51
|
Shukla N, Roelle SM, Snell JC, DelSignore O, Bruchez AM, Matreyek KA. Pseudotyped virus infection of multiplexed ACE2 libraries reveals SARS-CoV-2 variant shifts in receptor usage. PLoS Pathog 2024; 20:e1012044. [PMID: 38768238 PMCID: PMC11142672 DOI: 10.1371/journal.ppat.1012044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Pairwise compatibility between virus and host proteins can dictate the outcome of infection. During transmission, both inter- and intraspecies variabilities in receptor protein sequences can impact cell susceptibility. Many viruses possess mutable viral entry proteins and the patterns of host compatibility can shift as the viral protein sequence changes. This combinatorial sequence space between virus and host is poorly understood, as traditional experimental approaches lack the throughput to simultaneously test all possible combinations of protein sequences. Here, we created a pseudotyped virus infection assay where a multiplexed target-cell library of host receptor variants can be assayed simultaneously using a DNA barcode sequencing readout. We applied this assay to test a panel of 30 ACE2 orthologs or human sequence mutants for infectability by the original SARS-CoV-2 spike protein or the Alpha, Beta, Gamma, Delta, and Omicron BA1 variant spikes. We compared these results to an analysis of the structural shifts that occurred for each variant spike's interface with human ACE2. Mutated residues were directly involved in the largest shifts, although there were also widespread indirect effects altering interface structure. The N501Y substitution in spike conferred a large structural shift for interaction with ACE2, which was partially recreated by indirect distal substitutions in Delta, which does not harbor N501Y. The structural shifts from N501Y greatly influenced the set of animal orthologs the variant spike was capable of interacting with. Out of the thirteen non-human orthologs, ten exhibited unique patterns of variant-specific compatibility, demonstrating that spike sequence changes during human transmission can toggle ACE2 compatibility and potential susceptibility of other animal species, and cumulatively increase overall compatibilities as new variants emerge. These experiments provide a blueprint for similar large-scale assessments of protein compatibility during entry by diverse viruses. This dataset demonstrates the complex compatibility relationships that occur between variable interacting host and virus proteins.
Collapse
Affiliation(s)
- Nidhi Shukla
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Sarah M. Roelle
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - John C. Snell
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Olivia DelSignore
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Anna M. Bruchez
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
52
|
Yang YL, Wang B, Li W, Cai HL, Qian QY, Qin Y, Shi FS, Bosch BJ, Huang YW. Functional dissection of the spike glycoprotein S1 subunit and identification of cellular cofactors for regulation of swine acute diarrhea syndrome coronavirus entry. J Virol 2024; 98:e0013924. [PMID: 38501663 PMCID: PMC11019839 DOI: 10.1128/jvi.00139-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus, and the broad interspecies infection of SADS-CoV poses a potential threat to human health. This study provides experimental evidence to dissect the roles of distinct domains within the SADS-CoV spike S1 subunit in cellular entry. Specifically, we expressed the S1 and its subdomains, S1A and S1B. Cell binding and invasion inhibition assays revealed a preference for the S1B subdomain in binding to the receptors on the cell surface, and this unknown receptor is not utilized by the porcine epidemic diarrhea virus. Nanoparticle display demonstrated hemagglutination of erythrocytes from pigs, humans, and mice, linking the S1A subdomain to the binding of sialic acid (Sia) involved in virus attachment. We successfully rescued GFP-labeled SADS-CoV (rSADS-GFP) from a recombinant cDNA clone to track viral infection. Antisera raised against S1, S1A, or S1B contained highly potent neutralizing antibodies, with anti-S1B showing better efficiency in neutralizing rSADS-GFP infection compared to anti-S1A. Furthermore, depletion of heparan sulfate (HS) by heparinase treatment or pre-incubation of rSADS-GFP with HS or constituent monosaccharides could inhibit SADS-CoV entry. Finally, we demonstrated that active furin cleavage of S glycoprotein and the presence of type II transmembrane serine protease (TMPRSS2) are essential for SADS-CoV infection. These combined observations suggest that the wide cell tropism of SADS-CoV may be related to the distribution of Sia or HS on the cell surface, whereas the S1B contains the main protein receptor binding site. Specific host proteases also play important roles in facilitating SADS-CoV entry.IMPORTANCESwine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel pathogen infecting piglet, and its unique genetic evolution characteristics and broad species tropism suggest the potential for cross-species transmission. The virus enters cells through its spike (S) glycoprotein. In this study, we identify the receptor binding domain on the C-terminal part of the S1 subunit (S1B) of SADS-CoV, whereas the sugar-binding domain located at the S1 N-terminal part of S1 (S1A). Sialic acid, heparan sulfate, and specific host proteases play essential roles in viral attachment and entry. The dissection of SADS-CoV S1 subunit's functional domains and identification of cellular entry cofactors will help to explore the receptors used by SADS-CoV, which may contribute to exploring the mechanisms behind cross-species transmission and host tropism.
Collapse
Affiliation(s)
- Yong-Le Yang
- Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Bin Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Wentao Li
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hou-Li Cai
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Qian-Yu Qian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Qin
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Shu Shi
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Yao-Wei Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
53
|
González-Aravena M, Galbán-Malagón C, Castro-Nallar E, Barriga GP, Neira V, Krüger L, Adell AD, Olivares-Pacheco J. Detection of SARS-CoV-2 in Wastewater Associated with Scientific Stations in Antarctica and Possible Risk for Wildlife. Microorganisms 2024; 12:743. [PMID: 38674687 PMCID: PMC11051888 DOI: 10.3390/microorganisms12040743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
Before December 2020, Antarctica had remained free of COVID-19 cases. The main concern during the pandemic was the limited health facilities available at Antarctic stations to deal with the disease as well as the potential impact of SARS-CoV-2 on Antarctic wildlife through reverse zoonosis. In December 2020, 60 cases emerged in Chilean Antarctic stations, disrupting the summer campaign with ongoing isolation needs. The SARS-CoV-2 RNA was detected in the wastewater of several scientific stations. In Antarctica, treated wastewater is discharged directly into the seawater. No studies currently address the recovery of infectious virus particles from treated wastewater, but their presence raises the risk of infecting wildlife and initiating new replication cycles. This study highlights the initial virus detection in wastewater from Antarctic stations, identifying viral RNA via RT-qPCR targeting various genomic regions. The virus's RNA was found in effluent from two wastewater plants at Maxwell Bay and O'Higgins Station on King George Island and the Antarctic Peninsula, respectively. This study explores the potential for the reverse zoonotic transmission of SARS-CoV-2 from humans to Antarctic wildlife due to the direct release of viral particles into seawater. The implications of such transmission underscore the need for continued vigilance and research.
Collapse
Affiliation(s)
| | - Cristóbal Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Santiago 8580745, Chile;
- Anillo en Ciencia y Tecnología Antártica POLARIX, Santiago 8370146, Chile;
- Institute for Environment, Florida International University, Miami, FL 33199, USA
| | - Eduardo Castro-Nallar
- Anillo en Ciencia y Tecnología Antártica POLARIX, Santiago 8370146, Chile;
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Talca, Talca 3481118, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Campus Talca, Talca 3460000, Chile
| | - Gonzalo P. Barriga
- Laboratorio de Virus Emergentes, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Víctor Neira
- Medicina Preventiva Animal, Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Lucas Krüger
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas 6200985, Chile;
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7750000, Chile
| | - Aiko D. Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 9350841, Chile;
- Millennium Initiative for Collaborative Research on Bacterial Resistance, MICROB-R, Santiago 7550000, Chile
| | - Jorge Olivares-Pacheco
- Millennium Initiative for Collaborative Research on Bacterial Resistance, MICROB-R, Santiago 7550000, Chile
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales, GRABPA, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| |
Collapse
|
54
|
Samson S, Lord É, Makarenkov V. Assessing the emergence time of SARS-CoV-2 zoonotic spillover. PLoS One 2024; 19:e0301195. [PMID: 38574109 PMCID: PMC10994396 DOI: 10.1371/journal.pone.0301195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Understanding the evolution of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) and its relationship to other coronaviruses in the wild is crucial for preventing future virus outbreaks. While the origin of the SARS-CoV-2 pandemic remains uncertain, mounting evidence suggests the direct involvement of the bat and pangolin coronaviruses in the evolution of the SARS-CoV-2 genome. To unravel the early days of a probable zoonotic spillover event, we analyzed genomic data from various coronavirus strains from both human and wild hosts. Bayesian phylogenetic analysis was performed using multiple datasets, using strict and relaxed clock evolutionary models to estimate the occurrence times of key speciation, gene transfer, and recombination events affecting the evolution of SARS-CoV-2 and its closest relatives. We found strong evidence supporting the presence of temporal structure in datasets containing SARS-CoV-2 variants, enabling us to estimate the time of SARS-CoV-2 zoonotic spillover between August and early October 2019. In contrast, datasets without SARS-CoV-2 variants provided mixed results in terms of temporal structure. However, they allowed us to establish that the presence of a statistically robust clade in the phylogenies of gene S and its receptor-binding (RBD) domain, including two bat (BANAL) and two Guangdong pangolin coronaviruses (CoVs), is due to the horizontal gene transfer of this gene from the bat CoV to the pangolin CoV that occurred in the middle of 2018. Importantly, this clade is closely located to SARS-CoV-2 in both phylogenies. This phylogenetic proximity had been explained by an RBD gene transfer from the Guangdong pangolin CoV to a very recent ancestor of SARS-CoV-2 in some earlier works in the field before the BANAL coronaviruses were discovered. Overall, our study provides valuable insights into the timeline and evolutionary dynamics of the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Stéphane Samson
- Department of Computer Sciences, Université du Québec à Montréal, Montréal, Canada
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Étienne Lord
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Québec, Canada
| | - Vladimir Makarenkov
- Department of Computer Sciences, Université du Québec à Montréal, Montréal, Canada
- Mila—Quebec AI Institute, Montreal, QC, Canada
| |
Collapse
|
55
|
Tan ZH, Yong KY, Shu JJ. Predicting potential SARS-CoV-2 spillover and spillback in animals. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024; 57:225-237. [PMID: 38262772 DOI: 10.1016/j.jmii.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND The COVID-19 pandemic is spreading rapidly around the world, causing countries to impose lockdowns and efforts to develop vaccines on a global scale. However, human-to-animal and animal-to-human transmission cannot be ignored, as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread rapidly in farmed and wild animals. This could create a worrying cycle of SARS-CoV-2 spillover from humans to animals and spillback of new strains back into humans, rendering vaccines ineffective. METHOD This study provides a key indicator of animals that may be potential susceptible hosts for SARS-CoV-2 and coronavirus infections by analysing the phylogenetic distance between host angiotensin-converting enzyme 2 and the coronavirus spike protein. Crucially, our analysis identifies animals that are at elevated risk from a spillover and spillback incident. RESULTS One group of animals has been identified as potentially susceptible to SARS-CoV-2 by harbouring a parasitic coronavirus spike protein similar to the SARS-CoV-2 spike protein. These animals may serve as amplification hosts in spillover events from zoonotic reservoirs. This group consists of a mixture of animals infected internally and naturally: minks, dogs, cats, tigers. Additionally, no internal or natural infections have been found in masked palm civet. CONCLUSION Tracing interspecies transmission in multi-host environments based solely on in vitro and in vivo examinations of animal susceptibility or serology is a time-consuming task. This approach allows rapid identification of high-risk animals to prioritize research and assessment of the risk of zoonotic disease transmission in the environment. It is a tool to rapidly identify zoonotic species that may cause outbreaks or participate in expansion cycles of coexistence with their hosts. This prevents the spread of coronavirus infections between species, preventing spillover and spillback incidents from occurring.
