible link between (lymph)angiogenesis and lipolysis. In addition, our in vitro results imply that AT expansion in lymphedema could be driven partially by exposition of adipose precursors to undrained LAT-derived fluid.
Collapse
Affiliation(s)
- Michal Koc
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Martin Wald
- Department of Surgery, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague 5, Czech Republic
| | - Zuzana Varaliová
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Barbora Ondrůjová
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Terezie Čížková
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Milan Brychta
- Department of Radiotherapy and Oncology, Kralovske Vinohrady University Hospital, Prague 10, Czech Republic
| | - Jana Kračmerová
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Lenka Beranová
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Jan Pala
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Veronika Šrámková
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague 10, Czech Republic
| | - Michaela Šiklová
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague 10, Czech Republic
| | - Jan Gojda
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague 10, Czech Republic.,Second Internal Medicine Department, Kralovske Vinohrady University Hospital, Prague 10, Czech Republic
| | - Lenka Rossmeislová
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic. .,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague 10, Czech Republic.
| |
Collapse
|
55
|
Concentrated Secretome of Adipose Stromal Cells Limits Influenza A Virus-Induced Lung Injury in Mice. Cells 2021; 10:cells10040720. [PMID: 33804896 PMCID: PMC8063825 DOI: 10.3390/cells10040720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
Despite vaccination and antivirals, influenza remains a communicable disease of high burden, with limited therapeutic options available to patients that develop complications. Here, we report the development and preclinical characterization of Adipose Stromal Cell (ASC) concentrated secretome (CS), generated by process adaptable to current Good Manufacturing Practices (cGMP) standards. We demonstrate that ASC-CS limits pulmonary histopathological changes, infiltration of inflammatory cells, protein leak, water accumulation, and arterial oxygen saturation (spO2) reduction in murine model of lung infection with influenza A virus (IAV) when first administered six days post-infection. The ability to limit lung injury is sustained in ASC-CS preparations stored at −80 °C for three years. Priming of the ASC with inflammatory factors TNFα and IFNγ enhances ASC-CS ability to suppress lung injury. IAV infection is associated with dramatic increases in programmed cell death ligand (PDL1) and angiopoietin 2 (Angpt2) levels. ASC-CS application significantly reduces both PDL1 and Angpt2 levels. Neutralization of PDL1 with anti-mouse PDL1 antibody starting Day6 onward effectively ablates lung PDL1, but only non-significantly reduces Angpt2 release. Most importantly, late-phase PDL1 neutralization results in negligible suppression of protein leakage and inflammatory cell infiltration, suggesting that suppression of PDL1 does not play a critical role in ASC-CS therapeutic effects.
Collapse
|
56
|
Justo AFO, Afonso PPL. The role of vascular endothelial protein tyrosine phosphatase on nitric oxide synthase function in diabetes: from molecular biology to the clinic. J Cell Commun Signal 2021; 15:467-471. [PMID: 33683570 DOI: 10.1007/s12079-021-00611-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial nitric oxide synthase (eNOS) and receptor-type vascular endothelial protein tyrosine phosphatase (VE-PTP) are one of the majors signaling pathways related to endothelial health in diabetes. Several reports have shown that the inhibition of VE-PTP can lead the nitric oxide production, although repeated studies showed that VE-PTP regulated the eNOS exclusive at Ser1177 in indirect-manner. A recent, exciting paper (Siragusa et al. in Cardiovasc Res, 2020. https://doi.org/10.1093/cvr/cvaa213 ), showing that VE-PTP regulates eNOS in a direct-manner, dephosphorylating eNOS at Tyr81 and indirect at Ser1177 and the effects of a VE-PTP inhibitor, AKB-9778, in the blood pressure from diabetic patients.
Collapse
|
57
|
Shigesawa T, Suda G, Kimura M, Maehara O, Tokuchi Y, Kubo A, Yamada R, Furuya K, Baba M, Kitagataya T, Suzuki K, Ohara M, Kawagishi N, Nakai M, Sho T, Natsuizaka M, Morikawa K, Ogawa K, Sakamoto N. Baseline serum angiopoietin-2 and VEGF levels predict the deterioration of the liver functional reserve during lenvatinib treatment for hepatocellular carcinoma. PLoS One 2021; 16:e0247728. [PMID: 33647018 PMCID: PMC7920365 DOI: 10.1371/journal.pone.0247728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
A deteriorated liver functional reserve during systemic therapy for unresectable hepatocellular carcinoma (HCC) causes poor patient outcomes. We aimed to identify predictive factors associated with the deterioration of Child-Pugh score at 8 weeks after lenvatinib initiation. Patients with adequate clinical data and baseline preserved serum samples available were included. Baseline fibroblast growth factor (FGF)19 and 21, angiopoietin (ANG)2, and vascular endothelial growth factor (VEGF) levels were evaluated. Thirty-seven patients were included, and 6, 15, 14, and 2 experienced complete response, partial response, stable disease, and progressive disease, respectively. Twenty-four (65%) and 13 (35%) patients showed a maintained/improved and deteriorated Child-Pugh-score, respectively. While baseline clinical data, treatment response, and laboratory data were similar between these two patient groups, baseline ANG2 and VEGF levels were significantly higher (P = 0.0017) and lower (P = 0.0231), respectively, in patients with deteriorated Child-Pugh score than in those without. Based on receiver operating characteristic curve analysis, cut-off values for ANG2 and VEGF were found to be 3,108 pg/mL and 514.9 pg/mL, respectively. Among patients with low VEGF and high ANG2, 89% (8/9) exhibited a deteriorated Child-Pugh score, whereas none of the patients (0/9) with high VEGF and low ANG2 did. The deterioration of the Child-Pugh score in patients with unresectable HCC who are treated with lenvatinib may be predictable based on combined baseline serum ANG2 and VEGF levels.
Collapse
Affiliation(s)
- Taku Shigesawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Megumi Kimura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Maehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshimasa Tokuchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akinori Kubo
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ren Yamada
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Furuya
- Department of Gastroenterology and Hepatology, Japan Community Health Care Organization (JCHO) Hokkaido Hospital, Hokkaido, Japan
| | - Masaru Baba
- Department of Gastroenterology and Hepatology, Japan Community Health Care Organization (JCHO) Hokkaido Hospital, Hokkaido, Japan
| | - Takashi Kitagataya
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuharu Suzuki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoki Kawagishi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
58
|
Vestweber D. Vascular Endothelial Protein Tyrosine Phosphatase Regulates Endothelial Function. Physiology (Bethesda) 2021; 36:84-93. [PMID: 33595386 DOI: 10.1152/physiol.00026.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial protein tyrosine phosphatase (VE-PTP) is a receptor-type PTP (RPTP), predominantly expressed in vascular endothelial cells. It regulates embryonic and tumor angiogenesis and controls vascular permeability and homeostasis in inflammation. Major substrates are the tyrosine kinase receptor Tie-2 and the adhesion molecule VE-cadherin. This review describes how VE-PTP controls vascular functions by its various substrates and the therapeutic potential of VE-PTP in various pathophysiological settings.
