51
|
Stoebel DM, Free A, Dorman CJ. Anti-silencing: overcoming H-NS-mediated repression of transcription in Gram-negative enteric bacteria. Microbiology (Reading) 2008; 154:2533-2545. [PMID: 18757787 DOI: 10.1099/mic.0.2008/020693-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Daniel M. Stoebel
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Andrew Free
- Institute of Evolutionary Biology, University of Edinburgh, Room 714a, Darwin Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Charles J. Dorman
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| |
Collapse
|
52
|
Song H, Kong W, Weatherspoon N, Qin G, Tyler W, Turk J, Curtiss R, Shi Y. Modulation of the regulatory activity of bacterial two-component systems by SlyA. J Biol Chem 2008; 283:28158-68. [PMID: 18678876 DOI: 10.1074/jbc.m801058200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activation of the transcriptional regulator SlyA by the PhoP/PhoQ two-component system controls intracellular expression of numerous factors influencing Salmonella virulence. By dissecting the SlyA regulon using stable isotope labeling with amino acids in cell culture analysis, we found that SlyA enhances overall transcription of PhoP-activated loci. This amplification of cellular responses to Mg2+ occurs when SlyA binds to the phoPQ promoter thereby activating phoP autoregulation via a positive feedback mechanism. SlyA footprints a DNA region located one helical turn upstream of the PhoP box, which overlaps the H-NS-binding motif required for signal-dependent phoP repression in high Mg2+ conditions. Therefore, binding of SlyA likely antagonizes H-NS and facilitates the interaction of PhoP to its own promoter, subsequently activating the phoPQ operon. Establishment of this regulatory circuit allows SlyA to exert its effect on the PhoP/PhoQ system specifically in Salmonella, which may confer an additional transcriptional regulation. Thus, our results provide a molecular mechanism that determines SlyA-dependent activation of PhoP-regulated genes in modulating Salmonella virulence. Evidence from this study also suggests a function of SlyA as a mediator in signal transduction from the PhoP/PhoQ system to other bacterial two-component systems in Salmonella.
Collapse
Affiliation(s)
- Haowei Song
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Multiple genes repress motility in uropathogenic Escherichia coli constitutively expressing type 1 fimbriae. J Bacteriol 2008; 190:3747-56. [PMID: 18359812 DOI: 10.1128/jb.01870-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Two surface organelles of uropathogenic Escherichia coli (UPEC), flagella and type 1 fimbriae, are critical for colonization of the urinary tract but mediate opposite actions. Flagella propel bacteria through urine and along mucus layers, while type 1 fimbriae allow bacteria to adhere to specific receptors present on uroepithelial cells. Constitutive expression of type 1 fimbriae leads to repression of motility and chemotaxis in UPEC strain CFT073, suggesting that UPEC may coordinately regulate motility and adherence. To identify genes involved in this regulation of motility by type 1 fimbriae, transposon mutagenesis was performed on a phase-locked type 1 fimbrial ON variant of strain CFT073 (CFT073 fim L-ON), followed by a screen for restoration of motility in soft agar. Functions of the genes identified included attachment, metabolism, transport, DNA mismatch repair, and transcriptional regulation, and a number of genes had hypothetical function. Isogenic deletion mutants of these genes were also constructed in CFT073 fim L-ON. Motility was partially restored in six of these mutants, including complementable mutations in four genes encoding known transcriptional regulators, lrhA, lrp, slyA, and papX; a mismatch repair gene, mutS; and one hypothetical gene, ydiV. Type 1 fimbrial expression in these mutants was unaltered, and the majority of these mutants expressed larger amounts of flagellin than the fim L-ON parental strain. Our results indicate that repression of motility in CFT073 fim L-ON is not solely due to the constitutive expression of type 1 fimbriae on the surfaces of the bacteria and that multiple genes may contribute to this repression.
Collapse
|
54
|
Cathelyn JS, Ellison DW, Hinchliffe SJ, Wren BW, Miller VL. The RovA regulons of Yersinia enterocolitica and Yersinia pestis are distinct: evidence that many RovA-regulated genes were acquired more recently than the core genome. Mol Microbiol 2007; 66:189-205. [PMID: 17784909 DOI: 10.1111/j.1365-2958.2007.05907.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RovA is a transcriptional activator of Yersinia invasin, an outer membrane protein involved in bacterial attachment and invasion across the intestinal epithelium. In Y. enterocolitica, a rovA mutant is attenuated for virulence compared with either wild-type or inv mutant strains, indicating that RovA may regulate additional virulence factors. Here, we used microarray analysis to define the RovA regulon. Curiously, there was little overlap between the RovA regulons of Y. enterocolitica and Y. pestis despite the fact that RovA itself is highly conserved between the two species. Some of these differences are explained by the observation that a number of RovA-regulated loci in Y. enterocolitica do not have orthologues in Y. pestis and vice versa, suggesting that RovA established regulatory control over genetic material acquired after the divergence of the species. Electromobility shift assays demonstrated that 15 of these RovA-regulated loci directly interact with RovA, and 11 of these promoters had similar affinity as observed for the inv promoter. H-NS and YmoA are believed to form a transcriptional repression complex on the inv promoter, and several studies indicate that RovA and H-NS have overlapping DNA binding sites. H-NS and YmoA regulated a subset of the RovA-regulated loci. Furthermore, H-NS directly bound to 14 of the 15 promoters bound by RovA. From these data, we hypothesize that RovA generally behaves as an anti-H-NS factor to alleviate transcriptional repression in Y. enterocolitica. A number of recent studies have presented data and a model suggesting that H-NS functions as a transcriptional silencer of horizontally acquired genes. This repression can be selectively relieved by regulators such as RovA, and the observation that nearly all RovA-activated genes are repressed by H-NS is consistent with this model.
Collapse
Affiliation(s)
- Jason S Cathelyn
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave., Saint Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
55
|
Lithgow JK, Haider F, Roberts IS, Green J. Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12. Mol Microbiol 2007; 66:685-98. [PMID: 17892462 PMCID: PMC2156107 DOI: 10.1111/j.1365-2958.2007.05950.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Haemolysin E is a cytolytic pore-forming toxin found in several Escherichia coli and Salmonella enterica strains. Expression of hlyE is repressed by the global regulator H-NS (histone-like nucleoid structuring protein), but can be activated by the regulator SlyA. Expression of a chromosomal hlyE–lacZ fusion in an E. coli slyA mutant was reduced to 60% of the wild-type level confirming a positive role for SlyA. DNase I footprint analysis revealed the presence of two separate SlyA binding sites, one located upstream, the other downstream of the hlyE transcriptional start site. These sites overlap AT-rich H-NS binding sites. Footprint and gel shift data showed that whereas H-NS prevented binding of RNA polymerase (RNAP) at the hlyE promoter (PhlyE), SlyA allowed binding of RNAP, but inhibited binding of H-NS. Accordingly, in vitro transcription analyses showed that addition of SlyA protein relieved H-NS-mediated repression of hlyE. Based on these observations a model for SlyA/H-NS regulation of hlyE expression is proposed in which the relative concentrations of SlyA and H-NS govern the nature of the nucleoprotein complexes formed at PhlyE. When H-NS is dominant RNAP binding is inhibited and hlyE expression is silenced; when SlyA is dominant H-NS binding is inhibited allowing RNAP access to the promoter facilitating hlyE transcription.
Collapse
Affiliation(s)
- James K Lithgow
- Department of Molecular Biology and Biotechnology, The University of SheffieldWestern Bank, Sheffield S10 2TN, UK.
| | - Fouzia Haider
- Department of Molecular Biology and Biotechnology, The University of SheffieldWestern Bank, Sheffield S10 2TN, UK.
| | - Ian S Roberts
- 1.800 Stopford Building, Faculty of Life Sciences, University of ManchesterOxford Road, Manchester M13 9PT, UK.
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of SheffieldWestern Bank, Sheffield S10 2TN, UK.
- For correspondence. E-mail ; Tel. (+44) 114 222 4403; Fax (+44) 0114 222 2800
| |
Collapse
|
56
|
Corbett D, Bennett HJ, Askar H, Green J, Roberts IS. SlyA and H-NS regulate transcription of the Escherichia coli K5 capsule gene cluster, and expression of slyA in Escherichia coli is temperature-dependent, positively autoregulated, and independent of H-NS. J Biol Chem 2007; 282:33326-33335. [PMID: 17827501 DOI: 10.1074/jbc.m703465200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this paper, we present the first evidence of a role for the transcriptional regulator SlyA in the regulation of transcription of the Escherichia coli K5 capsule gene cluster and demonstrate, using a combination of reporter gene fusions, DNase I footprinting, and electrophoretic mobility shift assays, the dependence of transcription on the functional interplay between H-NS and SlyA. Both SlyA and H-NS bind to multiple overlapping sites within the promoter in vitro, but their binding is not mutually exclusive, resulting in a remodeled nucleoprotein complex. In addition, we show that expression of the E. coli slyA gene is temperature-regulated, positively autoregulated, and independent of H-NS.