Collapse
Affiliation(s)
- Zi Hian Tan
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Kian Yan Yong
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Jian-Jun Shu
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
56
|
Niu S, Zhao Z, Liu Z, Rong X, Chai Y, Bai B, Han P, Shang G, Ren J, Wang Y, Zhao X, Liu K, Tian WX, Wang Q, Gao GF. Structural basis and analysis of hamster ACE2 binding to different SARS-CoV-2 spike RBDs. J Virol 2024; 98:e0115723. [PMID: 38305152 PMCID: PMC10949455 DOI: 10.1128/jvi.01157-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Pet golden hamsters were first identified being infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant of concern (VOC) and transmitted the virus back to humans in Hong Kong in January 2022. Here, we studied the binding of two hamster (golden hamster and Chinese hamster) angiotensin-converting enzyme 2 (ACE2) proteins to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants, including alpha, beta, gamma, delta, and four omicron sub-variants (BA.1, BA.2, BA.3, and BA.4/BA.5). We found that the two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2 (hACE2). Furthermore, the similar infectivity to host cells expressing hamster ACE2s and hACE2 was confirmed with the nine pseudotyped SARS-CoV-2 viruses. Additionally, we determined two cryo-electron microscopy (EM) complex structures of golden hamster ACE2 (ghACE2)/delta RBD and ghACE2/omicron BA.3 RBD. The residues Q34 and N82, which exist in many rodent ACE2s, are responsible for the lower binding affinity of ghACE2 compared to hACE2. These findings suggest that all SARS-CoV-2 VOCs may infect hamsters, highlighting the necessity of further surveillance of SARS-CoV-2 in these animals.IMPORTANCESARS-CoV-2 can infect many domestic animals, including hamsters. There is an urgent need to understand the binding mechanism of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to hamster receptors. Herein, we showed that two hamster angiotensin-converting enzyme 2s (ACE2s) (golden hamster ACE2 and Chinese hamster ACE2) can bind to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants and that pseudotyped SARS-CoV-2 viruses can infect hamster ACE2-expressing cells. The binding pattern of golden hamster ACE2 to SARS-CoV-2 RBDs is similar to that of Chinese hamster ACE2. The two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2. We solved the cryo-electron microscopy (EM) structures of golden hamster ACE2 in complex with delta RBD and omicron BA.3 RBD and found that residues Q34 and N82 are responsible for the lower binding affinity of ghACE2 compared to hACE2. Our work provides valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.
Collapse
Affiliation(s)
- Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhimin Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyu Rong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Bai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Han
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guijun Shang
- Cryo-EM Center, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Jianle Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wen-xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Qihui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George Fu Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
57
|
Feinstein P. Coronavirus Spike-RBD Variants Differentially Bind to the Human ACE2 Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583944. [PMID: 38496407 PMCID: PMC10942415 DOI: 10.1101/2024.03.07.583944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The SARS-CoV-2 betacoronavirus infects people through binding the human Angiotensin Receptor 2 (ACE2), followed by import into a cell utilizing the Transmembrane Protease, Serine 2 (TMPRSS2) and Furin cofactors. Analysis of the SARS-CoV-2 extracellular spike protein has suggested critical amino acids necessary for binding within a 197-residue portion, the receptor binding domain (RBD). A cell-based assay between a membrane tethered RBD-GFP fusion protein and the membrane bound ACE2-Cherry fusion protein allowed for mutational intersection of both RBD and ACE2 proteins. Data shows Omicron BA.1 and BA.2 variants have altered dependency on the amino terminus of ACE2 protein and suggests multiple epitopes on both proteins stabilize their interactions at the Nt and internal region of ACE2. In contrast, the H-CoV-NL63 RBD is only dependent on the ACE2 internal region for binding. A peptide inhibitor approach to this internal region thus far have failed to block binding of RBDs to ACE2, suggesting that several binding regions on ACE2 are sufficient to allow functional interactions. In sum, the RBD binding surface of ACE2 appears relatively fluid and amenable to bind a range of novel variants.
Collapse
Affiliation(s)
- Paul Feinstein
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065
- The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, 365 5th Ave, New York, NY 10016
| |
Collapse
|
58
|
Susi H. Alternative host shapes transmission and life-history trait correlations in a multi-host plant pathogen. Evol Appl 2024; 17:e13672. [PMID: 38468715 PMCID: PMC10925827 DOI: 10.1111/eva.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Most pathogens are generalists capable of infecting multiple host species or strains. Trade-offs in performance among different hosts are expected to limit the evolution of generalism. Despite the commonness of generalism, the variation in infectivity, transmission, and trade-offs in performance among host species have rarely been studied in the wild. To understand the ecological and evolutionary drivers of multi-host pathogen infectivity and transmission potential, I studied disease severity, transmission dynamics, and infectivity variation of downy mildew pathogen Peronospora sparsa on its three host plants Rubus arcticus, R. chamaemorus, and R. saxatilis. In a survey of 20 wild and cultivated sites of the three host species, disease severity varied by host species and by host population size but not among wild and cultivated sites. To understand how alternative host presence and plant diversity affect transmission of the pathogen, I conducted a transmission experiment. In this experiment, alternative host abundance and plant diversity together modified P. sparsa transmission to trap plants. To understand how resistance to P. sparsa varies among host species and genotypes, I conducted an inoculation experiment using 10 P. sparsa strains from different locations and 20 genotypes of the three host species. Significant variation in infectivity was found among host genotypes but not among host species. When trade-offs for infectivity were tested, high infectivity in one host species correlated with high infectivity in another host species. However, when pathogen transmission-related life-history correlations were tested, a positive correlation was found in R. arcticus but not in R. saxatilis. The results suggest that host resistance may shape pathogen life-history evolution with epidemiological consequences in a multi-host pathogen.
Collapse
Affiliation(s)
- Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
59
|
Yao Z, Zhang L, Duan Y, Tang X, Lu J. Molecular insights into the adaptive evolution of SARS-CoV-2 spike protein. J Infect 2024; 88:106121. [PMID: 38367704 DOI: 10.1016/j.jinf.2024.106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has substantially damaged the global economy and human health. The spike (S) protein of coronaviruses plays a pivotal role in viral entry by binding to host cell receptors. Additionally, it acts as the primary target for neutralizing antibodies in those infected and is the central focus for currently utilized or researched vaccines. During the virus's adaptation to the human host, the S protein of SARS-CoV-2 has undergone significant evolution. As the COVID-19 pandemic has unfolded, new mutations have arisen and vanished, giving rise to distinctive amino acid profiles within variant of concern strains of SARS-CoV-2. Notably, many of these changes in the S protein have been positively selected, leading to substantial alterations in viral characteristics, such as heightened transmissibility and immune evasion capabilities. This review aims to provide an overview of our current understanding of the structural implications associated with key amino acid changes in the S protein of SARS-CoV-2. These research findings shed light on the intricate and dynamic nature of viral evolution, underscoring the importance of continuous monitoring and analysis of viral genomes. Through these molecular-level investigations, we can attain deeper insights into the virus's adaptive evolution, offering valuable guidance for designing vaccines and developing antiviral drugs to combat the ever-evolving viral threats.
Collapse
Affiliation(s)
- Zhuocheng Yao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lin Zhang
- College of Fishery, Ocean University of China, Qingdao 266003, China
| | - Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
60
|
Fang R, Yang X, Guo Y, Peng B, Dong R, Li S, Xu S. SARS-CoV-2 infection in animals: Patterns, transmission routes, and drivers. ECO-ENVIRONMENT & HEALTH 2024; 3:45-54. [PMID: 38169914 PMCID: PMC10758742 DOI: 10.1016/j.eehl.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 01/05/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is more widespread in animals than previously thought, and it may be able to infect a wider range of domestic and wild species. To effectively control the spread of the virus and protect animal health, it is crucial to understand the cross-species transmission mechanisms and risk factors of SARS-CoV-2. This article collects published literature on SARS-CoV-2 in animals and examines the distribution, transmission routes, biophysical, and anthropogenic drivers of infected animals. The reported cases of infection in animals are mainly concentrated in South America, North America, and Europe, and species affected include lions, white-tailed deer, pangolins, minks, and cats. Biophysical factors influencing infection of animals with SARS-CoV-2 include environmental determinants, high-risk landscapes, air quality, and susceptibility of different animal species, while anthropogenic factors comprise human behavior, intensive livestock farming, animal markets, and land management. Due to current research gaps and surveillance capacity shortcomings, future mitigation strategies need to be designed from a One Health perspective, with research focused on key regions with significant data gaps in Asia and Africa to understand the drivers, pathways, and spatiotemporal dynamics of interspecies transmission.
Collapse
Affiliation(s)
- Ruying Fang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiyang Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingjie Peng
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ruixuan Dong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunqing Xu
- School of Life Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
61
|
van der Valk T, Dalèn L. From genomic threat assessment to conservation action. Cell 2024; 187:1038-1041. [PMID: 38428386 DOI: 10.1016/j.cell.2024.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/03/2024]
Abstract
Genomic approaches have the potential to play a pivotal role in conservation, both to detect threats to species and populations and to restore biodiversity through actions. We here separate these approaches into two subdisciplines, vulnerability and restoration genomics, and discuss current applications, outstanding questions, and future potential.
Collapse
Affiliation(s)
- Tom van der Valk
- Centre for Palaeogenetics, Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden; Science for Life Laboratory, Stockholm, Sweden
| | - Love Dalèn
- Centre for Palaeogenetics, Stockholm, Sweden; Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
62
|
Tavera Gonzales A, Bazalar Gonzales J, Silvestre Espejo T, Leiva Galarza M, Rodríguez Cueva C, Carhuaricra Huamán D, Luna Espinoza L, Maturrano Hernández A. Possible Spreading of SARS-CoV-2 from Humans to Captive Non-Human Primates in the Peruvian Amazon. Animals (Basel) 2024; 14:732. [PMID: 38473117 DOI: 10.3390/ani14050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Human-to-animal transmission events of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) have been reported in both domestic and wild species worldwide. Despite the high rates of contagion and mortality during the COVID-19 (Coronavirus Diseases 2019) pandemic in Peru, no instances of natural virus infection have been documented in wild animals, particularly in the Amazonian regions where human-wildlife interactions are prevalent. In this study, we conducted a surveillance investigation using viral RNA sequencing of fecal samples collected from 76 captive and semi-captive non-human primates (NHPs) in the Loreto, Ucayali, and Madre de Dios regions between August 2022 and February 2023. We detected a segment of the RNA-dependent RNA polymerase (RdRp) gene of SARS-CoV-2 by metagenomic sequencing in a pooled fecal sample from captive white-fronted capuchins (Cebus unicolor) at a rescue center in Bello Horizonte, Ucayali. Phylogenetic analysis further confirmed that the retrieved partial sequence of the RdRp gene matched the SARS-CoV-2 genome. This study represents the first documented instance of molecular SARS-CoV-2 detection in NHPs in the Peruvian Amazon, underscoring the adverse impact of anthropic activities on the human-NHP interface and emphasizing the importance of ongoing surveillance for early detection and prediction of future emergence of new SARS-CoV-2 variants in animals.