Collapse
|
59
|
Mäe MA, He L, Nordling S, Vazquez-Liebanas E, Nahar K, Jung B, Li X, Tan BC, Foo JC, Cazenave-Gassiot A, Wenk MR, Zarb Y, Lavina B, Quaggin SE, Jeansson M, Gu C, Silver DL, Vanlandewijck M, Butcher EC, Keller A, Betsholtz C. Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss. Circ Res 2021; 128:e46-e62. [PMID: 33375813 PMCID: PMC10858745 DOI: 10.1161/circresaha.120.317473] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Pericytes are capillary mural cells playing a role in stabilizing newly formed blood vessels during development and tissue repair. Loss of pericytes has been described in several brain disorders, and genetically induced pericyte deficiency in the brain leads to increased macromolecular leakage across the blood-brain barrier (BBB). However, the molecular details of the endothelial response to pericyte deficiency remain elusive. OBJECTIVE To map the transcriptional changes in brain endothelial cells resulting from lack of pericyte contact at single-cell level and to correlate them with regional heterogeneities in BBB function and vascular phenotype. METHODS AND RESULTS We reveal transcriptional, morphological, and functional consequences of pericyte absence for brain endothelial cells using a combination of methodologies, including single-cell RNA sequencing, tracer analyses, and immunofluorescent detection of protein expression in pericyte-deficient adult Pdgfbret/ret mice. We find that endothelial cells without pericyte contact retain a general BBB-specific gene expression profile, however, they acquire a venous-shifted molecular pattern and become transformed regarding the expression of numerous growth factors and regulatory proteins. Adult Pdgfbret/ret brains display ongoing angiogenic sprouting without concomitant cell proliferation providing unique insights into the endothelial tip cell transcriptome. We also reveal heterogeneous modes of pericyte-deficient BBB impairment, where hotspot leakage sites display arteriolar-shifted identity and pinpoint putative BBB regulators. By testing the causal involvement of some of these using reverse genetics, we uncover a reinforcing role for angiopoietin 2 at the BBB. CONCLUSIONS By elucidating the complexity of endothelial response to pericyte deficiency at cellular resolution, our study provides insight into the importance of brain pericytes for endothelial arterio-venous zonation, angiogenic quiescence, and a limited set of BBB functions. The BBB-reinforcing role of ANGPT2 (angiopoietin 2) is paradoxical given its wider role as TIE2 (TEK receptor tyrosine kinase) receptor antagonist and may suggest a unique and context-dependent function of ANGPT2 in the brain.
Collapse
Affiliation(s)
- Maarja A. Mäe
- Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| | - Liqun He
- Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
- Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin 300052, China
| | - Sofia Nordling
- Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
- Pathology, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Elisa Vazquez-Liebanas
- Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| | - Khayrun Nahar
- Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| | - Bongnam Jung
- Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
- Present address: Harvard Medical School, Department of Surgery, Boston, MA 02115, USA
| | - Xidan Li
- Integrated Cardio Metabolic Center (ICMC) and Department of Medicine Huddinge, Karolinska Institutet Campus Flemingsberg, Blickagången 16, SE-141 57 Huddinge, Sweden
| | - Bryan C. Tan
- Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Juat Chin Foo
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore
- Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore
| | - Markus R. Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore
- Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore
| | - Yvette Zarb
- Neurosurgery, Clinical Neuroscience Centrum, Zürich University Hospital, Zürich University, Frauenklinikstrasse 10, CH-8091
| | - Barbara Lavina
- Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| | - Susan E. Quaggin
- Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Marie Jeansson
- Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
- Integrated Cardio Metabolic Center (ICMC) and Department of Medicine Huddinge, Karolinska Institutet Campus Flemingsberg, Blickagången 16, SE-141 57 Huddinge, Sweden
| | - Chengua Gu
- Neurobiology, Harvard Medical School, Boston
| | | | - Michael Vanlandewijck
- Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
- Integrated Cardio Metabolic Center (ICMC) and Department of Medicine Huddinge, Karolinska Institutet Campus Flemingsberg, Blickagången 16, SE-141 57 Huddinge, Sweden
| | - Eugene C. Butcher
- Pathology, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Annika Keller
- Neurosurgery, Clinical Neuroscience Centrum, Zürich University Hospital, Zürich University, Frauenklinikstrasse 10, CH-8091
| | - Christer Betsholtz
- Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
- Integrated Cardio Metabolic Center (ICMC) and Department of Medicine Huddinge, Karolinska Institutet Campus Flemingsberg, Blickagången 16, SE-141 57 Huddinge, Sweden
| |
Collapse
|
60
|
Zhou HJ, Qin L, Jiang Q, Murray KN, Zhang H, Li B, Lin Q, Graham M, Liu X, Grutzendler J, Min W. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nat Commun 2021; 12:504. [PMID: 33495460 PMCID: PMC7835246 DOI: 10.1038/s41467-020-20774-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular abnormalities that primarily occur in adulthood and cause cerebral hemorrhage, stroke, and seizures. CCMs are thought to be initiated by endothelial cell (EC) loss of any one of the three Ccm genes: CCM1 (KRIT1), CCM2 (OSM), or CCM3 (PDCD10). Here we report that mice with a brain EC-specific deletion of Pdcd10 (Pdcd10BECKO) survive up to 6-12 months and develop bona fide CCM lesions in all regions of brain, allowing us to visualize the vascular dynamics of CCM lesions using transcranial two-photon microscopy. This approach reveals that CCMs initiate from protrusion at the level of capillary and post-capillary venules with gradual dissociation of pericytes. Microvascular beds in lesions are hyper-permeable, and these disorganized structures present endomucin-positive ECs and α-smooth muscle actin-positive pericytes. Caveolae in the endothelium of Pdcd10BECKO lesions are drastically increased, enhancing Tie2 signaling in Ccm3-deficient ECs. Moreover, genetic deletion of caveolin-1 or pharmacological blockade of Tie2 signaling effectively normalizes microvascular structure and barrier function with attenuated EC-pericyte disassociation and CCM lesion formation in Pdcd10BECKO mice. Our study establishes a chronic CCM model and uncovers a mechanism by which CCM3 mutation-induced caveolae-Tie2 signaling contributes to CCM pathogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/deficiency
- Apoptosis Regulatory Proteins/genetics
- Brain/metabolism
- Brain/pathology
- Brain/ultrastructure
- Caveolae/metabolism
- Caveolae/ultrastructure
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Humans
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Pericytes/metabolism
- Receptor, TIE-2/genetics
- Receptor, TIE-2/metabolism
- Signal Transduction
- Survival Analysis
- Mice
Collapse
Affiliation(s)
- Huanjiao Jenny Zhou
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Lingfeng Qin
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Quan Jiang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Katie N Murray
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Haifeng Zhang
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Busu Li
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Qun Lin
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Morven Graham
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xinran Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jaime Grutzendler
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Wang Min
- Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
61
|
Norden PR, Kume T. Molecular Mechanisms Controlling Lymphatic Endothelial Junction Integrity. Front Cell Dev Biol 2021; 8:627647. [PMID: 33521001 PMCID: PMC7841202 DOI: 10.3389/fcell.2020.627647] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The lymphatic system is essential for lipid absorption/transport from the digestive system, maintenance of tissue fluid and protein homeostasis, and immune surveillance. Despite recent progress toward understanding the cellular and molecular mechanisms underlying the formation of the lymphatic vascular system, the nature of lymphatic vessel abnormalities and disease in humans is complex and poorly understood. The mature lymphatic vasculature forms a hierarchical network in which lymphatic endothelial cells (LECs) are joined by functionally specialized cell-cell junctions to maintain the integrity of lymphatic vessels. Blind-ended and highly permeable lymphatic capillaries drain interstitial fluid via discontinuous, button-like LEC junctions, whereas collecting lymphatic vessels, surrounded by intact basement membranes and lymphatic smooth muscle cells, have continuous, zipper-like LEC junctions to transport lymph to the blood circulatory system without leakage. In this review, we discuss the recent advances in our understanding of the mechanisms by which lymphatic button- and zipper-like junctions play critical roles in lymphatic permeability and function in a tissue- and organ-specific manner, including lacteals of the small intestine. We also provide current knowledge related to key pathways and factors such as VEGF and RhoA/ROCK signaling that control lymphatic endothelial cell junctional integrity.
