51
|
Xu S, Wang P, Mi X, Bao Y, Zhang H, Mo F, Zhou Q, Zhan S. N, S, and Cl tri-doped carbon boost the switching of radical to non-radical pathway in Fenton-like reactions: Synergism of N species and defects. JOURNAL OF HAZARDOUS MATERIALS 2023; 466:133321. [PMID: 38301438 DOI: 10.1016/j.jhazmat.2023.133321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Heteroatom doping represents a promising strategy for enhancing the generation of singlet oxygen (1O2) during the activation of peroxymonosulfate (PMS) using carbon-based catalysts; however, it remains a formidable challenge. In this study, we systematically controlled the structure of metal-free carbon-based materials by introducing different heteroatoms to investigate their efficacy in degrading organic pollutants in water via PMS activation. The results of reactive oxygen species detection showed that the dominant free radical in the four samples was different: CN (•SO4- and •OH), CNS (•O2-), CNCl (1O2), and CNClS (1O2). This led to the transformation of active species from free radicals to non-free radicals. The tri-doped carbons with nitrogen, sulfur, and chlorine (CNClS) exhibited exceptional performance in PMS activation and achieved a remarkable degradation efficiency of 95% within just 6 min for tetracycline. Moreover, a strong linear correlation was observed between the ratio of pyridine-N/graphite-N and ID/IG with the yield of 1O2, indicating that N species and defects play a crucial role in CNClS as they facilitate the transition from radical to non-radical pathways during PMS activation. These findings highlight the possibility that adjustable tri-heteroatom doping will expand the Fenton-like reaction for the treatment of actual wastewater.
Collapse
Affiliation(s)
- Shizhe Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China
| | - Xueyue Mi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China
| | - Yueping Bao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China
| | - He Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China.
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering Nankai University, Tianjin 300350, China.
| |
Collapse
|
52
|
Liu X, Qiao X, Yang R, Wei D, Qu X, Cao H, Li Y, Zhong Z, Lü J. Mechanism insights into photo-assisted peroxymonosulfate activation on oxygen vacancy-enriched nolanites via an electron transfer regime. J Colloid Interface Sci 2023; 652:912-922. [PMID: 37634364 DOI: 10.1016/j.jcis.2023.08.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
The utilization of photo-assisted persulfate activation for the removal of organic contaminants in water has garnered significant research interest in recent times. However, there remains a lack of clarity regarding specific contributions of light irradiation and catalyst structure in this process. Herein, a photo-assisted peroxymonosulfate (PMS) activation system is designed for the highly efficient degradation of organic contaminants on oxygen vacancy-enriched nolanites (Vo-FVO). Results suggest that the degradation of bisphenol A (BPA) in this system is a nonradical-dominated process via an electron transfer regime, in which VO improves the local electron density and thus facilitates the electron shuttling between BPA and PMS. During BPA degradation, PMS adsorbed at the surface of FVO-180 withdraws electrons near VO and forms FVO-PMS* complexes. Upon light irradiation, photoelectrons effectively restore the electron density around VO, thereby enabling a sustainable electron transfer for the highly efficient degradation of BPA. Overall, this work provides new insights into the mechanism of persulfate activation based on defects engineering in nolanite minerals.
Collapse
Affiliation(s)
- Xiangji Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingxing Qiao
- College of Resources and Environment (Agricultural Environment and Resources Institute), Shanxi Agricultural University, No.1 Ming Xian Road, Jinzhong 030801, China
| | - Ruqian Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong Wei
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinghua Qu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hailei Cao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yafeng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, No. 2 Xue Yuan Road, Fuzhou 350116, China
| | - Zhou Zhong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jian Lü
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, No. 2 Xue Yuan Road, Fuzhou 350116, China.
| |
Collapse
|
53
|
Xin S, Ni L, Zhang P, Tan H, Song M, Li T, Gao Y, Hu C. Electron Delocalization Realizes Speedy Fenton-Like Catalysis over a High-Loading and Low-Valence Zinc Single-Atom Catalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304088. [PMID: 37840391 DOI: 10.1002/advs.202304088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/20/2023] [Indexed: 10/17/2023]
Abstract
A zinc (Zn)-based single-atom catalyst (SAC) is recently reported as an active Fenton-like catalyst; however, the low Zn loading greatly restricts its catalytic activity. Herein, a molecule-confined pyrolysis method is demonstrated to evidently increase the Zn loading to 11.54 wt.% for a Zn SAC (ZnSA -N-C) containing a mixture of Zn-N4 and Zn-N3 coordination structures. The latter unsaturated Zn-N3 sites promote electron delocalization to lower the average valence state of Zn in the mix-coordinated Zn-Nx moiety conducive to interaction of ZnSA -N-C with peroxydisulfate (PDS). A speedy Fenton-like catalysis is thus realized by the high-loading and low-valence ZnSA -N-C for PDS activation with a specific activity up to 0.11 min L-1 m-2 , outstripping most Fenton-like SACs. Experimental results reveal that the formation of ZnSA -N-C-PDS* complex owing to the strong affinity of ZnSA -N-C to PDS empowers intense direct electron transfer from the electron-rich pollutant toward this complex, dominating the rapid bisphenol A (BPA) elimination. The electron transfer pathway benefits the desirable environmental robustness of the ZnSA -N-C/PDS system for actual water decontamination. This work represents a new class of efficient and durable Fenton-like SACs for potential practical environmental applications.