Collapse
Affiliation(s)
- David Corbett
- Faculty of Life Sciences, University of Manchester, Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom
| | - Hayley J Bennett
- Faculty of Life Sciences, University of Manchester, Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom
| | - Hamdia Askar
- Faculty of Life Sciences, University of Manchester, Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom; Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Egypt
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Ian S Roberts
- Faculty of Life Sciences, University of Manchester, Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom.
| |
Collapse
|
57
|
Lawrenz MB, Miller VL. Comparative analysis of the regulation of rovA from the pathogenic yersiniae. J Bacteriol 2007; 189:5963-75. [PMID: 17573476 PMCID: PMC1952055 DOI: 10.1128/jb.00528-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RovA is a MarR/SlyA-type regulator that mediates the transcription of inv in Yersinia enterocolitica and Y. pseudotuberculosis. In Y. pseudotuberculosis, rovA transcription is controlled primarily by H-NS and RovA, which bind to similar regions within the rovA promoter. At 37 degrees C, rovA transcription is repressed by H-NS. Transcription of rovA results when RovA relieves H-NS-mediated repression. The region of the rovA promoter that H-NS and RovA bind is not conserved in the Y. enterocolitica promoter. Using green fluorescent protein reporters, we determined that the Y. enterocolitica rovA (rovA(Yent)) promoter is weaker than the Y. pseudotuberculosis promoter. However, despite the missing H-NS/RovA binding site in the rovA(Yent) promoter, H-NS and RovA are still involved in the regulation of rovA(Yent). DNA binding studies suggest that H-NS and RovA bind with a higher affinity to the Y. pseudotuberculosis/Y. pestis rovA (rovA(Ypstb/Ypestis)) promoter than to the rovA(Yent) promoter. Furthermore, H-NS appears to bind to two regions in a cooperative fashion within the rovA(Yent) promoter that is not observed with the rovA(Ypstb/Ypestis) promoter. Finally, using a transposon mutagenesis approach, we identified a new positive regulator of rovA in Y. enterocolitica, LeuO. In Escherichia coli, LeuO regulates gene expression via changes in levels of RpoS and H-NS, but LeuO-mediated regulation of rovA(Yent) appears to be independent of either of these two proteins. Together, these data demonstrate that while the rovA regulatory factors are conserved in Yersinia, divergence of Y. enterocolitica and Y. pseudotuberculosis/Y. pestis during evolution has resulted in modifications in the mechanisms that are responsible for controlling rovA transcription.
Collapse
Affiliation(s)
- Matthew B Lawrenz
- Washington University School of Medicine, Department of Molecular Microbiology, 660 S. Euclid Avenue, Campus Box 8230, St. Louis, MO 63110, USA.
| | | |
Collapse
|
58
|
Crain JA, Maloy SR. Mud-P22. Methods Enzymol 2007; 421:249-59. [PMID: 17352927 DOI: 10.1016/s0076-6879(06)21019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mud-P22 derivatives are hybrids between phage Mu and P22 that can be inserted at essentially any desired site on the Salmonella chromosome (Benson and Goldman, 1992; Youderian et al., 1988). Induction of Mud-P22 insertions yields phage particles that, as a population, carry chromosomal DNA from the region between 150 and 250Kb on one side of the insertion. Thus, phage lysates from a representative set of Mud-P22 insertions into the S. typhimurium chromosome yield an ordered library of DNA that provides powerful tools for the genetic and physical analysis of the Salmonella genome. Although Mud-P22 has not yet been used in other species, this approach should be applicable in a variety of other bacteria as well.
Collapse
Affiliation(s)
- Jenny A Crain
- Department of Biology, Center for Microbial Sciences, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
59
|
Holtsmark I, Mantzilas D, Eijsink VGH, Brurberg MB. The tomato pathogen Clavibacter michiganensis ssp. michiganensis: producer of several antimicrobial substances. J Appl Microbiol 2007; 102:416-23. [PMID: 17241347 DOI: 10.1111/j.1365-2672.2006.03091.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To purify and analyse antimicrobial substances produced by the tomato pathogen Clavibacter michiganensis ssp. michiganensis (Cmm), with potential application in control of Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot of potato. METHODS AND RESULTS After selection of a suitable producer and indicator strain, antimicrobial compounds were isolated using chromatographic techniques. The resulting preparations were analysed with respect to heat and protease sensitivity, amino acid composition, amino acid sequence and mass. Using this procedure we discovered one post-translationally modified 2145 Da peptide bacteriocin, one 14 kDa antimicrobial protein as well as low molecular weight (<1000 Da) antimicrobial compounds, putatively belonging to the tunicamycin family. CONCLUSIONS Clavibacter michiganensis ssp. michiganensis produces various antibacterial substances that are active against Cms. SIGNIFICANCE AND IMPACT OF THE STUDY This study describes the first attempt to characterize antimicrobial substances from Cmm at the molecular level. This is an important step towards investigation of the possible use of these compounds to control the potato ring rot pathogen.
Collapse
Affiliation(s)
- I Holtsmark
- Plant Health and Plant Protection Division, Norwegian Institute for Agricultural and Environmental Research, As, Norway.
| | | | | | | |
Collapse
|
60
|
Heroven AK, Böhme K, Tran-Winkler H, Dersch P. Regulatory elements implicated in the environmental control of invasin expression in enteropathogenic Yersinia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 603:156-66. [PMID: 17966412 DOI: 10.1007/978-0-387-72124-8_13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During infections of the intestinal tract Yersinia pseudotuberculosis penetrates the epithelial cell layer through M-cells into the Peyer's patches. This early step in the infection process is primarily mediated by the outer membrane protein invasin. Expression of the invasin gene is activated by the MarR-type regulatory protein RovA in response to environmental conditions, including temperature and growth phase. In order to gain insight into the nature of the underlying control systems, mutagenesis and gene bank screens were used to identify regula components modulating the levels of invasin and RovA. We found that the inv and rovA genes were both subjected to silencing by the nucleoid-associated protein H-NS. Under inducing conditions, RovA appears to disrupt the silencer complex, through displacement of H-NS from an extended AT-rich region located upstream of the inv and rovA promoters. Furthermore, a LysR-type regulatory protein, RovM with homology to HexA/PecT of phytopathogenic Erwinia species was shown to interact specifically with the rovA regulatory region and represses rovA transcription in addition to H-NS. Disruption of the rovM gene significantly enhanced internalization of Y. pseudotuberculosis into host cells and higher numbers of the mutant bacteria were detectable in gut-associated lymphatic tissues and organs in infected mice. In addition, the histone-like protein YmoA, which has a global effect on the bacterial physiology, was found to activate rovA expression through RovM. Together, our studies showed, that H-NS, RovM and YmoA are key regulators implicated in the environmental control of virulence factors, which are important for the initiation of a Yersinia infection.
Collapse
|
61
|
Wei K, Tang DJ, He YQ, Feng JX, Jiang BL, Lu GT, Chen B, Tang JL. hpaR, a putative marR family transcriptional regulator, is positively controlled by HrpG and HrpX and involved in the pathogenesis, hypersensitive response, and extracellular protease production of Xanthomonas campestris pathovar campestris. J Bacteriol 2006; 189:2055-62. [PMID: 17158655 PMCID: PMC1855773 DOI: 10.1128/jb.01331-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The MarR family of transcriptional regulators of bacteria are involved in the regulation of many cellular processes, including pathogenesis. In this work, we have demonstrated genetically that hpaR (hpa, hrp associated), which encodes a putative MarR family regulator, is involved in the hypersensitive response (HR), pathogenicity, and extracellular protease production of the phytopathogenic bacterium Xanthomonas campestris pathovar campestris. A mutation in hpaR resulted in complete loss of virulence in the host plant cabbage, a delayed and weakened HR in the nonhost plant pepper ECW-10R, and an increase in extracellular protease production. Detection of the beta-glucuronidase activity of a plasmid-driven hpaR promoter-gusA reporter revealed that the expression of hpaR is positively controlled by HrpG and HrpX and is suppressed in rich medium while being strongly induced in minimal and hrp-inducing media and inside the host. These findings indicate that hpaR belongs to the hrpG and hrpX regulon and that HrpX regulates the extracellular protease production via hpaR in X. campestris pv. campestris.
Collapse
Affiliation(s)
- Ke Wei
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Heroven AK, Dersch P. RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis. Mol Microbiol 2006; 62:1469-83. [PMID: 17074075 DOI: 10.1111/j.1365-2958.2006.05458.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RovA is a MarR-type transcriptional regulator that controls transcription of rovA, the expression of the primary invasive factor invasin and other virulence genes of Yersinia pseudotuberculosis in response to environmental signals. Using a genetic approach to identify regulatory components that negatively influence rovA expression, we identified a new LysR-type regulatory protein, designated RovM, which exhibits homology to the virulence regulator PecT/HexA of plant pathogenic Erwinia species. DNA-binding studies revealed that RovM interacts specifically with a short binding site between promoters P1 and P2 within the rovA regulatory region and negatively modulates rovA transcription in cooperation with the histone-like protein H-NS. The rovM gene itself is under positive autoregulatory control and is significantly induced during growth in minimal media as shown in regulation studies. Disruption of the rovM gene leads to a significant increase of RovA and invasin synthesis and enhances internalization of Y. pseudotuberculosis into host cells. Finally, we show that a Y. pseudotuberculosis rovM mutant is more virulent than wild type and higher numbers of the bacteria are detectable in gut-associated lymphatic tissues and organs in the mouse infection model system. In contrast, elevated levels of the RovM protein, which exert a positive effect on flagellar motility, severely attenuate the ability of Y. pseudotuberculosis to disseminate to deeper tissues. Together, our data show, that RovM is a key regulator implicated in the environmental control of virulence factors, which are crucial for the initiation of a Yersinia infection.
Collapse
Affiliation(s)
- Ann Kathrin Heroven
- Institut für Mikrobiologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | | |
Collapse
|
63
|
Alaniz RC, Cummings LA, Bergman MA, Rassoulian-Barrett SL, Cookson BT. Salmonella typhimurium coordinately regulates FliC location and reduces dendritic cell activation and antigen presentation to CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:3983-93. [PMID: 16951361 DOI: 10.4049/jimmunol.177.6.3983] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During infection, Salmonella transitions from an extracellular-phase (STEX, growth outside host cells) to an intracellular-phase (STIN, growth inside host cells): changes in gene expression mediate survival in the phagosome and modifies LPS and outer membrane protein expression, including altered production of FliC, an Ag recognized by immune CD4+ T cells. Previously, we demonstrated that systemic STIN bacteria repress FliC below the activation threshold of FliC-specific T cells. In this study, we tested the hypothesis that changes in FliC compartmentalization and bacterial responses triggered during the transition from STEX to STIN combine to reduce the ability of APCs to present FliC to CD4+ T cells. Approximately 50% of the Salmonella-specific CD4+ T cells from Salmonella-immune mice were FliC specific and produced IFN-gamma, demonstrating the potent immunogenicity of FliC. FliC expressed by STEX bacteria was efficiently presented by splenic APCs to FliC-specific CD4+ T cells in vitro. However, STIN bacteria, except when lysed, expressed FliC within a protected intracellular compartment and evaded stimulation of FliC-specific T cells. The combination of STIN-mediated responses that reduced FliC bioavailability were overcome by dendritic cells (DCs), which presented intracellular FliC within heat-killed bacteria; however, this ability was abrogated by live bacterial infection. Furthermore, STIN bacteria, unlike STEX, limited DC activation as measured by increased MHC class II, CD86, TNF-alpha, and IL-12 expression. These data indicate that STIN bacteria restrict FliC bioavailability by Ag compartmentalization, and together with STIN bacterial responses, limit DC maturation and cytokine production. Together, these mechanisms may restrain DC-mediated activation of FliC-specific CD4+ T cells.