Collapse
Affiliation(s)
- Andrea Tavera Gonzales
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Jhonathan Bazalar Gonzales
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
- Asociación Equipo Primatológico del Perú, Iquitos 16008, Peru
| | - Thalía Silvestre Espejo
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Milagros Leiva Galarza
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Carmen Rodríguez Cueva
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Dennis Carhuaricra Huamán
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
- Programa de Pós-Graduação Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, Brazil
| | - Luis Luna Espinoza
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Abelardo Maturrano Hernández
- Research Group in Biotechnology Applied to Animal Health, Production and Conservation (SANIGEN), Laboratorio de Biología y Genética Molecular, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| |
Collapse
|
63
|
Tomeo-Martín BD, Delgado-Bonet P, Cejalvo T, Herranz S, Perisé-Barrios AJ. A Comprehensive Study of Cellular and Humoral Immunity in Dogs Naturally Exposed to SARS-CoV-2. Transbound Emerg Dis 2024; 2024:9970311. [PMID: 40303184 PMCID: PMC12016888 DOI: 10.1155/2024/9970311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 05/02/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the causal agent behind coronavirus disease 2019 (COVID-19), a disease declared pandemic in 2020. Because of the zoonotic origin of SARS-CoV-2 and the close contact kept by domestic dogs with their owners, it became imperative to understand the role of dogs in the epidemiology of the disease and in the virus transmission. In the present study, we determined the presence of virus and described the long-term immune effects of SARS-CoV-2 in 24 dogs exposed to SARS-CoV-2 in the domestic environment. Our findings highlight that only a subset of dogs, naturally exposed to SARS-CoV-2, exhibit a humoral response to the new virus (close to 17% had IgM antibodies and close to 33% has IgG antibodies). We identified for the first time SARS-CoV-2-specific IFN-γ-secreting cells in dogs (approximately in half of our dogs). While 56% of dogs maintained humoral response 8 months, only 22% of dogs maintained cellular response after 4 and 8 months. Although some alterations in blood parameters and proinflammatory cytokines were described, there was no evidence indicating an exacerbated cytokine release process. Considering that none of the animals enrolled in this study showed viral shedding and presented specific immune responses, it is reasonable to propose that the canine immune system in certain companion dogs is effective at blocking the negative effects of viral replication, thereby suggesting that dogs would not be potential transmitters of this pathogen to the other dogs or other species and could aid in promoting collective immunity.
Collapse
Affiliation(s)
| | - Pablo Delgado-Bonet
- Biomedical Research Unit (UIB-UAX), Universidad Alfonso X el Sabio, Madrid, Spain
- Small Animal Hospital, University of Glasgow, Scotland, UK
| | - Teresa Cejalvo
- Biomedical Research Unit (UIB-UAX), Universidad Alfonso X el Sabio, Madrid, Spain
| | - Sandra Herranz
- Biomedical Research Unit (UIB-UAX), Universidad Alfonso X el Sabio, Madrid, Spain
| | | |
Collapse
|
64
|
Nweeia MT. Biology and Cultural Importance of the Narwhal. Annu Rev Anim Biosci 2024; 12:187-208. [PMID: 38358838 DOI: 10.1146/annurev-animal-021122-112307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Though narwhal have survived multiple ice ages, including 2.5 Ma and the last interglacial period with warming temperatures, Arctic climate change during the Anthropocene introduces new challenges. Despite their evolutionary connection to Arctic Pleistocene fossils, narwhal archeocete ancestors from the Pliocene (Bohaskaia monodontoides) and Miocene (Denebola and Odobenocetopsidae) inhabited warm waters. Narwhal Arctic adaptation holds valuable insights into unique traits, including thin skin; extreme diving capacity; and a unique straight, spiraled, and sensory tooth organ system. Inaccessible weather, ice conditions, and darkness limit scientific studies, though Inuit knowledge adds valuable observations of narwhal ecology, biology, and behavior. Existing and future studies in myriad fields of physical, chemical, biological, and genetic science, combined and integrated with remote sensing and imaging technologies, will help elucidate narwhal evolution, biology, and adaptation. When integrated with Qaujimajatuqangit, "the Inuit way of knowing," these studies help describe interesting biologic expressions of the narwhal.
Collapse
Affiliation(s)
- Martin T Nweeia
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts, USA;
- Arctic Studies Center, Smithsonian Institution, Washington, DC, USA
- Department of Vertebrate Zoology, Canadian Museum of Nature, Ottawa, Ontario, Canada
- Zoonomia Consortium, Broad Institute of Harvard/MIT, Boston, Massachusetts, USA
- Polar Institute, The Wilson Center, Washington, DC, USA
| |
Collapse
|
65
|
Shi K, Li L, Luo C, Xu Z, Huang B, Ma S, Liu K, Yu G, Gao GF. Structural basis of increased binding affinities of spikes from SARS-CoV-2 Omicron variants to rabbit and hare ACE2s reveals the expanding host tendency. mBio 2024; 15:e0298823. [PMID: 38112468 PMCID: PMC10870819 DOI: 10.1128/mbio.02988-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
The potential host range of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been expanding alongside its evolution during the pandemic, with rabbits and hares being considered important potential hosts, supported by a report of rabbit sero-prevalence in nature. We measured the binding affinities of rabbit and hare angiotensin-converting enzyme 2 (ACE2) with receptor-binding domains (RBDs) from SARS-CoV, SARS-CoV-2, and its variants and found that rabbit and hare ACE2s had broad variant tropism, with significantly enhanced affinities to Omicron BA.4/5 and its subsequent-emerged sub-variants (>10 fold). The structures of rabbit ACE2 complexed with either SARS-CoV-2 prototype (PT) or Omicron BA.4/5 spike (S) proteins were determined, thereby unveiling the importance of rabbit ACE2 Q34 in RBD-interaction and elucidating the molecular basis of the enhanced binding with Omicron BA.4/5 RBD. These results address the highly enhanced risk of rabbits infecting SARS-CoV-2 Omicron sub-variants and the importance of constant surveillance.IMPORTANCEThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has swept the globe and caused immense health and economic damage. SARS-CoV-2 has demonstrated a broad host range, indicating a high risk of interspecies transmission and adaptive mutation. Therefore, constant monitoring for potential hosts is of immense importance. In this study, we found that Omicron BA.4/5 and subsequent-emerged sub-variants exhibited enhanced binding to both rabbit and hare angiotensin-converting enzyme 2 (ACE2), and we elucidated the structural mechanism of their recognition. From the structure, we found that Q34, a unique residue of rabbit ACE2 compared to other ACE2 orthologs, plays an important role in ACE2 recognition. These results address the probability of rabbits/hares being potential hosts of SARS-CoV-2 and broaden our knowledge regarding the molecular mechanism of SARS-CoV-2 interspecies transmission.
Collapse
Affiliation(s)
- Kaiyuan Shi
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linjie Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunliang Luo
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Baihan Huang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Sufang Ma
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanghui Yu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
66
|
Shukla N, Roelle SM, Snell JC, DelSignore O, Bruchez AM, Matreyek KA. Pseudotyped virus infection of multiplexed ACE2 libraries reveals SARS-CoV-2 variant shifts in receptor usage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580056. [PMID: 38405739 PMCID: PMC10888787 DOI: 10.1101/2024.02.13.580056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Pairwise compatibility between virus and host proteins can dictate the outcome of infection. During transmission, both inter- and intraspecies variabilities in receptor protein sequences can impact cell susceptibility. Many viruses possess mutable viral entry proteins and the patterns of host compatibility can shift as the viral protein sequence changes. This combinatorial sequence space between virus and host is poorly understood, as traditional experimental approaches lack the throughput to simultaneously test all possible combinations of protein sequences. Here, we created a pseudotyped virus infection assay where a multiplexed target-cell library of host receptor variants can be assayed simultaneously using a DNA barcode sequencing readout. We applied this assay to test a panel of 30 ACE2 orthologs or human sequence mutants for infectability by the original SARS-CoV-2 spike protein or the Alpha, Beta, Gamma, Delta, and Omicron BA1 variant spikes. We compared these results to an analysis of the structural shifts that occurred for each variant spike's interface with human ACE2. Mutated residues were directly involved in the largest shifts, although there were also widespread indirect effects altering interface structure. The N501Y substitution in spike conferred a large structural shift for interaction with ACE2, which was partially recreated by indirect distal substitutions in Delta, which does not harbor N501Y. The structural shifts from N501Y greatly influenced the set of animal orthologs the variant spike was capable of interacting with. Out of the thirteen non-human orthologs, ten exhibited unique patterns of variant-specific compatibility, demonstrating that spike sequence changes during human transmission can toggle ACE2 compatibility and potential susceptibility of other animal species, and cumulatively increase overall compatibilities as new variants emerge. These experiments provide a blueprint for similar large-scale assessments of protein compatibility during entry by diverse viruses. This dataset demonstrates the complex compatibility relationships that occur between variable interacting host and virus proteins.
Collapse
Affiliation(s)
- Nidhi Shukla
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sarah M Roelle
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - John C Snell
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Olivia DelSignore
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Anna M Bruchez
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kenneth A Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
67
|
Nederlof RA, de la Garza MA, Bakker J. Perspectives on SARS-CoV-2 Cases in Zoological Institutions. Vet Sci 2024; 11:78. [PMID: 38393096 PMCID: PMC10893009 DOI: 10.3390/vetsci11020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in a zoological institution were initially reported in March 2020. Since then, at least 94 peer-reviewed cases have been reported in zoos worldwide. Among the affected animals, nonhuman primates, carnivores, and artiodactyls appear to be most susceptible to infection, with the Felidae family accounting for the largest number of reported cases. Clinical symptoms tend to be mild across taxa; although, certain species exhibit increased susceptibility to disease. A variety of diagnostic tools are available, allowing for initial diagnostics and for the monitoring of infectious risk. Whilst supportive therapy proves sufficient in most cases, monoclonal antibody therapy has emerged as a promising additional treatment option. Effective transmission of SARS-CoV-2 in some species raises concerns over potential spillover and the formation of reservoirs. The occurrence of SARS-CoV-2 in a variety of animal species may contribute to the emergence of variants of concern due to altered viral evolutionary constraints. Consequently, this review emphasizes the need for effective biosecurity measures and surveillance strategies to prevent and control SARS-CoV-2 infections in zoological institutions.
Collapse
Affiliation(s)
| | - Melissa A. de la Garza
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Jaco Bakker
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
68
|
Carossino M, Izadmehr S, Trujillo JD, Gaudreault NN, Dittmar W, Morozov I, Balasuriya UBR, Cordon-Cardo C, García-Sastre A, Richt JA. ACE2 and TMPRSS2 distribution in the respiratory tract of different animal species and its correlation with SARS-CoV-2 tissue tropism. Microbiol Spectr 2024; 12:e0327023. [PMID: 38230954 PMCID: PMC10846196 DOI: 10.1128/spectrum.03270-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
A wide range of animal species show variable susceptibility to SARS-CoV-2; however, host factors associated with varied susceptibility remain to be defined. Here, we examined whether susceptibility to SARS-CoV-2 and virus tropism in different animal species are dependent on the expression and distribution of the virus receptor angiotensin-converting enzyme 2 (ACE2) and the host cell factor transmembrane serine protease 2 (TMPRSS2). We cataloged the upper and lower respiratory tract of multiple animal species and humans in a tissue-specific manner and quantitatively evaluated the distribution and abundance of ACE2 and TMPRSS2 mRNA in situ. Our results show that: (i) ACE2 and TMPRSS2 mRNA are abundant in the conduction portion of the respiratory tract, (ii) ACE2 mRNA occurs at a lower abundance compared to TMPRSS2 mRNA, (iii) co-expression of ACE2-TMPRSS2 mRNAs is highest in those species with the highest susceptibility to SARS-CoV-2 infection (i.e., cats, Syrian hamsters, and white-tailed deer), and (iv) expression of ACE2 and TMPRSS2 mRNA was not altered following SARS-CoV-2 infection. Our results demonstrate that while specific regions of the respiratory tract are enriched in ACE2 and TMPRSS2 mRNAs in different animal species, this is only a partial determinant of susceptibility to SARS-CoV-2 infection.IMPORTANCESARS-CoV-2 infects a wide array of domestic and wild animals, raising concerns regarding its evolutionary dynamics in animals and potential for spillback transmission of emerging variants to humans. Hence, SARS-CoV-2 infection in animals has significant public health relevance. Host factors determining animal susceptibility to SARS-CoV-2 are vastly unknown, and their characterization is critical to further understand susceptibility and viral dynamics in animal populations and anticipate potential spillback transmission. Here, we quantitatively assessed the distribution and abundance of the two most important host factors, angiotensin-converting enzyme 2 and transmembrane serine protease 2, in the respiratory tract of various animal species and humans. Our results demonstrate that while specific regions of the respiratory tract are enriched in these two host factors, they are only partial determinants of susceptibility. Detailed analysis of additional host factors is critical for our understanding of the underlying mechanisms governing viral susceptibility and reservoir hosts.