Collapse
Affiliation(s)
- Pieter R Norden
- Department of Medicine, Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, United States
| | - Tsutomu Kume
- Department of Medicine, Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
62
|
Heier JS, Singh RP, Wykoff CC, Csaky KG, Lai TYY, Loewenstein A, Schlottmann PG, Paris LP, Westenskow PD, Quezada-Ruiz C. THE ANGIOPOIETIN/TIE PATHWAY IN RETINAL VASCULAR DISEASES: A Review. Retina 2021; 41:1-19. [PMID: 33136975 DOI: 10.1097/iae.0000000000003003] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To provide a concise overview for ophthalmologists and practicing retina specialists of available clinical evidence of manipulating the angiopoietin/tyrosine kinase with immunoglobulin-like and endothelial growth factor-like domains (Tie) pathway and its potential as a therapeutic target in retinal vascular diseases. METHODS A literature search for articles on the angiopoietin/Tie pathway and molecules targeting this pathway that have reached Phase 2 or 3 trials was undertaken on PubMed, Association for Research in Vision and Ophthalmology meeting abstracts (2014-2019), and ClinicalTrials.gov databases. Additional information on identified pipeline drugs was obtained from publicly available information on company websites. RESULTS The PubMed and Association for Research in Vision and Ophthalmology meeting abstract search yielded 462 results, of which 251 publications not relevant to the scope of the review were excluded. Of the 141 trials related to the angiopoietin/Tie pathway on ClinicalTrials.gov, seven trials focusing on diseases covered in this review were selected. Vision/anatomic outcomes from key clinical trials on molecules targeting the angiopoietin/Tie pathway in patients with retinal vascular diseases are discussed. CONCLUSION Initial clinical evidence suggests a potential benefit of targeting the angiopoietin/Tie pathway and vascular endothelial growth factor-A over anti-vascular endothelial growth factor-A monotherapy alone, in part due to of the synergistic nature of the pathways.
Collapse
Affiliation(s)
| | - Rishi P Singh
- Department of Ophthalmology, Center for Ophthalmic Bioinformatics, Cleveland Clinic, Cleveland, Ohio
| | - Charles C Wykoff
- Retina Consultants of Houston, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas
| | - Karl G Csaky
- Retina Foundation of the Southwest, Dallas, Texas
| | - Timothy Y Y Lai
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Anat Loewenstein
- Department of Ophthalmology, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | - Carlos Quezada-Ruiz
- Genentech, Inc., South San Francisco, California; and
- Retina y Vitreo, Clínica de Ojos Garza Viejo, San Pedro Garza Garcia, Mexico
| |
Collapse
|
63
|
Ricard N, Bailly S, Guignabert C, Simons M. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nat Rev Cardiol 2021; 18:565-580. [PMID: 33627876 PMCID: PMC7903932 DOI: 10.1038/s41569-021-00517-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Endothelial cells are at the interface between circulating blood and tissues. This position confers on them a crucial role in controlling oxygen and nutrient exchange and cellular trafficking between blood and the perfused organs. The endothelium adopts a structure that is specific to the needs and function of each tissue and organ and is subject to tissue-specific signalling input. In adults, endothelial cells are quiescent, meaning that they are not proliferating. Quiescence was considered to be a state in which endothelial cells are not stimulated but are instead slumbering and awaiting activating signals. However, new evidence shows that quiescent endothelium is fully awake, that it constantly receives and initiates functionally important signalling inputs and that this state is actively regulated. Signalling pathways involved in the maintenance of functionally quiescent endothelia are starting to be identified and are a combination of endocrine, autocrine, paracrine and mechanical inputs. The paracrine pathways confer a microenvironment on the endothelial cells that is specific to the perfused organs and tissues. In this Review, we present the current knowledge of organ-specific signalling pathways involved in the maintenance of endothelial quiescence and the pathologies associated with their disruption. Linking organ-specific pathways and human vascular pathologies will pave the way towards the development of innovative preventive strategies and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Ricard
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Sabine Bailly
- grid.457348.9Université Grenoble Alpes, INSERM, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France
| | - Christophe Guignabert
- grid.414221.0INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Michael Simons
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cell Biology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
64
|
Zhao YT, Fallas JA, Saini S, Ueda G, Somasundaram L, Zhou Z, Xavier I, Ehnes D, Xu C, Carter L, Wrenn S, Mathieu J, Sellers DL, Baker D, Ruohola-Baker H. F-domain valency determines outcome of signaling through the angiopoietin pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33501432 PMCID: PMC7836102 DOI: 10.1101/2020.09.19.304188] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Angiopoietin 1 and 2 (Ang1 and Ang2) modulate angiogenesis and vascular homeostasis through engagement of their very similar F-domain modules with the Tie2 receptor tyrosine kinase on endothelial cells. Despite this similarity in the underlying receptor binding interaction, the two angiopoietins have opposite effects: Ang1 induces phosphorylation of protein kinase B (AKT), strengthens cell-cell junctions and enhances endothelial cell survival while Ang2 antagonizes these effects1–4. To investigate the molecular basis for the opposing effects, we examined the protein kinase activation and morphological phenotypes produced by a series of computationally designed protein scaffolds presenting the Ang1 F-domain in a wide range of valencies and geometries. We find two broad phenotypic classes distinguished by the number of presented F-domains: scaffolds presenting 4 F-domains have Ang2 like activity, upregulating pFAK and pERK but not pAKT, and failing to induce cell migration and tube formation, while scaffolds presenting 6 or more F-domains have Ang1 like activity, upregulating pAKT and inducing migration and tube formation. The scaffolds with 8 or more F-domains display superagonist activity, producing stronger phenotypes at lower concentrations than Ang1. When examined in vivo, superagonist icosahedral self-assembling nanoparticles caused significant revascularization in hemorrhagic brains after a controlled cortical impact injury.
Collapse
|
65
|
Li G, Nottebaum AF, Brigell M, Navarro ID, Ipe U, Mishra S, Gomez-Caraballo M, Schmitt H, Soldo B, Pakola S, Withers B, Peters KG, Vestweber D, Stamer WD. A Small Molecule Inhibitor of VE-PTP Activates Tie2 in Schlemm's Canal Increasing Outflow Facility and Reducing Intraocular Pressure. Invest Ophthalmol Vis Sci 2020; 61:12. [PMID: 33315051 PMCID: PMC7735951 DOI: 10.1167/iovs.61.14.12] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (Tie2) activation in Schlemm's canal (SC) endothelium is required for the maintenance of IOP, making the angiopoietin/Tie2 pathway a target for new and potentially disease modifying glaucoma therapies. The goal of the present study was to examine the effects of a Tie2 activator, AKB-9778, on IOP and outflow function. Methods AKB-9778 effects on IOP was evaluated in humans, rabbits, and mice. Localization studies of vascular endothelial protein tyrosine phosphatase (VE-PTP), the target of AKB-9778 and a negative regulator of Tie2, were performed in human and mouse eyes. Mechanistic studies were carried out in mice, monitoring AKB-9778 effects on outflow facility, Tie2 phosphorylation, and filtration area of SC. Results AKB-9778 lowered IOP in patients treated subcutaneously for diabetic eye disease. In addition to efficacious, dose-dependent IOP lowering in rabbit eyes, topical ocular AKB-9778 increased Tie2 activation in SC endothelium, reduced IOP, and increased outflow facility in mouse eyes. VE-PTP was localized to SC endothelial cells in human and mouse eyes. Mechanistically, AKB-9778 increased the filtration area of SC for aqueous humor efflux in both wild type and in Tie2+/- mice. Conclusions This is the first report of IOP lowering in humans with a Tie2 activator and functional demonstration of its action in remodeling SC to increase outflow facility and lower IOP in fully developed mice. Based on these studies, a phase II clinical trial is in progress to advance topical ocular AKB-9778 as a first in class, Tie2 activator for treatment for ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | | | | | - Iris D. Navarro
- Department of Ophthalmology, Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Ute Ipe
- Max Planck Institute of Molecular Biomedicine, Muenster, Germany
| | - Sarthak Mishra
- Max Planck Institute of Molecular Biomedicine, Muenster, Germany
| | - Maria Gomez-Caraballo
- Department of Ophthalmology, Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Heather Schmitt
- Department of Ophthalmology, Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Brandi Soldo
