51
|
Nizamutdinova IT, Dusio GF, Gasheva OY, Skoog H, Tobin R, Peddaboina C, Meininger CJ, Zawieja DC, Newell-Rogers MK, Gashev AA. Mast cells and histamine are triggering the NF-κB-mediated reactions of adult and aged perilymphatic mesenteric tissues to acute inflammation. Aging (Albany NY) 2017; 8:3065-3090. [PMID: 27875806 PMCID: PMC5191886 DOI: 10.18632/aging.101113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/08/2016] [Indexed: 12/29/2022]
Abstract
This study aimed to establish mechanistic links between the aging-associated changes in the functional status of mast cells and the altered responses of mesenteric tissue and mesenteric lymphatic vessels (MLVs) to acute inflammation. We used an in vivo model of acute peritoneal inflammation induced by lipopolysaccharide treatment of adult (9-month) and aged (24-month) F-344 rats. We analyzed contractility of isolated MLVs, mast cell activation, activation of nuclear factor-κB (NF-κB) without and with stabilization of mast cells by cromolyn or blockade of all types of histamine receptors and production of 27 major pro-inflammatory cytokines in adult and aged perilymphatic mesenteric tissues and blood. We found that the reactivity of aged contracting lymphatic vessels to LPS-induced acute inflammation was abolished and that activated mast cells trigger NF-κB signaling in the mesentery through release of histamine. The aging-associated basal activation of mesenteric mast cells limits acute inflammatory NF-κB activation in aged mesentery. We conclude that proper functioning of the mast cell/histamine/NF-κB axis is necessary for reactions of the lymphatic vessels to acute inflammatory stimuli as well as for interaction and trafficking of immune cells near and within the collecting lymphatics.
Collapse
Affiliation(s)
- Irina Tsoy Nizamutdinova
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Giuseppina F Dusio
- Department of Surgery, Baylor Scott and White Health, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Olga Yu Gasheva
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Hunter Skoog
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Richard Tobin
- Department of Surgery, Baylor Scott and White Health, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Chander Peddaboina
- Department of Surgery, Baylor Scott and White Health, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - David C Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - M Karen Newell-Rogers
- Department of Surgery, Baylor Scott and White Health, Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Anatoliy A Gashev
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX 76504, USA
| |
Collapse
|
52
|
Hurdayal R, Brombacher F. Interleukin-4 Receptor Alpha: From Innate to Adaptive Immunity in Murine Models of Cutaneous Leishmaniasis. Front Immunol 2017; 8:1354. [PMID: 29176972 PMCID: PMC5686050 DOI: 10.3389/fimmu.2017.01354] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022] Open
Abstract
The interleukin (IL)-4 receptor alpha (IL-4Rα), ubiquitously expressed on both innate and adaptive immune cells, controls the signaling of archetypal type 2 immune regulators; IL-4 and IL-13, which elicit their signaling action by the type 1 IL-4Rα/gamma common and/or the type 2 IL-4Rα/IL-13Rα complexes. Global gene-deficient mouse models targeting IL-4, IL-13, or the IL-4Rα chain, followed by the development of conditional mice and generation of important cell-type-specific IL-4Rα-deficient mouse models, were indeed critical to gaining in-depth understanding of detrimental T helper (Th) 2 mechanisms in type 1-controlled diseases. A primary example being cutaneous leishmaniasis, which is caused by the protozoan parasite Leishmania major, among others. The disease is characterized by localized self-healing cutaneous lesions and necrosis for which, currently, not a single vaccine has made it to a stage that can be considered effective. The spectrum of human leishmaniasis belongs to the top 10 infectious diseases according to the World Health Organization. As such, 350 million humans are at risk of infection and disease, with an incidence of 1.5–2 million new cases being reported annually. A major aim of our research is to identify correlates of host protection and evasion, which may aid in vaccine design and therapeutic interventions. In this review, we focus on the immune-regulatory role of the IL-4Rα chain from innate immune responses to the development of beneficial type 1 and detrimental type 2 adaptive immune responses during cutaneous Leishmania infection. We discuss the cell-specific requirements of the IL-4Rα chain on crucial innate immune cells during L. major infection, including, IL-4Rα-responsive skin keratinocytes, macrophages, and neutrophils, as well as dendritic cells (DCs). The latter, contributing to one of the paradigm shifts with respect to the role of IL-4 instructing DCs in vivo, to promote Th1 responses against L. major. Finally, we extend these innate responses and mechanisms to control of adaptive immunity and the effect of IL-4Rα-responsiveness on T and B lymphocytes orchestrating the development of CD4+ Th1/Th2 and B effector 1/B effector 2 B cells in response to L. major infection in the murine host.
Collapse
Affiliation(s)
- Ramona Hurdayal
- Faculty of Health Sciences, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa.,Department of Molecular and Cell Biology Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- Faculty of Health Sciences, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| |
Collapse
|
53
|
Kim SH, Hong JH, Lee JE, Lee YC. 18β-Glycyrrhetinic acid, the major bioactive component of Glycyrrhizae Radix, attenuates airway inflammation by modulating Th2 cytokines, GATA-3, STAT6, and Foxp3 transcription factors in an asthmatic mouse model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:99-113. [PMID: 28410469 DOI: 10.1016/j.etap.2017.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/03/2017] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
18β-Glycyrrhetinic acid (18Gly), the major bioactive component of Glycyrrhizae Radix, possesses anti-ulcerative, anti-inflammatory, and other pharmacological properties. Although 18Gly is associated with immunoregulatory functions of allergic diseases, the pathophysiological mechanisms of 18Gly action in allergic inflammatory lung disease have not been examined. Moreover, there are no in vivo studies on the anti-asthmatic effects of 18Gly in allergic asthma. We investigated its effect and mechanism of action in airway inflammation in a BALB/c mouse model of allergic asthma. Interestingly, 18Gly strongly suppressed airway hyperresponsiveness, accumulation of inflammatory cells, and levels of T helper type 2 (Th2) cytokines (interleukin (IL)-5 and IL-13) in bronchoalveolar lavage fluid (BALF). It also attenuated lung IL-5, IL-13, and IL-4 expression, but it upregulated peroxisome proliferator-activated receptor gamma (PPARγ) mRNA expression in lungs. Moreover, it exerted immunomodulatory effects by suppressing Th2 cytokines (IL-5, IL-13) production through upregulation of forkhead box p3 (Foxp3), and downregulation of signal transducer and activator of transcription (STAT6), GATA-binding protein 3 (GATA-3), and retinoic acid-related orphan receptor γ t (RORγt) expression. These results suggest that the anti-asthmatic activity of 18Gly may occur by the suppression of IL-5, IL-13, and OVA-specific Immunoglobulin E (IgE) production through inhibition of the RORγt, STAT6, GATA-3 pathways and upregulation of the Foxp3 transcription pathway. Also, 18Gly treatment was protective against the oxidative stress by inducing significant decrease of reactive oxygen species (ROS) generation in MH-S alveolar macrophage cells. Our results suggest that 18Gly can improve allergic asthma and can be a novel therapeutic component for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Jung-Hee Hong
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju 220-702, Republic of Korea
| | - Ji-Eun Lee
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea
| | - Young-Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, Wonju 220-702, Republic of Korea.
| |
Collapse
|
54
|
Gandhi NA, Pirozzi G, Graham NMH. Commonality of the IL-4/IL-13 pathway in atopic diseases. Expert Rev Clin Immunol 2017; 13:425-437. [PMID: 28277826 DOI: 10.1080/1744666x.2017.1298443] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Allergy results from an aberrant Type 2 inflammatory response, triggered by a wide range of environmental antigens (allergens) that lead to various immune responses, culminating in the production of immunoglobulin E (IgE). Two key cytokines, interleukin (IL)-4 and IL-13, are critical to the induction and perpetuation of the Type 2 response, and have been implicated in multiple atopic diseases. Area covered: This review summarizes recent milestone developments that have elucidated components of the pathogenesis of atopic diseases such as atopic dermatitis (AD), asthma, and chronic sinusitis with nasal polyposis (CSwNP). Expert commentary: Several therapeutic agents that selectively target potentiators of the Type 2 pathway have shown efficacy in one or more of these atopic diseases, but few agents have proven to be broadly applicable across all three atopic diseases. Dupilumab, a human monoclonal antibody that simultaneously inhibits signaling of IL-4 and IL-13, has demonstrated significant clinical efficacy in AD, asthma, and CSwNP. The fact that these diseases often occur as comorbidities and respond to the same therapy suggests that there is a common underlying pathogenic pathway, and that IL-4 and IL-13 cytokines are central to regulating the pathogenesis of these atopic diseases.
Collapse
Affiliation(s)
- Namita A Gandhi
- a Clinical Sciences , Regeneron Pharmaceuticals, Inc. , Tarrytown , New York , USA
| | - Gianluca Pirozzi
- b Research and Development , Sanofi, Bridgewater , New Jersey , USA
| | - Neil M H Graham
- c Project Direction , Regeneron Pharmaceuticals, Inc. , Tarrytown , New York , USA
| |
Collapse
|
55
|
Ahmed MS, Kang MH, Lee E, Park Y, Jeong Y, Bae YS. SH2 domain-containing adaptor protein B expressed in dendritic cells is involved in T-cell homeostasis by regulating dendritic cell-mediated Th2 immunity. Clin Exp Vaccine Res 2017; 6:50-60. [PMID: 28168174 PMCID: PMC5292358 DOI: 10.7774/cevr.2017.6.1.50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/21/2016] [Accepted: 01/06/2017] [Indexed: 01/02/2023] Open
Abstract
Purpose The Src homology 2 domain–containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo. However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). Materials and Methods The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow–derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHBKD) BMDCs in a mouse atopic dermatitis model. Results SHB was steadily expressed in mouse splenic DCs and in in vitro–generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHBKD increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHBKD in BMDCs significantly induced CD4+ T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHBKD DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. Conclusion SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization.