Collapse
Affiliation(s)
- Mariano Carossino
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sudeh Izadmehr
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Wellesley Dittmar
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Igor Morozov
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Udeni B. R. Balasuriya
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
69
|
Porter SM, Hartwig AE, Bielefeldt-Ohmann H, Marano JM, Root JJ, Bosco-Lauth AM. Experimental SARS-CoV-2 Infection of Elk and Mule Deer. Emerg Infect Dis 2024; 30:354-357. [PMID: 38270133 PMCID: PMC10826780 DOI: 10.3201/eid3002.231093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
To assess the susceptibility of elk (Cervus canadensis) and mule deer (Odocoileus hemionus) to SARS-CoV-2, we performed experimental infections in both species. Elk did not shed infectious virus but mounted low-level serologic responses. Mule deer shed and transmitted virus and mounted pronounced serologic responses and thus could play a role in SARS-CoV-2 epidemiology.
Collapse
|
70
|
Fauziah I, Nugroho HA, Yanthi ND, Tiffarent R, Saputra S. Potential zoonotic spillover at the human-animal interface: A mini-review. Vet World 2024; 17:289-302. [PMID: 38595670 PMCID: PMC11000462 DOI: 10.14202/vetworld.2024.289-302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/09/2024] [Indexed: 04/11/2024] Open
Abstract
Wildlife markets and wet wildlife markets, a type of human-animal interface, are commonly trading centers for wild-caught and captive-exotic animals as well as their products. These markets provide an ideal environment for spillovers of zoonotic and emerging infectious diseases (EIDs). These conditions may raise serious concerns, particularly in relation to wildlife species that frequently interact with humans and domestic animals. EIDs pose a significant risk to humans, ecosystems, and public health, as demonstrated by the current COVID-19 pandemic, and other previous outbreaks, including the highly pathogenic avian influenza H5N1. Even though it seems appears impossible to eliminate EIDs, we may still be able to minimalize the risks and take several measures to prevent new EIDs originated from animals. The aim of this study was to review several types of human-animal interfaces with a high risk of zoonotic spillover, infectious agents, and animal hosts or reservoirs. Identifying those factors will support the development of interventions and effective disease control in human-animal interface settings.
Collapse
Affiliation(s)
- Ima Fauziah
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| | - Herjuno Ari Nugroho
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| | - Nova Dilla Yanthi
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| | - Rida Tiffarent
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| | - Sugiyono Saputra
- Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency (BRIN), KST Soekarno, Jalan Raya Jakarta Bogor Km 46 Cibinong, Bogor, West Java, Indonesia
| |
Collapse
|
71
|
Hüttl J, Reitt K, Meli ML, Meili T, Bönzli E, Pineroli B, Ginders J, Schoster A, Jones S, Tyson GB, Hosie MJ, Pusterla N, Wernike K, Hofmann-Lehmann R. Serological and Molecular Investigation of SARS-CoV-2 in Horses and Cattle in Switzerland from 2020 to 2022. Viruses 2024; 16:224. [PMID: 38400000 PMCID: PMC10892882 DOI: 10.3390/v16020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Horses and cattle have shown low susceptibility to SARS-CoV-2, and there is no evidence of experimental intraspecies transmission. Nonetheless, seropositive horses in the US and seropositive cattle in Germany and Italy have been reported. The current study investigated the prevalence of antibodies against SARS-CoV-2 in horses and cattle in Switzerland. In total, 1940 serum and plasma samples from 1110 horses and 830 cattle were screened with a species-specific ELISA based on the SARS-CoV-2 receptor-binding domain (RBD) and, in the case of suspect positive results, a surrogate virus neutralization test (sVNT) was used to demonstrate the neutralizing activity of the antibodies. Further confirmation of suspect positive samples was performed using either a pseudotype-based virus neutralization assay (PVNA; horses) or an indirect immunofluorescence test (IFA; cattle). The animals were sampled between February 2020 and December 2022. Additionally, in total, 486 bronchoalveolar lavage (BAL), oropharyngeal, nasal and rectal swab samples from horses and cattle were analyzed for the presence of SARS-CoV-2 RNA via reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Six horses (0.5%; 95% CI: 0.2-1.2%) were suspect positive via RBD-ELISA, and neutralizing antibodies were detected in two of them via confirmatory sVNT and PVNA tests. In the PVNA, the highest titers were measured against the Alpha and Delta SARS-CoV-2 variants. Fifteen cattle (1.8%; 95% CI: 1.0-3.0%) were suspect positive in RBD-ELISA; 3 of them had SARS-CoV-2-specific neutralizing antibodies in sVNT and 4 of the 15 were confirmed to be positive via IFA. All tested samples were RT-qPCR-negative. The results support the hypotheses that the prevalence of SARS-CoV-2 infections in horses and cattle in Switzerland was low up to the end of 2022.
Collapse
Affiliation(s)
- Julia Hüttl
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland;
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Katja Reitt
- Center for Laboratory Medicine, Veterinary Diagnostic Services, Frohbergstrasse 3, 9001 St. Gallen, Switzerland;
| | - Marina L. Meli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Theres Meili
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Eva Bönzli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Benita Pineroli
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Julia Ginders
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| | - Angelika Schoster
- Clinic for Equine Internal Medicine, Equine Department, University of Zurich, 8057 Zurich, Switzerland;
| | - Sarah Jones
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK; (S.J.)
| | - Grace B. Tyson
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK; (S.J.)
- MRC-University of Glasgow, Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK;
| | - Margaret J. Hosie
- MRC-University of Glasgow, Centre for Virus Research, Bearsden Road, Glasgow G61 1QH, UK;
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (M.L.M.); (T.M.); (E.B.); (B.P.); (J.G.); (R.H.-L.)
| |
Collapse
|
72
|
Ose NJ, Campitelli P, Modi T, Can Kazan I, Kumar S, Banu Ozkan S. Some mechanistic underpinnings of molecular adaptations of SARS-COV-2 spike protein by integrating candidate adaptive polymorphisms with protein dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557827. [PMID: 37745560 PMCID: PMC10515954 DOI: 10.1101/2023.09.14.557827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 Spike (S) protein. With this approach, we first identified Candidate Adaptive Polymorphisms (CAPs) of the SARS-CoV-2 Spike protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.
Collapse
Affiliation(s)
- Nicholas J. Ose
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Paul Campitelli
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Tushar Modi
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - I. Can Kazan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Temple University, Philadelphia, Pennsylvania, United States of America
- Center for Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S. Banu Ozkan
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
73
|
Zhang J, Rissmann M, Kuiken T, Haagmans BL. Comparative Pathogenesis of Severe Acute Respiratory Syndrome Coronaviruses. ANNUAL REVIEW OF PATHOLOGY 2024; 19:423-451. [PMID: 37832946 DOI: 10.1146/annurev-pathol-052620-121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Over the last two decades the world has witnessed the global spread of two genetically related highly pathogenic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, the impact of these outbreaks differed significantly with respect to the hospitalizations and fatalities seen worldwide. While many studies have been performed recently on SARS-CoV-2, a comparative pathogenesis analysis with SARS-CoV may further provide critical insights into the mechanisms of disease that drive coronavirus-induced respiratory disease. In this review, we comprehensively describe clinical and experimental observations related to transmission and pathogenesis of SARS-CoV-2 in comparison with SARS-CoV, focusing on human, animal, and in vitro studies. By deciphering the similarities and disparities of SARS-CoV and SARS-CoV-2, in terms of transmission and pathogenesis mechanisms, we offer insights into the divergent characteristics of these two viruses. This information may also be relevant to assessing potential novel introductions of genetically related highly pathogenic coronaviruses.
Collapse
Affiliation(s)
- Jingshu Zhang
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Melanie Rissmann
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Thijs Kuiken
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| |
Collapse
|
74
|
Zhuang J, Yan Z, Zhou T, Li Y, Wang H. The role of receptors in the cross-species spread of coronaviruses infecting humans and pigs. Arch Virol 2024; 169:35. [PMID: 38265497 DOI: 10.1007/s00705-023-05956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/19/2023] [Indexed: 01/25/2024]
Abstract
The pandemic caused by SARS-CoV-2, which has proven capable of infecting over 30 animal species, highlights the critical need for understanding the mechanisms of cross-species transmission and the emergence of novel coronavirus strains. The recent discovery of CCoV-HuPn-2018, a recombinant alphacoronavirus from canines and felines that can infect humans, along with evidence of SARS-CoV-2 infection in pig cells, underscores the potential for coronaviruses to overcome species barriers. This review investigates the origins and cross-species transmission of both human and porcine coronaviruses, with a specific emphasis on the instrumental role receptors play in this process.
Collapse
Affiliation(s)
- Jie Zhuang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhiwei Yan
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Tiezhong Zhou
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Yonggang Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Huinuan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
75
|
Zhao Y, Li R, Liu Z, Zhou H, Yang J, Zhang S, Huang L, Liu GL, Zhang Q, Jin M. Rapid, Multispecies Detection of SARS-CoV-2 Antibodies via a Meta-Surface Plasmon Resonance Biosensor. Transbound Emerg Dis 2024; 2024:9350822. [PMID: 40303066 PMCID: PMC12016715 DOI: 10.1155/2024/9350822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 05/02/2025]
Abstract
Public health concerns have been raised by numerous reports of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and its variations infecting a range of animals. Wildlife reservoirs may facilitate the evolution of viral types capable of causing human infection in the future. Therefore, epidemiological monitoring of animals in close contact with humans is necessary. Yet, infection symptoms are not obvious in most animals, which leads to a short nucleic acid test-detection period and limits the application of this method in animals. The use of virus- and pseudovirus-based neutralizing antibody detection techniques is restricted to establishments with elevated biosafety standards. Traditional enzyme-linked immunosorbent assays (ELISA) do not offer multispecies detection and are time-consuming and labor-intensive. This work developed a polyethyleneimine-gold nanoparticle meta-surface plasmon resonance biosensor system-based multispecies SARS-CoV-2 antibody detection platform that is fast, sensitive, has a high throughput, and is fully automated. The test can be done in 30 min and specificity is up to 100% for detection in cats, dogs, and minks. Moreover, the coincidence rate was up to 99.36% (313/315) for the detection of pseudovirus in clinical and immune sera. Additionally, this method's detection sensitivity in cat, dog, and mink serum is 2,048, 1,024, and 4,096 times, which is much better than indirect ELISA and comparable to indirect immunofluorescence assays. An efficient method for COVID-19 epidemiology screening in animal serum will be made available by this platform.