Collapse
Affiliation(s)
- Robert C Alaniz
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
64
|
Yim G, de la Cruz F, Spiegelman GB, Davies J. Transcription modulation of Salmonella enterica serovar Typhimurium promoters by sub-MIC levels of rifampin. J Bacteriol 2006; 188:7988-91. [PMID: 16980465 PMCID: PMC1636311 DOI: 10.1128/jb.00791-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Promoter-lux fusions that showed rifampin-modulated transcription were identified from a Salmonella enterica serovar Typhimurium 14028 reporter library. The transformation of a subset of fusions into mutants that lacked one of six global regulatory proteins or were rifampin resistant showed that transcription modulation was independent of the global regulators, promoter specific, and dependent on the interaction of rifampin with RNA polymerase.
Collapse
Affiliation(s)
- Grace Yim
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
65
|
von Rhein C, Hunfeld KP, Ludwig A. Serologic evidence for effective production of cytolysin A in Salmonella enterica serovars typhi and paratyphi A during human infection. Infect Immun 2006; 74:6505-8. [PMID: 16923786 PMCID: PMC1695487 DOI: 10.1128/iai.00779-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ClyASTy and ClyASPaA are closely related pore-forming cytolysins of Salmonella enterica serovars Typhi and Paratyphi A whose expression is strongly repressed under standard in vitro growth conditions. We show here that human infections by these pathogens cause a specific antibody response to ClyA, indicating effective toxin production during infection.
Collapse
Affiliation(s)
- Christine von Rhein
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | | | | |
Collapse
|
66
|
Ellison DW, Miller VL. H-NS represses inv transcription in Yersinia enterocolitica through competition with RovA and interaction with YmoA. J Bacteriol 2006; 188:5101-12. [PMID: 16816182 PMCID: PMC1539963 DOI: 10.1128/jb.00862-05] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Yersinia enterocolitica is able to efficiently invade Peyer's patches with the aid of invasin, an outer member protein involved in the attachment and invasion of M cells. Invasin is encoded by inv, which is positively regulated by RovA in both Y. enterocolitica and Yersinia pseudotuberculosis while negatively regulated by YmoA in Y. enterocolitica and H-NS in Y. pseudotuberculosis. In this study we present data indicating H-NS and RovA bind directly and specifically to the inv promoter of Y. enterocolitica. We also show that RovA and H-NS from Y. enterocolitica bind to a similar region of the inv promoter and suggest they compete for binding sites. This is similar to recently published data from Y. pseudotuberculosis, revealing a potentially conserved mechanism of inv regulation between Y. enterocolitica and Y. pseudotuberculosis. Furthermore, we present data suggesting H-NS and YmoA form a repression complex on the inv promoter, with H-NS providing the binding specificity and YmoA interacting with H-NS to form a repression complex. We also demonstrate that deletion of the predicted H-NS binding region relieves the requirement for RovA-dependent transcription of the inv promoter, consistent with RovA acting as a derepressor of H-NS-mediated repression. Levels of H-NS and YmoA are similar between 26 degrees C and 37 degrees C, suggesting that the H-NS/YmoA repression complex is present at both temperatures, while the levels of rovA transcript are low at 37 degrees C and high at 26 degrees C, leading to expression of inv at 26 degrees C. Expression of RovA at 37 degrees C results in transcription of inv and production of invasin. Data presented here support a model of inv regulation where the level of RovA within the cell governs inv expression. As RovA levels increase, RovA can successfully compete for binding to the inv promoter with the H-NS/YmoA complex, resulting in derepression of inv transcription.
Collapse
Affiliation(s)
- Damon W Ellison
- Washington University School of Medicine, Department of Molecular Microbiology, 660 S. Euclid Ave., Campus Box 8230, St. Louis, MO 63110, USA
| | | |
Collapse
|
67
|
Abstract
During in vitro broth culture, bacterial gene expression is typically dominated by highly expressed factors involved in protein biosynthesis, maturation, and folding, but it is unclear if this also applies to conditions in natural environments. Here, we used a promoter trap strategy with an unstable green fluorescent protein reporter that can be detected in infected mouse tissues to identify 21 Salmonella enterica promoters with high levels of activity in a mouse enteritis model. We then measured the activities of these and 31 previously identified Salmonella promoters in both the enteritis and a murine typhoid fever model. Surprisingly, the data reveal that instead of protein biosynthesis genes, disease-specific genes such as Salmonella pathogenicity island 1 (SPI-1)-associated genes and genes involved in anaerobic respiration (enteritis) or SPI-2-associated genes and genes of the PhoP regulon (typhoid fever), respectively, dominate Salmonella in vivo gene expression. The overall functional profile of highly expressed genes suggests a marked shift in major transcriptional activities to nutrient utilization during enteritis or to fighting against the host during typhoid fever. The large proportion of known and novel essential virulence factors among the identified genes suggests that high expression levels during infection may correlate with functional relevance.
Collapse
Affiliation(s)
- Claudia Rollenhagen
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Berlin, Germany
| | | |
Collapse
|
68
|
Ellison DW, Miller VL. Regulation of virulence by members of the MarR/SlyA family. Curr Opin Microbiol 2006; 9:153-9. [PMID: 16529980 DOI: 10.1016/j.mib.2006.02.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 02/22/2006] [Indexed: 12/21/2022]
Abstract
Virulence gene regulators RovA, SlyA and PecS comprise a subset of the MarR/SlyA family of transcriptional regulators, which has been shown to be involved in the regulation of virulence genes. These regulators have all been shown to both positively and negatively regulate the expression of multiple genes, involving several different mechanisms. One of the conserved mechanisms of regulatory control among these proteins appears to be competition for binding sites with other proteins. SlyA negatively regulates its own expression by interfering with the binding of RNA polymerase, whereas RovA appears to interfere with the progression of RNA polymerase from its promoter and to compete for binding with the heat-stable nucleoid-structural protein (H-NS), a global transcriptional silencer. PecS represses transcription by competing for binding with cAMP receptor protein, a global activator. RovA, SlyA and PecS have all been shown to act as derepressors by competing for binding sites with repressors. Recently, RovA also was found to enhance transcription through interaction with RNA polymerase.
Collapse
Affiliation(s)
- Damon W Ellison
- Department of Molecular Microbiology and Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
69
|
van Asten AJAM, van Dijk JE. Distribution of "classic" virulence factors among Salmonella spp. ACTA ACUST UNITED AC 2006; 44:251-9. [PMID: 15907446 DOI: 10.1016/j.femsim.2005.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/27/2005] [Accepted: 02/02/2005] [Indexed: 11/16/2022]
Abstract
Whether an infection with Salmonella spp. leads to a disease largely depends on the virulence of the strain and the constitution of the host. The virulence of the strain is determined by so-called virulence factors. Whereas a number of virulence factors of Salmonella have been identified only recently, others have been studied for decades. These latter virulence factors i.e., virulence-plasmids, toxins, fimbriae and flagella are therefore referred to as "classic" virulence factors. Here we present an overview on the distribution of (genes coding for) these virulence factors among Salmonella spp. The pathogenicity islands of Salmonella are also reviewed, all be it briefly, since they contain a major part of the virulence genes.
Collapse
Affiliation(s)
- Alphons J A M van Asten
- Department of Pathobiology, Division Pathology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, P.O. Box 80.158, 3508TD, Utrecht, The Netherlands.
| | | |
Collapse
|
70
|
Faucher SP, Porwollik S, Dozois CM, McClelland M, Daigle F. Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci U S A 2006; 103:1906-11. [PMID: 16443683 PMCID: PMC1413645 DOI: 10.1073/pnas.0509183103] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The cDNA obtained by selective capture of transcribed sequences is a complex mixture that can be used in conjunction with microarrays to determine global gene expression by a pathogen during infection. We used this method to study genes expressed by Salmonella enterica serovar Typhi, the etiological agent of typhoid fever, within human macrophages. Global expression profiles of Typhi grown in vitro and within macrophages at different time points were obtained and compared. Known virulence factors, such as the SPI-1- and SPI-2-encoded type III secretion systems, were found to be expressed as predicted during infection by Salmonella, which validated our data. Typhi inside macrophages showed increased expression of genes encoding resistance to antimicrobial peptides, used the glyoxylate bypass for fatty acid utilization, and did not induce the SOS response or the oxidative stress response. Genes coding for the flagellar apparatus, chemotaxis, and iron transport systems were down-regulated in vivo. Many cDNAs corresponding to genes with unknown functions were up-regulated inside human macrophages and will be important to consider for future studies to elucidate the intracellular lifestyle of this human-specific pathogen. Real-time quantitative PCR was consistent with the microarray results. The combined use of selective capture of transcribed sequences and microarrays is an effective way to determine the bacterial transcriptome in vivo and could be used to investigate transcriptional profiles of other bacterial pathogens without the need to recover many nanograms of bacterial mRNA from host and without increasing the multiplicity of infection beyond what is seen in nature.