Collapse
Affiliation(s)
- Md Selim Ahmed
- Department of Biological Science, Sungkyunkwan University, Suwon, Korea
| | - Myeong-Ho Kang
- Department of Biological Science, Sungkyunkwan University, Suwon, Korea
| | - Ezra Lee
- Department of Biological Science, Sungkyunkwan University, Suwon, Korea
| | - Yujin Park
- Department of Biological Science, Sungkyunkwan University, Suwon, Korea
| | - Yideul Jeong
- Department of Biological Science, Sungkyunkwan University, Suwon, Korea
| | - Yong-Soo Bae
- Department of Biological Science, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
56
|
Koch C, Samareh B, Morishima T, Mir P, Kanz L, Zeidler C, Skokowa J, Welte K. GM-CSF treatment is not effective in congenital neutropenia patients due to its inability to activate NAMPT signaling. Ann Hematol 2016; 96:345-353. [DOI: 10.1007/s00277-016-2894-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 01/21/2023]
|
57
|
Wadajkar AS, Dancy JG, Hersh DS, Anastasiadis P, Tran NL, Woodworth GF, Winkles JA, Kim AJ. Tumor-targeted nanotherapeutics: overcoming treatment barriers for glioblastoma. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27813323 DOI: 10.1002/wnan.1439] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/28/2016] [Accepted: 09/15/2016] [Indexed: 12/29/2022]
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal form of primary brain cancer. Numerous barriers exist to the effective treatment of GBM including the tightly controlled interface between the bloodstream and central nervous system termed the 'neurovascular unit,' a narrow and tortuous tumor extracellular space containing a dense meshwork of proteins and glycosaminoglycans, and genomic heterogeneity and instability. A major goal of GBM therapy is achieving sustained drug delivery to glioma cells while minimizing toxicity to adjacent neurons and glia. Targeted nanotherapeutics have emerged as promising drug delivery systems with the potential to improve pharmacokinetic profiles and therapeutic efficacy. Some of the key cell surface molecules that have been identified as GBM targets include the transferrin receptor, low-density lipoprotein receptor-related protein, αv β3 integrin, glucose transporter(s), glial fibrillary acidic protein, connexin 43, epidermal growth factor receptor (EGFR), EGFR variant III, interleukin-13 receptor α chain variant 2, and fibroblast growth factor-inducible factor 14. However, most targeted therapeutic formulations have yet to demonstrate improved efficacy related to disease progression or survival. Potential limitations to current targeted nanotherapeutics include: (1) adhesive interactions with nontarget structures, (2) low density or prevalence of the target, (3) lack of target specificity, and (4) genetic instability resulting in alterations of either the target itself or its expression level in response to treatment. In this review, we address these potential limitations in the context of the key GBM targets with the goal of advancing the understanding and development of targeted nanotherapeutics for GBM. WIREs Nanomed Nanobiotechnol 2017, 9:e1439. doi: 10.1002/wnan.1439 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Aniket S Wadajkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jimena G Dancy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David S Hersh
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pavlos Anastasiadis
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nhan L Tran
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey A Winkles
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA.,Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
58
|
Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr 2016; 4:10.1128/microbiolspec.TBTB2-0018-2016. [PMID: 27763255 PMCID: PMC5205539 DOI: 10.1128/microbiolspec.tbtb2-0018-2016] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 02/06/2023] Open
Abstract
Chemokines and cytokines are critical for initiating and coordinating the organized and sequential recruitment and activation of cells into Mycobacterium tuberculosis-infected lungs. Correct mononuclear cellular recruitment and localization are essential to ensure control of bacterial growth without the development of diffuse and damaging granulocytic inflammation. An important block to our understanding of TB pathogenesis lies in dissecting the critical aspects of the cytokine/chemokine interplay in light of the conditional role these molecules play throughout infection and disease development. Much of the data highlighted in this review appears at first glance to be contradictory, but it is the balance between the cytokines and chemokines that is critical, and the "goldilocks" (not too much and not too little) phenomenon is paramount in any discussion of the role of these molecules in TB. Determination of how the key chemokines/cytokines and their receptors are balanced and how the loss of that balance can promote disease is vital to understanding TB pathogenesis and to identifying novel therapies for effective eradication of this disease.
Collapse
Affiliation(s)
| | - Oliver Prince
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130
| | - Andrea Cooper
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
59
|
Yao Y, Shi Q, Chen B, Wang Q, Li X, Li L, Huang Y, Ji J, Shen P. Identification of Caspase-6 as a New Regulator of Alternatively Activated Macrophages. J Biol Chem 2016; 291:17450-66. [PMID: 27325699 PMCID: PMC5016141 DOI: 10.1074/jbc.m116.717868] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/01/2016] [Indexed: 12/22/2022] Open
Abstract
Alternatively activated macrophages (AAMs) play essential roles in the promotion of tissue remodeling, vasculogenesis, and tumor progression; however, the detailed mechanisms underlying the activation of AAMs remain largely unknown. Here, by using quantitative proteomic analysis, we identified 62 proteins that were up-regulated in IL-4-induced macrophages. Among these, Caspase-6 was increased significantly. Caspase-6 is important in the apoptotic signaling pathway; however, its role in non-apoptosis is also reported. Here, we first examined the non-apoptotic role of Caspase-6 in the alternative activation of macrophages after administration of IL-4, 4T1 tumor conditional medium, or co-culture with 4T1 cells. Both treatments promoted alternative activation of RAW264.7 cells and primary macrophages, whereas disruption of caspase-6 expression and activity could markedly suppress the biomarker levels of AAMs. Overexpression of Caspase-6 could significantly promote the activation of AAMs. Importantly, we further present evidence that caspase-6 could regulate breast cancer cell invasion by modulating MMP-2 and MMP-9 expression in 4T1 tumor-associated macrophages, as ablation of protein levels or activity of caspase-6 suppressed tumor cell invasion in vitro In conclusion, the observed results markedly expanded our views of the dynamic changes in protein composition during alternative activation of macrophages, and they revealed a critical new role of caspase-6 in regulating this cellular biological process, which suggested that caspase-6 might be a key nod molecule to regulate immunological steady-state and be a therapeutic candidate for tumor immunotherapy.
Collapse
Affiliation(s)
- Yongfang Yao
- From the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Qian Shi
- the Division of Nephrology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Bing Chen
- the Department of Hematology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China, and
| | - Qingsong Wang
- the State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xinda Li
- From the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Long Li
- From the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Yahong Huang
- From the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China
| | - Jianguo Ji
- the State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Pingping Shen
- From the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210023, China,
| |
Collapse
|
60
|
Siloşi I, Boldeanu MV, Cojocaru M, Biciuşcă V, Pădureanu V, Bogdan M, Badea RG, Avramescu C, Petrescu IO, Petrescu F, Siloşi CA. The Relationship of Cytokines IL-13 and IL-17 with Autoantibodies Profile in Early Rheumatoid Arthritis. J Immunol Res 2016; 2016:3109135. [PMID: 27579330 PMCID: PMC4989068 DOI: 10.1155/2016/3109135] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/05/2016] [Accepted: 06/21/2016] [Indexed: 12/04/2022] Open
Abstract
Aims. In the present study, we aimed to assess the concentrations of IL-13 and IL-17 in serum of patients with early rheumatoid arthritis (eRA), the investigation of correlation between the concentrations of these cytokines and disease activity score, and the concentration of some autoantibodies and the evaluation of the utility of IL-13 and -17 concentration measurements as markers of disease activity. Materials and Methods. Serum samples were collected from 30 patients and from 28 controls and analysed parameters. Results. The serum concentrations of IL-13, IL-17, anti-CCP, and IgM-RF were statistically significantly higher in patients with eRA, compared to the controls. IL-13 concentrations in the severe and moderate groups with eRA were statistically higher than in the mild and control groups. Also, in the case of IL-17, serum concentrations increased proportionally with the disease activity of eRA. We observe that concentrations of IL-13 and -17 did not correlate with autoantibodies. IL-17 concentration significantly positively correlated with CRP, while IL-13 concentration significantly negatively correlated with CRP. Disease activity score, DAS28, was strongly positively correlated with levels of ESR and weakly positively correlated with concentrations of anti-RA33 autoantibodies. IL-13 has a higher diagnostic utility than IL-17, CRP, ESR, IgM-RF, and anti-CCP as markers of disease activity. Conclusions. The presence of higher IL-13 and IL-17 serum levels in patients, compared with those of controls, confirms that these markers, found with high specificity, might be involved in the pathogenesis of eRA. IL-13 and IL-17 might be of better usefulness in the prediction of eRA activity status than IgM-RF and anti-CCP.