Collapse
Affiliation(s)
- Shaosong Xin
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Luning Ni
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Peng Zhang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Haobin Tan
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mingyang Song
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Tong Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yaowen Gao
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Chun Hu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
54
|
Peng Y, Zhang Q, Ren W, Duan X, Ding L, Jing Y, Shao P, Xiao X, Luo X. Thermodynamic and Kinetic Behaviors of Persulfate-Based Electron-Transfer Regime in Carbocatalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19012-19022. [PMID: 37599507 DOI: 10.1021/acs.est.3c02675] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
A carbon-based advanced oxidation process is featured for the nonradical electron-transfer pathway (ETP) from electron-donating organic compounds to activated persulfate complexes, enabling it as a green technology for the selective oxidation of organic pollutants in complex water environments. However, the thermodynamic and kinetic behaviors of the nonradical electron-transfer regime had been ambiguous due to a neglect of the influence of pH on the mechanisms. In this study, three kinds of organic pollutants were divided in the carbon-based ETP regime: (i) physio-adsorption, (ii) adsorption-dominated ETP (oxidation rate slightly surpasses adsorption rate), and (iii) oxidation-dominated ETP (oxidation rate outpaces the adsorption rate). The differential kinetic behaviors were attributed to the physicochemical properties of the organic pollutants. For example, the hydrophobicity, molecular radius, and positive electrostatic potential controlled the mass-transfer process of the adsorption stage of the reactants (peroxydisulfate (PDS) and organics). Meanwhile, other descriptors, including the Fukui index, oxidation potential, and electron cloud density regulated the electron-transfer processes and thus the kinetics of oxidation. Most importantly, the oxidation pathways of these organic pollutants could be altered by adjusting the water chemistry. This study reveals the principles for developing efficient nonradical systems to selectively remove and recycle organic pollutants in wastewater.
Collapse
Affiliation(s)
- Yanhua Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Qiming Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia SA5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia SA5005, Australia
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Yunpeng Jing
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| |
Collapse
|
55
|
Chen JQ, Zhou GN, Ding RR, Li Q, Zhao HQ, Mu Y. Ferrous ion enhanced Fenton-like degradation of emerging contaminants by sulfidated nanosized zero-valent iron with pH insensitivity. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132229. [PMID: 37549576 DOI: 10.1016/j.jhazmat.2023.132229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
In this study, the performance and mechanism of the integrated sulfidated nanosized zero-valent iron and ferrous ions (S-nZVI/Fe2+) system for oxygen activation to remove emerging contaminants (ECs) were comprehensively explored. The S-nZVI/Fe2+ system exhibited a 2.4-8.2 times of increase in the pseudo-first order kinetic rate constant for the oxidative degradation of various ECs compared to the S-nZVI system under aerobic conditions, whereas negligible removal was observed in both nZVI and nZVI/Fe2+ systems. Moreover, remarkable EC mineralization efficiency and benign detoxification capacity were also demonstrated in the S-nZVI/Fe2+ system. We revealed that dosing Fe2+ promoted the corrosion of S-nZVI by maintaining an acidic solution pH, which was conducive to O2 activation by dissolved Fe2+ and surface-absorbed Fe(II) to produce •OH. Furthermore, the generation of H* was enhanced for the further reduction of Fe(III) and H2O2 to Fe(II) and •O2-, resulting in the improvement of consecutive single-electron O2 activation for •OH production. Additionally, bisphenol A (BPA) degradation by S-nZVI/Fe2+ was positively correlated with the S-nZVI dosage, with an optimum S/Fe molar ratio of 0.15. The Fenton-like degradation process by S-nZVI/Fe2+ was pH-insensitive, indicating its robust performance over a wide pH range. This study provides valuable insights for the practical implementation of nZVI-based technology in achieving high-efficiency removal of ECs from water.
Collapse
Affiliation(s)
- Jia-Qi Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Guan-Nan Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Rong-Rong Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Qi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Han-Qing Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
56
|
Huang B, Ren X, Zhao J, Wu Z, Wang X, Song X, Li X, Liu B, Xiong Z, Lai B. Modulating Electronic Structure Engineering of Atomically Dispersed Cobalt Catalyst in Fenton-like Reaction for Efficient Degradation of Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14071-14081. [PMID: 37681682 DOI: 10.1021/acs.est.3c04712] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Currently, the lack of model catalysts limits the understanding of the catalytic essence. Herein, we report the functional group modification of model single atom catalysts (SACs) with an accurately regulated electronic structure for accelerating the sluggish kinetics of the Fenton-like reaction. The amino-modified cobalt phthalocyanine anchored on graphene (CoPc/G-NH2) shows superior catalytic performance in the peroxymonosulfate (PMS) based Fenton-like reaction with Co mass-normalized pseudo-first-order reaction rate constants (kobs, 0.2935 min-1), which is increased by 4 and 163 times compared to those of CoPc/G (0.0737 min-1) and Co3O4/G (0.0018 min-1). Density functional theory (DFT) calculations demonstrate that the modification of the -NH2 group narrows the gap between the d-band center and the Fermi level of a single Co atom, which strengthens the charge transfer rate at the reaction interface and reduces the free energy barrier for the activation of PMS. Moreover, the scale-up experiment realizes 100% phenol removal at 7200-bed volumes during 240 h continuous operation without obvious decline in catalytic performance. This work provides in-depth insight into the catalytic mechanism of Fenton-like reactions and demonstrates the electronic engineering of SACs as an effective strategy for improving the Fenton-like activity to achieve the goal of practical application.