Collapse
Affiliation(s)
- Sébastien P. Faucher
- *Department of Microbiology and Immunology, University of Montreal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - Steffen Porwollik
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121; and
| | - Charles M. Dozois
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, QC, Canada H7V 1B7
| | - Michael McClelland
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121; and
| | - France Daigle
- *Department of Microbiology and Immunology, University of Montreal, C.P. 6128 Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
71
|
Intracellular Voyeurism: Examining the Modulation of Host Cell Activities bySalmonella enterica Serovar Typhimurium. EcoSal Plus 2005; 1. [PMID: 26443522 DOI: 10.1128/ecosalplus.2.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salmonella spp. can infect host cells by gaining entry through phagocytosis or by inducing host cell membrane ruffling that facilitates bacterial uptake. With its wide host range, Salmonella enterica serovar Typhimurium has proven to be an important model organism for studying intracellular bacterial pathogenesis. Upon entry into host cells, serovar Typhimurium typically resides within a membrane-bound compartment termed the Salmonella-containing vacuole (SCV). From the SCV, serovar Typhimurium can inject several effector proteins that subvert many normal host cell systems, including endocytic trafficking, cytoskeletal rearrangements, lipid signaling and distribution, and innate and adaptive host defenses. The study of these intracellular events has been made possible through the use of various imaging techniques, ranging from classic methods of transmission electron microscopy to advanced livecell fluorescence confocal microscopy. In addition, DNA microarrays have now been used to provide a "snapshot" of global gene expression in serovar Typhimurium residing within the infected host cell. This review describes key aspects of Salmonella-induced subversion of host cell activities, providing examples of imaging that have been used to elucidate these events. Serovar Typhimurium engages specific host cell machinery from initial contact with the host cell to replication within the SCV. This continuous interaction with the host cell has likely contributed to the extensive arsenal that serovar Typhimurium now possesses, including two type III secretion systems, a range of ammunition in the form of TTSS effectors, and a complex genetic regulatory network that coordinates the expression of hundreds of virulence factors.
Collapse
|
72
|
Tran HJ, Heroven AK, Winkler L, Spreter T, Beatrix B, Dersch P. Analysis of RovA, a transcriptional regulator of Yersinia pseudotuberculosis virulence that acts through antirepression and direct transcriptional activation. J Biol Chem 2005; 280:42423-32. [PMID: 16257976 DOI: 10.1074/jbc.m504464200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transcription factor RovA of Yersinia pseudotuberculosis and analogous proteins in other Enterobacteriaceae activate the expression of virulence genes that play a crucial role in stress adaptation and pathogenesis. In this study, we demonstrate that the RovA protein forms dimers independent of DNA binding, stimulates RNA polymerase, most likely via its C-terminal domain, and counteracts transcriptional repression by the histone-like protein H-NS. As the molecular function of the RovA family is largely uncharacterized, random mutagenesis and terminal deletions were used to identify functionally important domains. Our analysis showed that a winged-helix motif in the center of the molecule is essential and directly involved in DNA binding. Terminal deletions and amino acid changes within both termini also abrogate RovA activation and DNA-binding functions, most likely due to their implication in dimer formation. Finally, we show that the last four amino acids of RovA are crucial for activation of gene transcription. Successive deletions of these residues result in a continuous loss of RovA activity. Their removal reduced the capacity of RovA to activate RNA polymerase and abolished transcription of RovA-activated promoters in the presence of H-NS, although dimerization and DNA binding functions were retained. Our structural model implies that the final amino acids of RovA play a role in protein-protein interactions, adjusting RovA activity.
Collapse
Affiliation(s)
- Hien J Tran
- Junior Research Group 6, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
73
|
Linehan SA, Rytkönen A, Yu XJ, Liu M, Holden DW. SlyA regulates function of Salmonella pathogenicity island 2 (SPI-2) and expression of SPI-2-associated genes. Infect Immun 2005; 73:4354-62. [PMID: 15972530 PMCID: PMC1168564 DOI: 10.1128/iai.73.7.4354-4362.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During the systemic phase of murine infection with Salmonella enterica serovar Typhimurium, bacterial virulence is correlated with the ability to grow and survive within host macrophages. Salmonella pathogenicity island 2 (SPI-2), encoding a type three secretion system, has emerged as an important contributor to Salmonella intracellular growth. SPI-2 mutants have been proposed to be more accessible than wild-type Salmonella to oxyradicals generated by the NADPH phagocyte oxidase. We performed mixed infections of mice to investigate the relationship between SPI-2 and SlyA, a transcriptional regulator that confers resistance to oxyradicals. In mixed-infection experiments, the SPI-2 null mutant was severely attenuated in virulence, whereas slyA mutants were only mildly attenuated. Surprisingly, further experiments indicated that the function of SPI-2 was partially dependent on slyA. The intracellular behavior of a slyA mutant in infected cells was consistent with inefficient SPI-2 expression, as formation of Salmonella-induced filaments and the intracellular F-actin meshwork, features that depend on SPI-2, were present at abnormally low frequencies. Furthermore, the translocated levels of the SPI-2 effector SseJ were severely reduced in a strain carrying a mutation in slyA. We used flow cytometry to investigate the role of SlyA in expression of green fluorescent protein (GFP) from transcriptional fusions with promoters of either of two other SPI-2 effector genes, sifB and sifA. The slyA mutant exhibited reduced GFP expression from both promoters. Combining mutations in slyA and other regulators of SPI-2 indicated that SlyA acts through the SsrAB two-component regulatory system. SlyA exhibits partial functional redundancy with OmpR-EnvZ and contributes to the transcriptional response to low osmolarity and the absence of calcium, two environmental stimuli that promote SPI-2 gene expression.
Collapse
Affiliation(s)
- Sheena A Linehan
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, The Flowers Building, Armstrong Road, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
74
|
Feng X, Walthers D, Oropeza R, Kenney LJ. The response regulator SsrB activates transcription and binds to a region overlapping OmpR binding sites at Salmonella pathogenicity island 2. Mol Microbiol 2005; 54:823-35. [PMID: 15491370 DOI: 10.1111/j.1365-2958.2004.04317.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OmpR activates expression of the two-component regulatory system located on Salmonella pathogenicity island 2 (SPI-2) that controls the expression of a type III secretion system, as well as many other genes required for systemic infection in mice. Measurements of SsrA and SsrB protein levels under different growth conditions indicate that expression of these two components is uncoupled, i.e. SsrB is produced in the absence of ssrA and vice versa. This result was suggested from our previous studies, in which two promoters at ssrA/B were identified. The isolated C-terminus of SsrB binds to DNA and protects regions upstream of ssrA, ssrB and srfH from DNase I digestion. Furthermore, the C-terminus of SsrB alone is capable of activating transcription in the absence of the N-terminus. Results from beta-galactosidase assays indicate that the N-terminal phosphorylation domain inhibits the C-terminal effector domain. A previous study from our laboratory reported that ssrA-lacZ and ssrB-lacZ transcriptional fusions were substantially reduced in an ssrB null strain. Results from DNase I protection assays provide direct evidence that SsrB binds at ssrA and ssrB, although the binding sites lie within the transcribed regions. Additional regulators clearly affect gene expression at this important locus, and here we provide evidence that SlyA, a transcription factor that contributes to Salmonella virulence, also affects ssrA/B gene expression.
Collapse
Affiliation(s)
- Xiuhong Feng
- Department of Microbiology and Immunology, University of Illinois at Chicago, 835 S. Wolcott Avenue, M/C 790, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
75
|
Navarre WW, Halsey TA, Walthers D, Frye J, McClelland M, Potter JL, Kenney LJ, Gunn JS, Fang FC, Libby SJ. Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol 2005; 56:492-508. [PMID: 15813739 DOI: 10.1111/j.1365-2958.2005.04553.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analysis of the transcriptome of slyA mutant Salmonella enterica serovar Typhimurium revealed that many SlyA-dependent genes, including pagC, pagD, ugtL, mig-14, virK, phoN, pgtE, pipB2, sopD2, pagJ and pagK, are also controlled by the PhoP/PhoQ regulatory system. Many SlyA- and PhoP/PhoQ-co-regulated genes have functions associated with the bacterial envelope, and some have been directly implicated in virulence and resistance to antimicrobial peptides. Purified His-tagged SlyA binds to the pagC and mig-14 promoters in regions homologous to a previously proposed 'SlyA-box'. The pagC promoter lacks a consensus PhoP binding site and does not bind PhoP in vitro, suggesting that the effect of PhoP on pagC transcription is indirect. Stimulation of pagC expression by PhoP requires SlyA. Levels of SlyA protein and mRNA are not significantly changed under low-magnesium PhoP-inducing conditions in which pagC expression is profoundly elevated, however, indicating that the PhoP/PhoQ system does not activate pagC expression by altering SlyA protein concentration. Models are proposed in which PhoP may control SlyA activity via a soluble ligand or SlyA may function as an anti-repressor to allow PhoP activation. The absence of almost all SlyA-activated genes from the Escherichia coli K12 genome suggests that the functional linkage between the SlyA and PhoP/PhoQ regulatory systems arose as Salmonella evolved its distinctive pathogenic lifestyle.
Collapse
|
76
|
Carlson SA, McCuddin ZP, Wu MT. SlyA regulates the collagenase-mediated cytopathic phenotype in multiresistant Salmonella. Microb Pathog 2005; 38:181-7. [PMID: 15797813 DOI: 10.1016/j.micpath.2005.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/14/2005] [Accepted: 01/14/2005] [Indexed: 11/28/2022]
Abstract
Salmonella enterica serotype Typhimurium phagetype DT104 (DT104) is a foodborne pathogen with a multiresistant phenotype conferred by a genomic-based integron structure designated as SGI1. Recently, a novel cytopathic phenotype was ascribed to several isolates of DT104 recovered from veal calves. This phenotype is dependent upon clg, a gene encoding a collagenase in Salmonella. Using a novel transposon system and an RT-PCR assay for detection of clg expression, we identified SlyA as a regulator of the collagenase-mediated phenotype. The function of SlyA, in regards to clg expression, is to repress the synthesis of Clg. Derepression ensued in the absence of SlyA or in the presence of a truncated version of SlyA with the latter being relevant for maintenance of another virulence aspect mediated by SlyA, i.e. survival within macrophages. The SlyA-mediated effect on clg expression was restricted to DT104 and other Salmonella phagetypes and serotypes possessing SGI1 thus suggesting co-regulation by an SGI1-specific component.