- Aerpio Pharmaceuticals, Inc., Cincinnati, Ohio, United States
| | - Steve Pakola
- Aerpio Pharmaceuticals, Inc., Cincinnati, Ohio, United States
| | - Barbara Withers
- Aerpio Pharmaceuticals, Inc., Cincinnati, Ohio, United States
| | - Kevin G. Peters
- Aerpio Pharmaceuticals, Inc., Cincinnati, Ohio, United States
| | | | - W. Daniel Stamer
- Department of Ophthalmology, Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| |
Collapse
|
66
|
Gengenbacher N, Singhal M, Mogler C, Hai L, Milde L, Pari AAA, Besemfelder E, Fricke C, Baumann D, Gehrs S, Utikal J, Felcht M, Hu J, Schlesner M, Offringa R, Chintharlapalli SR, Augustin HG. Timed Ang2-Targeted Therapy Identifies the Angiopoietin-Tie Pathway as Key Regulator of Fatal Lymphogenous Metastasis. Cancer Discov 2020; 11:424-445. [PMID: 33106316 DOI: 10.1158/2159-8290.cd-20-0122] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/13/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
Recent clinical and preclinical advances have highlighted the existence of a previously hypothesized lymphogenous route of metastasis. However, due to a lack of suitable preclinical modeling tools, its contribution to long-term disease outcome and relevance for therapy remain controversial. Here, we established a genetically engineered mouse model (GEMM) fragment-based tumor model uniquely sustaining a functional network of intratumoral lymphatics that facilitates seeding of fatal peripheral metastases. Multiregimen survival studies and correlative patient data identified primary tumor-derived Angiopoietin-2 (Ang2) as a potent therapeutic target to restrict lymphogenous tumor cell dissemination. Mechanistically, tumor-associated lymphatic endothelial cells (EC), in contrast to blood vascular EC, were found to be critically addicted to the Angiopoietin-Tie pathway. Genetic manipulation experiments in combination with single-cell mapping revealed agonistically acting Ang2-Tie2 signaling as key regulator of lymphatic maintenance. Correspondingly, acute presurgical Ang2 neutralization was sufficient to prolong survival by regressing established intratumoral lymphatics, hence identifying a therapeutic regimen that warrants further clinical evaluation. SIGNIFICANCE: Exploiting multiple mouse tumor models including a unique GEMM-derived allograft system in combination with preclinical therapy designs closely matching the human situation, this study provides fundamental insight into the biology of tumor-associated lymphatic EC and defines an innovative presurgical therapeutic window of migrastatic Ang2 neutralization to restrict lymphogenous metastasis.This article is highlighted in the In This Issue feature, p. 211.
Collapse
Affiliation(s)
- Nicolas Gengenbacher
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, TUM School of Medicine, Munich, Germany
| | - Ling Hai
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Milde
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Ashik Ahmed Abdul Pari
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Eva Besemfelder
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Claudine Fricke
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
| | - Daniel Baumann
- Faculty of Biosciences, Heidelberg University, Mannheim, Germany.,Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Gehrs
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany.,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Faculty of Biosciences, Heidelberg University, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Moritz Felcht
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Matthias Schlesner
- Junior Group Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rienk Offringa
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany. .,Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Cancer Consortium, Heidelberg, Germany
| |
Collapse
|
67
|
Kapiainen E, Kihlström MK, Pietilä R, Kaakinen M, Ronkainen VP, Tu H, Heikkinen A, Devarajan R, Miinalainen I, Laitakari A, Ansarizadeh M, Zhang Q, Wei GH, Ruddock L, Pihlajaniemi T, Elamaa H, Eklund L. The Amino-Terminal Oligomerization Domain of Angiopoietin-2 Affects Vascular Remodeling, Mammary Gland Tumor Growth, and Lung Metastasis in Mice. Cancer Res 2020; 81:129-143. [PMID: 33037065 DOI: 10.1158/0008-5472.can-19-1904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 05/03/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022]
Abstract
Angiopoietin-2 (ANGPT2) is a context-dependent TIE2 agonistic or antagonistic ligand that induces diverse responses in cancer. Blocking ANGPT2 provides a promising strategy for inhibiting tumor growth and metastasis, yet variable effects of targeting ANGPT2 have complicated drug development. ANGPT2443 is a naturally occurring, lower oligomeric protein isoform whose expression is increased in cancer. Here, we use a knock-in mouse line (mice expressing Angpt2443), a genetic model for breast cancer and metastasis (MMTV-PyMT), a syngeneic melanoma lung colonization model (B16F10), and orthotopic injection of E0771 breast cancer cells to show that alternative forms increase the diversity of Angpt2 function. In a mouse retina model of angiogenesis, expression of Angpt2443 caused impaired venous development, suggesting enhanced function as a competitive antagonist for Tie2. In mammary gland tumor models, Angpt2443 differentially affected primary tumor growth and vascularization; these varying effects were associated with Angpt2 protein localization in the endothelium or in the stromal extracellular matrix as well as the frequency of Tie2-positive tumor blood vessels. In the presence of metastatic cells, Angpt2443 promoted destabilization of pulmonary vasculature and lung metastasis. In vitro, ANGPT2443 was susceptible to proteolytical cleavage, resulting in a monomeric ligand (ANGPT2DAP) that inhibited ANGPT1- or ANGPT4-induced TIE2 activation but did not bind to alternative ANGPT2 receptor α5β1 integrin. Collectively, these data reveal novel roles for the ANGPT2 N-terminal domain in blood vessel remodeling, tumor growth, metastasis, integrin binding, and proteolytic regulation. SIGNIFICANCE: This study identifies the role of the N-terminal oligomerization domain of angiopoietin-2 in vascular remodeling and lung metastasis and provides new insights into mechanisms underlying the versatile functions of angiopoietin-2 in cancer.See related commentary by Kamiyama and Augustin, p. 35.
Collapse
Affiliation(s)
- Emmi Kapiainen
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Minna K Kihlström
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Riikka Pietilä
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | - Hongmin Tu
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anne Heikkinen
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Raman Devarajan
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Anna Laitakari
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Mohammadhassan Ansarizadeh
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Qin Zhang
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Gong-Hong Wei
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lloyd Ruddock
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Harri Elamaa
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland.,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland. .,Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
68
|
Kennedy SA, Morrissey ME, Dunne MR, O'Connell F, Butler CT, Cathcart MC, Buckley AM, Mehigan BJ, Larkin JO, McCormick P, Kennedy BN, O'Sullivan J. Combining 1,4-dihydroxy quininib with Bevacizumab/FOLFOX alters angiogenic and inflammatory secretions in ex vivo colorectal tumors. BMC Cancer 2020; 20:952. [PMID: 33008336 PMCID: PMC7532092 DOI: 10.1186/s12885-020-07430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
Background Colorectal cancer (CRC) is the second most common cause of cancer-related mortality worldwide with one in every five patients diagnosed with metastatic CRC (mCRC). In mCRC cases, the 5-year survival rate remains at approximately 14%, reflecting the lack of effectiveness of currently available treatments such as the anti-VEGF targeting antibody Bevacizumab combined with the chemotherapy folinic acid, fluorouracil and oxaliplatin (FOLFOX). Approximately 60% of patients do not respond to this combined treatment. Furthermore, Bevacizumab inhibits dendritic cell (DC) maturation in poor responders, a key process for tumor eradication. Method Following drug treatment, secreted expression levels of angiogenic and inflammatory markers in tumor conditioned media generated from human ex vivo colorectal tumors were measured by ELISA. Dendritic cell phenotypic and maturation markers were assessed by flow cytometry. Results Our novel compound, 1,4-dihydroxy quininib, acts in an alternative pathway compared to the approved therapy Bevacizumab. 1,4-dihydroxy quininib alone, and in combination with Bevacizumab or FOLFOX significantly reduced TIE-2 expression which is involved in the promotion of tumor vascularization. Combination treatment with 1,4-dihydroxy quininib significantly increased the expression level of DC phenotypic and maturation markers. Conclusion Our results indicate the anti-angiogenic small molecule 1,4-dihydroxy quininib could be an alternative novel treatment in combination therapy for CRC patients.