Collapse
Affiliation(s)
- Isabela Siloşi
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Mihail Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Manole Cojocaru
- Department of Physiology, Titu Maiorescu University of Bucharest, 187 Calea Vacaresti Street, 004051 Bucharest, Romania
| | - Viorel Biciuşcă
- Department of Medical Semiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Vlad Pădureanu
- Department of Medical Semiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Maria Bogdan
- Department of Pharmacology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Ramona Georgiana Badea
- Medico Science SRL, Stem Cell Bank Unit, 1B Brazda lui Novac Street, 200690 Craiova, Romania
| | - Carmen Avramescu
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Ileana Octavia Petrescu
- Department of Pediatrics, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Florin Petrescu
- Department of Medical Semiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Cristian A. Siloşi
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| |
Collapse
|
61
|
Kim RY, Rae B, Neal R, Donovan C, Pinkerton J, Balachandran L, Starkey MR, Knight DA, Horvat JC, Hansbro PM. Elucidating novel disease mechanisms in severe asthma. Clin Transl Immunology 2016; 5:e91. [PMID: 27525064 PMCID: PMC4973321 DOI: 10.1038/cti.2016.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Corticosteroids are broadly active and potent anti-inflammatory agents that, despite the introduction of biologics, remain as the mainstay therapy for many chronic inflammatory diseases, including inflammatory bowel diseases, nephrotic syndrome, rheumatoid arthritis, chronic obstructive pulmonary disease and asthma. Significantly, there are cohorts of these patients with poor sensitivity to steroid treatment even with high doses, which can lead to many iatrogenic side effects. The dose-limiting toxicity of corticosteroids, and the lack of effective therapeutic alternatives, leads to substantial excess morbidity and healthcare expenditure. We have developed novel murine models of respiratory infection-induced, severe, steroid-resistant asthma that recapitulate the hallmark features of the human disease. These models can be used to elucidate novel disease mechanisms and identify new therapeutic targets in severe asthma. Hypothesis-driven studies can elucidate the roles of specific factors and pathways. Alternatively, 'Omics approaches can be used to rapidly generate new targets. Similar approaches can be used in other diseases.
Collapse
Affiliation(s)
- Richard Y Kim
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Brittany Rae
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Rachel Neal
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - James Pinkerton
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Lohis Balachandran
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, University of Newcastle , Newcastle, New South Wales, Australia
| |
Collapse
|
62
|
Cannarile L, Venditti G, Ayroldi E, Delfino D, Migliorati G. Dexamethasone Modulates IL-13 and IL-10 Expression. Int J Immunopathol Pharmacol 2016. [DOI: 10.1177/039463209701000302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Interleukin (IL-)-10 and IL-13 are Th2-cell-associated cytokines with a variety of biologic activities in immune and inflammatory responses. It is known that glucocorticoids (GCs) modulate inflammatory and immune functions. In fact, GCs are involved to regulate the transcription of cytokines which are relevant in chronic inflammation and cell-mediated immune response. In the present study we analyzed, in vitro, the effects of DEX on the expression of the IL-10 and IL-13 lymphokines in murine spleen and thymus cells. DEX-stimulation induced down-regulation of the expression of IL-10 and IL-13 mRNA. This effect was already evident 0.5 hr after treatment and persisted in time, in both resting and activated lymphocytes. These results suggest that GCs could have inhibitory effect on Th2 cytokine production.
Collapse
Affiliation(s)
- L. Cannarile
- Dept. of Clinical Medicine, Pathology and Pharmacology, Perugia University, Medical School, 06122 Perugia, Italy
| | - G. Venditti
- Dept. of Clinical Medicine, Pathology and Pharmacology, Perugia University, Medical School, 06122 Perugia, Italy
| | - E. Ayroldi
- Dept. of Clinical Medicine, Pathology and Pharmacology, Perugia University, Medical School, 06122 Perugia, Italy
| | - D.V. Delfino
- Dept. of Clinical Medicine, Pathology and Pharmacology, Perugia University, Medical School, 06122 Perugia, Italy
| | - G. Migliorati
- Dept. of Clinical Medicine, Pathology and Pharmacology, Perugia University, Medical School, 06122 Perugia, Italy
| |
Collapse
|
63
|
Deepak P, Kumar S, Acharya A. IL-13 Neutralization Modulates Function of Type II Polarized Macrophages in vivo in a Murine T-Cell Lymphoma. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x0700500107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
IL-13 is a Th2 cytokine that suppresses the effector function and alters the phenotype and function of macrophages switching to alternatively activated or type II polarized macrophages. The type II polarized macrophages or M2 phenotype differ from normal macrophages greatly in terms of receptor expression, cytokine and NO production, that show tumor promoting function rather than tumoricidal function of classically activated macrophages. The chemokines CCL-22 and CCL-17 produced by either tumor cells or alternatively activated macrophages attract Th2 cells preferentially, which increase the local concentration of Th2 cytokines including IL-13 that further skewed the normal phenotype of macrophages at the site of the tumor micro-environment. Therefore, it is possible to restore the phenotype and function of alternatively activated macrophages by eliminating or blocking the activities of these cytokines. In the present investigation, we show that by blocking the activity/signaling of one of its major constituents IL-13, the iNOS expression and correspondingly NO production increases. The observation signifies its efficacy towards a novel approach for cancer therapy by modulating the function of tumor-associated macrophages (TAM) in vivo for the first time.
Collapse
Affiliation(s)
- P. Deepak
- Immunology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - S. Kumar
- Immunology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - A. Acharya
- Immunology Laboratory, Department of Zoology, Faculty of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
64
|
Neuroimmunology of the Interleukins 13 and 4. Brain Sci 2016; 6:brainsci6020018. [PMID: 27304970 PMCID: PMC4931495 DOI: 10.3390/brainsci6020018] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/20/2022] Open
Abstract
The cytokines interleukin 13 and 4 share a common heterodimeric receptor and are important modulators of peripheral allergic reactions. Produced primarily by T-helper type 2 lymphocytes, they are typically considered as anti-inflammatory cytokines because they can downregulate the synthesis of T-helper type 1 pro-inflammatory cytokines. Their presence and role in the brain is only beginning to be investigated and the data collected so far shows that these molecules can be produced by microglial cells and possibly by neurons. Attention has so far been given to the possible role of these molecules in neurodegeneration. Both neuroprotective or neurotoxic effects have been proposed based on evidence that interleukin 13 and 4 can reduce inflammation by promoting the M2 microglia phenotype and contributing to the death of microglia M1 phenotype, or by potentiating the effects of oxidative stress on neurons during neuro-inflammation. Remarkably, the heterodimeric subunit IL-13Rα1 of their common receptor was recently demonstrated in dopaminergic neurons of the ventral tegmental area and the substantia nigra pars compacta, suggesting the possibility that both cytokines may affect the activity of these neurons regulating reward, mood, and motor coordination. In mice and man, the gene encoding for IL-13Rα1 is expressed on the X chromosome within the PARK12 region of susceptibility to Parkinson’s disease (PD). This, together with finding that IL-13Rα1 contributes to loss of dopaminergic neurons during inflammation, indicates the possibility that these cytokines may contribute to the etiology or the progression of PD.
Collapse
|
65
|
May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 2016; 75:89-116. [PMID: 26255210 DOI: 10.1016/j.cyto.2015.05.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
IL-4 and IL-13 are pleiotropic Th2 cytokines produced by a wide variety of different cell types and responsible for a broad range of biology and functions. Physiologically, Th2 cytokines are known to mediate host defense against parasites but they can also trigger disease if their activities are dysregulated. In this review we discuss the rationale for targeting the IL-4/IL-13 axes in asthma, atopic dermatitis, allergic rhinitis, COPD, cancer, inflammatory bowel disease, autoimmune disease and fibrotic disease as well as evaluating the associated clinical data derived from blocking IL-4, IL-13 or IL-4 and IL-13 together.
Collapse
|
66
|
Munblit D, Boyle RJ, Warner JO. Factors affecting breast milk composition and potential consequences for development of the allergic phenotype. Clin Exp Allergy 2015; 45:583-601. [PMID: 25077553 DOI: 10.1111/cea.12381] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
There is conflicting evidence on the protective role of breastfeeding in relation to allergic sensitization and disease. The factors in breast milk which influence these processes are still unclear and under investigation. We know that colostrum and breast milk contain a variety of molecules which can influence immune responses in the gut-associated lymphoid tissue of a neonate. This review summarizes the evidence that variations in colostrum and breast milk composition can influence allergic outcomes in the infant, and the evidence that maternal and environmental factors can modify milk composition. Taken together, the data presented support the possibility that maternal dietary interventions may be an effective way to promote infant health through modification of breast milk composition.
Collapse
Affiliation(s)
- D Munblit
- Department of Paediatrics, Imperial College London, London, UK; International Inflammation (in-FLAME) Network, of the World Universities Network (WUN)
| | | | | |
Collapse
|
67
|
Moraga I, Richter D, Wilmes S, Winkelmann H, Jude K, Thomas C, Suhoski MM, Engleman EG, Piehler J, Garcia KC. Instructive roles for cytokine-receptor binding parameters in determining signaling and functional potency. Sci Signal 2015; 8:ra114. [PMID: 26554818 DOI: 10.1126/scisignal.aab2677] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines dimerize cell surface receptors to activate signaling and regulate many facets of the immune response. Many cytokines have pleiotropic effects, inducing a spectrum of redundant and distinct effects on different cell types. This pleiotropy has hampered cytokine-based therapies, and the high doses required for treatment often lead to off-target effects, highlighting the need for a more detailed understanding of the parameters controlling cytokine-induced signaling and bioactivities. Using the prototypical cytokine interleukin-13 (IL-13), we explored the interrelationships between receptor binding and a wide range of downstream cellular responses. We applied structure-based engineering to generate IL-13 variants that covered a spectrum of binding strengths for the receptor subunit IL-13Rα1. Engineered IL-13 variants representing a broad range of affinities for the receptor exhibited similar potencies in stimulating the phosphorylation of STAT6 (signal transducer and activator of transcription 6). Delays in the phosphorylation and nuclear translocation of STAT6 were only apparent for those IL-13 variants with markedly reduced affinities for the receptor. From these data, we developed a mechanistic model that quantitatively reproduced the kinetics of STAT6 phosphorylation for the entire spectrum of binding affinities. Receptor endocytosis played a key role in modulating STAT6 activation, whereas the lifetime of receptor-ligand complexes at the plasma membrane determined the potency of the variant for inducing more distal responses. This complex interrelationship between extracellular ligand binding and receptor function provides the foundation for new mechanism-based strategies that determine the optimal cytokine dose to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Ignacio Moraga
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5345, USA. Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - David Richter
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Stephan Wilmes
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Hauke Winkelmann
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Kevin Jude
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5345, USA. Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Christoph Thomas
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5345, USA. Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Megan M Suhoski
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany.