Collapse
Affiliation(s)
- Steve A Carlson
- Preharvest Food Safety and Enteric Disease Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 2300 Dayton Road, Box 70, Ames, IA 50010, USA.
| | | | | |
Collapse
|
77
|
Ferrándiz MJ, Bishop K, Williams P, Withers H. HosA, a member of the SlyA family, regulates motility in enteropathogenic Escherichia coli. Infect Immun 2005; 73:1684-94. [PMID: 15731069 PMCID: PMC1064922 DOI: 10.1128/iai.73.3.1684-1694.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In enteropathogenic and enterohemorraghic Escherichia coli (EPEC and EHEC), two members of the SlyA family of transcriptional regulators have been identified as SlyA. Western blot analysis of the wild type and the corresponding hosA and slyA deletion mutants indicated that SlyA and HosA are distinct proteins whose expression is not interdependent. Of 27 different E. coli strains (EPEC, EHEC, enteroinvasive, enteroaggregative, uropathogenic, and commensal) examined, 14 were positive for both genes and proteins. To investigate hosA expression, a hosA::luxCDABE reporter gene fusion was constructed. hosA expression was significantly reduced in the hosA but not the slyA mutant and was influenced by temperature, salt, and pH. In contrast to SlyA, HosA did not activate the cryptic E. coli K-12 hemolysin ClyA. Mutation of hosA did not influence type III secretion, the regulation of the LEE1 and LEE4 operons, or the ability of E2348/69 to form attaching-and-effacing lesions on intestinal epithelial cells. HosA is, however, involved in the temperature-dependent positive control of motility on swim plates and regulates fliC expression and FliC protein levels. In electrophoretic mobility shift assays, purified HosA protein bound specifically to the fliC promoter, indicating that HosA directly modulates flagellin expression. While direct examination of flagellar structure and the motile behavior of individual hosA cells grown in broth culture at 30 degrees C did not reveal any obvious differences, hosA mutants, unlike the wild type, clumped together, forming nonmotile aggregates which could account for the markedly reduced motility of the hosA mutant on swim plates at 30 degrees C. We conclude that SlyA and HosA are independent transcriptional regulators that respond to different physicochemical cues to facilitate the environmental adaptation of E. coli.
Collapse
Affiliation(s)
- Maria-José Ferrándiz
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | |
Collapse
|
78
|
Heroven AK, Nagel G, Tran HJ, Parr S, Dersch P. RovA is autoregulated and antagonizes H-NS-mediated silencing of invasin and rovA expression in Yersinia pseudotuberculosis. Mol Microbiol 2004; 53:871-88. [PMID: 15255899 DOI: 10.1111/j.1365-2958.2004.04162.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The transcriptional activator RovA of Yersinia pseudotuberculosis, a member of the SlyA/Hor family, activates its own expression and that of the virulence factor invasin in response to moderate growth temperature, but not at 37 degrees C. In this work, we analysed the mechanism of RovA-dependent transcription of the rovA and inv genes. We found that rovA is transcribed by two different promoters. Sequences located upstream and downstream of the promoters were involved in rovA autoregulation and interacted specifically with the RovA protein. To define the nucleotides recognized by the RovA protein, we determined the RovA binding sites in the rovA and the inv regulatory region and revealed related AT-rich sequence motifs at diverse positions relative to the transcriptional start sites. We also showed that rovA and the RovA-dependent inv gene were both subject to silencing by the nucleoid-associated H-NS protein of Y. pseudotuberculosis. The binding sites of the H-NS and RovA proteins in the rovA and inv regulatory sequences were superimposed, and the presence of the RovA protein alleviated H-NS-mediated repression of the rovA and inv promoter. Moreover, loss of H-NS function led to a significant increase in rovA and inv transcription nearly independently of RovA, indicating that RovA acts mainly as an antirepressor. We therefore hypothesize that the transcription level of RovA-dependent genes reflects the outcome of the RovA/H-NS competition and the rovA autoregulatory mechanism.
Collapse
|
79
|
Sha J, Fadl AA, Klimpel GR, Niesel DW, Popov VL, Chopra AK. The two murein lipoproteins of Salmonella enterica serovar Typhimurium contribute to the virulence of the organism. Infect Immun 2004; 72:3987-4003. [PMID: 15213144 PMCID: PMC427434 DOI: 10.1128/iai.72.7.3987-4003.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Septic shock due to Salmonella and other gram-negative enteric pathogens is a leading cause of death worldwide. The role of lipopolysaccharide in sepsis is well studied; however, the contribution of other bacterial outer membrane components, such as Braun (murein) lipoprotein (Lpp), is not well defined. The genome of Salmonella enterica serovar Typhimurium harbors two copies of the lipoprotein (lpp) gene. We constructed a serovar Typhimurium strain with deletions in both copies of the lpp gene (lpp1 and lpp2) by marker exchange mutagenesis. The integrity of the cell membrane and the secretion of the effector proteins through the type III secretion system were not affected in the lpp double-knockout mutant. Subsequently, the virulence potential of this mutant was examined in a cell culture system using T84 intestinal epithelial and RAW264.7 macrophage cell lines and a mouse model of salmonellosis. The lpp double-knockout mutant was defective in invading and inducing cytotoxic effects in T84 and RAW264.7 cells, although binding of the mutant to the host cell was not affected when compared to the wild-type (WT) serovar Typhimurium. The motility of the mutant was impaired, despite the finding that the number of flagella was similar in the lpp double knockout mutant and the WT serovar Typhimurium. Deletion in the lpp genes did not affect the intracellular survival and replication of Salmonella in macrophages and T84 cells. Induction of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-8 (IL-8) was significantly reduced in macrophages and T84 cells infected with the lpp double-knockout mutant. The levels of IL-8 remained unaffected in T84 cells when infected with either live or heat-killed WT and lpp mutant, indicating that invasion was not required for IL-8 production and that Toll-like receptor 2 signaling might be affected in the Lpp double-knockout mutant. These effects of the Lpp protein could be restored by complementation of the isogenic mutant. The lpp double-knockout mutant was avirulent in mice, and animals infected with this mutant were protected from a lethal challenge dose of WT serovar Typhimurium. The severe combined immunodeficient mice, on the other hand, were susceptible to infection by the lpp double-knockout mutant. The serovar Typhimurium mutants from which only one of the lpp (lpp1 or lpp2) genes was deleted were also avirulent in mice. Taken together, our data indicated that Lpp specifically contributed to the virulence of the organism.
Collapse
Affiliation(s)
- J Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1070, USA
| | | | | | | | | | | |
Collapse
|
80
|
Shi Y, Latifi T, Cromie MJ, Groisman EA. Transcriptional control of the antimicrobial peptide resistance ugtL gene by the Salmonella PhoP and SlyA regulatory proteins. J Biol Chem 2004; 279:38618-25. [PMID: 15208313 DOI: 10.1074/jbc.m406149200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PhoP/PhoQ two-component system is a master regulator that governs the ability of Salmonella to cause a lethal infection in mice, the adaptation to low Mg(2+) environments, and resistance to a variety of antimicrobial peptides. We have recently established that the PhoP-activated ugtL gene is required for resistance to the antimicrobial peptides magainin 2 and polymyxin B. Here we report that ugtL transcription requires not only the PhoP protein but also the virulence regulatory protein SlyA. The PhoP protein footprinted two regions of the ugtL promoter, mutation of either one of which was sufficient to abolish ugtL transcription. Although the SlyA protein is a transcriptional activator of the ugtL gene, it footprinted the ugtL promoter at a region located downstream of the transcription start site. The PhoP protein footprinted the slyA promoter, indicating that it controls slyA transcription directly. The slyA mutant was hypersensitive to magainin 2 and polymyxin B, suggesting that the virulence attenuation exhibited by slyA mutants may be caused by hypersensitivity to antimicrobial peptides. We propose that the PhoP and SlyA proteins control ugtL transcription using a feed-forward loop design.
Collapse
Affiliation(s)
- Yixin Shi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | | | | | | |
Collapse
|
81
|
Ellison DW, Lawrenz MB, Miller VL. Invasin and beyond: regulation of Yersinia virulence by RovA. Trends Microbiol 2004; 12:296-300. [PMID: 15165608 DOI: 10.1016/j.tim.2004.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RovA, a member of the MarR/SlyA family of winged-helix transcription factors, regulates expression of invasin, the major adhesion and invasion factor in Yersinia enterocolitica and Yersinia pseudotuberculosis. Disruption of rovA increases the LD(50) of the organism when inoculated using the oral route. However, when administered by intraperitoneal injection only a slight difference in LD(50) between mutant and wild-type organisms is apparent. The study of RovA and the genes it regulates provides a unique opportunity to gain insight into the initial stages of a Yersinia infection.
Collapse
Affiliation(s)
- Damon W Ellison
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8230, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
82
|
Kovacikova G, Lin W, Skorupski K. Vibrio cholerae AphA uses a novel mechanism for virulence gene activation that involves interaction with the LysR-type regulator AphB at the tcpPH promoter. Mol Microbiol 2004; 53:129-42. [PMID: 15225309 DOI: 10.1111/j.1365-2958.2004.04121.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AphA is required for expression of the Vibrio cholerae virulence cascade and for its regulation by quorum sensing. In order to activate transcription, AphA functions together with a second protein, the LysR-type regulator AphB, at the tcpPH promoter. As AphA is a member of a new and largely uncharacterized regulator family, random mutagenesis was used to gain insights into how this protein activates transcription. As shown here, 17 amino acid substitutions were identified in AphA that reduced expression of the tcpPH promoter and prevented the protein from binding DNA. The amino acids involved in DNA recognition inferred from a dominant-negative analysis were located throughout the N-terminal domain from amino acids 18 to 67. This region of AphA has a conserved domain architecture similar to that of MarR, a multiple antibiotic resistance repressor. The analogous positions of the dominant-negative mutations in AphA and MarR confirm that the DNA-binding domains of these proteins are similar and indicate that AphA is a new member of the winged helix family of transcription factors. We also show that AphB is capable of rescuing two of the DNA binding-defective AphA mutants, suggesting that the proteins interact directly on the DNA. Disruption of this interaction by insertion of half a helical turn between the two binding sites prevented AphB from rescuing the mutants and prevented the expression of the virulence cascade in a wild-type background. These results provide a novel mechanism for the initiation of virulence gene expression at tcpPH.