Collapse
Affiliation(s)
- Ya Zhao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Li
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan 430074, China
| | - Zuqing Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanlin Zhou
- Liangzhun (Shanghai) Industrial Co. Ltd., 1582 Gu Mei Road, Shanghai 200233, China
| | - Jingyu Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaoran Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Huang
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan 430074, China
- Liangzhun (Shanghai) Industrial Co. Ltd., 1582 Gu Mei Road, Shanghai 200233, China
| | - Gang L Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan 430074, China
| | - Qiang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Meilin Jin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| |
Collapse
|
76
|
Li H, Zhao X, Peng S, Li Y, Li J, Zheng H, Zhang Y, Zhao Y, Tian Y, Yang J, Wang Y, Zhang X, Liu L. The Abundant Distribution and Duplication of SARS-CoV-2 in the Cerebrum and Lungs Promote a High Mortality Rate in Transgenic hACE2-C57 Mice. Int J Mol Sci 2024; 25:997. [PMID: 38256071 PMCID: PMC10815841 DOI: 10.3390/ijms25020997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Patients with COVID-19 have been reported to experience neurological complications, although the main cause of death in these patients was determined to be lung damage. Notably, SARS-CoV-2-induced pathological injuries in brains with a viral presence were also found in all fatal animal cases. Thus, an appropriate animal model that mimics severe infections in the lungs and brain needs to be developed. In this paper, we compared SARS-CoV-2 infection dynamics and pathological injuries between C57BL/6Smoc-Ace2em3(hACE2-flag-Wpre-pA)Smoc transgenic hACE2-C57 mice and Syrian hamsters. Importantly, the greatest viral distribution in mice occurred in the cerebral cortex neuron area, where pathological injuries and cell death were observed. In contrast, in hamsters, viral replication and distribution occurred mainly in the lungs but not in the cerebrum, although obvious ACE2 expression was validated in the cerebrum. Consistent with the spread of the virus, significant increases in IL-1β and IFN-γ were observed in the lungs of both animals. However, in hACE2-C57 mice, the cerebrum showed noticeable increases in IL-1β but only mild increases in IFN-γ. Notably, our findings revealed that both the cerebrum and the lungs were prominent infection sites in hACE2 mice infected with SARS-CoV-2 with obvious pathological damage. Furthermore, hamsters exhibited severe interstitial pneumonia from 3 dpi to 5 dpi, followed by gradual recovery. Conversely, all the hACE2-C57 mice experienced severe pathological injuries in the cerebrum and lungs, leading to mortality before 5 dpi. According to these results, transgenic hACE2-C57 mice may be valuable for studying SARS-CoV-2 pathogenesis and clearance in the cerebrum. Additionally, a hamster model could serve as a crucial resource for exploring the mechanisms of recovery from infection at different dosage levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (H.L.); (X.Z.); (S.P.); (Y.L.); (J.L.); (H.Z.); (Y.Z.); (Y.Z.); (Y.T.); (J.Y.); (Y.W.); (X.Z.)
| |
Collapse
|
77
|
Allio R, Delsuc F, Belkhir K, Douzery EJP, Ranwez V, Scornavacca C. OrthoMaM v12: a database of curated single-copy ortholog alignments and trees to study mammalian evolutionary genomics. Nucleic Acids Res 2024; 52:D529-D535. [PMID: 37843103 PMCID: PMC10767847 DOI: 10.1093/nar/gkad834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
To date, the databases built to gather information on gene orthology do not provide end-users with descriptors of the molecular evolution information and phylogenetic pattern of these orthologues. In this context, we developed OrthoMaM, a database of ORTHOlogous MAmmalian Markers describing the evolutionary dynamics of coding sequences in mammalian genomes. OrthoMaM version 12 includes 15,868 alignments of orthologous coding sequences (CDS) from the 190 complete mammalian genomes currently available. All annotations and 1-to-1 orthology assignments are based on NCBI. Orthologous CDS can be mined for potential informative markers at the different taxonomic levels of the mammalian tree. To this end, several evolutionary descriptors of DNA sequences are provided for querying purposes (e.g. base composition and relative substitution rate). The graphical web interface allows the user to easily browse and sort the results of combined queries. The corresponding multiple sequence alignments and ML trees, inferred using state-of-the art approaches, are available for download both at the nucleotide and amino acid levels. OrthoMaM v12 can be used by researchers interested either in reconstructing the phylogenetic relationships of mammalian taxa or in understanding the evolutionary dynamics of coding sequences in their genomes. OrthoMaM is available for browsing, querying and complete or filtered download at https://orthomam.mbb.cnrs.fr/.
Collapse
Affiliation(s)
- Rémi Allio
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ. Montpellier, Montpellier, 34988, France
- ISEM, Univ. Montpellier, CNRS, IRD, Montpellier, 34095, France
| | - Frédéric Delsuc
- ISEM, Univ. Montpellier, CNRS, IRD, Montpellier, 34095, France
| | - Khalid Belkhir
- ISEM, Univ. Montpellier, CNRS, IRD, Montpellier, 34095, France
| | | | - Vincent Ranwez
- AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34398, France
| | | |
Collapse
|
78
|
Khalil AM, Martinez-Sobrido L, Mostafa A. Zoonosis and zooanthroponosis of emerging respiratory viruses. Front Cell Infect Microbiol 2024; 13:1232772. [PMID: 38249300 PMCID: PMC10796657 DOI: 10.3389/fcimb.2023.1232772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Lung infections in Influenza-Like Illness (ILI) are triggered by a variety of respiratory viruses. All human pandemics have been caused by the members of two major virus families, namely Orthomyxoviridae (influenza A viruses (IAVs); subtypes H1N1, H2N2, and H3N2) and Coronaviridae (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2). These viruses acquired some adaptive changes in a known intermediate host including domestic birds (IAVs) or unknown intermediate host (SARS-CoV-2) following transmission from their natural reservoirs (e.g. migratory birds or bats, respectively). Verily, these acquired adaptive substitutions facilitated crossing species barriers by these viruses to infect humans in a phenomenon that is known as zoonosis. Besides, these adaptive substitutions aided the variant strain to transmit horizontally to other contact non-human animal species including pets and wild animals (zooanthroponosis). Herein we discuss the main zoonotic and reverse-zoonosis events that occurred during the last two pandemics of influenza A/H1N1 and SARS-CoV-2. We also highlight the impact of interspecies transmission of these pandemic viruses on virus evolution and possible prophylactic and therapeutic interventions. Based on information available and presented in this review article, it is important to close monitoring viral zoonosis and viral reverse zoonosis of pandemic strains within a One-Health and One-World approach to mitigate their unforeseen risks, such as virus evolution and resistance to limited prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Magdy Khalil
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ahmed Mostafa
- Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
- Center of Scientific Excellence for Influenza Viruses, Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
79
|
Biskupek I, Gieldon A. Two-Stage Recognition Mechanism of the SARS-CoV-2 Receptor-Binding Domain to Angiotensin-Converting Enzyme-2 (ACE2). Int J Mol Sci 2024; 25:679. [PMID: 38203850 PMCID: PMC10779479 DOI: 10.3390/ijms25010679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The SARS-CoV-2 virus, commonly known as COVID-19, occurred in 2019. It is a highly contagious illness with effects ranging from mild symptoms to severe illness. It is also one of the best-known pathogens since more than 200,000 scientific papers occurred in the last few years. With the publication of the SARS-CoV-2 (SARS-CoV-2-CTD) spike (S) protein in a complex with human ACE2 (hACE2) (PDB (6LZG)), the molecular analysis of one of the most crucial steps on the infection pathway was possible. The aim of this manuscript is to simulate the most widely spread mutants of SARS-CoV-2, namely Alpha, Beta, Gamma, Delta, Omicron, and the first recognized variant (natural wild type). With the wide search of the hypersurface of the potential energy performed using the UNRES force field, the intermediate state of the ACE2-RBD complex was found. R403, K/N/T417, L455, F486, Y489, F495, Y501, and Y505 played a crucial role in the protein recognition mechanism. The intermediate state cannot be very stable since it will prevent the infection cascade.
Collapse
Affiliation(s)
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland;
| |
Collapse
|
80
|
Essaidi-Laziosi M, Pérez-Rodríguez FJ, Alvarez C, Sattonnet-Roche P, Torriani G, Bekliz M, Adea K, Lenk M, Suliman T, Preiser W, Müller MA, Drosten C, Kaiser L, Eckerle I. Distinct phenotype of SARS-CoV-2 Omicron BA.1 in human primary cells but no increased host range in cell lines of putative mammalian reservoir species. Virus Res 2024; 339:199255. [PMID: 38389324 PMCID: PMC10652112 DOI: 10.1016/j.virusres.2023.199255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 02/24/2024]
Abstract
SARS-CoV-2's genetic plasticity has led to several variants of concern (VOCs). Here we studied replicative capacity for seven SARS-CoV-2 isolates (B.1, Alpha, Beta, Gamma, Delta, Zeta, and Omicron BA.1) in primary reconstituted airway epithelia (HAE) and lung-derived cell lines. Furthermore, to investigate the host range of Delta and Omicron compared to ancestral SARS-CoV-2, we assessed replication in 17 cell lines from 11 non-primate mammalian species, including bats, rodents, insectivores and carnivores. Only Omicron's phenotype differed in vitro, with rapid but short replication and efficient production of infectious virus in nasal HAEs, in contrast to other VOCs, but not in lung cell lines. No increased infection efficiency for other species was observed, but Delta and Omicron infection efficiency was increased in A549 cells. Notably replication in A549 and Calu3 cells was lower than in nasal HAE. Our results suggest better adaptation of VOCs towards humans, without an extended host range, and may be relevant to the search for the putative intermediate host and reservoirs prior to the pandemic.
Collapse
Affiliation(s)
- Manel Essaidi-Laziosi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Francisco J Pérez-Rodríguez
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Catia Alvarez
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Pascale Sattonnet-Roche
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Giulia Torriani
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Meriem Bekliz
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Kenneth Adea
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland
| | - Matthias Lenk
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Tasnim Suliman
- Department of Medical Biosciences, University of the Western Cape, Cape Town, South Africa
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Medical Virology, Tygerberg Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Marcel A Müller
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Drosten
- Institute of Virology Charité, - Universitätsmedizin Berlin, Berlin, Germany
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva & Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Isabella Eckerle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, University Hospitals Geneva, and University of Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland.
| |
Collapse
|
81
|
Zhao J, Kang M, Wu H, Sun B, Baele G, He WT, Lu M, Suchard MA, Ji X, He N, Su S, Veit M. Risk assessment of SARS-CoV-2 replicating and evolving in animals. Trends Microbiol 2024; 32:79-92. [PMID: 37541811 DOI: 10.1016/j.tim.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The retransmissions of SARS-CoV-2 from several mammals - primarily mink and white-tailed deer - to humans have raised concerns for the emergence of a new animal-derived SARS-CoV-2 variant to worsen the pandemic. Here, we discuss animal species that are susceptible to natural or experimental infection with SARS-CoV-2 and can transmit the virus to mates or humans. We describe cutting-edge techniques to assess the impact of a mutation in the viral spike (S) protein on its receptor and on antibody binding. Our review of spike sequences of animal-derived viruses identified nine unique amino acid exchanges in the receptor-binding domain (RBD) that are not present in any variant of concern (VOC). These mutations are present in SARS-CoV-2 found in companion animals such as dogs and cats, and they exhibit a higher frequency in SARS-CoV-2 found in mink and white-tailed deer, suggesting that sustained transmissions may contribute to maintaining novel mutations. Four of these exchanges, such as Leu452Met, could undermine acquired immune protection in humans while maintaining high affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor. Finally, we discuss important avenues of future research into animal-derived viruses with public health risks.