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5345, USA. Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| |
Collapse
|
68
|
Bogaczewicz J, Malinowska K, Sysa-Jedrzejowska A, Wozniacka A. Medium-dose ultraviolet A1 phototherapy and mRNA expression of TSLP, TARC, IL-5, and IL-13 in acute skin lesions in atopic dermatitis. Int J Dermatol 2015; 55:856-63. [PMID: 26475182 DOI: 10.1111/ijd.12992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 11/18/2014] [Accepted: 01/25/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND The mechanisms responsible for the efficacy of ultraviolet A1 (UVA1) in the treatment of atopic dermatitis (AD) are not fully understood. OBJECTIVES This study was designed to investigate mRNA expression of thymic stromal lymphopoietin (TSLP), thymus- and activation-regulated chemokine (TARC), interleukin-5 (IL-5), and IL-13 in AD before and after UVA1 therapy, to determine correlations among them, and to examine whether UVA1 influences their expression and whether it is associated with UVA1 efficacy. METHODS Twenty-five patients with AD underwent medium-dose UVA1 phototherapy. Before and after UVA1, biopsies from acute skin lesions were studied using reverse transcription and real-time polymerase chain reaction. RESULTS Levels of mRNA TSLP correlated with those of TARC, IL-5, and IL-13, and levels of TARC correlated with those of IL-5 and IL-13, both before and after UVA1. Expression of IL-5 correlated with that of IL-13 only before UVA1. SCORAD (SCORing of Atopic Dermatitis) indices correlated with levels of TARC and IL-5 before irradiation. After UVA1, no mRNA level correlated with the SCORAD index. Phototherapy with UVA1 improved SCORAD values (P < 0.001) and increased expression of TARC (P < 0.05) but did not affect mRNA expression of TSLP, IL-5, or IL-13. CONCLUSIONS Expression levels of the mediators TSLP, TARC, IL-5, and IL-13 in AD are interrelated. Phototherapy with UVA1 improves SCORAD indices and increases expression of TARC but has no direct effects on the expression of other molecules. It is likely that UVA1 also interferes with or acts via intermediators on the link between IL-5 and IL-13.
Collapse
Affiliation(s)
- Jaroslaw Bogaczewicz
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| | - Karolina Malinowska
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| | | | - Anna Wozniacka
- Department of Dermatology and Venereology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
69
|
Suzuki A, Leland P, Joshi BH, Puri RK. Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 2015; 75:79-88. [DOI: 10.1016/j.cyto.2015.05.026] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 02/03/2023]
|
70
|
Gonzales JR. T- and B-cell subsets in periodontitis. Periodontol 2000 2015; 69:181-200. [DOI: 10.1111/prd.12090] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
|
71
|
Martel BC, Blom L, Dyring-Andersen B, Skov L, Thestrup-Pedersen K, Skov S, Skak K, Poulsen LK. Human Atopic Dermatitis Skin-derived T Cells can Induce a Reaction in Mouse Keratinocytesin vivo. Scand J Immunol 2015; 82:125-34. [DOI: 10.1111/sji.12316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/09/2015] [Indexed: 11/28/2022]
Affiliation(s)
- B. C. Martel
- Department of Dermato-Allergology; Gentofte Hospital; University of Copenhagen; Copenhagen Denmark
- Department of Veterinary Disease Biology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- LEO Pharma A/S; Ballerup Denmark
| | - L. Blom
- Department of Dermato-Allergology; Gentofte Hospital; University of Copenhagen; Copenhagen Denmark
| | - B. Dyring-Andersen
- Department of Dermato-Allergology; Gentofte Hospital; University of Copenhagen; Copenhagen Denmark
| | - L. Skov
- Department of Dermato-Allergology; Gentofte Hospital; University of Copenhagen; Copenhagen Denmark
| | - K. Thestrup-Pedersen
- Department of Dermato-Allergology; Gentofte Hospital; University of Copenhagen; Copenhagen Denmark
| | - S. Skov
- Department of Veterinary Disease Biology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - K. Skak
- LEO Pharma A/S; Ballerup Denmark
| | - L. K. Poulsen
- Department of Dermato-Allergology; Gentofte Hospital; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
72
|
Chelidonine, a principal isoquinoline alkaloid of Chelidonium majus, attenuates eosinophilic airway inflammation by suppressing IL-4 and eotaxin-2 expression in asthmatic mice. Pharmacol Rep 2015; 67:1168-77. [PMID: 26481537 DOI: 10.1016/j.pharep.2015.04.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Chelidonine, a major bioactive, isoquinoline alkaloid ingredient in Chelidonium majus, exhibits anti-inflammatory and other pharmacological properties. However, its molecular mechanisms in asthma remain unclear. In this work we investigated chelidonine's effect and mechanism in airway inflammation in a mouse model of allergic asthma. METHODS The mice were sensitized to ovalbumin followed by aerosol allergen challenges and determination of chelidonine's effect on enhanced pause (Penh), pulmonary eosinophilic infiltration, eotaxin-2, interleukin-4 (IL-4), IL-13, OVA-specific IgE production, and several transcription factors. RESULT Chelidonine strongly suppressed airway eosinophilia, expression of eotaxin-2, IL-4, and IL-13 cytokine production in bronchoalveolar lavage fluid (BALF). It also attenuated lung IL-17, and eotaxin-2 mRNA expression levels. Moreover, it suppressed eotaxin-2 and IL-17 production in accordance with up- and downregulation of forkhead box p3 (Foxp3), and signal transducer and activator of transcription (STAT6) expression, respectively. CONCLUSIONS Chelidonine has profound inhibitory effects on airway inflammation and this effect is caused by suppression of IL-4, eotaxin-2, and OVA-specific IgE production through the STAT6 and Foxp3 pathways. So chelidonine can improve allergic asthma in mice and be a novel anti-asthma therapeutic.
Collapse
|
73
|
Opposing roles for mammary epithelial-specific PPARγ signaling and activation during breast tumour progression. Mol Cancer 2015; 14:85. [PMID: 25889730 PMCID: PMC4422298 DOI: 10.1186/s12943-015-0347-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/18/2015] [Indexed: 11/29/2022] Open
Abstract
Background Among women worldwide, breast cancer is the most commonly diagnosed cancer, and the second leading cause of cancer-related deaths. Improved understanding of breast tumourigenesis may facilitate the development of more effective therapies. Peroxisome proliferator-activated receptor (PPAR)γ is a transcription factor that regulates genes involved in insulin sensitivity and adipogenesis. Previously, we showed, using 7,12-dimethylbenz [a] anthracene (DMBA)-treated haploinsufficient PPARγ mice, that PPARγ suppresses breast tumour progression; however, the PPARγ expressing cell types and mechanisms involved remain to be clarified. Here, the role of PPARγ expression and activation in mammary epithelial cells (MG) with respect to DMBA-mediated breast tumourigenesis was investigated. Methods PPARγ MG knockout (PPARγ-MG KO) mice and their congenic, wild-type controls (PPARγ-WT) were treated once a week for six weeks by oral gavage with 1 mg DMBA dissolved in corn oil and maintained on a normal chow diet. At week 7, mice were randomly divided into those maintained on a normal chow diet (DMBA Only; PPARγ-WT: n = 25 and PPARγ-MG KO: n = 39) or those receiving a diet supplemented with the PPARγ ligand, rosiglitazone (ROSI, 4 mg/kg/day) (DMBA + ROSI; PPARγ-WT: n = 34 and PPARγ-MG KO: n = 17) for the duration of the 25-week study. Results Compared to DMBA Only-treated PPARγ-WTs, both breast tumour susceptibility and serum levels of proinflammatory and chemotactic cytokines, namely IL-4, eotaxin, GM-CSF, IFN-γ, and MIP-1α, were decreased among PPARγ-MG KOs. Cotreatment with ROSI significantly reduced breast tumour progression among PPARγ-WTs, correlating with increased BRCA1 and decreased VEGF and COX-2 protein expression levels in breast tumours; whereas, surprisingly DMBA + ROSI-treated PPARγ-MG KOs showed increased breast tumourigenesis, correlating with activation of COX-2. Conclusion These novel data suggest MG-specific PPARγ expression and signaling is critical during breast tumourigenesis, and may serve as a strong candidate predictive biomarker for response of breast cancer patients to the use of therapeutic strategies that include PPARγ ligands. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0347-8) contains supplementary material, which is available to authorized users.