Collapse
Affiliation(s)
- Gabriela Kovacikova
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
83
|
Halsey TA, Vazquez-Torres A, Gravdahl DJ, Fang FC, Libby SJ. The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect Immun 2004; 72:1155-8. [PMID: 14742565 PMCID: PMC321587 DOI: 10.1128/iai.72.2.1155-1158.2004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to phagocyte-derived reactive oxygen species is essential for Salmonella enterica serovar Typhimurium pathogenesis. Salmonella can enhance its resistance to oxidants through the induction of specific genetic pathways controlled by SoxRS, OxyR, sigma(S), sigma(E), SlyA, and RecA. These regulons can be found in a wide variety of pathogenic and environmental bacteria, suggesting that evolutionarily conserved mechanisms defend against oxidative stress both endogenously generated by aerobic respiration and exogenously produced by host phagocytic cells. Dps, a ferritin-like protein found in many eubacterial and archaebacterial species, appears to protect cells from oxidative stress by sequestering iron and limiting Fenton-catalyzed oxyradical formation. In Escherichia coli and some other bacterial species, Dps has been shown to accumulate during stationary phase in a sigma(S)-dependent fashion, bind nonspecifically to DNA, and form a crystalline structure that compacts and protects chromatin from oxidative damage. In the present study, we provide evidence that Dps protects Salmonella from iron-dependent killing by hydrogen peroxide, promotes Salmonella survival in murine macrophages, and enhances Salmonella virulence. Reduced numbers of dps mutant bacteria in the livers and spleens of infected mice are consistent with a role of Dps in protecting Salmonella from oxidative stress encountered during infection.
Collapse
Affiliation(s)
- Thomas A Halsey
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
84
|
Yadav SP, Kundu B, Ghosh JK. Identification and Characterization of an Amphipathic Leucine Zipper-like Motif in Escherichia coli Toxin Hemolysin E. J Biol Chem 2003; 278:51023-34. [PMID: 14525984 DOI: 10.1074/jbc.m310052200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hemolysin E (HlyE) is a 34 kDa protein toxin, recently isolated from a pathogenic strain of Escherichia coli, which is believed to exert its toxic activity via formation of pores in the target cell membrane. With the goal of understanding the involvement of different segments of hemolysin E in the membrane interaction and assembly of the toxin, a conserved, amphipathic leucine zipper-like motif has been identified. In order to evaluate the possible structural and functional roles of this segment in HlyE, a 30-residue peptide (H-205) corresponding to the leucine zipper motif (amino acid 205-234) and two mutant peptides of the same size were synthesized and labeled by fluorescent probes at their N termini. The results show that the wild-type H-205 binds to both zwitterionic (PC/Chol) and negatively charged (PC/PG/Chol) phospholipid vesicles and also self-assemble therein. Detailed membrane-binding experiments revealed that this synthetic motif (H-205) formed large aggregates and inserted into the bilayer of only negatively charged lipid vesicles but not of zwitterionic membrane. Although both the mutants bound to zwitterionic and negatively charged lipid vesicles, neither of them inserted into the lipid bilayers nor assembled in any of these lipid vesicles. Furthermore, H-205 adopted a significant helical structure in membrane mimetic environments and induced the permeation of monovalent ions and release of entrapped calcein across the phospholipid vesicles more efficiently than the mutant peptides. The results presented here indicate that this H-205 (amino acid 205-234) segment may be an important structural element in hemolysin E, which could play a significant role in the binding and assembly of the toxin in the target cell membrane and its destabilization.
Collapse
Affiliation(s)
- Sharada Prasad Yadav
- Molecular and Structural Biology Division, Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
85
|
Garmendia J, Beuzón CR, Ruiz-Albert J, Holden DW. The roles of SsrA-SsrB and OmpR-EnvZ in the regulation of genes encoding the Salmonella typhimurium SPI-2 type III secretion system. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2385-2396. [PMID: 12949164 DOI: 10.1099/mic.0.26397-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The type III secretion system (TTSS) encoded by Salmonella typhimurium pathogenicity island 2 (SPI-2) is expressed after bacterial entry into host cells. The SPI-2 TTSS secretes the translocon components SseBCD, which translocate across the vacuolar membrane a number of effector proteins whose action is required for intracellular bacterial replication. Several of these effectors, including SifA and SifB, are encoded outside SPI-2. The two-component regulatory system SsrA-SsrB, encoded within SPI-2, controls the expression of components of the SPI-2 TTSS apparatus as well as its translocated effectors. The expression of SsrA-B is in turn regulated by the OmpR-EnvZ two-component system, by direct binding of OmpR to the ssrAB promoter. Several environmental signals have been shown to induce in vitro expression of genes regulated by the SsrA-B or OmpR-EnvZ systems. In this work, immunoblotting and flow cytometry were used to analyse the roles of SsrA-B and OmpR-EnvZ in coupling different environmental signals to changes in expression of a SPI-2 TTSS translocon component (SseB) and two effector genes (sifA and sifB). Using single and double mutant strains the relative contribution of each regulatory system to the response generated by low osmolarity, acidic pH or the absence of Ca2+ was determined. SsrA-B was found to be essential for the induction of SPI-2 gene expression in response to each of these individual signals. OmpR-EnvZ was found to play a minor role in sensing these signals and to require a functional SsrA-B system to mediate their effect on SPI-2 TTSS gene expression.
Collapse
Affiliation(s)
- Junkal Garmendia
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Carmen R Beuzón
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - Javier Ruiz-Albert
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - David W Holden
- Department of Infectious Diseases, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| |
Collapse
|
86
|
Dube PH, Handley SA, Revell PA, Miller VL. The rovA mutant of Yersinia enterocolitica displays differential degrees of virulence depending on the route of infection. Infect Immun 2003; 71:3512-20. [PMID: 12761136 PMCID: PMC155726 DOI: 10.1128/iai.71.6.3512-3520.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia enterocolitica is an invasive enteric pathogen that causes significant inflammatory disease. Recently, we identified and characterized a global regulator of virulence (rovA). When mice are infected orally with the rovA mutant they are attenuated by 50% lethal dose (LD(50)) analysis and have altered kinetics of infection. Most significantly, mice orally infected with the rovA mutant have greatly reduced inflammation in the Peyer's patches compared to those infected with wild-type Y. enterocolitica. However, we present data here indicating that when the rovA mutant bacteria are delivered intraperitoneally (i.p.), they are significantly more virulent than when delivered orally. The i.p. LD(50) for the rovA mutant is only 10-fold higher than that of the wild-type Y. enterocolitica, and there are significant inflammatory responses to the rovA mutant that are evident in the liver and spleen. Altogether, these data suggest that the RovA regulon may be required for the early events of the infection that occur in the Peyer's patches. Furthermore, these data suggest that the RovA regulon may be dispensable for Y. enterocolitica systemic disease and inflammatory responses if the Peyer's patches are bypassed.
Collapse
Affiliation(s)
- Peter H Dube
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
87
|
Norte VA, Stapleton MR, Green J. PhoP-responsive expression of the Salmonella enterica serovar typhimurium slyA gene. J Bacteriol 2003; 185:3508-14. [PMID: 12775687 PMCID: PMC156224 DOI: 10.1128/jb.185.12.3508-3514.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SlyA protein of Salmonella enterica serovar Typhimurium is a member of the MarR family of transcription regulators and is required for virulence and survival in professional macrophages. Isolated SlyA protein was able to bind a specific DNA target without posttranslational modification. This suggested that SlyA might not be activated by directly sensing an external signal but rather that the intracellular concentration of SlyA is enhanced in appropriate environments through the action of other transcription factors. Analysis of slyA transcription reveals the presence of a promoter region located upstream of the previously recognized SlyA repressed promoter. The newly identified upstream promoter region did not respond to SlyA but was activated by Mg(II) starvation in a PhoP-dependent manner. We present here evidence for a direct link between two transcription factors (PhoP and SlyA) crucial for Salmonella virulence.
Collapse
Affiliation(s)
- Valia A Norte
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | |
Collapse
|
88
|
Paulin SM, Watson PR, Benmore AR, Stevens MP, Jones PW, Villarreal-Ramos B, Wallis TS. Analysis of Salmonella enterica serotype-host specificity in calves: avirulence of S. enterica serotype gallinarum correlates with bacterial dissemination from mesenteric lymph nodes and persistence in vivo. Infect Immun 2002; 70:6788-97. [PMID: 12438354 PMCID: PMC133032 DOI: 10.1128/iai.70.12.6788-6797.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host and bacterial factors that determine whether Salmonella serotypes remain restricted to the gastrointestinal tract or penetrate beyond the mucosa and cause systemic disease remain largely undefined. Here, factors influencing Salmonella host specificity in calves were assessed by characterizing the pathogenesis of different serotypes. Salmonella enterica serotype Dublin was highly virulent intravenously, whereas S. enterica serotype Choleraesuis was moderately virulent. Both serotypes were virulent in calves infected orally. In contrast, S. enterica serotypes Gallinarum and Abortusovis were avirulent by either route. Serotypes Dublin, Gallinarum, and Abortusovis colonized the intestinal tract 24 h after oral inoculation, yet only serotype Dublin was consistently recovered from systemic tissues. Serotypes Dublin and Gallinarum invaded bovine intestines in greater numbers and induced greater enteropathogenic responses than serotypes Choleraesuis and Abortusovis. However, only serotype Dublin was able to persist within the intestinal mucosa, and use of a novel cannulation model demonstrated that serotype Dublin was able to pass through the mesenteric lymph nodes in greater numbers than serotype Gallinarum. Together, these results suggest that initial interactions with the intestinal mucosa do not correlate with host specificity, although persistence within tissues and translocation via efferent lymphatics appear to be crucial for the induction of bovine salmonellosis.