Collapse
Affiliation(s)
- Jin Zhao
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Mei Kang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Clinical Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyan Wu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Bowen Sun
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Guy Baele
- Department of Microbiology, Immunology, and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Wan-Ting He
- School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Meng Lu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA; Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | - Na He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Shuo Su
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin, Germany.
| |
Collapse
|
82
|
Anderson TK, Medina RA, Nelson MI. The Evolution of SARS-CoV-2 and Influenza A Virus at the Human–Animal Interface. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2024:549-572. [DOI: 10.1016/b978-0-443-28818-0.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
83
|
Earnest R, Hahn AM, Feriancek NM, Brandt M, Filler RB, Zhao Z, Breban MI, Vogels CBF, Chen NFG, Koch RT, Porzucek AJ, Sodeinde A, Garbiel A, Keanna C, Litwak H, Stuber HR, Cantoni JL, Pitzer VE, Olarte Castillo XA, Goodman LB, Wilen CB, Linske MA, Williams SC, Grubaugh ND. Survey of white-footed mice (Peromyscus leucopus) in Connecticut, USA reveals low SARS-CoV-2 seroprevalence and infection with divergent betacoronaviruses. NPJ VIRUSES 2023; 1:10. [PMID: 40295640 PMCID: PMC11721133 DOI: 10.1038/s44298-023-00010-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 04/30/2025]
Abstract
Diverse mammalian species display susceptibility to SARS-CoV-2. Potential SARS-CoV-2 spillback into rodents is understudied despite their host role for numerous zoonoses and human proximity. We assessed exposure and infection among white-footed mice (Peromyscus leucopus) in Connecticut, USA. We observed 1% (6/540) wild-type neutralizing antibody seroprevalence among 2020-2022 residential mice with no cross-neutralization of variants. We detected no SARS-CoV-2 infections via RT-qPCR, but identified non-SARS-CoV-2 betacoronavirus infections via pan-coronavirus PCR among 1% (5/468) of residential mice. Sequencing revealed two divergent betacoronaviruses, preliminarily named Peromyscus coronavirus-1 and -2. Both belong to the Betacoronavirus 1 species and are ~90% identical to the closest known relative, Porcine hemagglutinating encephalomyelitis virus. In addition, to provide a comparison, we also screened a species with significant SARS-CoV-2 infection and exposure across North America: the white-tailed deer (Odocoileus virginianus). We detected no active coronavirus infections and 7% (4/55) wild-type SARS-CoV-2 neutralizing antibody seroprevalence. Low SARS-CoV-2 seroprevalence suggests white-footed mice may not be sufficiently susceptible or exposed to SARS-CoV-2 to present a long-term human health risk. However, the discovery of divergent, non-SARS-CoV-2 betacoronaviruses expands the diversity of known rodent coronaviruses and further investigation is required to understand their transmission extent.
Collapse
Affiliation(s)
- Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA.
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Nicole M Feriancek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Zhe Zhao
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Nicholas F G Chen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Abbey J Porzucek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Alexa Garbiel
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Claire Keanna
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Hannah Litwak
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Heidi R Stuber
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Jamie L Cantoni
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Ximena A Olarte Castillo
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Laura B Goodman
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Megan A Linske
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Scott C Williams
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
84
|
Saturday T, van Doremalen N. Pathogenesis of severe acute respiratory syndrome coronavirus-2 in nonhuman primates. Curr Opin Virol 2023; 63:101375. [PMID: 37826865 DOI: 10.1016/j.coviro.2023.101375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
The continued pressure of COVID-19 on public health worldwide underlines the need for a better understanding of the mechanisms of disease caused by severe acute respiratory syndrome coronavirus-2. Though many animal models are readily available for use, the nonhuman primate (NHP) models are considered the gold standard in recapitulating disease progression in humans. In this review, we highlight the relevant research since the beginning of the pandemic to critically evaluate the importance of this model. We characterize the disease's clinical manifestations, aspects of viral replication and shedding, induction of the host's immune response, and pathological findings that broaden our understanding of the importance of NHPs in research to strengthen our public health approach to the pandemic.
Collapse
Affiliation(s)
- Taylor Saturday
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
85
|
Stone HM, Unal E, Romano TA, Turner PE. Beluga whale and bottlenose dolphin ACE2 proteins allow cell entry mediated by spike protein from three variants of SARS-CoV-2. Biol Lett 2023; 19:20230321. [PMID: 38053365 PMCID: PMC10698476 DOI: 10.1098/rsbl.2023.0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses infect numerous non-human species. Spillover of SARS-CoV-2 into novel animal reservoirs may present a danger to host individuals of these species, particularly worrisome in populations already endangered or threatened by extinction. In addition, emergence in new reservoirs could pose spillback threats to humans, especially in the form of virus variants that further mutate when infecting other animal hosts. Previous work suggests beluga whales (Delphinapterus leucas) and bottlenose dolphins (Tursiops truncatus) may be at risk owing to their formation of social groups, contact with humans, exposure to contaminated wastewater, and structure of their angiotensin-converting enzyme 2 (ACE2) proteins, which SARS-CoV-2 uses as a cellular receptor. We examined marine-mammal susceptibility to virus infection by challenging 293T cells expressing beluga or dolphin ACE2 with pseudovirions bearing the SARS-CoV-2 spike protein. Beluga and dolphin ACE2 were sufficient to allow cell entry by an early pandemic isolate (Wuhan-Hu-1) and two evolved variants (Delta B.1.617.2 and Omicron BA.1 strains). We conclude that SARS-CoV-2 poses a potential threat to marine mammal reservoirs that should be considered in surveillance efforts.
Collapse
Affiliation(s)
- H. M. Stone
- Graduate Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - E. Unal
- Sea Research Foundation, Inc. d/b/a Mystic Aquarium, Mystic, CT 06355, USA
- Department of Marine Sciences, University of Connecticut Avery Point Campus, Groton, CT 06340, USA
| | - T. A. Romano
- Sea Research Foundation, Inc. d/b/a Mystic Aquarium, Mystic, CT 06355, USA
- Department of Marine Sciences, University of Connecticut Avery Point Campus, Groton, CT 06340, USA
| | - P. E. Turner
- Graduate Program in Microbiology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
86
|
Fernández-Bastit L, Vergara-Alert J, Segalés J. Transmission of severe acute respiratory syndrome coronavirus 2 from humans to animals: is there a risk of novel reservoirs? Curr Opin Virol 2023; 63:101365. [PMID: 37793299 DOI: 10.1016/j.coviro.2023.101365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a zoonotic virus able to infect humans and multiple nonhuman animal species. Most natural infections in companion, captive zoo, livestock, and wildlife species have been related to a reverse transmission, raising concern about potential generation of animal reservoirs due to human-animal interactions. To date, American mink and white-tailed deer are the only species that led to extensive intraspecies transmission of SARS-CoV-2 after reverse zoonosis, leading to an efficient spread of the virus and subsequent animal-to-human transmission. Viral host adaptations increase the probability of new SARS-CoV-2 variants' emergence that could cause a major global health impact. Therefore, applying the One Health approach is crucial to prevent and overcome future threats for human, animal, and environmental fields.
Collapse
Affiliation(s)
- Leira Fernández-Bastit
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain; IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Catalonia, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain.
| |
Collapse
|
87
|
Zhao R, Niu S, Han P, Gao Y, Liu D, Luo C, Liu H, Liu B, Xu Y, Qi J, Chen Z, Shi W, Wu L, Gao GF, Wang Q. Cross-species recognition of bat coronavirus RsYN04 and cross-reaction of SARS-CoV-2 antibodies against the virus. Zool Res 2023; 44:1015-1025. [PMID: 37804113 PMCID: PMC10802104 DOI: 10.24272/j.issn.2095-8137.2023.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Following the outbreak of coronavirus disease 2019 (COVID-19), several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related coronaviruses have been discovered. Previous research has identified a novel lineage of SARS-CoV-2-related CoVs in bats, including RsYN04, which recognizes human angiotensin-converting enzyme 2 (ACE2) and thus poses a potential threat to humans. Here, we screened the binding of the RsYN04 receptor-binding domain (RBD) to ACE2 orthologs from 52 animal species and found that the virus showed a narrower ACE2-binding spectrum than SARS-CoV-2. However, the presence of the T484W mutation in the RsYN04 RBD broadened its range. We also evaluated 44 SARS-CoV-2 antibodies targeting seven epitope communities in the SARS-CoV-2 RBD, together with serum obtained from COVID-19 convalescents and vaccinees, to determine their cross-reaction against RsYN04. Results showed that no antibodies, except for the RBD-6 and RBD-7 classes, bound to the RsYN04 RBD, indicating substantial immune differences from SARS-CoV-2. Furthermore, the structure of the RsYN04 RBD in complex with cross-reactive antibody S43 in RBD-7 revealed a potently broad epitope for the development of therapeutics and vaccines. Our findings suggest RsYN04 and other viruses belonging to the same clade have the potential to infect several species, including humans, highlighting the necessity for viral surveillance and development of broad anti-coronavirus countermeasures.
Collapse
Affiliation(s)
- Runchu Zhao
- Institute of Physical Science and Information, Anhui University, Hefei, Anhui 230039, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yue Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Dezhi Liu
- Institute of Physical Science and Information, Anhui University, Hefei, Anhui 230039, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunliang Luo
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Honghui Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Yanli Xu
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihai Chen
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, China
| | - Lili Wu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. E-mail:
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qihui Wang
- Institute of Physical Science and Information, Anhui University, Hefei, Anhui 230039, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China. E-mail:
| |
Collapse
|
88
|
Song A, Phandthong R, Talbot P. Endocytosis inhibitors block SARS-CoV-2 pseudoparticle infection of mink lung epithelium. Front Microbiol 2023; 14:1258975. [PMID: 38033586 PMCID: PMC10682793 DOI: 10.3389/fmicb.2023.1258975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Both spill over and spill back of SARS-CoV-2 virus have been reported on mink farms in Europe and the United States. Zoonosis is a public health concern as dangerous mutated forms of the virus could be introduced into the human population through spillback. Methods The purpose of our study was to determine the SARS-CoV-2 entry mechanism using the mink lung epithelial cell line (Mv1Lu) and to block entry with drug inhibitors. Results Mv1Lu cells were susceptible to SARS-CoV-2 viral pseudoparticle infection, validating them as a suitable disease model for COVID-19. Inhibitors of TMPRSS2 and of endocytosis, two pathways of viral entry, were tested to identify those that blocked infection. TMPRSS2 inhibitors had minimal impact, which can be explained by the apparent lack of activity of this enzyme in the mink and its localization within the cell, not on the cell surface. Discussion Dyngo4a, a small molecule endocytosis inhibitor, significantly reduced infection, supporting the conclusion that the entry of the SARS-CoV-2 virus into Mv1Lu cells occurs primarily through endocytosis. The small molecule inhibitors that were effective in this study could potentially be used therapeutically to prevent SARS-CoV-2 infection in mink populations. This study will facilitate the development of therapeutics to prevent zoonotic transmission of SARS-CoV-2 variants to other animals, including humans.