Collapse
|
74
|
Sadakane K, Ichinose T. Effect of the hand antiseptic agents benzalkonium chloride, povidone-iodine, ethanol, and chlorhexidine gluconate on atopic dermatitis in NC/Nga mice. Int J Med Sci 2015; 12:116-25. [PMID: 25589887 PMCID: PMC4293176 DOI: 10.7150/ijms.10322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/24/2014] [Indexed: 01/12/2023] Open
Abstract
Antiseptic agents can cause skin irritation and lead to severe problems, especially for individuals with atopic diatheses. We investigated the effect of 4 different antiseptic agents using an atopic dermatitis (AD) model mouse. NC/Nga mice were subcutaneously injected with mite allergen (Dp) to induce AD-like skin lesions (ADSLs), and an application of 0.2% (w/v) benzalkonium chloride (BZK), 10% (w/v) povidone-iodine (PVP-I), 80% (v/v) ethanol (Et-OH), or 0.5% (v/v) chlorhexidine gluconate (CHG) was applied to the ear envelope. BZK induced a significant increase in the severity of the clinical score, infiltration of inflammatory cells, local expression of inflammatory cytokines in subcutaneous tissue, and total serum immunoglobulin (Ig) E. PVP-I increased the clinical score, number of mast cells, and production of inflammatory cytokines, and total serum IgE. Et-OH increased the clinical score and number of inflammatory cells, but showed no effect on serum IgE levels. No differences in any parameters were observed between CHG and the vehicle. Collectively, the results suggest the severity of the ADSL was related in part to the strength of the immunoreaction. These findings suggest that CHG could offer the lowest risk of inducing ADSL in individuals with atopic dermatitis and that medical staff and food handlers with AD could benefit from its use.
Collapse
Affiliation(s)
- Kaori Sadakane
- Department of Health Sciences, Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita City, Oita 870-1201, Japan
| | | |
Collapse
|
75
|
Hasebe R, Suzuki A, Yamasaki T, Horiuchi M. Temporary upregulation of anti-inflammatory cytokine IL-13 expression in the brains of CD14 deficient mice in the early stage of prion infection. Biochem Biophys Res Commun 2014; 454:125-30. [PMID: 25450368 DOI: 10.1016/j.bbrc.2014.10.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
CD14 deficient (CD14(-/-)) mice survived longer than wild-type (WT) C57BL/6J mice when inoculated with prions intracerebrally, accompanied by increased expression of anti-inflammatory cytokine IL-10 by microglia in the early stage of infection. To assess the immune regulatory effects of CD14 in detail, we compared the gene expression of pro- and anti-inflammatory cytokines in the brains of WT and CD14(-/-) mice infected with the Chandler strain. Gene expression of the anti-inflammatory cytokine IL-13 in prion-infected CD14(-/-) mice was temporarily upregulated at 75dpi, whereas IL-13 gene expression was not upregulated in prion-infected WT mice. Immunofluorescence staining showed that IL-13 was mainly expressed in neurons of the thalamus at 75dpi. These results suggest that CD14 can suppress IL-13 expression in neurons during the early stage of prion infection.
Collapse
Affiliation(s)
- Rie Hasebe
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Nishi 9, Kita 18, Kita-ku, Sapporo 060-0818, Japan
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Nishi 9, Kita 18, Kita-ku, Sapporo 060-0818, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Nishi 9, Kita 18, Kita-ku, Sapporo 060-0818, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Nishi 9, Kita 18, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
76
|
Gustafsson K, Willebrand E, Welsh M. Absence of the adaptor protein Shb potentiates the T helper type 2 response in a mouse model of atopic dermatitis. Immunology 2014; 143:33-41. [PMID: 24645804 DOI: 10.1111/imm.12286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Aberrant regulation of T helper (Th) cell maturation is associated with a number of autoimmune conditions, including allergic disorders and rheumatoid arthritis. The Src homology domain protein B (Shb) adaptor protein was recently implicated as a regulator of Th cell differentiation. Shb is an integral component of the T-cell receptor (TCR) signalling complex and in the absence of Shb the TCR is less responsive to stimulation, resulting in the preferential development of Th2 responses under conditions of in vitro stimulation. In the present study, we extend those observations to an in vivo situation using a murine model of atopic dermatitis. Shb knockout mice develop more pronounced symptoms of atopic dermatitis with increased localized oedema, epidermal hyperplasia and IgE production. Dermal infiltration of mast cells, eosinophils, CD4(+) Th cells and F4/80(+) macrophages was also significantly increased in Shb-deficient mice. This correlated with elevated transcription of the hallmark Th2 cytokines interleukin-4 and interleukin-5. The loss of Shb therefore alters TCR signalling ability, thereby favouring the development of Th2-driven inflammation and exacerbating symptoms of allergy.
Collapse
Affiliation(s)
- Karin Gustafsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
77
|
Belle I, Mahlios J, McKenzie A, Zhuang Y. Aberrant production of IL-13 by T cells promotes exocrinopathy in Id3 knockout mice. Cytokine 2014; 69:226-33. [PMID: 25010390 DOI: 10.1016/j.cyto.2014.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/24/2014] [Accepted: 06/11/2014] [Indexed: 12/24/2022]
Abstract
Elevated levels of the cytokine IL-13 has been found to be associated with autoimmune diseases, including Sjögren's Syndrome. However, whether IL-13 plays a causative role in disease development is not known and cannot be easily studied in humans. Our previous work has shown that levels of IL-13 are elevated in Id3 knockout mice, which has been established as a model for primary Sjögren's Syndrome. Here, we utilized an IL-13 reporter to determine the source of the elevated IL-13 levels observed in Id3 knockout mice and assess its contribution to SS pathology. Our results indicate that T cells, notably CD4 and γδ T cells, in Id3 knockout mice acquire IL-13 competency at an elevated rate well before disease symptoms become apparent. We also show that T cells developing early in life are more predisposed to produce IL-13. Finally, analysis of Id3 and IL-13 double deficient mice demonstrated that IL-13 plays an essential role in the deterioration of gland function. Our study provides crucial genetic evidence that enhanced IL-13 production by T cells can play a causative role in the exocrinopathy observed in Id3 knockout mice.
Collapse
Affiliation(s)
- Ian Belle
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Josh Mahlios
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
78
|
Chandriani S, DePianto DJ, N’Diaye EN, Abbas AR, Jackman J, Bevers J, Ramirez-Carrozzi V, Pappu R, Kauder SE, Toy K, Ha C, Modrusan Z, Wu LC, Collard HR, Wolters PJ, Egen JG, Arron JR. Endogenously Expressed IL-13Rα2 Attenuates IL-13–Mediated Responses but Does Not Activate Signaling in Human Lung Fibroblasts. THE JOURNAL OF IMMUNOLOGY 2014; 193:111-9. [DOI: 10.4049/jimmunol.1301761] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
79
|
Abstract
Obesity is one of the most serious pandemic health problems in modern society and the predisposing factor for the type 2 diabetes mellitus. Chronic low-grade inflammation mediates the pathogenesis of insulin resistance in obese humans and rodents, and white adipose tissue is one of major tissues to modulate inflammation. Obese humans and rodents show dynamic changes of immunocellular compositions in white adipose tissue to induce inflammatory responses. Innate and adaptive immune responses mainly mediated by macrophages and T cells contribute insulin resistance. Recently, it has been shown that adipose tissue fibrosis is also enhanced in obese humans and rodents along with inflammatory responses, and suppression of adipose tissue fibrosis shows improved insulin sensitivity in rodent models, suggesting that adipose tissue fibrosis is involved in insulin resistance.
Collapse
Affiliation(s)
- Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
80
|
Fu J, Heinrichs J, Yu XZ. Helper T-cell differentiation in graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Arch Immunol Ther Exp (Warsz) 2014; 62:277-301. [PMID: 24699629 DOI: 10.1007/s00005-014-0284-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/27/2014] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective therapeutic option for many malignant diseases. However, the efficacy of allo-HSCT is limited by the occurrence of destructive graft-versus-host disease (GVHD). Since allogeneic T cells are the driving force in the development of GVHD, their activation, proliferation, and differentiation are key factors to understanding GVHD pathogenesis. This review focuses on one critical aspect: the differentiation and function of helper T (Th) cells in acute GVHD. We first summarize well-established subsets including Th1, Th2, Th17, and T-regulatory cells; their flexibility, plasticity, and epigenetic modification; and newly identified subsets including Th9, Th22, and T follicular helper cells. Next, we extensively discuss preclinical findings of Th-cell lineages in GVHD: the networks of transcription factors involved in differentiation, the cytokine and signaling requirements for development, the reciprocal differentiation features, and the regulation of microRNAs on T-cell differentiation. Finally, we briefly summarize the recent findings on the roles of T-cell subsets in clinical GVHD and ongoing strategies to modify T-cell differentiation for controlling GVHD in patients. We believe further exploration and understanding of the immunobiology of T-cell differentiation in GVHD will expand therapeutic options for the continuing success of allo-HSCT.
Collapse
Affiliation(s)
- Jianing Fu
- Cancer Biology PhD Program, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
81
|
Tidball JG, Dorshkind K, Wehling-Henricks M. Shared signaling systems in myeloid cell-mediated muscle regeneration. Development 2014; 141:1184-96. [PMID: 24595286 PMCID: PMC3943178 DOI: 10.1242/dev.098285] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Much of the focus in muscle regeneration has been placed on the identification and delivery of stem cells to promote regenerative capacity. As those efforts have advanced, we have learned that complex features of the microenvironment in which regeneration occurs can determine success or failure. The immune system is an important contributor to that complexity and can determine the extent to which muscle regeneration succeeds. Immune cells of the myeloid lineage play major regulatory roles in tissue regeneration through two general, inductive mechanisms: instructive mechanisms that act directly on muscle cells; and permissive mechanisms that act indirectly to influence regeneration by modulating angiogenesis and fibrosis. In this article, recent discoveries that identify inductive actions of specific populations of myeloid cells on muscle regeneration are presented, with an emphasis on how processes in muscle and myeloid cells are co-regulated.