Collapse
Affiliation(s)
- Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, P.R. China
| | - Xinyi Ren
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, P.R. China
| | - Xinhao Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, P.R. China
| | - Xinyu Song
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, P.R. China
| | - Xuning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, P.R. China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, P.R. China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
57
|
Wu Z, Huang B, Wang X, He CS, Liu Y, Du Y, Liu W, Xiong Z, Lai B. Facilely Tuning the First-Shell Coordination Microenvironment in Iron Single-Atom for Fenton-like Chemistry toward Highly Efficient Wastewater Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14046-14057. [PMID: 37658810 DOI: 10.1021/acs.est.3c04343] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Precisely identifying the atomic structures in single-atom sites and establishing authentic structure-activity relationships for single-atom catalyst (SAC) coordination are significant challenges. Here, theoretical calculations first predicted the underlying catalytic activity of Fe-NxC4-x sites with diverse first-shell coordination environments. Substituting N with C to coordinate with the central Fe atom induces an inferior Fenton-like catalytic efficiency. Then, Fe-SACs carrying three configurations (Fe-N2C2, Fe-N3C1, and Fe-N4) fabricate facilely and demonstrate that optimized coordination environments of Fe-NxC4-x significantly promote the Fenton-like catalytic activity. Specifically, the reaction rate constant increases from 0.064 to 0.318 min-1 as the coordination number of Fe-N increases from 2 to 4, slightly influencing the nonradical reaction mechanism dominated by 1O2. In-depth theoretical calculations unveil that the modulated coordination environments of Fe-SACs from Fe-N2C2 to Fe-N4 optimize the d-band electronic structures and regulate the binding strength of peroxymonosulfate on Fe-NxC4-x sites, resulting in a reduced energy barrier and enhanced Fenton-like catalytic activity. The catalytic stability and the actual hospital sewage treatment capacity also showed strong coordination dependency. This strategy of local coordination engineering offers a vivid example of modulating SACs with well-regulated coordination environments, ultimately maximizing their catalytic efficiency.
Collapse
Affiliation(s)
- Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xinhao Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Wen Liu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
58
|
Xiao C, Hu Y, Li Q, Liu J, Li X, Shi Y, Chen Y, Cheng J, Zhu X, Wang G, Xie J. Degradation of sulfamethoxazole by super-hydrophilic MoS 2 sponge co-catalytic Fenton: Enhancing Fe 2+/Fe 3+ cycle and mass transfer. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131878. [PMID: 37379606 DOI: 10.1016/j.jhazmat.2023.131878] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/12/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
To promote the cycle of Fe2+/Fe3+ in co-catalytic Fenton and enhance mass transfer in an external circulation sequencing batch packed bed reactor (ECSPBR), super-hydrophilicity MoS2 sponge (TMS) modified by tungstosilicic acid (TA) was prepared for efficiently degrading sulfamethoxazole (SMX) antibiotics in aqueous solution. The influence of hydrophilicity of co-catalyst on co-catalytic Fenton and the advantages of ECSPBR were systematically studied through comparative research methods. The results showed that the super hydrophilicity increased the contact between Fe2+ and Fe3+ with TMS, then accelerated Fe2+/Fe3+ cycle. The max Fe2+/Fe3+ ratio of TMS co-catalytic Fenton (TMS/Fe2+/H2O2) was 1.7 times that of hydrophobic MoS2 sponge (CMS) co-catalytic Fenton. SMX degradation efficiency could reach over 90% under suitable conditions. The structure of TMS remained unchanged during the process, and the max dissolved concentration of Mo was lower than 0.06 mg/L. Additionally, the catalytic activity of TMS could be restored by a simple re-impregnation. The external circulation of the reactor was conducive to improving the mass transfer and the utilization rate of Fe2+ and H2O2 during the process. This study offered new insights to prepare a recyclable and hydrophilic co-catalyst and develop an efficient co-catalytic Fenton reactor for organic wastewater treatment.