Collapse
Affiliation(s)
- Susan A Kennedy
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Maria E Morrissey
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Clare T Butler
- UCD Conway Institute & UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Mary-Clare Cathcart
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Amy M Buckley
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | | | | | | | - Breandán N Kennedy
- UCD Conway Institute & UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
69
|
Jiang X, Tian W, Granucci EJ, Tu AB, Kim D, Dahms P, Pasupneti S, Peng G, Kim Y, Lim AH, Espinoza FH, Cribb M, Dixon JB, Rockson SG, Semenza GL, Nicolls MR. Decreased lymphatic HIF-2α accentuates lymphatic remodeling in lymphedema. J Clin Invest 2020; 130:5562-5575. [PMID: 32673288 PMCID: PMC7524470 DOI: 10.1172/jci136164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022] Open
Abstract
Pathologic lymphatic remodeling in lymphedema evolves during periods of tissue inflammation and hypoxia through poorly defined processes. In human and mouse lymphedema, there is a significant increase of hypoxia inducible factor 1 α (HIF-1α), but a reduction of HIF-2α protein expression in lymphatic endothelial cells (LECs). We questioned whether dysregulated expression of these transcription factors contributes to disease pathogenesis and found that LEC-specific deletion of Hif2α exacerbated lymphedema pathology. Even without lymphatic vascular injury, the loss of LEC-specific Hif2α caused anatomic pathology and a functional decline in fetal and adult mice. These findings suggest that HIF-2α is an important mediator of lymphatic health. HIF-2α promoted protective phosphorylated TIE2 (p-TIE2) signaling in LECs, a process also replicated by upregulating TIE2 signaling through adenovirus-mediated angiopoietin-1 (Angpt1) gene therapy. Our study suggests that HIF-2α normally promotes healthy lymphatic homeostasis and raises the exciting possibility that restoring HIF-2α pathways in lymphedema could mitigate long-term pathology and disability.
Collapse
Affiliation(s)
- Xinguo Jiang
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Wen Tian
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Eric J. Granucci
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Allen B. Tu
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Dongeon Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Petra Dahms
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Shravani Pasupneti
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Gongyong Peng
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Yesl Kim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | - Amber H. Lim
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Matthew Cribb
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | | - Gregg L. Semenza
- Vascular Biology, Institute for Cell Engineering
- Department of Pediatrics
- Department of Medicine
- Department of Oncology
- Department of Radiation Oncology, and
- Department of Biological Chemistry, and
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark R. Nicolls
- VA Palo Alto Health Care System, Palo Alto, California, USA
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
70
|
Hyperinsulinemia promotes endothelial inflammation via increased expression and release of Angiopoietin-2. Atherosclerosis 2020; 307:1-10. [DOI: 10.1016/j.atherosclerosis.2020.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
|
71
|
Kawagishi N, Suda G, Kimura M, Maehara O, Shimazaki T, Yamada R, Kitagataya T, Shigesawa T, Suzuki K, Nakamura A, Ohara M, Umemura M, Nakai M, Sho T, Natsuizaka M, Morikawa K, Ogawa K, Kudo Y, Nishida M, Sakamoto N. High serum angiopoietin-2 level predicts non-regression of liver stiffness measurement-based liver fibrosis stage after direct-acting antiviral therapy for hepatitis C. Hepatol Res 2020; 50:671-681. [PMID: 32020702 DOI: 10.1111/hepr.13490] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/13/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
Abstract
AIM Factors associated with improvement of liver fibrosis after successful hepatitis C virus (HCV) eradication by interferon (IFN)-free direct-acting antiviral agents (DAAs) have been not clarified well. Angiopoietin-2 (Ang2) is reported to be associated with vascular leak and inflammation observed in patients with advanced liver fibrosis. METHODS In this retrospective study, patients treated with IFN-free DAAs who underwent transient elastography before and at 24-weeks post-treatment and achieved sustained viral response were enrolled. Baseline serum Ang2 was measured, and its relationship with other clinical factors was analyzed. Liver fibrosis stage was defined based on liver stiffness according to a previous report. Predictive factors for regression of liver fibrosis stage after DAA therapy were evaluated. RESULTS Overall, 116 patients were analyzed. Baseline serum Ang2 levels were significantly associated with liver stiffness, spleen index, and liver stiffness-based liver fibrosis stage. Moreover, 75% of patients experienced regression of liver fibrosis stage after DAA therapy. Multivariate analysis revealed that advanced liver fibrosis stage and Ang2 levels were significantly associated with regression of liver fibrosis stage after DAA therapy. In patients with advanced liver fibrosis (F3/4), baseline Ang2 level alone could predict regression of liver fibrosis stage. A baseline Ang2 cut-off value (354 pg/ML) could predict regression of liver fibrosis stage after DAA therapy with high accuracy (sensitivity 0.882, specificity 0.733). CONCLUSIONS Evaluation of serum Ang2 levels before DAA therapy is important. Our results provide a novel mechanistic insight into non-regression of liver stiffness after DAA therapy. Long-term and larger studies are required.
Collapse
Affiliation(s)
- Naoki Kawagishi
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Goki Suda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Megumi Kimura
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Osamu Maehara
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Tomoe Shimazaki
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ren Yamada
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takashi Kitagataya
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Kazuharu Suzuki
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akihisa Nakamura
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Machiko Umemura
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masato Nakai
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takuya Sho
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Ogawa
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yusuke Kudo
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Mutsumi Nishida
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
72
|
Zhang F, Zarkada G, Yi S, Eichmann A. Lymphatic Endothelial Cell Junctions: Molecular Regulation in Physiology and Diseases. Front Physiol 2020; 11:509. [PMID: 32547411 PMCID: PMC7274196 DOI: 10.3389/fphys.2020.00509] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Lymphatic endothelial cells (LECs) lining lymphatic vessels develop specialized cell-cell junctions that are crucial for the maintenance of vessel integrity and proper lymphatic vascular functions. Successful lymphatic drainage requires a division of labor between lymphatic capillaries that take up lymph via open "button-like" junctions, and collectors that transport lymph to veins, which have tight "zipper-like" junctions that prevent lymph leakage. In recent years, progress has been made in the understanding of these specialized junctions, as a result of the application of state-of-the-art imaging tools and novel transgenic animal models. In this review, we discuss lymphatic development and mechanisms governing junction remodeling between button and zipper-like states in LECs. Understanding lymphatic junction remodeling is important in order to unravel lymphatic drainage regulation in obesity and inflammatory diseases and may pave the way towards future novel therapeutic interventions.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Georgia Zarkada
- Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Sanjun Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale School of Medicine, Yale University, New Haven, CT, United States.,INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
73
|
Shigesawa T, Suda G, Kimura M, Shimazaki T, Maehara O, Yamada R, Kitagataya T, Suzuki K, Nakamura A, Ohara M, Umemura M, Kawagishi N, Nakai M, Sho T, Natsuizaka M, Morikawa K, Ogawa K, Sakamoto N. Baseline angiopoietin-2 and FGF19 levels predict treatment response in patients receiving multikinase inhibitors for hepatocellular carcinoma. JGH OPEN 2020; 4:880-888. [PMID: 33102759 PMCID: PMC7578287 DOI: 10.1002/jgh3.12339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 12/17/2022]
Abstract
Background Sorafenib and lenvatinib are first‐line systemic therapies for unresectable hepatocellular carcinoma (HCC). However, the criteria for their selection remain unclear. Methods We identified patients with unresectable HCC who were treated with sorafenib or lenvatinib between August 2009 and January 2019 at the Hokkaido University Hospital. Patients who continued treatment for >2 months, underwent evaluation by computed tomography every 2–3 months, and had complete clinical data were included. Responders were patients with objective response (OR) for lenvatinib and patients with stable disease (SD) exceeding 6 months (long‐SD) or OR for sorafenib. The predictive factors for treatment response, including fibroblast growth factor (FGF)19 and 21, angiopoietin 2 (ANG2), hepatocyte growth factor, and vascular endothelial growth factor, were evaluated. Results Overall, 27 and 29 patients treated with lenvatinib and sorafenib, respectively, were included. The responders for lenvatinib and sorafenib were 63% (17/27) and 38% (11/29), respectively. No significant predictive factors for treatment response were identified in patients treated with sorafenib. However, baseline serum FGF19 and ANG2 levels were significantly associated with treatment response to lenvatinib. All (9/9) patients with low baseline ANG2 and FGF19 levels who received lenvatinib achieved OR. Conversely, the OR was low (13%; 1/9) in patients with high baseline ANG2 and FGF19 levels. Responder rate was 40% (2/5) in patients with high baseline ANG2 and FGF19 levels who received sorafenib. Conclusion This study is, to our knowledge, the first to demonstrate that baseline ANG2 and FGF19 levels may aid in selecting optimal systemic therapy for patients with unresectable HCC.