Collapse
Affiliation(s)
- James G. Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1732, USA
| | - Kenneth Dorshkind
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1732, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
82
|
Moens L, Tangye SG. Cytokine-Mediated Regulation of Plasma Cell Generation: IL-21 Takes Center Stage. Front Immunol 2014; 5:65. [PMID: 24600453 PMCID: PMC3927127 DOI: 10.3389/fimmu.2014.00065] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/05/2014] [Indexed: 11/20/2022] Open
Abstract
During our life, we are surrounded by continuous threats from a diverse range of invading pathogens. Our immune system has evolved multiple mechanisms to efficiently deal with these threats so as to prevent them from causing disease. Terminal differentiation of mature B cells into plasma cells (PC) – the antibody (Ab) secreting cells of the immune system – is critical for the generation of protective and long-lived humoral immune responses. Indeed, efficient production of antigen (Ag)-specific Ab by activated B cells underlies the success of most currently available vaccines. The mature B-cell pool is composed of several subsets, distinguished from one according to size, surface marker expression, location, and Ag exposure, and they all have the capacity to differentiate into PCs. For a B-cell to acquire the capacity to produce Abs, it must undergo an extensive differentiation process driven by changes in gene expression. Two broad categories of Ags exist that cause B-cell activation and differentiation: T cell dependent (TD) or T cell independent (TI). In addition to the B-cell subset and nature of the Ag, it is important to consider the cytokine environment that can also influence how B-cell differentiation is achieved. Thus, while many cytokines can induce Ab-secretion by B cells after activation with mimics of TD and TI stimuli in vitro, they can have different efficacies and specificities, and can often preferentially induce production of one particular Ig isotype over another. Here, we will provide an overview of in vitro studies (mouse and human origin) that evaluated the role of different cytokines in inducing the differentiation of distinct B-cell subsets to the PC lineage. We will place particular emphasis on IL-21, which has emerged as the most potent inducer of terminal B-cell differentiation in humans. We will also focus on the role of IL-21 and defects in B-cell function and how these contribute to human immunopathologies such as primary immunodeficiencies and B-cell mediated autoimmune conditions.
Collapse
Affiliation(s)
- Leen Moens
- Immunology and Immunodeficiency Group, Immunology Research Program, Garvan Institute of Medical Research , Darlinghurst, NSW , Australia
| | - Stuart G Tangye
- Immunology and Immunodeficiency Group, Immunology Research Program, Garvan Institute of Medical Research , Darlinghurst, NSW , Australia ; St Vincent's Clinical School, University of New South Wales , Darlinghurst, NSW , Australia
| |
Collapse
|
83
|
The soluble form of CTLA-4 from serum of patients with autoimmune diseases regulates T-cell responses. BIOMED RESEARCH INTERNATIONAL 2014; 2014:215763. [PMID: 24605322 PMCID: PMC3925529 DOI: 10.1155/2014/215763] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022]
Abstract
Cytotoxic T lymphocyte associated antigen-4 (CTLA-4) is a costimulatory receptor transducing a potent inhibitory signal. Increasing evidence showed that CTLA-4 gene is an important susceptibility locus for autoimmune disorders. Alternatively spliced mRNA generates a soluble form, called sCTLA-4. Whereas low levels of sCTLA-4 are detected in normal human serum, increased/high serum levels are observed in several autoimmune diseases. The biological significance of increased sCTLA-4 serum level is not fully clarified yet. It can be envisaged that sCTLA-4 specifically inhibits the early T-cell activation by blocking the interaction of CD80/CD86 with the costimulatory receptor CD28. On the other hand, higher levels of sCTLA-4 could contend the binding of the membrane form of CTLA-4 with CD80/CD86, in later activation phase, causing a reduction of inhibitory signalling. We showed that sCTLA-4 from sera of patients with different autoimmune diseases is able to display functional activities on an in vitro system acting on the proliferation capability and modulating the secretion of cytokines. We observed a dual effect of sCTLA-4: inhibiting the secretion of IFN-γ, IL-2, IL-7, and IL-13 and activating the secretion of TGF-β and IL-10. This study underlines the role of sCTLA-4 in modulating the immune response and its relevance in autoimmune disease pathogenesis.
Collapse
|
84
|
Abstract
As members of the basic helix-loop-helix (bHLH) family of transcription factors, E proteins function in the immune system by directing and maintaining a vast transcriptional network that regulates cell survival, proliferation, differentiation, and function. Proper activity of this network is essential to the functionality of the immune system. Aberrations in E protein expression or function can cause numerous defects, ranging from impaired lymphocyte development and immunodeficiency to aberrant function, cancer, and autoimmunity. Additionally, disruption of inhibitor of DNA-binding (Id) proteins, natural inhibitors of E proteins, can induce additional defects in development and function. Although E proteins have been investigated for several decades, their study continues to yield novel and exciting insights into the workings of the immune system. The goal of this chapter is to discuss the various classical roles of E proteins in lymphocyte development and highlight new and ongoing research into how these roles, if compromised, can lead to disease.
Collapse
Affiliation(s)
- Ian Belle
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA.
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham North Carolina, USA
| |
Collapse
|
85
|
Sadakane K, Ichinose T, Takano H, Yanagisawa R, Koike E. Effects of oral administration of di-(2-ethylhexyl) and diisononyl phthalates on atopic dermatitis in NC/Nga mice. Immunopharmacol Immunotoxicol 2013; 36:61-9. [DOI: 10.3109/08923973.2013.866678] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
86
|
O'Reilly S. Role of interleukin-13 in fibrosis, particularly systemic sclerosis. Biofactors 2013; 39:593-6. [PMID: 23893513 DOI: 10.1002/biof.1117] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 11/07/2022]
Abstract
Chronic inflammation can lead to altered extracellular matrix deposition and ultimately fibrosis. Interleukin-13 (IL-13) is a cytokine that was found to promote IgE class switching and inhibit proinflammatory cytokines. However, it is now recognized as an important mediator in allergy and most importantly fibrosis. Indeed, animal studies with genetically deleted mice have demonstrated its critical role in fibrosis and although it shares over lapping functions with IL-4 it is the dominant cytokine in fibrosis. Systemic sclerosis is an autoimmune disease in which there is chronic inflammation and fibrosis. The disease is associated with a Th2 polarization and IL-13 levels are elevated both in the blood and in the skin of patients. This review will examine the role of IL-13 in driving fibrosis with a particular emphasis on systemic sclerosis as a prototypical fibrotic disease. It will highlight recent research into the role of IL-13 and how this cytokine may be targeted in systemic sclerosis.
Collapse
Affiliation(s)
- Steven O'Reilly
- Musculoskeletal Research Group, Institute of Cellular Medicine, Faculty of Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
87
|
Doyle MC, Tremblay S, Dumais N. 15-Deoxy-Δ(12,14)-prostaglandin J2 inhibits IL-13 production in T cells via an NF-κB-dependent mechanism. Biochem Biophys Res Commun 2013; 431:472-7. [PMID: 23333326 DOI: 10.1016/j.bbrc.2013.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/09/2013] [Indexed: 11/18/2022]
Abstract
Interleukin (IL)-13 is a cytokine produced by activated CD4(+) T cells that plays a critical role in promoting allergic responses and tumor cell growth. The 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a natural ligand for the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), a known regulator of anti-inflammatory activities. We determined the effects of 15d-PGJ(2) on IL-13 expression in the Jurkat E6.1 T-cell line and in peripheral blood mononuclear cells. Semi-quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay revealed that treatment of activated T cells with 15d-PGJ(2) significantly decreased IL-13 mRNA transcription and secretion, respectively. This inhibition by 15d-PGJ(2) was independent of PPAR-γ since treatment with GW9662, an irreversible antagonist of the nuclear receptor, produced no effect. Our data also revealed the involvement of nuclear factor-κB in mediating 15d-PGJ(2)-dependent down regulation of IL-13 expression. Collectively, these results demonstrate the potential of 15d-PGJ(2) in attenuating expression and production of IL-13 in activated T cells.
Collapse
Affiliation(s)
- Marie-Christine Doyle
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke (QC), Canada J1K 2R1
| | | | | |
Collapse
|
88
|
Morrison BE, Marcondes MCG, Nomura DK, Sanchez-Alavez M, Sanchez-Gonzalez A, Saar I, Kim KS, Bartfai T, Maher P, Sugama S, Conti B. Cutting edge: IL-13Rα1 expression in dopaminergic neurons contributes to their oxidative stress-mediated loss following chronic peripheral treatment with lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2012; 189:5498-502. [PMID: 23169588 DOI: 10.4049/jimmunol.1102150] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Inflammation and its mediators, including cytokines and reactive oxygen species, are thought to contribute to neurodegeneration. In the mouse brain, we found that IL-13Rα1 was expressed in the dopaminergic (DA) neurons of the substantia nigra pars compacta, which are preferentially lost in human Parkinson's disease. Mice deficient for Il13ra1 exhibited resistance to loss of DA neurons in a model of chronic peripheral inflammation using bacterial LPS. IL-13, as well as IL-4, potentiated the cytotoxic effects of t-butyl hydroperoxide and hydrogen peroxide on mouse DA MN9D cells. Collectively, our data indicate that expression of IL-13Rα1 on DA neurons can increase their susceptibility to oxidative stress-mediated damage, thereby contributing to their preferential loss. In humans, Il13ra1 lies on the X chromosome within the PARK12 locus of susceptibility to Parkinson's disease, suggesting that IL-13Rα1 may have a role in the pathogenesis of this neurodegenerative disease.