Collapse
Affiliation(s)
- Chun Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Qitian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jingyu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xian Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yueyue Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Eco Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiaoqiang Zhu
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Guobin Wang
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| | - Jieyun Xie
- Guangzhou Pengkai Environment Technology Co., Ltd, Guangzhou 511493, China
| |
Collapse
|
59
|
Luo M, Zhang H, Ren Y, Zhou H, Zhou P, He CS, Xiong Z, Du Y, Liu Y, Lai B. In Situ Regulation of MnO 2 Structural Characteristics by Oxyanions to Boost Permanganate Autocatalysis for Phenol Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12847-12857. [PMID: 37578486 DOI: 10.1021/acs.est.3c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Oxyanions, a class of constituents naturally occurring in water, have been widely demonstrated to enhance permanganate (Mn(VII)) decontamination efficiency. However, the detailed mechanism remains ambiguous, mainly because the role of oxyanions in regulating the structural parameters of colloidal MnO2 to control the autocatalytic activity of Mn(VII) has received little attention. Herein, the origin of oxyanion-induced enhancement is systematically studied using theoretical calculations, electrochemical tests, and structure-activity relation analysis. Using bicarbonate (HCO3-) as an example, the results indicate that HCO3- can accelerate the degradation of phenol by Mn(VII) by improving its autocatalytic process. Specifically, HCO3- plays a significant role in regulating the structure of in situ produced MnO2 colloids, i.e., increasing the surface Mn(III)s content and restricting particle growth. These structural changes in MnO2 facilitate its strong binding to Mn(VII), thereby triggering interfacial electron transfer. The resultant surface-activated Mn(VII)* complexes demonstrate excellent degrading activity via directly seizing one electron from phenol. Further, other oxyanions with appropriate ionic potentials (i.e., borate, acetate, metasilicate, molybdate, and phosphate) exhibit favorable influences on the oxidative capability of Mn(VII) through an activation mechanism similar to that of HCO3-. These findings considerably improve our fundamental understanding of the oxidation behavior of Mn(VII) in actual water environments and provide a theoretical foundation for designing autocatalytically boosted Mn(VII) oxidation systems.
Collapse
Affiliation(s)
- Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
60
|
Xie L, Wang P, Zheng W, Zhan S, Xia Y, Liu Y, Yang W, Li Y. The strong metal-support interactions induced electrocatalytic three-electron oxygen reduction to hydroxyl radicals for water treatment. Proc Natl Acad Sci U S A 2023; 120:e2307989120. [PMID: 37603765 PMCID: PMC10466190 DOI: 10.1073/pnas.2307989120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
As a promising environmental remediation technology, the electro-Fenton (EF) process is mainly limited by the two rate-limiting steps, which are H2O2 generation and activation. The electrocatalytic three-electron oxygen reduction reaction (3e- ORR) can directly activate oxygen to hydroxyl radicals (•OH), which is expected to break through the rate-limiting steps of the EF process. However, limited success has been achieved in the design of 3e- ORR electrocatalysts. Herein, we propose Cu/CoSe2/C with the strong metal-support interactions to enhance the 3e- ORR process, exhibiting remarkable reactivity and stability for •OH generation. Both experiment and DFT calculation results reveal that CoSe2 is conducive to the generation of H2O2. Meanwhile, the metallic Cu can enhance the adsorption strength of *H2O2 intermediates and thus promotes the one-electron reduction to •OH. The Cu/CoSe2/C catalyst exhibits the electron-transfer number close to 3.0 during the ORR process, and exhibits the outstanding •OH generation performance, achieving a higher apparent rate constant (6.0 times faster) toward ciprofloxacin compared with its analogy without the SMSI effect. Our work represents that the SMSI effect endows Cu/CoSe2/C high activity and selectivity for •OH generation, providing a unique perspective for the design of a high-efficiency 3e- ORR catalyst.
Collapse
Affiliation(s)
- Liangbo Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Pengfei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Wenwen Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Sihui Zhan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Yuguo Xia
- School of Chemistry and Chemical Engineering, Shandong University, Shandong250100, China
| | - Yuepeng Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Wenjing Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Fuzhou, Binhai New City350207, China
| |
Collapse
|
61
|
Yu X, Liu H, Huang Y, Li C, Kuang L, Zhong J, Zhu S, Gou Y, Wang Y, Zhang Y, Shan G, Lv Z, Zhang S, Zhu L. A green edge-hosted zinc single-site heterogeneous catalyst for superior Fenton-like activity. Proc Natl Acad Sci U S A 2023; 120:e2221228120. [PMID: 37590415 PMCID: PMC10450848 DOI: 10.1073/pnas.2221228120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/20/2023] [Indexed: 08/19/2023] Open
Abstract
Developing green heterogeneous catalysts with excellent Fenton-like activity is critical for water remediation technologies. However, current catalysts often rely on toxic transitional metals, and their catalytic performance is far from satisfactory as alternatives of homogeneous Fenton-like catalysts. In this study, a green catalyst based on Zn single-atom was prepared in an ammonium atmosphere using ZIF-8 as a precursor. Multiple characterization analyses provided evidence that abundant intrinsic defects due to the edge sites were created, leading to the formation of a thermally stable edge-hosted Zn-N4 single-atom catalyst (ZnN4-Edge). Density functional theory calculations revealed that the edge sites equipped the single-atom Zn with a super catalytic performance, which not only promoted decomposition of peroxide molecule (HSO5-) but also greatly lowered the activation barrier for •OH generation. Consequently, the as-prepared ZnN4-Edge exhibited extremely high Fenton-like performance in oxidation and mineralization of phenol as a representative organic contaminant in a wide range of pH, realizing its quick detoxification. The atom-utilization efficiency of the ZnN4-Edge was ~104 higher than an equivalent amount of the control sample without edge sites (ZnN4), and the turnover frequency was ~103 times of the typical benchmark of homogeneous catalyst (Co2+). This study opens up a revolutionary way to rationally design and optimize heterogeneous catalysts to homogeneous catalytic performance for Fenton-like application.