Collapse
Affiliation(s)
- Ann Song
- Cell, Molecular, and Developmental Biology Graduate Program, University of California, Riverside, Riverside, CA, United States
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
89
|
Jack KM, Kulick NK. Primate field research during a pandemic: Lessons learned from the SARS-CoV-2 outbreak. Am J Primatol 2023; 85:e23551. [PMID: 37706674 DOI: 10.1002/ajp.23551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
The COVID-19 pandemic abruptly halted most primate field research in early 2020. While international travel bans and regional travel restrictions made continuing primate field research impossible early on in the pandemic, ethical concerns of transmitting the virus from researchers to primates and surrounding human communities informed decisions regarding the timing of resuming research. Between June and September 2020, we surveyed field primatologists regarding the impacts of the pandemic on their research. We received 90 completed surveys from respondents residing in 21 countries, though most were from the United States and Canada. These data provide a valuable window into the perspectives and actions taken by researchers during the early stages of the pandemic as events were still unfolding. Only 2.4% of projects reported continuing research as usual, 33.7% continued with some decrease in productivity, 42.2% reported postponing research projects, and 21.7% reported canceling projects or postponing research indefinitely. Respondents most severely impacted by the pandemic were those establishing new field sites and graduate students whose projects were postponed or canceled due to pandemic-related shutdowns. Fears about increased poaching, the inability to pay local assistants, frozen research funds, declining habituation, disruptions to data collection, and delays in student projects were among the top concerns of respondents. Nearly all the projects able to continue research in any capacity during the early months of the pandemic were run by or employed primate habitat country primatologists. This finding is a major lesson learned from the pandemic; without habitat country scientists, primate research is not sustainable.
Collapse
Affiliation(s)
- Katharine M Jack
- Department of Anthropology, Tulane University, New Orleans, Louisiana, USA
| | - Nelle K Kulick
- Department of Anthropology, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
90
|
Chen Y, Zhao S, Xu Y, Cai M, Zhang G. SARS-CoV-2 transmission via maritime cold chains: A statistical analysis of nucleic acid detection results of cold chain food imported from Fuzhou ports. Heliyon 2023; 9:e21954. [PMID: 38034616 PMCID: PMC10685251 DOI: 10.1016/j.heliyon.2023.e21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Numerous epidemic outbreaks related to cold chains have occurred since the coronavirus disease 2019 (COVID-19) outbreak, suggesting the potential danger of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission through cold chain foods (CCFs). By analyzing SARS-CoV-2 RNA contamination of CCFs imported from Fuzhou ports, this study evaluated the contamination and transmission of SARS-CoV-2 RNA via maritime cold chains, with the aim of provide suggestions for CCFs supervision and public health management. The statistical analysis included 131,385 samples. The majority of the CCFs imported into Fuzhou ports was aquatic raw food that originated in Southeast Asia (57.08 %), South America (19.87 %), and South Asia (11.22 %). South Asia had the highest positivity rate of 0.37 %, followed by Southeast Asia (0.21 %) and South America (0.08 %). The positivity rate showed that the outer packaging of CCFs was the most easily contaminated, accounting for 81.33 % of all positive samples. This suggested that CCFs storage and loading processes were the weak links vulnerable to SARS-CoV-2 contamination. The positivity rates in outer packaging, inner packaging, and content of raw food were 0.48 %, 0.08 %, and 0.05 %, respectively, which were obviously higher than those of processed and refined food. This indicated that increasing the mechanization of factories and implementing sensible worker management practices may decrease viral contamination. The monthly positivity rates varied widely from 0 % (March 2021) to 0.40 % (January 2021), with an average of 0.19 %. The positivity rates in outer packaging, inner packaging and content of crustaceans from Southeast Asia were 2.47 %, 0.41 %, and 0.69 %, which were approximately 5-14 times higher than those of fish and cephalopods. Meanwhile, the monthly detection number show that SARS-CoV-2 epidemic prevention strategies affected the trade of imported CCFs.
Collapse
Affiliation(s)
- Yuxiang Chen
- Fujian CapitalBio Medical Laboratory, Fuzhou, 350108, China
| | - Shuai Zhao
- Department of Breast Surgery, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Yiyuan Xu
- Fujian CapitalBio Medical Laboratory, Fuzhou, 350108, China
| | - Mingzhi Cai
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, China
| | - Guanbin Zhang
- Fujian CapitalBio Medical Laboratory, Fuzhou, 350108, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
91
|
Mabry ME, Fanelli A, Mavian C, Lorusso A, Manes C, Soltis PS, Capua I. The panzootic potential of SARS-CoV-2. Bioscience 2023; 73:814-829. [PMID: 38125826 PMCID: PMC10728779 DOI: 10.1093/biosci/biad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
Each year, SARS-CoV-2 is infecting an increasingly unprecedented number of species. In the present article, we combine mammalian phylogeny with the genetic characteristics of isolates found in mammals to elaborate on the host-range potential of SARS-CoV-2. Infections in nonhuman mammals mirror those of contemporary viral strains circulating in humans, although, in certain species, extensive viral circulation has led to unique genetic signatures. As in other recent studies, we found that the conservation of the ACE2 receptor cannot be considered the sole major determinant of susceptibility. However, we are able to identify major clades and families as candidates for increased surveillance. On the basis of our findings, we argue that the use of the term panzootic could be a more appropriate term than pandemic to describe the ongoing scenario. This term better captures the magnitude of the SARS-CoV-2 host range and would hopefully inspire inclusive policy actions, including systematic screenings, that could better support the management of this worldwide event.
Collapse
Affiliation(s)
- Makenzie E Mabry
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| | - Angela Fanelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Carla Mavian
- Emerging Pathogens Institute and with the Department of Pathology, University of Florida, Gainesville, Florida, United States
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Costanza Manes
- Department of Wildlife Ecology and Conservation and with the One Health Center of Excellence, University of Florida, Gainesville, Florida, United States
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States
| | - Ilaria Capua
- One Health Center of Excellence, University of Florida, Gainesville, Florida, United States
- School of International Advanced Studies, Johns Hopkins University, Bologna, Italy
| |
Collapse
|
92
|
Gilliland T, Dunn M, Liu Y, Alcorn MD, Terada Y, Vasilatos S, Lundy J, Li R, Nambulli S, Larson D, Duprex P, Wu H, Luke T, Bausch C, Egland K, Sullivan E, Wang Z, Klimstra WB. Transchromosomic bovine-derived anti-SARS-CoV-2 polyclonal human antibodies protects hACE2 transgenic hamsters against multiple variants. iScience 2023; 26:107764. [PMID: 37736038 PMCID: PMC10509298 DOI: 10.1016/j.isci.2023.107764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust in vitro neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT50 and PRNT80 neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation.
Collapse
Affiliation(s)
- Theron Gilliland
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Matthew Dunn
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yanan Liu
- Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA
| | - Maria D.H. Alcorn
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yutaka Terada
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shauna Vasilatos
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jeneveve Lundy
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rong Li
- Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA
| | - Sham Nambulli
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Deanna Larson
- Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA
| | - Paul Duprex
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hua Wu
- SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA
| | - Thomas Luke
- SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA
| | | | - Kristi Egland
- SAb Biotherapeutics, Inc, Sioux Falls, SD 57104, USA
| | | | - Zhongde Wang
- Department of Animal Dairy, Veterinary Sciences, Utah State University, Logan, UT 84341, USA
| | - William B. Klimstra
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
93
|
Gamble A, Olarte-Castillo XA, Whittaker GR. Backyard zoonoses: The roles of companion animals and peri-domestic wildlife. Sci Transl Med 2023; 15:eadj0037. [PMID: 37851821 DOI: 10.1126/scitranslmed.adj0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
The spillover of human infectious diseases from animal reservoirs is now well appreciated. However, societal and climate-related changes are affecting the dynamics of such interfaces. In addition to the disruption of traditional wildlife habitats, in part because of climate change and human demographics and behavior, there is an increasing zoonotic disease risk from companion animals. This includes such factors as the awareness of animals kept as domestic pets and increasing populations of free-ranging animals in peri-domestic environments. This review presents background and commentary focusing on companion and peri-domestic animals as disease risk for humans, taking into account the human-animal interface and population dynamics between the animals themselves.
Collapse
Affiliation(s)
- Amandine Gamble
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, UK
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ximena A Olarte-Castillo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gary R Whittaker
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
- Atkinson Center for Sustainability, Cornell University, Ithaca, NY, USA
| |
Collapse
|
94
|
Nooruzzaman M, Diel DG. Infection Dynamics, Pathogenesis, and Immunity to SARS-CoV-2 in Naturally Susceptible Animal Species. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1195-1201. [PMID: 37782853 PMCID: PMC10558081 DOI: 10.4049/jimmunol.2300378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 10/04/2023]
Abstract
SARS-CoV-2, the causative agent of the COVID-19 pandemic, presents a broad host range. Domestic cats and white-tailed deer (WTD) are particularly susceptible to SARS-CoV-2 with multiple variant strains being associated with infections in these species. The virus replicates in the upper respiratory tract and in associated lymphoid tissues, and it is shed through oral and nasal secretions, which leads to efficient transmission of the virus to contact animals. Robust cell-mediated and humoral immune responses are induced upon infection in domestic cats, which curb the progression of clinical disease and are associated with control of infection. In WTD, high levels of neutralizing Abs are detected early upon infection. In this review, the current understanding of the infection dynamics, pathogenesis, and immune responses to SARS-CoV-2 infection in animals, with special focus on naturally susceptible felids and WTD, are discussed.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States of America
| |
Collapse
|
95
|
Klein C, Michelitsch A, Allendorf V, Conraths FJ, Beer M, Denzin N, Wernike K. Dogs and Cats Are Less Susceptible to the Omicron Variant of Concern of SARS-CoV-2: A Field Study in Germany, 2021/2022. Transbound Emerg Dis 2023; 2023:1868732. [PMID: 40303725 PMCID: PMC12017219 DOI: 10.1155/2023/1868732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic of unprecedented extent. Besides humans, a number of animal species can be infected; however, in some species, differing susceptibilities were observed depending on the virus variant. Here, we serologically investigated cats and dogs living in households with human COVID-19 patients. The study was conducted during the transition period from delta as the dominating variant of concern (VOC) to omicron (BA.1/BA.2) to investigate the frequency of virus transmission of both VOCs from infected owners to their pets. The animal sera were tested by surrogate virus neutralization tests (sVNT) using either the original receptor-binding domain (RBD), enabling the detection of antibodies against the delta variant, or an omicron-specific RBD. Of the 290 canine samples, 20 tested positive by sVNT, but there were marked differences between the sampling time and, related thereto, the virus variants the dogs had contact to. While in November 2021, infected owners led to 50% seropositive dogs (18/36), only 0.8% (2/254) of animals with household contacts to SARS-CoV-2 between December 2021 and April 2022 tested positive. In all cases, the positive reaction was recorded against the original RBD. For cats, a similar pattern was seen, as in November 2021, 38.1% (16/42) tested positive, and between December 2021 and March 2022, only 5.0% (10/199). The markedly reduced ratio of seropositive animals during the period of omicron circulation suggests a considerably lower susceptibility of dogs and cats to this VOC. To examine the effect of further omicron subvariants, sera taken in the second and third quarter of 2022 from randomly selected cats were investigated. 2.3% (11/372) tested seropositive, and all of them showed a stronger reaction against the original RBD, further supporting the assumption of a lower susceptibility of companion animals to the omicron VOC.