Collapse
Affiliation(s)
- Brad E Morrison
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Kumar A, Kantele A, Järvinen T, Chen T, Kavola H, Sadeghi M, Hedman K, Franssila R. Trichodysplasia spinulosa-associated polyomavirus (TSV) and Merkel cell polyomavirus: correlation between humoral and cellular immunity stronger with TSV. PLoS One 2012; 7:e45773. [PMID: 23029236 PMCID: PMC3454342 DOI: 10.1371/journal.pone.0045773] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 08/22/2012] [Indexed: 12/19/2022] Open
Abstract
Merkel Cell Polyomavirus (MCV) is a common infectious agent likely to be involved in the pathogenesis of most Merkel cell carcinomas (MCC). Trichodysplasia spinulosa-associated polyomavirus (TSV), which exhibit high seroprevalence in general population, has been detected in trichodysplasia spinulosa (TS) skin lesions suggesting an etiological role for this disease. Previous studies have shown strong MCV-specific T-cell responses, while no data exist on T-cell immunity against TSV. In order to characterize Th-cell immunity against TSV, and to allow comparisons with the MCV-specific Th-cell immunity, we studied TSV-specific proliferation, IFN-γ, IL-10 and IL-13, and MCV-specific IFN-γ and IL-10 responses in 51 healthy volunteers, and in one MCC patient. Recombinant TSV and MCV VP1 virus-like particles (VLPs) were used as antigens. A significant correlation was found between virus-specific Th-cell and antibody responses with TSV; with MCV it proved weaker. Despite significant homology in amino acid sequences, Th-cell crossreactivity was not evident between these viruses. Some subjects seronegative to both TSV and MCV exhibited Th-cell responses to both viruses. The agent initially priming these Th-cells remains an enigma. As CD8+ cells specific to MCV T-Ag oncoprotein clearly provide an important defense against established MCC, the MCV VP1-specific Th-cells may, by suppressing MCV replication with antiviral cytokines such as IFN-γ, significantly contribute to preventing the full process of oncogenesis.
Collapse
MESH Headings
- Adult
- Antigens, Fungal/immunology
- Antigens, Viral/immunology
- Candida albicans/immunology
- Capsid Proteins/immunology
- Carcinoma, Merkel Cell/immunology
- Carcinoma, Merkel Cell/virology
- Cell Proliferation
- Cells, Cultured
- Female
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/physiology
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Immunoglobulin G/blood
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Male
- Merkel cell polyomavirus/immunology
- Merkel cell polyomavirus/physiology
- Middle Aged
- Polyomavirus Infections/blood
- Polyomavirus Infections/immunology
- Polyomavirus Infections/virology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/physiology
- T-Lymphocytes, Helper-Inducer/virology
- Tumor Virus Infections/blood
- Tumor Virus Infections/immunology
- Tumor Virus Infections/virology
- Virus Replication
- Young Adult
Collapse
Affiliation(s)
- Arun Kumar
- Departments of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Rout N, Greene J, Yue S, O'Connor D, Johnson RP, Else JG, Exley MA, Kaur A. Loss of effector and anti-inflammatory natural killer T lymphocyte function in pathogenic simian immunodeficiency virus infection. PLoS Pathog 2012; 8:e1002928. [PMID: 23028326 PMCID: PMC3447755 DOI: 10.1371/journal.ppat.1002928] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/13/2012] [Indexed: 11/29/2022] Open
Abstract
Chronic immune activation is a key determinant of AIDS progression in HIV-infected humans and simian immunodeficiency virus (SIV)-infected macaques but is singularly absent in SIV-infected natural hosts. To investigate whether natural killer T (NKT) lymphocytes contribute to the differential modulation of immune activation in AIDS-susceptible and AIDS-resistant hosts, we compared NKT function in macaques and sooty mangabeys in the absence and presence of SIV infection. Cynomolgus macaques had significantly higher frequencies of circulating invariant NKT lymphocytes compared to both rhesus macaques and AIDS-resistant sooty mangabeys. Despite this difference, mangabey NKT lymphocytes were functionally distinct from both macaque species in their ability to secrete significantly more IFN-γ, IL-13, and IL-17 in response to CD1d/α-galactosylceramide stimulation. While NKT number and function remained intact in SIV-infected mangabeys, there was a profound reduction in NKT activation-induced, but not mitogen-induced, secretion of IFN-γ, IL-2, IL-10, and TGF-β in SIV-infected macaques. SIV-infected macaques also showed a selective decline in CD4+ NKT lymphocytes which correlated significantly with an increase in circulating activated memory CD4+ T lymphocytes. Macaques with lower pre-infection NKT frequencies showed a significantly greater CD4+ T lymphocyte decline post SIV infection. The disparate effect of SIV infection on NKT function in mangabeys and macaques could be a manifestation of their differential susceptibility to AIDS. Alternately, these data also raise the possibility that loss of anti-inflammatory NKT function promotes chronic immune activation in pathogenic SIV infection, while intact NKT function helps to protect natural hosts from developing immunodeficiency and aberrant immune activation. Several African nonhuman primate species such as sooty mangabeys are naturally infected with SIV and maintain high levels of viral replication without developing AIDS. SIV-infected natural hosts do not show evidence of increased chronic immune activation, a feature that distinguishes them from AIDS-susceptible SIV-infected Asian macaques. In this study we compared natural killer T (NKT) lymphocytes, a unique subset of innate T lymphocytes with anti-inflammatory properties, in AIDS-resistant and AIDS-susceptible hosts. Sooty mangabey NKT cells retained normal functionality following SIV infection and were more potent than macaque NKT cells in their ability to produce interferon-γ and secrete anti-inflammatory cytokines. In contrast, NKT cells of SIV-infected macaques were markedly hypo-functional with regards to secretion of anti-inflammatory and effector cytokines and showed an association between loss of CD4+ NKT cells and increased immune activation. These findings suggest that dysfunctional NKT cells may promote increased immune activation in AIDS-susceptible hosts while intact effector and anti-inflammatory NKT cells could help to prevent immunodeficiency and increased immune activation in natural hosts.
Collapse
Affiliation(s)
- Namita Rout
- New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Appleton JA. Costs and benefits of immunity to worm infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1101-1103. [PMID: 22815379 DOI: 10.4049/jimmunol.1201596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Judith A Appleton
- Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA.
| |
Collapse
|
92
|
Balyasnikova IV, Wainwright DA, Solomaha E, Lee G, Han Y, Thaci B, Lesniak MS. Characterization and immunotherapeutic implications for a novel antibody targeting interleukin (IL)-13 receptor α2. J Biol Chem 2012; 287:30215-27. [PMID: 22778273 DOI: 10.1074/jbc.m112.370015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The high affinity interleukin-13 receptor α2 (IL13Rα2) is selectively expressed at a high frequency by glioblastoma multiforme (GBM) as well as several other tumor types. One approach for targeting this tumor-specific receptor utilizes the cognate ligand, IL-13, conjugated to cytotoxic molecules. However, this approach lacks specificity because the lower affinity receptor for IL-13, IL13Rα1, is widely expressed by normal tissues. Here, we aimed to develop and characterize a novel monoclonal antibody (mAb) specific to IL13Rα2 for the therapeutic purpose of targeting IL13Rα2-expressing tumors. Hybridoma cell lines were generated and compared for binding affinities to recombinant human IL13Rα2 (rhIL13Rα2). Clone 47 demonstrated binding to the native conformation of IL13Rα2 and was therefore chosen for further studies. Clone 47 bound specifically and with high affinity (K(D) = 1.39 × 10(-9) M) to rhIL13Rα2 but not to rhIL13Rα1 or murine IL13Rα2. Furthermore, clone 47 specifically recognized wild-type IL13Rα2 expressed on the surface of CHO and HEK cells as well as several glioma cell lines. Competitive binding assays revealed that clone 47 also significantly inhibited the interaction between human soluble IL-13 and IL13Rα2 receptor. Moreover, we found that N-linked glycosylation of IL13Rα2 contributes in part to the interaction of the antibody to IL13Rα2. In vivo, the IL13Rα2 mAb improved the survival of nude mice intracranially implanted with a human U251 glioma xenograft. Collectively, these data warrant further investigation of this novel IL13Rα2 mAb with an emphasis on translational implications for therapeutic use.
Collapse
|
93
|
Grünig G, Corry DB, Reibman J, Wills-Karp M. Interleukin 13 and the evolution of asthma therapy. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2012; 1:20-27. [PMID: 23607082 PMCID: PMC3630076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/05/2012] [Indexed: 06/02/2023]
Abstract
This is a concise review on Interleukin (IL)-13 and the evolution of asthma therapy, from discovery of the molecule, the identification of its pathogenic role in animal models of asthma, to the development of clinically successful neutralizing agents. The translational path from basic research to clinical application was not sequential as expected but random with respect to the tools (molecular & cell biology, animal models, human studies) used and to the application of academic versus industry research. The experiences with the development of neutralizing anti-IL-13 reagents emphasize the need for inclusion of a biomarker assay in the clinical trials that both identifies individuals that actually have aberrant expression of the pathway of interest and allows determining whether the target of interest is neutralized.