Collapse
Affiliation(s)
- Taku Shigesawa
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Goki Suda
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Megumi Kimura
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Tomoe Shimazaki
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Osamu Maehara
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Ren Yamada
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Takashi Kitagataya
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Kazuharu Suzuki
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Akihisa Nakamura
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Masatsugu Ohara
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Machiko Umemura
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Naoki Kawagishi
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Masato Nakai
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Takuya Sho
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Mitsuteru Natsuizaka
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Kenichi Morikawa
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Koji Ogawa
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Department of Hepatology, Graduate School of Medicine Hokkaido University Sapporo Japan
| |
Collapse
|
74
|
Targeting angiogenesis and lymphangiogenesis in kidney disease. Nat Rev Nephrol 2020; 16:289-303. [PMID: 32144398 DOI: 10.1038/s41581-020-0260-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
The kidney is permeated by a highly complex vascular system with glomerular and peritubular capillary networks that are essential for maintaining the normal functions of glomerular and tubular epithelial cells. The integrity of the renal vascular network depends on a balance of proangiogenic and antiangiogenic factors, and disruption of this balance has been identified in various kidney diseases. Decreased levels of the predominant proangiogenic factor, vascular endothelial growth factor A (VEGFA), can result in glomerular microangiopathy and contribute to the onset of preeclampsia, whereas upregulation of VEGFA has roles in diabetic kidney disease (DKD) and polycystic kidney disease (PKD). Other factors that regulate angiogenesis, such as angiopoietin 1 and vasohibin 1, have been shown to be protective in animal models of DKD and renal fibrosis. The renal lymphatic system is important for fluid homeostasis in the kidney, as well as the transport of immune cells and antigens. Experimental studies suggest that the lymphangiogenic factor VEGFC might have protective effects in PKD, DKD and renal fibrosis. Understanding the physiological and pathological roles of factors that regulate angiogenesis and lymphangiogenesis in the kidney has led to the development of novel therapeutic strategies for kidney diseases.
Collapse
|
75
|
Mahamud MR, Geng X, Ho YC, Cha B, Kim Y, Ma J, Chen L, Myers G, Camper S, Mustacich D, Witte M, Choi D, Hong YK, Chen H, Varshney G, Engel JD, Wang S, Kim TH, Lim KC, Srinivasan RS. GATA2 controls lymphatic endothelial cell junctional integrity and lymphovenous valve morphogenesis through miR-126. Development 2019; 146:dev184218. [PMID: 31582413 PMCID: PMC6857586 DOI: 10.1242/dev.184218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Mutations in the transcription factor GATA2 cause lymphedema. GATA2 is necessary for the development of lymphatic valves and lymphovenous valves, and for the patterning of lymphatic vessels. Here, we report that GATA2 is not necessary for valvular endothelial cell (VEC) differentiation. Instead, GATA2 is required for VEC maintenance and morphogenesis. GATA2 is also necessary for the expression of the cell junction molecules VE-cadherin and claudin 5 in lymphatic vessels. We identified miR-126 as a target of GATA2, and miR-126-/- embryos recapitulate the phenotypes of mice lacking GATA2. Primary human lymphatic endothelial cells (HLECs) lacking GATA2 (HLECΔGATA2) have altered expression of claudin 5 and VE-cadherin, and blocking miR-126 activity in HLECs phenocopies these changes in expression. Importantly, overexpression of miR-126 in HLECΔGATA2 significantly rescues the cell junction defects. Thus, our work defines a new mechanism of GATA2 activity and uncovers miR-126 as a novel regulator of mammalian lymphatic vascular development.
Collapse
Affiliation(s)
- Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yuenhee Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jing Ma
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sally Camper
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Debbie Mustacich
- Department of Surgery, University of Arizona, Tuscon, AZ 85724, USA
| | - Marlys Witte
- Department of Surgery, University of Arizona, Tuscon, AZ 85724, USA
| | - Dongwon Choi
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Young-Kwon Hong
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Gaurav Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Tae-Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
76
|
Zhang Y, Kontos CD, Annex BH, Popel AS. Angiopoietin-Tie Signaling Pathway in Endothelial Cells: A Computational Model. iScience 2019; 20:497-511. [PMID: 31655061 PMCID: PMC6806670 DOI: 10.1016/j.isci.2019.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
The angiopoietin-Tie signaling pathway is an important vascular signaling pathway involved in angiogenesis, vascular stability, and quiescence. Dysregulation in the pathway is linked to the impairments in vascular function associated with many diseases, including cancer, ocular diseases, systemic inflammation, and cardiovascular diseases. The present study uses a computational signaling pathway model validated against experimental data to quantitatively study various mechanistic aspects of the angiopoietin-Tie signaling pathway, including receptor activation, trafficking, turnover, and molecular mechanisms of its regulation. The model provides mechanistic insights into the controversial role of Ang2 and its regulators vascular endothelial protein tyrosine phosphatase (VE-PTP) and Tie1 and predicts synergistic effects of inhibition of VE-PTP, Tie1, and Tie2 cleavage on enhancing the vascular protective actions of Tie2.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Christopher D Kontos
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Brian H Annex
- Department of Medicine and the Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
77
|
Thomson BR, Carota IA, Souma T, Soman S, Vestweber D, Quaggin SE. Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma. eLife 2019; 8:48474. [PMID: 31621585 PMCID: PMC6874417 DOI: 10.7554/elife.48474] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
Elevated intraocular pressure (IOP) due to insufficient aqueous humor outflow through the trabecular meshwork and Schlemm’s canal (SC) is the most important risk factor for glaucoma, a leading cause of blindness worldwide. We previously reported loss of function mutations in the receptor tyrosine kinase TEK or its ligand ANGPT1 cause primary congenital glaucoma in humans and mice due to failure of SC development. Here, we describe a novel approach to enhance canal formation in these animals by deleting a single allele of the gene encoding the phosphatase PTPRB during development. Compared to Tek haploinsufficient mice, which exhibit elevated IOP and loss of retinal ganglion cells, Tek+/-;Ptprb+/- mice have elevated TEK phosphorylation, which allows normal SC development and prevents ocular hypertension and RGC loss. These studies provide evidence that PTPRB is an important regulator of TEK signaling in the aqueous humor outflow pathway and identify a new therapeutic target for treatment of glaucoma.