Collapse
Affiliation(s)
- Xiaoyong Yu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin300380, China
- College of Environmental Science and Engineering, Nankai University, Tianjin300380, China
| | - Hongzhi Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin300380, China
| | - Yixuan Huang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin300380, China
| | - Changlin Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin300380, China
| | - Liuning Kuang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin300380, China
| | - Jinyu Zhong
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin300380, China
| | - Shuo Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin300380, China
| | - Yating Gou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin300380, China
| | - Yunhang Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin300380, China
| | - Yinqing Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin300380, China
- College of Environmental Science and Engineering, Nankai University, Tianjin300380, China
| | - Guoqiang Shan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin300380, China
- College of Environmental Science and Engineering, Nankai University, Tianjin300380, China
| | - Zhengxin Lv
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201204, China
| | - Shuo Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201204, China
| | - Lingyan Zhu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre, Nankai University, Tianjin300380, China
- College of Environmental Science and Engineering, Nankai University, Tianjin300380, China
| |
Collapse
|
62
|
Yu F, Jia C, Wu X, Sun L, Shi Z, Teng T, Lin L, He Z, Gao J, Zhang S, Wang L, Wang S, Zhu X. Rapid self-heating synthesis of Fe-based nanomaterial catalyst for advanced oxidation. Nat Commun 2023; 14:4975. [PMID: 37591830 PMCID: PMC10435566 DOI: 10.1038/s41467-023-40691-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
Iron-based catalysts are promising candidates for advanced oxidation process-based wastewater remediation. However, the preparation of these materials often involves complex and energy intensive syntheses. Further, due to the inherent limitations of the preparation conditions, it is challenging to realise the full potential of the catalyst. Herein, we develop an iron-based nanomaterial catalyst via soft carbon assisted flash joule heating (FJH). FJH involves rapid temperature increase, electric shock, and cooling, the process simultaneously transforms a low-grade iron mineral (FeS) and soft carbon into an electron rich nano Fe0/FeS heterostructure embedded in thin-bedded graphene. The process is energy efficient and consumes 34 times less energy than conventional pyrolysis. Density functional theory calculations indicate that the electron delocalization of the FJH-derived heterostructure improves its binding ability with peroxydisulfate via bidentate binuclear model, thereby enhancing ·OH yield for organics mineralization. The Fe-based nanomaterial catalyst exhibits strong catalytic performance over a wide pH range. Similar catalysts can be prepared using other commonly available iron precursors. Finally, we also present a strategy for continuous and automated production of the iron-based nanomaterial catalysts.
Collapse
Affiliation(s)
- Fengbo Yu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Chao Jia
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Xuan Wu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Liming Sun
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Zhijian Shi
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Tao Teng
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Litao Lin
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Zhelin He
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Jie Gao
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, 200092, Shanghai, China
| | - Liang Wang
- School of Energy and Power, Jiangsu University of Science and Technology, 212003, Zhenjiang, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Xiangdong Zhu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, 200092, Shanghai, China.
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, 215009, Suzhou, China.
| |
Collapse
|
63
|
Zhang T, Zhao Z, Zhang D, Liu X, Wang P, Li Y, Zhan S. Superexchange-induced Pt-O-Ti 3+ site on single photocatalyst for efficient H 2 production with organics degradation in wastewater. Proc Natl Acad Sci U S A 2023; 120:e2302873120. [PMID: 37253005 PMCID: PMC10265997 DOI: 10.1073/pnas.2302873120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Efficient photocatalytic H2 production from wastewater instead of pure water is a dual solution to the environmental and energy crisis, but due to the rapid recombination of photoinduced charge in the photocatalyst and inevitable electron depletion caused by organic pollutants, a significant challenge of dual-functional photocatalysis (simultaneous oxidative and reductive reactions) in single catalyst is designing spatial separation path for photogenerated charges at atomic level. Here, we designed a Pt-doped BaTiO3 single catalyst with oxygen vacancies (BTPOv) that features Pt-O-Ti3+ short charge separation site, which enables excellent H2 production performance (1519 μmol·g-1·h-1) while oxidizing moxifloxacin (k = 0.048 min-1), almost 43 and 98 times than that of pristine BaTiO3 (35 μmol·g-1·h-1 and k = 0.00049 min-1). The efficient charge separation path is demonstrated that the oxygen vacancies extract photoinduced charge from photocatalyst to catalytic surface, and the adjacent Ti3+ defects allow rapid migration of electrons to Pt atoms through the superexchange effect for H* adsorption and reduction, while the holes will be confined in Ti3+ defects for oxidation of moxifloxacin. Impressively, the BTPOv shows an exceptional atomic economy and potential for practical applications, a best H2 production TOF (370.4 h-1) among the recent reported dual-functional photocatalysts and exhibiting excellent H2 production activity in multiple types of wastewaters.