Collapse
Affiliation(s)
- Gabriele Grünig
- Departments of Environmental Medicine and Medicine, NYU Langone Medical Center, Tuxedo, NY 10987
| | | | | | | |
Collapse
|
94
|
Lacy ER. Equilibrium and kinetic analysis of human interleukin-13 and IL-13 receptor alpha-2 complex formation. J Mol Recognit 2012; 25:184-91. [PMID: 22407982 DOI: 10.1002/jmr.2150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin 13 (IL-13) is a pleiotropic cytokine secreted by activated T cells. Both IL-13 and its polymorphic variant (IL-13-R110Q) have been shown to be associated with multiple diseases such as asthma and allergy. Two IL-13 receptors have been identified, IL-13R alpha-1 receptor (IL-13Rα1) and IL-13R alpha-2 receptor (IL-13Rα2). It has been well established that IL-13 binds to IL-13Rα1 alone with low nM affinity while binding to the IL-13Rα1/IL-4R receptor complex is significantly tighter (pM). The affinity between IL-13 and IL-13Rα2, however, remains elusive. Several values have been reported in the literature varying from 20 pM to 2.5 nM. The affinities previously reported were obtained using surface plasmon resonance (SPR) or Scatchard analysis of (125) I-IL-13 binding data. This report presents the results for the kinetics and equilibrium binding analysis studies performed using label-free kinetic exclusion assay (KEA) for the interaction of human IL-13 and IL-13Rα2. KEA equilibrium analysis showed that the affinities of IL-13Rα2 are 107 and 56 pM for IL-13 and its variant (IL-13-R110Q), respectively. KEA kinetic analysis showed that a tight and very stable complex is formed between IL-13Rα2 and IL-13, as shown by calculated dissociation rate constants slower than 5 × 10(-5) per second. Kinetic analysis also showed significant differences in the kinetic behavior of wild type (wt) versus IL-13-R110Q. IL-13-R110Q not only associates to IL-13Rα2 slower than wt human IL-13 (wt-IL-13), as previously reported, but IL-13-R110Q also dissociates slower than wt-IL-13. These results show that IL-13Rα2 is a high affinity receptor and provide a new perspective on kinetic behavior that could have significant implications in the understanding of the role of IL-13-R110Q in the disease state.
Collapse
Affiliation(s)
- Eilyn R Lacy
- Biologics Research, Janssen Research & Development, LLC, Radnor, PA 19087, USA.
| |
Collapse
|
95
|
Ooi AT, Ram S, Kuo A, Gilbert JL, Yan W, Pellegrini M, Nickerson DW, Chatila TA, Gomperts BN. Identification of an interleukin 13-induced epigenetic signature in allergic airway inflammation. Am J Transl Res 2012; 4:219-228. [PMID: 22611474 PMCID: PMC3353532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 03/22/2012] [Indexed: 06/01/2023]
Abstract
Epigenetic changes have been implicated in the pathogenesis of asthma. We sought to determine if IL13, a key cytokine in airway inflammation and remodeling, induced epigenetic DNA methylation and miRNAs expression changes in the airways in conjunction with its transcriptional gene regulation. Inducible expression of an IL13 transgene in the airways resulted in significant changes in DNA methylation in 177 genes, most of which were associated with the IL13 transcriptional signature in the airways. A large number of genes whose expression was induced by IL13 were found to have decreased methylation, including those involved in tissue remodeling (Olr1), leukocyte influx (Cxcl3, Cxcl5, CSFr2b), and the Th2 response (C3ar1, Chi3l4). Reciprocally, some genes whose expression was suppressed were found to have increased methylation (e.g. Itga8). In addition, miRNAs were identified with targets for lung development and Wnt signaling, amongst others. These results indicate that IL13 confers an epigenetic methylation and miRNA signature that accompanies its transcriptional program in the airways, which may play a critical role in airway inflammation and remodeling.
Collapse
|
96
|
GATA-3 regulates contact hyperresponsiveness in a murine model of allergic dermatitis. Immunobiology 2012; 217:446-54. [DOI: 10.1016/j.imbio.2011.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/18/2011] [Indexed: 11/20/2022]
|
97
|
Thakur A, Norkina O, Lum LG. In vitro synthesis of primary specific anti-breast cancer antibodies by normal human peripheral blood mononuclear cells. Cancer Immunol Immunother 2011; 60:1707-20. [PMID: 21713642 PMCID: PMC3792712 DOI: 10.1007/s00262-011-1056-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/27/2011] [Indexed: 11/30/2022]
Abstract
In this study, we developed a unique in vitro model to mimic the endogenous tumor microenvironment to understand the effect of immunotherapy with activated T-cells (ATC) armed with anti-CD3 × anti-Her2 bispecific antibody (aATC) on antibody response by naive immune cells. This model contained a co-culture of naïve peripheral blood mononuclear cells (PBMC), breast cancer cells (SK-BR-3), ATC or aATC and CpG ODNs. Culture supernatants were tested at various time points for anti-SK-BR-3 antibodies by ELISA, Western blot and flow cytometry. PBMC cocultured with non-irradiated aATC or irradiated (*) aATC showed significant increases in anti-tumor antibody production at day 14 (P < 0.0001) in the presence of CpG-ODN compared to unstimulated PBMC cultures (n = 9). Antibody specificity was confirmed by ELISA, Western blot and flow cytometry. Co-cultures containing *aATC and CpG showed significantly enhanced levels of IgG(2) (P < 0.001) and cytokines that promote IgG(2) synthesis including IL-13 (P < 0.02), IFNγ (P < 0.01) and GM-CSF (P < 0.05) compared to unstimulated PBMC control (n = 3). We show that aATC targeting and lysis of tumor cells induces an anti-tumor antibody response in our in vitro model. This model provides a unique opportunity to evaluate the interactions of T-cells, B-cells, and antigen-presenting cells leading to specific anti-tumor antibody responses.
Collapse
Affiliation(s)
- Archana Thakur
- Departments of Oncology, Medicine, Immunology and Microbiology, Wayne State University School of Medicine, 731 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA.
| | | | | |
Collapse
|
98
|
T-helper cell-mediated proliferation and cytokine responses against recombinant Merkel cell polyomavirus-like particles. PLoS One 2011; 6:e25751. [PMID: 21991346 PMCID: PMC3185038 DOI: 10.1371/journal.pone.0025751] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/09/2011] [Indexed: 12/26/2022] Open
Abstract
The newly discovered Merkel Cell Polyomavirus (MCPyV) resides in approximately 80% of Merkel cell carcinomas (MCC). Causal role of MCPyV for this rare and aggressive skin cancer is suggested by monoclonal integration and truncation of large T (LT) viral antigen in MCC cells. The mutated MCPyV has recently been found in highly purified leukemic cells from patients with chronic lymphocytic leukemia (CLL), suggesting a pathogenic role also in CLL. About 50-80% of adults display MCPyV-specific antibodies. The humoral immunity does not protect against the development of MCC, as neutralizing MCPyV antibodies occur in higher levels among MCC patients than healthy controls. Impaired T-cell immunity has been linked with aggressive MCC behavior. Therefore, cellular immunity appears to be important in MCPyV infection surveillance. In order to elucidate the role of MCPyV-specific Th-cell immunity, peripheral blood mononuclear cells (PBMC) of healthy adults were stimulated with MCPyV VP1 virus-like particles (VLPs), using human bocavirus (HBoV) VLPs and Candida albicans antigen as positive controls. Proliferation, IFN-γ, IL-13 and IL-10 responses were examined in 15 MCPyV-seropositive and 15 seronegative volunteers. With the MCPyV antigen, significantly stronger Th-cell responses were found in MCPyV-seropositive than MCPyV-seronegative subjects, whereas with the control antigens, the responses were statistically similar. The most readily detectable cytokine was IFN-γ. The MCPyV antigen tended to induce stronger IFN-γ responses than HBoV VLP antigen. Taken together, MCPyV-specific Th-cells elicit vigorous IFN-γ responses. IFN-γ being a cytokine with major antiviral and tumor suppressing functions, Th-cells are suggested to be important mediators of MCPyV-specific immune surveillance.
Collapse
|
99
|
Abstract
Systemic sclerosis (SSc) has the highest fatality rate among connective tissue diseases and is characterized by vascular damage, inflammation and fibrosis. Currently, no therapy has proven effective in modifying the course of SSc, a reflection of its complex pathogenesis. T cell-derived cytokines have been implicated in the induction of fibrosis. The role of the pro-fibrotic type 2 cytokine IL-13 and its regulation appear to be important in the pathogenesis of SSc and other fibrotic disorders. Recent work has shown that dysregulated production of IL-13 by effector CD8+ T cells is critical for predisposing patients to more severe forms of cutaneous disease and that this dysregulation is associated with defects in the molecular control of IL-13 production, such as increased expression of the transcription factor GATA-3. Silencing of GATA-3 with siRNA significantly reduces IL-13 production by CD8+ T cells from patients. We review these new insights into SSc pathogenesis that will enable establishment of highly relevant biomarkers of immune dysfunction in patients predisposed to develop SSc and open new possibilities for development of more specific diagnosis and treatment.
Collapse
Affiliation(s)
- Patrizia Fuschiotti
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
100
|
Mahlios J, Zhuang Y. Contribution of IL-13 to early exocrinopathy in Id3-/- mice. Mol Immunol 2011; 49:227-33. [PMID: 21924496 DOI: 10.1016/j.molimm.2011.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/12/2011] [Accepted: 08/19/2011] [Indexed: 01/01/2023]
Abstract
Id3-/- mice represent a model for T cell mediated primary Sjogren's syndrome (PSS). An intriguing feature of this disease model is the early appearance of impaired salivary function or exocrinopathy prior to lymphocytic infiltration of the salivary glands. This phenomenon prompted us to examine the role of cytokines produced by T cells in the systemic regulation of gland function. A comprehensive examination of serum cytokine profiles revealed elevated levels of IL-13 in Id3-/- mice. We found that the increase in serum IL-13 levels in Id3-/- mice was largely dependent on αβ T cells. Removal of αβ T cells in Id3-/- mice also eliminates disease symptoms, including lymphocytic infiltration in the gland tissues, and impaired saliva production. We further show that the number of mast cells in the salivary glands of Id3-/- mice is significantly increased, in a trend inversely related to the saliva production. This increase in the number of mast cells is also dependent on the presence of αβ T cells. Treatment of young Id3-/- mice with anti-IL-13 antibodies over a two-month period resulted in a reduction of both serum IL-13 levels and the number of mast cells in the salivary gland tissues, as well as correspondingly improved saliva production. These findings indicate a potentially important role for IL-13 in gland regulation and disease pathology.
Collapse
Affiliation(s)
- Josh Mahlios
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|