Collapse
Affiliation(s)
- Benjamin R Thomson
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, United States.,Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Isabel A Carota
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, United States.,Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Tomokazu Souma
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, United States.,Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Saily Soman
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, United States.,Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, United States
| | | | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, United States.,Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
78
|
Matralis AN, Malik A, Penzo M, Moreno I, Almela MJ, Camino I, Crespo B, Saadeddin A, Ghidelli-Disse S, Rueda L, Calderon F, Osborne SA, Drewes G, Böesche M, Fernández-Álvaro E, Martin Hernando JI, Baker DA. Development of Chemical Entities Endowed with Potent Fast-Killing Properties against Plasmodium falciparum Malaria Parasites. J Med Chem 2019; 62:9217-9235. [PMID: 31566384 PMCID: PMC6816013 DOI: 10.1021/acs.jmedchem.9b01099] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the attractive properties of artemisinins is their extremely fast-killing capability, quickly relieving malaria symptoms. Nevertheless, the unique benefits of these medicines are now compromised by the prolonged parasite clearance times and the increasing frequency of treatment failures, attributed to the increased tolerance of Plasmodium falciparum to artemisinin. This emerging artemisinin resistance threatens to undermine the effectiveness of antimalarial combination therapies. Herein, we describe the medicinal chemistry efforts focused on a cGMP-dependent protein kinase (PKG) inhibitor scaffold, leading to the identification of novel chemical entities with very potent, similar to artemisinins, fast-killing potency against asexual blood stages that cause disease, and activity against gametocyte activation that is required for transmission. Furthermore, we confirm that selective PKG inhibitors have a slow speed of kill, while chemoproteomic analysis suggests for the first time serine/arginine protein kinase 2 (SRPK2) targeting as a novel strategy for developing antimalarial compounds with extremely fast-killing properties.
Collapse
Affiliation(s)
- Alexios N Matralis
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain.,Biomedical Sciences Research Center "Alexander Fleming" , Fleming 34 Street , 16672 Vari , Greece
| | - Adnan Malik
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Maria Penzo
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain.,Faculty of Infectious and Tropical Diseases , London School of Hygiene & Tropical Medicine , London WC1E 7HT , U.K
| | - Inmaculada Moreno
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Maria J Almela
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Isabel Camino
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Benigno Crespo
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Anas Saadeddin
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Sonja Ghidelli-Disse
- Cellzome GmbH, a GlaxoSmithKline Company , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Lourdes Rueda
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Felix Calderon
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Simon A Osborne
- LifeArc, Accelerator Building, Open Innovation Campus , Stevenage SG1 2FX , U.K
| | - Gerard Drewes
- Cellzome GmbH, a GlaxoSmithKline Company , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Markus Böesche
- Cellzome GmbH, a GlaxoSmithKline Company , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Elena Fernández-Álvaro
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - Jose Ignacio Martin Hernando
- Tres Cantos, Medicines Development Campus, DDW, GlaxoSmithKline , Severo Ochoa 2 , 28760 Tres Cantos , Madrid , Spain
| | - David A Baker
- Faculty of Infectious and Tropical Diseases , London School of Hygiene & Tropical Medicine , London WC1E 7HT , U.K
| |
Collapse
|
79
|
Bilimoria J, Singh H. The Angiopoietin ligands and Tie receptors: potential diagnostic biomarkers of vascular disease. J Recept Signal Transduct Res 2019; 39:187-193. [PMID: 31429357 DOI: 10.1080/10799893.2019.1652650] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Angiopoietin-1 (Angpt1)/Tie2 signaling pathway is important in regulating vascular function. Angpt1-induced Tie2 activation promotes vascular endothelial cell survival and reduces vascular leakage. Angiopoietin-2 (Angpt2), a weak agonist/antagonist of Tie2, opposes and regulates Angpt1 action. The Tie family of receptor tyrosine kinases, Tie2 and Tie1, exist as either homo-or heterodimers. The molecular complex between the receptors is also crucial in controlling Angpt1 signaling; hence, the molecular balance between Angpt1:Angpt2 and Tie2:Tie1 is important in determining endothelial integrity and vascular stability. This review presents evidence of the change observed in the Angiopoietin/Tie molecules in various pathophysiological conditions and discusses the potential clinical applications of these molecules in vascular complications.
Collapse
Affiliation(s)
- Jay Bilimoria
- Faculty of Health and Life Sciences, Leicester School of Allied Health Sciences, De Montfort University , Leicester , UK
| | - Harprit Singh
- Faculty of Health and Life Sciences, Leicester School of Allied Health Sciences, De Montfort University , Leicester , UK
| |
Collapse
|
80
|
Akwii RG, Sajib MS, Zahra FT, Mikelis CM. Role of Angiopoietin-2 in Vascular Physiology and Pathophysiology. Cells 2019; 8:cells8050471. [PMID: 31108880 PMCID: PMC6562915 DOI: 10.3390/cells8050471] [Citation(s) in RCA: 343] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/06/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
Angiopoietins 1–4 (Ang1–4) represent an important family of growth factors, whose activities are mediated through the tyrosine kinase receptors, Tie1 and Tie2. The best characterized are angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2). Ang1 is a potent angiogenic growth factor signaling through Tie2, whereas Ang2 was initially identified as a vascular disruptive agent with antagonistic activity through the same receptor. Recent data demonstrates that Ang2 has context-dependent agonist activities. Ang2 plays important roles in physiological processes and the deregulation of its expression is characteristic of several diseases. In this review, we summarize the activity of Ang2 on blood and lymphatic endothelial cells, its significance in human physiology and disease, and provide a current view of the molecular signaling pathways regulated by Ang2 in endothelial cells.
Collapse
Affiliation(s)
- Racheal G Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Md S Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Fatema T Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
81
|
Juettner VV, Kruse K, Dan A, Vu VH, Khan Y, Le J, Leckband D, Komarova Y, Malik AB. VE-PTP stabilizes VE-cadherin junctions and the endothelial barrier via a phosphatase-independent mechanism. J Cell Biol 2019; 218:1725-1742. [PMID: 30948425 PMCID: PMC6504901 DOI: 10.1083/jcb.201807210] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/20/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Juettner et al. describe a novel phosphatase-activity–independent mechanism by which the phosphatase VE-PTP restricts endothelial permeability. VE-PTP functions as a scaffold that binds and inhibits the RhoGEF GEF-H1, limiting RhoA-dependent tension across VE-cadherin junctions and decreasing VE-cadherin internalization to stabilize adherens junctions and reduce endothelial permeability. Vascular endothelial (VE) protein tyrosine phosphatase (PTP) is an endothelial-specific phosphatase that stabilizes VE-cadherin junctions. Although studies have focused on the role of VE-PTP in dephosphorylating VE-cadherin in the activated endothelium, little is known of VE-PTP’s role in the quiescent endothelial monolayer. Here, we used the photoconvertible fluorescent protein VE-cadherin-Dendra2 to monitor VE-cadherin dynamics at adherens junctions (AJs) in confluent endothelial monolayers. We discovered that VE-PTP stabilizes VE-cadherin junctions by reducing the rate of VE-cadherin internalization independently of its phosphatase activity. VE-PTP serves as an adaptor protein that through binding and inhibiting the RhoGEF GEF-H1 modulates RhoA activity and tension across VE-cadherin junctions. Overexpression of the VE-PTP cytosolic domain mutant interacting with GEF-H1 in VE-PTP–depleted endothelial cells reduced GEF-H1 activity and restored VE-cadherin dynamics at AJs. Thus, VE-PTP stabilizes VE-cadherin junctions and restricts endothelial permeability by inhibiting GEF-H1, thereby limiting RhoA signaling at AJs and reducing the VE-cadherin internalization rate.