Collapse
Affiliation(s)
- Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350Tianjin, China
| | - Zhiyong Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350Tianjin, China
| | - Dongpeng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350Tianjin, China
| | - Xingyu Liu
- School of Environmental Science and Engineering, Tiangong University, 300387Tianjin, China
| | - Pengfei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, 300401Tianjin, China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, 300072Tianjin, China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350Tianjin, China
| |
Collapse
|
64
|
Wang L, Wang Y, Wang Z, Du P, Xing L, Xu W, Ni J, Liu S, Wang Y, Yu G, Dai Q. Proton transfer triggered in-situ construction of C=N active site to activate PMS for efficient autocatalytic degradation of low-carbon fatty amine. WATER RESEARCH 2023; 240:120119. [PMID: 37247441 DOI: 10.1016/j.watres.2023.120119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Removal of low-carbon fatty amines (LCFAs) in wastewater treatment poses a significant technical challenge due to their small molecular size, high polarity, high bond dissociation energy, electron deficiency, and poor biodegradability. Moreover, their low Brønsted acidity deteriorates this issue. To address this problem, we have developed a novel base-induced autocatalytic technique for the highly efficient removal of a model pollutant, dimethylamine (DMA), in a homogeneous peroxymonosulfate (PMS) system. A high reaction rate constant of 0.32 min-1 and almost complete removal of DMA within 12 min are achieved. Multi-scaled characterizations and theoretical calculations reveal that the in situ constructed C=N bond as the crucial active site activates PMS to produce abundant 1O2. Subsequently, 1O2 oxidizes DMA through multiple H-abstractions, accompanied by the generation of another C=N structure, thus achieving the autocatalytic cycle of pollutant. During this process, base-induced proton transfers of pollutant and oxidant are essential prerequisites for C=N fabrication. A relevant mechanism of autocatalytic degradation is unraveled and further supported by DFT calculations at the molecular level. Various assessments indicate that this self-catalytic technique exhibits a reduced toxicity and volatility process, and a low treatment cost (0.47 $/m3). This technology has strong environmental tolerance, especially for the high concentrations of chlorine ion (1775 ppm) and humic acid (50 ppm). Moreover, it not only exhibits excellent degradation performance for different amine organics but also for the coexisting common pollutants including ofloxacin, phenol, and sulforaphane. These results fully demonstrate the superiority of the proposed strategy for practical application in wastewater treatment. Overall, this autocatalysis technology based on the in-situ construction of metal-free active site by regulating proton transfer will provide a brand-new strategy for environmental remediation.
Collapse
Affiliation(s)
- Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yanan Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhixiang Wang
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Penghui Du
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Lei Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Weichao Xu
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Center of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jincheng Ni
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Shuai Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yihao Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Guangfei Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Qin Dai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
65
|
Zhang T, Liu Y, Tong L, Yu J, Lin S, Li Y, Fan HJ. Oxidation State Engineering in Octahedral Ni by Anchored Sulfate to Boost Intrinsic Oxygen Evolution Activity. ACS NANO 2023; 17:6770-6780. [PMID: 36939286 DOI: 10.1021/acsnano.2c12810] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Promoting the electron occupancy of active sites to unity is an effective method to enhance the oxygen evolution reaction (OER) performance of spinel oxides, but it remains a great challenge. Here, an in situ approach is developed to modify the valence state of octahedral Ni cations in NiFe2O4 inverse spinel via surface sulfates (SO42-). Different from previous studies, SO42- is directly anchored on the spinel surface instead of forming from uncontrolled conversion or surface reconstruction. Experiment and theoretical calculations reveal the precise adsorption sites and spatial arrangement for SO42- species. As a main promoting factor, surface SO42- effectively converts the crystal field stable Ni state (t2g6eg2) to the near-unity eg electron state (t2g6eg1). Moreover, the inevitable oxygen vacancies (Vo) further optimize the energy barrier of the potential-determining step (from OH* to O*). This co-modification strategy enhances turnover frequency-based electrocatalytic activity about two orders higher than the control sample without surface sulfates. This work may provide insight into the OER activity enhancement mechanism by the oxyanion groups.
Collapse
Affiliation(s)
- Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Yipu Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Li Tong
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Jie Yu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China
| | - Yue Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
66
|
Guo ZY, Sun R, Huang Z, Han X, Wang H, Chen C, Liu YQ, Zheng X, Zhang W, Hong X, Li WW. Crystallinity engineering for overcoming the activity-stability tradeoff of spinel oxide in Fenton-like catalysis. Proc Natl Acad Sci U S A 2023; 120:e2220608120. [PMID: 37018199 PMCID: PMC10104503 DOI: 10.1073/pnas.2220608120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/27/2023] [Indexed: 04/06/2023] Open
Abstract
A precise modulation of heterogeneous catalysts in structural and surface properties promises the development of more sustainable advanced oxidation water purification technologies. However, while catalysts with superior decontamination activity and selectivity are already achievable, maintaining a long-term service life of such materials remains challenging. Here, we propose a crystallinity engineering strategy to break the activity-stability tradeoff of metal oxides in Fenton-like catalysis. The amorphous/crystalline cobalt-manganese spinel oxide (A/C-CoMnOx) provided highly active, hydroxyl group-rich surface, with moderate peroxymonosulfate (PMS)-binding affinity and charge transfer energy and strong pollutant adsorption, to trigger concerted radical and nonradical reactions for efficient pollutant mineralization, thereby alleviating the catalyst passivation by oxidation intermediate accumulation. Meanwhile, the surface-confined reactions, benefited from the enhanced adsorption of pollutants at A/C interface, rendered the A/C-CoMnOx/PMS system ultrahigh PMS utilization efficiency (82.2%) and unprecedented decontamination activity (rate constant of 1.48 min-1) surpassing almost all the state-of-the-art heterogeneous Fenton-like catalysts. The superior cyclic stability and environmental robustness of the system for real water treatment was also demonstrated. Our work unveils a critical role of material crystallinity in modulating the Fenton-like catalytic activity and pathways of metal oxides, which fundamentally improves our understanding of the structure-activity-selectivity relationships of heterogeneous catalysts and may inspire material design for more sustainable water purification application and beyond.