Collapse
Affiliation(s)
- Susan M Paulin
- Institute for Animal Health, Compton, Newbury, Berkshire, RG20 7NN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
89
|
Kolb-Mäurer A, Wilhelm M, Weissinger F, Bröcker EB, Goebel W. Interaction of human hematopoietic stem cells with bacterial pathogens. Blood 2002; 100:3703-9. [PMID: 12393678 DOI: 10.1182/blood-2002-03-0898] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primitive hematopoietic stem cells (HSCs) in the bone marrow are rare pluripotent cells with the capacity to give rise to all lineages of blood cells. During commitment, progenitor cells are composed mainly of cells with the potential for differentiation into 1 or 2 lineages. This commitment involves the acquisition of specific growth factor receptors and the loss of others. Viral and bacterial infections may lead to profound disturbance of hematopoiesis, which is possibly due to different susceptibility of HSCs to infectious agents. Here, we show that quiescent human HSCs are fully resistant to infection by the intracellular bacteria, Listeria monocytogenes and Salmonella enterica serovariation typhimurium, and the extracellular pathogen Yersinia enterocolitica. During myeloid/monocytic differentiation induced by incubation with stem cell factor, thrombopoietin, and flt-3 ligand, partially differentiated HSCs emerge, which readily take up these pathogens and also latex beads by macropinocytosis. After further monocytic differentiation, bacterial uptake by macropinocytosis still occurs but internalization of the pathogens is now mainly achieved by receptor-mediated phagocytosis. These results suggest that in the case of HSCs uptake mechanisms for bacteria develop sequentially.
Collapse
Affiliation(s)
- Annette Kolb-Mäurer
- Department of Dermatology, and Institute for Microbiology, Theodor-Boveri-Institute, University of Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
90
|
Kaneko A, Mita M, Sekiya K, Matsui H, Kawahara K, Danbara H. Association of a regulatory gene, slyA with a mouse virulence of Salmonella serovar Choleraesuis. Microbiol Immunol 2002; 46:109-13. [PMID: 11939575 DOI: 10.1111/j.1348-0421.2002.tb02666.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of slyA gene, originally found in Salmonella serovar Typhimurium as a regulatory gene for the expression of virulence genes, on a mouse virulence of S. serovar Choleraesuis was investigated by using an slyA-defective mutant. The defective mutant was constructed by the insertion of a kanamycin-resistance gene (aph) into the cloned slyA gene, and the homologous recombination with the intact slyA gene on the chromosome. The mutant strain showed the LD50 value for BALB/c mouse approximately 10(5) higher than that of the parent strain. The increase of the LD50 value was the same order as that shown by the mutation of the slyA gene of S. serovar Typhimurium, although LD50 of the wild-type strain of S. serovar Choleraesuis was 40-fold higher than that of S. serovar Typhimurium. The time course of infection observed in the mice organs also proved the clear difference of the virulence between the parent and the mutant strains. These results suggested that the slyA gene product functions as a virulence-associated regulator also in S. serovar Choleraesuis.
Collapse
Affiliation(s)
- Aki Kaneko
- Department of Microbiology, School of Pharmaceutical Science, Kitasato University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
91
|
Oscarsson J, Westermark M, Löfdahl S, Olsen B, Palmgren H, Mizunoe Y, Wai SN, Uhlin BE. Characterization of a pore-forming cytotoxin expressed by Salmonella enterica serovars typhi and paratyphi A. Infect Immun 2002; 70:5759-69. [PMID: 12228306 PMCID: PMC128311 DOI: 10.1128/iai.70.10.5759-5769.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cytolysin A (ClyA) is a pore-forming cytotoxic protein encoded by the clyA gene that has been characterized so far only in Escherichia coli. Using DNA sequence analysis and PCR, we established that clyA is conserved in the human-specific typhoid Salmonella enterica serovars Typhi and Paratyphi A and that the entire clyA gene locus is absent in many other S. enterica serovars, including Typhimurium. The gene products, designated ClyA(STy) and ClyA(SPa), show >/=90% amino acid identity to E. coli cytolysin A, ClyA(EC), and they are immunogenically related. The Salmonella proteins showed a pore-forming activity and are hence functional homologues to ClyA(EC). The chromosomal clyA(STy) gene locus was expressed at detectable levels in the serovar Typhi strains S2369/96 and S1112/97. Furthermore, in the serovar Typhi vaccine strain Ty21a, expression of clyA(STy) reached phenotypic levels, as detected on blood agar plates. The hemolytic phenotype was abolished by the introduction of an in-frame deletion in the clyA(STy) chromosomal locus of Ty21a. Transcomplementation of the mutant with a cloned clyA(STy) gene restored the hemolytic phenotype. To our knowledge, Ty21a is the first reported phenotypically hemolytic Salmonella strain in which the genetic determinant has been identified.
Collapse
Affiliation(s)
- Jan Oscarsson
- Department of Molecular Biology, Umeå University, S-90187 Umeå Swedish Institute for Infectious Disease Control, S-17182 Solna, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Yin-Ching C, Jer-Horng S, Ching-Nan L, Ming-Chung C. Cloning of a gene encoding a unique haemolysin from Klebsiella pneumoniae and its potential use as a species-specific gene probe. Microb Pathog 2002; 33:1-6. [PMID: 12127794 DOI: 10.1006/mpat.2002.0499] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A gene, designated khe, that encodes a haemolysin of Klebsiella pneumoniae CMC-1 has been cloned and sequenced. When expressed in Escherichia coli, a unique peptide of approximately 20kDa was identified. Nucleotide sequence analysis predicted a single open reading frame (ORF) of 486bp encoding a 162 amino acid polypeptide with an estimated pI of 6.77. No extensive sequence homology could be identified between khe and any reported sequence at either the nucleotide or amino acid level. Furthermore, DNA hybridizations under high stringency conditions failed to show any cross hybridizations to several bacteria including K. oxytoca, K. planticola, K. terrigena and K. ornithinolytica. These data indicate that we have cloned a unique gene, which is highly conserved among tested K. pneumoniae isolates.
Collapse
Affiliation(s)
- Chuang Yin-Ching
- Department of Medicine, Chi Mei Foundation Medical Center, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | | | | | | |
Collapse
|
93
|
Spory A, Bosserhoff A, von Rhein C, Goebel W, Ludwig A. Differential regulation of multiple proteins of Escherichia coli and Salmonella enterica serovar Typhimurium by the transcriptional regulator SlyA. J Bacteriol 2002; 184:3549-59. [PMID: 12057949 PMCID: PMC135123 DOI: 10.1128/jb.184.13.3549-3559.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SlyA is a transcriptional regulator of Escherichia coli, Salmonella enterica, and other bacteria belonging to the ENTEROBACTERIACEAE: The SlyA protein has been shown to be involved in the virulence of S. enterica serovar Typhimurium, but its role in E. coli is unclear. In this study, we employed the proteome technology to analyze the SlyA regulons of enteroinvasive E. coli (EIEC) and Salmonella serovar Typhimurium. In both cases, comparative analysis of the two-dimensional protein maps of a wild-type strain, a SlyA-overproducing derivative, and a corresponding slyA mutant revealed numerous proteins whose expression appeared to be either positively or negatively controlled by SlyA. Twenty of the putative SlyA-induced proteins and 13 of the putative SlyA-repressed proteins of the tested EIEC strain were identified by mass spectrometry. The former proteins included several molecular chaperones (GroEL, GroES, DnaK, GrpE, and CbpA), proteins involved in acid resistance (HdeA, HdeB, and GadA), the "starvation lipoprotein" (Slp), cytolysin ClyA (HlyE or SheA), and several enzymes involved in metabolic pathways, whereas most of the latter proteins proved to be biosynthetic enzymes. Consistently, the resistance of the EIEC slyA mutant to heat and acid stress was impaired compared to that of the wild-type strain. Furthermore, the implication of SlyA in the regulation of several of the identified E. coli proteins was confirmed at the level of transcription with lacZ fusions. Twenty-three of the Salmonella serovar Typhimurium proteins found to be affected by SlyA were also identified by mass spectrometry. With the exception of GroEL these differed from those identified in the EIEC strain and included proteins involved in various processes. The data suggest that gene regulation by SlyA might be crucial for intracellular survival and/or replication of both EIEC and Salmonella serovar Typhimurium in phagocytic host cells.
Collapse
Affiliation(s)
- Andrea Spory
- Lehrstuhl für Mikrobiologie, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Universität Würzburg, 97074 Würzburg, Germany
| | | | | | | | | |
Collapse
|
94
|
Libby SJ, Lesnick M, Hasegawa P, Kurth M, Belcher C, Fierer J, Guiney DG. Characterization of the spv locus in Salmonella enterica serovar Arizona. Infect Immun 2002; 70:3290-4. [PMID: 12011028 PMCID: PMC127997 DOI: 10.1128/iai.70.6.3290-3294.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Arizona (S. enterica subspecies IIIa) is a common Salmonella isolate from reptiles and can cause serious systemic disease in humans. The spv virulence locus, found on large plasmids in Salmonella subspecies I serovars associated with severe infections, was confirmed to be located on the chromosome of serovar Arizona. Sequence analysis revealed that the serovar Arizona spv locus contains homologues of spvRABC but lacks the spvD gene and contains a frameshift in spvA, resulting in a different C terminus. The SpvR protein functions as a transcriptional activator for the spvA promoter, and SpvB and SpvC are highly conserved. The analysis supports the proposal that the chromosomal spv sequence more closely corresponds to the ancestral locus acquired during evolution of S. enterica, with plasmid acquisition of spv genes in the subspecies I strains involving addition of spvD and polymorphisms in spvA.