Collapse
Affiliation(s)
- Vanessa V Juettner
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Kevin Kruse
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Arkaprava Dan
- Department of Chemical and Biomolecular Engineering, University of Illinois College of Engineering at Urbana-Champaign, Urbana, IL
| | - Vinh H Vu
- Department of Chemical and Biomolecular Engineering, University of Illinois College of Engineering at Urbana-Champaign, Urbana, IL
| | - Yousaf Khan
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Jonathan Le
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Deborah Leckband
- Department of Chemical and Biomolecular Engineering, University of Illinois College of Engineering at Urbana-Champaign, Urbana, IL
| | - Yulia Komarova
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| | - Asrar B Malik
- Department of Pharmacology and the Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL
| |
Collapse
|
82
|
Carota IA, Kenig-Kozlovsky Y, Onay T, Scott R, Thomson BR, Souma T, Bartlett CS, Li Y, Procissi D, Ramirez V, Yamaguchi S, Tarjus A, Tanna CE, Li C, Eremina V, Vestweber D, Oladipupo SS, Breyer MD, Quaggin SE. Targeting VE-PTP phosphatase protects the kidney from diabetic injury. J Exp Med 2019; 216:936-949. [PMID: 30886059 PMCID: PMC6446875 DOI: 10.1084/jem.20180009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 11/10/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Diabetic nephropathy is a leading cause of kidney failure. VE-PTP phosphatase expression is increased in the endothelium of rodents with diabetes and hypertension. Genetic deletion of VE-PTP reduces kidney injury in diabetic mice, suggesting it may be a therapeutic target. Diabetic nephropathy is a leading cause of end-stage kidney failure. Reduced angiopoietin-TIE2 receptor tyrosine kinase signaling in the vasculature leads to increased vascular permeability, inflammation, and endothelial cell loss and is associated with the development of diabetic complications. Here, we identified a mechanism to explain how TIE2 signaling is attenuated in diabetic animals. Expression of vascular endothelial protein tyrosine phosphatase VE-PTP (also known as PTPRB), which dephosphorylates TIE2, is robustly up-regulated in the renal microvasculature of diabetic rodents, thereby reducing TIE2 activity. Increased VE-PTP expression was dependent on hypoxia-inducible factor transcriptional activity in vivo. Genetic deletion of VE-PTP restored TIE2 activity independent of ligand availability and protected kidney structure and function in a mouse model of severe diabetic nephropathy. Mechanistically, inhibition of VE-PTP activated endothelial nitric oxide synthase and led to nuclear exclusion of the FOXO1 transcription factor, reducing expression of pro-inflammatory and pro-fibrotic gene targets. In sum, we identify inhibition of VE-PTP as a promising therapeutic target to protect the kidney from diabetic injury.
Collapse
Affiliation(s)
- Isabel A Carota
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL.,Eli Lilly & Company, Biotechnology Discovery Research, Indianapolis, IN
| | - Yael Kenig-Kozlovsky
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tuncer Onay
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rizaldy Scott
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Benjamin R Thomson
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Tomokazu Souma
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christina S Bartlett
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yanyang Li
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Daniele Procissi
- Department of Radiology and Biomedical Engineering, Northwestern University, Feinberg School of Medicine, Chicago, IL
| | - Veronica Ramirez
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Shinji Yamaguchi
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Antoine Tarjus
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christine E Tanna
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Chengjin Li
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Vera Eremina
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | - Matthew D Breyer
- Eli Lilly & Company, Biotechnology Discovery Research, Indianapolis, IN
| | - Susan E Quaggin
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL .,Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
83
|
Allegretti AS, Parada XV, Ortiz GA, Long J, Krinsky S, Zhao S, Fuchs BC, Sojoodi M, Zhang D, Karumanchi SA, Kalim S, Nigwekar SU, Thadhani RI, Parikh SM, Chung RT. Serum Angiopoietin-2 Predicts Mortality and Kidney Outcomes in Decompensated Cirrhosis. Hepatology 2019; 69:729-741. [PMID: 30141205 PMCID: PMC6351209 DOI: 10.1002/hep.30230] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Acute kidney injury in decompensated cirrhosis has limited therapeutic options, and novel mechanistic targets are urgently needed. Angiopoietin-2 is a context-specific antagonist of Tie2, a receptor that signals vascular quiescence. Considering the prominence of vascular destabilization in decompensated cirrhosis, we evaluated Angiopoietin-2 to predict clinical outcomes. Serum Angiopoietin-2 was measured serially in a prospective cohort of hospitalized patients with decompensated cirrhosis and acute kidney injury. Clinical characteristics and outcomes were examined over a 90-day period and analyzed according to Angiopoietin-2 levels. Primary outcome was 90-day mortality. Our study included 191 inpatients (median Angiopoietin-2 level 18.2 [interquartile range 11.8, 26.5] ng/mL). Median Model for End-Stage Liver Disease (MELD) score was 23 [17, 30] and 90-day mortality was 41%. Increased Angiopoietin-2 levels were associated with increased mortality (died 21.9 [13.9, 30.3] ng/mL vs. alive 15.2 [9.8, 23.0] ng/mL; P < 0.001), higher Acute Kidney Injury Network stage (stage I 13.4 [9.8, 20.1] ng/mL vs. stage II 20.0 [14.1, 26.2] ng/mL vs. stage III 21.9 [13.0, 29.5] ng/mL; P = 0.002), and need for renal replacement therapy (16.5 [11.3, 23.6] ng/mL vs. 25.1 [13.3, 30.3] ng/mL; P = 0.005). The association between Angiopoietin-2 and mortality was significant in unadjusted and adjusted Cox regression models (P ≤ 0.001 for all models), and improved discrimination for mortality when added to MELD score (integrated discrimination increment 0.067; P = 0.001). Conclusion: Angiopoietin-2 was associated with mortality and other clinically relevant outcomes in a cohort of patients with decompensated cirrhosis with acute kidney injury. Further experimental study of Angiopoietin/Tie2 signaling is warranted to explore its potential mechanistic and therapeutic role in this population.
Collapse
Affiliation(s)
- Andrew S. Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xavier Vela Parada
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Joshua Long
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Scott Krinsky
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sophia Zhao
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Bryan C. Fuchs
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Mozhdeh Sojoodi
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Dongsheng Zhang
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - S. Ananth Karumanchi
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA,Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ravi I. Thadhani
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA,Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Samir M. Parikh
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Raymond T. Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
84
|
华 欣, 朱 晓. [Research Advances of Ang-2 in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:868-874. [PMID: 30454550 PMCID: PMC6247002 DOI: 10.3779/j.issn.1009-3419.2018.11.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 11/26/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the malignant tumors with highest mortality in the world, it is still a difficult problem in clinical field. Its occurrence and development are closely associated with tumor angiogenesis. Angiopoietin-2 (Ang-2) is an important angiogenesis factor that has involved in many researches and it has been confirmed that the expression of Ang-2 is significantly up-regulated in tissues and blood of NSCLC. Meanwhile, Ang-2 is related to malignant biological behavior of cancer cells, making it a potential biological marker for the diagnosis and prognosis of NSCLC. At present, researches on Ang-2 how to promote the progression of NSCLC around the world are focused on Ang-2 regulating the proliferation, invasion, and metastasis of NSCLC. This paper summarized and estimated the studies and literature reports of regulatory mechanisms of Ang-2 in NSCLC, hopefully it could help looking for targeted drug treatment of Ang-2 in the future.
.
Collapse
Affiliation(s)
- 欣 华
- 210000 南京,东南大学医学院Medical College of Southeast University, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, China
| | - 晓莉 朱
- 210000 南京,东南大学附属中大医院呼吸科Department of Respiration, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, China
| |
Collapse
|
85
|
Glennon EKK, Dankwa S, Smith JD, Kaushansky A. Opportunities for Host-targeted Therapies for Malaria. Trends Parasitol 2018; 34:843-860. [PMID: 30122551 PMCID: PMC6168423 DOI: 10.1016/j.pt.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Despite the recent successes of artemisinin-based antimalarial drugs, many still die from severe malaria, and eradication efforts are hindered by the limited drugs currently available to target transmissible gametocyte parasites and liver-resident dormant Plasmodium vivax hypnozoites. Host-targeted therapy is a new direction for infectious disease drug development and aims to interfere with host molecules, pathways, or networks that are required for infection or that contribute to disease. Recent advances in our understanding of host pathways involved in parasite development and pathogenic mechanisms in severe malaria could facilitate the development of host-targeted interventions against Plasmodium infection and malaria disease. This review discusses new opportunities for host-targeted therapeutics for malaria and the potential to harness drug polypharmacology to simultaneously target multiple host pathways using a single drug intervention.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA; These authors made an equal contribution
| | - Selasi Dankwa
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; These authors made an equal contribution
| | - Joseph D Smith
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA.
| |
Collapse
|