Collapse
Affiliation(s)
- Zhi-Yan Guo
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Rongbo Sun
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Zixiang Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Xiao Han
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Haoran Wang
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Cai Chen
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Yu-Qin Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xun Hong
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei230026, China
| | - Wen-Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
67
|
Qin F, Almatrafi E, Zhang C, Huang D, Tang L, Duan A, Qin D, Luo H, Zhou C, Zeng G. Catalyst-Free Photochemical Activation of Peroxymonosulfate in Xanthene-Rich Systems for Fenton-Like Synergistic Decontamination: Efficacy of Proton Transfer Process. Angew Chem Int Ed Engl 2023; 62:e202300256. [PMID: 36880746 DOI: 10.1002/anie.202300256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/08/2023]
Abstract
Catalyst-free visible light assisted Fenton-like catalysis offers opportunities to achieve the sustainable water decontamination, but the synergistic decontamination mechanisms are still unclear, especially the effect of proton transfer process (PTP). The conversion of peroxymonosulfate (PMS) in photosensitive dye-enriched system was detailed. The photo-electron transfer between excited dye and PMS triggered the efficient activation of PMS and enhanced the production of reactive species. Photochemistry behavior analysis and DFT calculations revealed that PTP was the crucial factor to determine the decontamination performance, leading to the transformation of dye molecules. The excitation process inducing activation of whole system was composed of low energy excitations, and the electrons and holes were almost contributed by LUMO and HOMO. This work provided new ideas for the design of catalyst-free sustainable system for efficient decontamination.
Collapse
Affiliation(s)
- Fanzhi Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Eydhah Almatrafi
- Centre of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Chen Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Danlian Huang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Lin Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Abing Duan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Deyu Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Hanzhuo Luo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
- Centre of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P.R. China
- Centre of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
68
|
Zhao Z, Wang P, Song C, Zhang T, Zhan S, Li Y. Enhanced Interfacial Electron Transfer by Asymmetric Cu-O v -In Sites on In 2 O 3 for Efficient Peroxymonosulfate Activation. Angew Chem Int Ed Engl 2023; 62:e202216403. [PMID: 36646650 DOI: 10.1002/anie.202216403] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Enhancing the peroxymonosulfate (PMS) activation efficiency to generate more radicals is vital to promote the Fenton-like reaction activity, however, how to promote the PMS adsorption and accelerate the interfacial electron transfer to boost its activation kinetics remains a great challenge. Herein, we prepared Cu-doped defect-rich In2 O3 (Cu-In2 O3 /Ov ) catalysts containing asymmetric Cu-Ov -In sites for PMS activation in water purification. The intrinsic catalytic activity is that the side-on adsorption configuration of the O-O bond (Cu-O-O-In) at the Cu-Ov -In sites significantly stretches the O-O bond length. Meanwhile, the Cu-Ov -In sites increase the electron density near the Fermi energy level, promoting more and faster electron transfer to the O-O bond for generating more SO4 ⋅- and ⋅OH. The degradation rate constant of tetracycline achieved by Cu-In2 O3 /Ov is 31.8 times faster than In2 O3 /Ov , and it shows the possibility of membrane reactor for practical wastewater treatment.
Collapse
Affiliation(s)
- Zhiyong Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Pengfei Wang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chunlin Song
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yi Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
69
|
Cheng C, Ren W, Miao F, Chen X, Chen X, Zhang H. Generation of Fe IV =O and its Contribution to Fenton-Like Reactions on a Single-Atom Iron-N-C Catalyst. Angew Chem Int Ed Engl 2023; 62:e202218510. [PMID: 36625681 DOI: 10.1002/anie.202218510] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Generating FeIV =O on single-atom catalysts by Fenton-like reaction has been established for water treatment; however, the FeIV =O generation pathway and oxidation behavior remain obscure. Employing an Fe-N-C catalyst with a typical Fe-N4 moiety to activate peroxymonosulfate (PMS), we demonstrate that generating FeIV =O is mediated by an Fe-N-C-PMS* complex-a well-recognized nonradical species for induction of electron-transfer oxidation-and we determined that adjacent Fe sites with a specific Fe1 -Fe1 distance are required. After the Fe atoms with an Fe1 -Fe1 distance <4 Å are PMS-saturated, Fe-N-C-PMS* formed on Fe sites with an Fe1 -Fe1 distance of 4-5 Å can coordinate with the adjacent FeII -N4 , forming an inter-complex with enhanced charge transfer to produce FeIV =O. FeIV =O enables the Fenton-like system to efficiently oxidize various pollutants in a substrate-specific, pH-tolerant, and sustainable manner, where its prominent contribution manifests for pollutants with higher one-electron oxidation potential.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resource Recycle, Nanchang Hangkong University, Nanchang, 330063, China
| | - Fei Miao
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Xuantong Chen
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Xiaoxiao Chen
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Hui Zhang
- Department of Environmental Science and Engineering, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
70
|
Chen X, Fu W, Yang Z, Yang Y, Li Y, Huang H, Zhang X, Pan B. Enhanced H 2O 2 utilization efficiency in Fenton-like system for degradation of emerging contaminants: Oxygen vacancy-mediated activation of O 2. WATER RESEARCH 2023; 230:119562. [PMID: 36603306 DOI: 10.1016/j.watres.2022.119562] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen peroxide (H2O2) is the most commonly used oxidant in advanced oxidation processes for emerging organic contaminant degradation. However, the activation of H2O2 to generate reactive oxygen species is always accompanied by O2 generation resulting in H2O2 waste. Here, we prepare a Ti doped Mn3O4/Fe3O4 ternary catalyst (Ti-Mn3O4/Fe3O4) to create abundant oxygen vacancies (OVs), which yields electron delocalization impacts on enhancing the electrical conductivity, accelerating the activation of O2 to produce H2O2. In Ti-Mn3O4/Fe3O4/H2O2 system, OVs-mediated O2/O2•-/H2O2 redox cycles trigger the activation of locally generated O2, boost the regeneration of O2•- and on site produce H2O2 for replenishment. This leads to a 100% removal of tiamulin in 30 min at an unprecedented H2O2 utilization efficiency of 96.0%, which is 24 folds higher than that with Fe3O4/H2O2. Importantly, further integration of Ti-Mn3O4/Fe3O4 catalysts into membrane filtration achieved high rejections of tiamulin (> 83.9%) from real surface water during a continuous 12-h operation, demonstrating broad pH adaptability, excellent catalytic stability and leaching resistance. This work demonstrates a feasible strategy for developing OVs-rich catalysts for improving H2O2 utilization efficiency via activation of locally generated oxygen during the Haber-Weiss reaction.