Collapse
Affiliation(s)
| | | | | | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Nicolai Denzin
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
96
|
Dickey T, Junqueira H. COVID-19 scent dog research highlights and synthesis during the pandemic of December 2019-April 2023. J Osteopath Med 2023; 123:509-521. [PMID: 37452676 DOI: 10.1515/jom-2023-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
CONTEXT This review was undertaken to provide information concerning the advancement of research in the area of COVID-19 screening and testing during the worldwide pandemic from December 2019 through April 2023. In this review, we have examined the safety, effectiveness, and practicality of utilizing trained scent dogs in clinical and public situations for COVID-19 screening. Specifically, results of 29 trained scent dog screening peer-reviewed studies were compared with results of real-time reverse-transcription polymerase chain reaction (RT-PCR) and rapid antigen (RAG) COVID-19 testing methods. OBJECTIVES The review aims to systematically evaluate the strengths and weaknesses of utilizing trained scent dogs in COVID-19 screening. METHODS At the time of submission of our earlier review paper in August 2021, we found only four peer-reviewed COVID-19 scent dog papers: three clinical research studies and one preprint perspective paper. In March and April 2023, the first author conducted new literature searches of the MEDLINE/PubMed, Google Scholar, and Cochrane Library websites. Again, the keyword phrases utilized for the searches included "COVID detection dogs," "COVID scent dogs," and "COVID sniffer dogs." The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 Checklist was followed to ensure that our review adhered to evidence-based guidelines for reporting. Utilizing the results of the reviewed papers, we compiled statistics to intercompare and summarize basic information concerning the scent dogs and their training, the populations of the study participants, the types of sampling methods, the comparative tests utilized, and the effectiveness of the scent dog screening. RESULTS A total of 8,043 references were identified through our literature search. After removal of duplicates, there were 7,843 references that were screened. Of these, 100 were considered for full-text eligibility, 43 were included for qualitative synthesis, and 29 were utilized for quantitative analysis. The most relevant peer-reviewed COVID-19 scent dog references were identified and categorized. Utilizing all of the scent dog results provided for this review, we found that 92.3 % of the studies reached sensitivities exceeding 80 and 32.0 % of the studies exceeding specificities of 97 %. However, 84.0 % of the studies reported specificities above 90 %. Highlights demonstrating the effectiveness of the scent dogs include: (1) samples of breath, saliva, trachea-bronchial secretions and urine as well as face masks and articles of clothing can be utilized; (2) trained COVID-19 scent dogs can detect presymptomatic and asymptomatic patients; (3) scent dogs can detect new SARS-CoV-2 variants and Long COVID-19; and (4) scent dogs can differentiate SARS-CoV-2 infections from infections with other novel respiratory viruses. CONCLUSIONS The effectiveness of the trained scent dog method is comparable to or in some cases superior to the real-time RT-PCR test and the RAG test. Trained scent dogs can be effectively utilized to provide quick (seconds to minutes), nonintrusive, and accurate results in public settings and thus reduce the spread of the COVID-19 virus or other viruses. Finally, scent dog research as described in this paper can serve to increase the medical community's and public's knowledge and acceptance of medical scent dogs as major contributors to global efforts to fight diseases.
Collapse
Affiliation(s)
- Tommy Dickey
- Distinguished Professor Emeritus, Geography Department, University of California Santa Barbara, Santa Barbara, CA, USA
| | | |
Collapse
|
97
|
Han P, Meng Y, Zhang D, Xu Z, Li Z, Pan X, Zhao Z, Li L, Tang L, Qi J, Liu K, Gao GF. Structural basis of white-tailed deer, Odocoileus virginianus, ACE2 recognizing all the SARS-CoV-2 variants of concern with high affinity. J Virol 2023; 97:e0050523. [PMID: 37676003 PMCID: PMC10537675 DOI: 10.1128/jvi.00505-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/01/2023] [Indexed: 09/08/2023] Open
Abstract
SARS-CoV-2 has been expanding its host range, among which the white-tailed deer (WTD), Odocoileus virginianus, became the first wildlife species infected on a large scale and might serve as a host reservoir for variants of concern (VOCs) in case no longer circulating in humans. In this study, we comprehensively assessed the binding of the WTD angiotensin-converting enzyme 2 (ACE2) receptor to the spike (S) receptor-binding domains (RBDs) from the SARS-CoV-2 prototype (PT) strain and multiple variants. We found that WTD ACE2 could be broadly recognized by all of the tested RBDs. We further determined the complex structures of WTD ACE2 with PT, Omicron BA.1, and BA.4/5 S trimer. Detailed structural comparison revealed the important roles of RBD residues on 486, 498, and 501 sites for WTD ACE2 binding. This study deepens our understanding of the interspecies transmission mechanisms of SARS-CoV-2 and further addresses the importance of constant monitoring on SARS-CoV-2 infections in wild animals. IMPORTANCE Even if we manage to eliminate the virus among humans, it will still circulate among wildlife and continuously be transmitted back to humans. A recent study indicated that WTD may serve as reservoir for nearly extinct SARS-CoV-2 strains. Therefore, it is critical to evaluate the binding abilities of SARS-CoV-2 variants to the WTD ACE2 receptor and elucidate the molecular mechanisms of binding of the RBDs to assess the risk of spillback events.
Collapse
Affiliation(s)
- Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
| | - Yumin Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Di Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Zhiyuan Li
- College of Veterinary Medicine, China Agricultural University , Beijing, China
| | - Xiaoqian Pan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
| | - Linjie Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
| | - Lingfeng Tang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Beijing Life Science Academy , Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
98
|
Earnest R, Hahn AM, Feriancek NM, Brandt M, Filler RB, Zhao Z, Breban MI, Vogels CBF, Chen NFG, Koch RT, Porzucek AJ, Sodeinde A, Garbiel A, Keanna C, Litwak H, Stuber HR, Cantoni JL, Pitzer VE, Olarte Castillo XA, Goodman LB, Wilen CB, Linske MA, Williams SC, Grubaugh ND. Survey of white-footed mice in Connecticut, USA reveals low SARS-CoV-2 seroprevalence and infection with divergent betacoronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559030. [PMID: 37808797 PMCID: PMC10557615 DOI: 10.1101/2023.09.22.559030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Diverse mammalian species display susceptibility to and infection with SARS-CoV-2. Potential SARS-CoV-2 spillback into rodents is understudied despite their host role for numerous zoonoses and human proximity. We assessed exposure and infection among white-footed mice (Peromyscus leucopus) in Connecticut, USA. We observed 1% (6/540) wild-type neutralizing antibody seroprevalence among 2020-2022 residential mice with no cross-neutralization of variants. We detected no SARS-CoV-2 infections via RT-qPCR, but identified non-SARS-CoV-2 betacoronavirus infections via pan-coronavirus PCR among 1% (5/468) of residential mice. Sequencing revealed two divergent betacoronaviruses, preliminarily named Peromyscus coronavirus-1 and -2. Both belong to the Betacoronavirus 1 species and are ~90% identical to the closest known relative, Porcine hemagglutinating encephalomyelitis virus. Low SARS-CoV-2 seroprevalence suggests white-footed mice may not be sufficiently susceptible or exposed to SARS-CoV-2 to present a long-term human health risk. However, the discovery of divergent, non-SARS-CoV-2 betacoronaviruses expands the diversity of known rodent coronaviruses and further investigation is required to understand their transmission extent.
Collapse
Affiliation(s)
- Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Anne M Hahn
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nicole M Feriancek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zhe Zhao
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Nicholas F G Chen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Abbey J Porzucek
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Alexa Garbiel
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Claire Keanna
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Hannah Litwak
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Heidi R Stuber
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Jamie L Cantoni
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ximena A Olarte Castillo
- Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853
| | - Laura B Goodman
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14853
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Megan A Linske
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Scott C Williams
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
99
|
Bornstein K, Gryan G, Chang ES, Marchler-Bauer A, Schneider VA. The NIH Comparative Genomics Resource: addressing the promises and challenges of comparative genomics on human health. BMC Genomics 2023; 24:575. [PMID: 37759191 PMCID: PMC10523801 DOI: 10.1186/s12864-023-09643-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Comparative genomics is the comparison of genetic information within and across organisms to understand the evolution, structure, and function of genes, proteins, and non-coding regions (Sivashankari and Shanmughavel, Bioinformation 1:376-8, 2007). Advances in sequencing technology and assembly algorithms have resulted in the ability to sequence large genomes and provided a wealth of data that are being used in comparative genomic analyses. Comparative analysis can be leveraged to systematically explore and evaluate the biological relationships and evolution between species, aid in understanding the structure and function of genes, and gain a better understanding of disease and potential drug targets. As our knowledge of genetics expands, comparative genomics can help identify emerging model organisms among a broader span of the tree of life, positively impacting human health. This impact includes, but is not limited to, zoonotic disease research, therapeutics development, microbiome research, xenotransplantation, oncology, and toxicology. Despite advancements in comparative genomics, new challenges have arisen around the quantity, quality assurance, annotation, and interoperability of genomic data and metadata. New tools and approaches are required to meet these challenges and fulfill the needs of researchers. This paper focuses on how the National Institutes of Health (NIH) Comparative Genomics Resource (CGR) can address both the opportunities for comparative genomics to further impact human health and confront an increasingly complex set of challenges facing researchers.
Collapse
Affiliation(s)
| | - Gary Gryan
- The MITRE Corporation, 7525 Colshire Dr, McLean, VA, USA
| | - E Sally Chang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Valerie A Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
100
|
Chala B, Tilaye T, Waktole G. Re-Emerging COVID-19: Controversy of Its Zoonotic Origin, Risks of Severity of Reinfection and Management. Int J Gen Med 2023; 16:4307-4319. [PMID: 37753439 PMCID: PMC10518360 DOI: 10.2147/ijgm.s419789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023] Open
Abstract
The re-emergence of COVID-19 has sparked controversy around its zoonotic origin, management strategies, risks posed by the virus, and the severity of reinfection. While it is widely accepted that the virus originated from animals, the exact source and transmission pathway remain unclear. This has led to debates regarding the regulation of wildlife markets and trade, as well as the need for more robust surveillance and monitoring systems. Hence, the objective of this review is to provide a brief overview of the disease's biology, preventative strategies, risk factors, degree of reinfection, and epidemiological profile. It offers a thorough examination of the disease's root cause, potential zoonotic transmission, and the most recent preventive measures, like vaccines. In terms of management, there is ongoing debate about the most effective strategies to mitigate the spread of the virus. While public health measures such as social distancing and mask-wearing have been widely implemented, there are differing opinions on the effectiveness of lockdowns and restrictions on public movement. The risks posed by COVID-19 are also a topic of debate, with some arguing that the virus is relatively low-risk for the majority of the population while others highlight the potential for severe illness, particularly among vulnerable populations such as the elderly or those with underlying health conditions. Finally, the possibility of reinfection has raised concerns about the longevity of immunity following infection or vaccination. While some studies have suggested that reinfection may be possible and potentially more severe, the overall risk remains uncertain and further research is needed to fully understand the implications of reinfection.
Collapse
Affiliation(s)
- Bayissa Chala
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Tigist Tilaye
- Olanchiti Hospital, Oromia Health Bureau, Oromia Regional State, Ethiopia
| | - Gemechis Waktole
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Department of Biotechnology, College of Natural and Computational Science, Dambi Dollo University, Dambi Dollo, Ethiopia
| |
Collapse
|