Collapse
Affiliation(s)
- Stephen J Libby
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Stapleton MR, Norte VA, Read RC, Green J. Interaction of the Salmonella typhimurium transcription and virulence factor SlyA with target DNA and identification of members of the SlyA regulon. J Biol Chem 2002; 277:17630-7. [PMID: 11882648 DOI: 10.1074/jbc.m110178200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SlyA protein from Salmonella typhimurium is a transcription factor that contributes to virulence. It is shown that a slyA mutant is attenuated in the presence of murine macrophages compared with the parent strain. Moreover, after growth in minimal medium, survival of the slyA mutant was reduced. Altered levels of flagellin (fliC), PagC, IroN, and outer membrane proteins suggest that the slyA mutation affects the surface properties of Salmonella. The isolated SlyA protein is a cofactor-free homodimer that recognizes five sites within the promoter region of the slyA gene. One of these sites contained a near perfect inverted repeat TTAGCAAGCTAA. The other four sites contained related sequences. Occupation of the SlyA sites in the slyA promoter prevented open-complex formation, consistent with the pattern of slyA::lacZ expression parental and slyA mutant strains. By combining the footprinting data with potential SlyA binding sites recovered from a pool of random DNA sequences, a consensus was defined and used to probe the NIH Salmonella unfinished genomes data base. These searches revealed the presence of consensus SlyA sites upstream of omp, ispA, xseB, slyA, and a gene encoding a protein with homology to a hemagglutinin. Accordingly, transcription of an omp::lacZ fusion was reduced in a slyA mutant. Given the difficulties in obtaining a comprehensive picture of intracellular gene expression, the definition of the DNA sequence recognized by a transcription factor (SlyA) that is essential for survival in the macrophage environment should allow a complete regulon of genes with altered expression upon exposure to macrophages to be determined once the S. typhimurium genome annotation is complete.
Collapse
Affiliation(s)
- Melanie R Stapleton
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | |
Collapse
|
96
|
Oscarsson J, Westermark M, Beutin L, Uhlin BE. The bacteriophage-associated ehly1 and ehly2 determinants from Escherichia coli O26:H- strains do not encode enterohemolysins per se but cause release of the ClyA cytolysin. Int J Med Microbiol 2002; 291:625-31. [PMID: 12008916 DOI: 10.1078/1438-4221-00176] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This report presents evidence that the bacteriophage-associated proteins Ehlyl and Ehly2 (enterohemolysin) of non-verotoxigenic E. coli O26:H- are not hemolysins per se. Ehly1 and Ehly2 conferred a hemolytic phenotype on wild-type but not on clyA knockout strains of E. coli K-12 when introduced in trans on plasmids. According to immunoblot analyses, and studies of the expression from a chromosomal clyA::luxAB fusion, the production of cytolysin A (ClyA) was not enhanced by the expression of Ehly1 or Ehly2. However, the analysis provided evidence that there was a low basal level expression of ClyA by E. coli K-12 strains that could be detected phenotypically when the bacteria were subject to lytic effects by bacteriophages or their gene products. In experiments when lysis of the bacteria was caused deliberately either by using lytic bacteriophages (P1 or phiW), or by triggering the SOS response with mitomycin C treatment, sufficient amounts of ClyA were released to cause detectable lysis on blood agar plates. Taken together, our findings support a model where Ehlyl and Ehly2 cause a hemolyric phenotype on blood agar as a result of their lytic and lethal effects on the bacterial hosts.
Collapse
Affiliation(s)
- Jan Oscarsson
- Department of Molecular Biologie, Umeå University, Sweden
| | | | | | | |
Collapse
|
97
|
Cano DA, Martínez-Moya M, Pucciarelli MG, Groisman EA, Casadesús J, García-Del Portillo F. Salmonella enterica serovar Typhimurium response involved in attenuation of pathogen intracellular proliferation. Infect Immun 2001; 69:6463-74. [PMID: 11553591 PMCID: PMC98782 DOI: 10.1128/iai.69.10.6463-6474.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salmonella enterica serovar Typhimurium proliferates within cultured epithelial and macrophage cells. Intracellular bacterial proliferation is, however, restricted within normal fibroblast cells. To characterize this phenomenon in detail, we investigated the possibility that the pathogen itself might contribute to attenuating the intracellular growth rate. S. enterica serovar Typhimurium mutants were selected in normal rat kidney fibroblasts displaying an increased intracellular proliferation rate. These mutants harbored loss-of-function mutations in the virulence-related regulatory genes phoQ, rpoS, slyA, and spvR. Lack of a functional PhoP-PhoQ system caused the most dramatic change in the intracellular growth rate. phoP- and phoQ-null mutants exhibited an intracellular growth rate 20- to 30-fold higher than that of the wild-type strain. This result showed that the PhoP-PhoQ system exerts a master regulatory function for preventing bacterial overgrowth within fibroblasts. In addition, an overgrowing clone was isolated harboring a mutation in a previously unknown serovar Typhimurium open reading frame, named igaA for intracellular growth attenuator. Mutations in other serovar Typhimurium virulence genes, such as ompR, dam, crp, cya, mviA, spiR (ssrA), spiA, and rpoE, did not result in pathogen intracellular overgrowth. Nonetheless, lack of either SpiA or the alternate sigma factor RpoE led to a substantial decrease in intracellular bacterial viability. These results prove for the first time that specific serovar Typhimurium virulence regulators are involved in a response designed to attenuate the intracellular growth rate within a nonphagocytic host cell. This growth-attenuating response is accompanied by functions that ensure the viability of intracellular bacteria.
Collapse
Affiliation(s)
- D A Cano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41080 Seville, Spain
| | | | | | | | | | | |
Collapse
|
98
|
Daigle F, Graham JE, Curtiss R. Identification of Salmonella typhi genes expressed within macrophages by selective capture of transcribed sequences (SCOTS). Mol Microbiol 2001; 41:1211-22. [PMID: 11555299 DOI: 10.1046/j.1365-2958.2001.02593.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salmonella enterica serovar Typhi (S. typhi) is a human-restricted pathogen which causes typhoid fever. Relatively little is known about S. typhi host interaction as animal models of this disease are severely limited by the lack of virulence of S. typhi in other hosts. The virulence of other Salmonella serovars in animal models is dependent on the abilities of these bacteria to survive within host macrophages. We have used selective capture of transcribed sequences (SCOTS) to identify S. typhi genes expressed during growth in human macrophages. This positive cDNA selection technique identified 28 distinct clones representing previously identified as well as novel, uncharacterized and hypothetical gene sequences that are expressed intracellularly. Transcripts for the Vi capsular antigen and genes whose products are involved in stress responses and nutrient acquisition were obtained from intracellular bacteria using SCOTS. Most of these clones are present in the S. typhimurium genome and are also expressed in murine macrophages. Nineteen of these gene sequences were disrupted insertionally in S. typhi, and most of the resulting mutants exhibited a lower level of survival within macrophages compared with the wild-type parent strain. Mutant strains, transformed with a copy of a wild-type gene, exhibited a macrophage survival level similar to that of the parental strain.
Collapse
Affiliation(s)
- F Daigle
- Department of Biology, Washington University, One Brookings Drive, Campus Box 1137, St Louis, MO 63130, USA
| | | | | |
Collapse
|
99
|
Nagel G, Lahrz A, Dersch P. Environmental control of invasin expression in Yersinia pseudotuberculosis is mediated by regulation of RovA, a transcriptional activator of the SlyA/Hor family. Mol Microbiol 2001; 41:1249-69. [PMID: 11580832 DOI: 10.1046/j.1365-2958.2001.02522.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Invasin is the primary invasive factor of Yersinia pseudotuberculosis that allows efficient internalization into eukaryotic cells. We investigated invasin expression and found that the inv gene is regulated in response to a variety of environmental signals, such as temperature, growth phase, nutrients, osmolarity and pH, and requires the product of rovA, a member of the SlyA/Hor transcriptional activator family. The rovA gene was found by a genetic complementation strategy that restores temperature regulation of an unexpressed inv-phoA fusion in Escherichia coli K-12. RovA plays a role in the invasion of Y. pseudotuberculosis into mammalian cells and mediates the regulation of invasin in response to all environmental signals analysed. Deletion analysis of the inv promoter region revealed a DNA segment extending 207 bp upstream of the transcriptional start site, which is required for maximal RovA-induced inv transcription. Gel retardation assays showed that RovA interacts preferentially with this promoter fragment and suggested two potential RovA binding sites. Studies with chromosomal gene fusions also demonstrated that rovA follows the same pattern of regulation as invasin, indicating that environmental control of inv expression is mainly mediated by the control of RovA synthesis. Furthermore, we showed that a rovA-lacZ fusion is only slightly expressed in a rovA mutant strain, indicating that a positive autoregulatory mechanism is also involved in rovA expression.
Collapse
Affiliation(s)
- G Nagel
- Department of Microbiology, Institute of Microbiology and Plant Physiology, Freie Universität Berlin, Königin-Luise Str. 12-16, 14195 Berlin, Germany
| | | | | |
Collapse
|
100
|
Providenti MA, Wyndham RC. Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Appl Environ Microbiol 2001; 67:3530-41. [PMID: 11472929 PMCID: PMC93053 DOI: 10.1128/aem.67.8.3530-3541.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Comamonas testosteroni BR60 (formerly Alcaligenes sp. strain BR60), catabolism of the pollutant 3-chlorobenzoate (3CBA) is initiated by enzymes encoded by cbaABC, an operon found on composite transposon Tn5271 of plasmid pBRC60. The cbaABC gene product CbaABC converts 3CBA to protocatechuate (PCA) and 5-Cl-PCA, which are then metabolized by the chromosomal PCA meta (extradiol) ring fission pathway. In this study, cbaA was found to possess a sigma(70) type promoter. O(2) uptake experiments with whole cells and expression studies with cbaA-lacZ constructs showed that cbaABC was induced by 3CBA. Benzoate, which is not a substrate of the 3CBA pathway, was a gratuitous inducer, and CbaR, a MarR family repressor coded for by a divergently transcribed gene upstream of cbaABC, could modulate induction mediated by benzoate. Purified CbaR bound specifically to two regions of the cbaA promoter (P(cbaA)); site I, a high-affinity site, is between the transcriptional start point (position +1) and the start codon of cbaA, while site II, a lower-affinity site, overlaps position +1. 3CBA at concentrations as low as 40 microM interfered with binding to P(cbaA). PCA also interfered with binding, while benzoate only weakly disrupted binding. Unexpectedly, benzoate with a hydroxyl or carboxyl at position 3 improved CbaR binding. Data are also presented that suggest that an unidentified regulator is encoded on the chromosome that induces cbaABC in response to benzoate and 3CBA.
Collapse
Affiliation(s)
- M A Providenti
- Institute of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | | |
Collapse
|