Collapse
Affiliation(s)
- Xixi Chen
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| | - Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yulong Yang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yanjun Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hui Huang
- Shenzhen Shenshui Longhua Water Co., Ltd., Shenzhen, 518000, China
| | - Xihui Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
71
|
Li X, Lv R, Zhang W, Li M, Lu J, Ren Y, Yin Y, Liu J. Amorphous zirconium oxide activates peroxymonosulfate for selective degradation of organic compounds: Performance, mechanisms and structure-activity relationship. WATER RESEARCH 2023; 228:119363. [PMID: 36434974 DOI: 10.1016/j.watres.2022.119363] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Application of heterogeneous advanced oxidation processes (AOPs) for wastewater treatment suffers from the low oxidant utilization efficiency, slow catalytic cycling and severe matrix interference. Herein, we report that amorphous zirconium dioxide (aZrO2), a redox-inert metal oxide, can efficiently activate peroxymonosulfate (PMS) to degrade organic micropollutants under very low oxidant doses and complex coexisting matrices. Distinct from conventional AOPs where radicals are formed, the surface Zr(IV)-PMS* complex was identified as the principal reactive species, and primarily conducted oxygen-atom-transfer route with selected molecules. Quantitative structure-activity relationship analysis indicated that the formation of Zr(IV)-PMS* complex was governed by the density of the surface hydroxyl groups. The strong interaction between the Zr atom and PMS caused the deviation of the negative charge from Zr(IV) metal sites to the oxidant. As a result, the O-O bond of the adsorbed PMS was prolonged and its oxidation potential elevated, which enabled it to directly react with contaminants. This study indicates the potential of aZrO2 as a novel and eco-friendly catalyst that activates PMS to selectively tackle organic contaminants, and sheds light on the designing of Fenton-like catalysts using redox-inert metals.
Collapse
Affiliation(s)
- Xiaoyang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Ruolin Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| | - Mingyang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yi Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yue Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Jiahang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
72
|
Miao F, Yue X, Cheng C, Chen X, Ren W, Zhang H. Insights into the mechanism of carbocatalysis for peracetic acid activation: Kinetic discernment and active site identification. WATER RESEARCH 2022; 227:119346. [PMID: 36395567 DOI: 10.1016/j.watres.2022.119346] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Peracetic-acid-based advanced oxidation processes (PAA-AOPs) on metal-free catalysts have emerged as charming strategies for water contaminant removal. However, the involved reactive species and their corresponding active sites are ambiguous. Herein, using carbon nanotube (CNT) as a model carbocatalyst, we demonstrated that, under neutral conditions, the CNT-PAA* complex was the dominant reactive species to oxidize phenolic compounds via electron-transfer process (ETP), whereas the surface-bound hydroxyl radicals (·OHsurface) played a minor role on the basis of quenching and electrochemical tests as well as Raman spectroscopy. More importantly, the experimental and density functional theory (DFT) calculation results collaboratively proved that the active site for ETP was the sp2-hybridized carbon on the CNT bulk, while that for radical generation was the edge-located hydroxyl group (C-OH), which lowered the energy barrier for cleaving the O-O bond in CNT-PAA* complex. We further discerned the oxidation kinetic constants (koxid) of different pollutants from the apparent kinetic constants in CNT/PAA system. The significant negative linear correlation between lnkoxid and half-wave potential of phenolic compounds suggests that the pollutants with a lower one-electron oxidation potential (i.e., stronger electron-donating ability) are more easily oxidized. Overall, this study scrutinizes the hybrid radical and non-radical mechanism and the corresponding active sites of the CNT/PAA system, providing insights into the application of PAA-AOPs and the development of ETP in the remediation of emerging organic pollutants.
Collapse
Affiliation(s)
- Fei Miao
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Xiting Yue
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Cheng Cheng
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Xuantong Chen
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resource Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Hui Zhang
- Department of Environmental Science and Engineering, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|