51
|
Teixeira L. Whole-genome expression profile analysis of Drosophila melanogaster immune responses. Brief Funct Genomics 2012; 11:375-86. [DOI: 10.1093/bfgp/els043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
52
|
valli JS, Vaseeharan B. cDNA cloning, characterization and expression of lipopolysaccharide and β-1,3-glucan binding protein (LGBP) gene from the Indian white shrimp Fenneropenaeus indicus. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:74-81. [DOI: 10.1016/j.cbpa.2012.05.185] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 05/09/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
|
53
|
Ratzka C, Gross R, Feldhaar H. Endosymbiont Tolerance and Control within Insect Hosts. INSECTS 2012; 3:553-72. [PMID: 26466544 PMCID: PMC4553611 DOI: 10.3390/insects3020553] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 01/22/2023]
Abstract
Bacterial endosymbioses are very common in insects and can range from obligate to facultative as well as from mutualistic to pathogenic associations. Several recent studies provide new insight into how endosymbionts manage to establish chronic infections of their hosts without being eliminated by the host immune system. Endosymbiont tolerance may be achieved either by specific bacterial adaptations or by host measurements shielding bacteria from innate defense mechanisms. Nevertheless, insect hosts also need to sustain control mechanisms to prevent endosymbionts from unregulated proliferation. Emerging evidence indicates that in some cases the mutual adaptations of the two organisms may have led to the integration of the endosymbionts as a part of the host immune system. In fact, endosymbionts may provide protective traits against pathogens and predators and may even be required for the proper development of the host immune system during host ontogeny. This review gives an overview of current knowledge of molecular mechanisms ensuring maintenance of chronic infections with mutualistic endosymbionts and the impact of endosymbionts on host immune competence.
Collapse
Affiliation(s)
- Carolin Ratzka
- Department of Microbiology, Biocentre, University of Würzburg, 97074, Germany.
| | - Roy Gross
- Department of Microbiology, Biocentre, University of Würzburg, 97074, Germany.
| | - Heike Feldhaar
- Animal Ecology I, University of Bayreuth, 95440, Germany.
| |
Collapse
|
54
|
Evolution of the βGRP/GNBP/β-1,3-glucanase family of insects. Immunogenetics 2012; 64:549-58. [DOI: 10.1007/s00251-012-0610-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/29/2012] [Indexed: 11/28/2022]
|
55
|
Vogel H, Badapanda C, Vilcinskas A. Identification of immunity-related genes in the burying beetle Nicrophorus vespilloides by suppression subtractive hybridization. INSECT MOLECULAR BIOLOGY 2011; 20:787-800. [PMID: 21929718 DOI: 10.1111/j.1365-2583.2011.01109.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Burying beetles reproduce on small vertebrate cadavers which they bury in the soil after localization through volatiles emitted from the carcass. They then chemically preserve the carcass and prepare it as a diet for the adults and their offspring. It is predicted that exposure to high loads of soil and/or carrion-associated microbes necessitates an effective immune system. In the present paper, we report experimental screening for immunity-related genes in the burying beetle Nicrophorus vespilloides using the suppression subtractive hybridization approach. A total of 1179 putative gene objects were identified in the Nicrophorus cDNA library, which was enriched for transcripts differentially expressed upon challenge with heat-inactivated bacteria. In addition to genes known to be involved in immunity-related recognition and signalling, we found transcripts encoding for antimicrobial peptides and for an array of enzymes that can be linked to immunity or to stress-induced pathways. We also determined proteins that may contribute to detoxification of toxins produced by microbial competitors. In addition, factors involved in mRNA stability determination and central components of the RNA interference machinery were identified, implying transcriptional reprogramming and potential stress-induced retrotransposon elimination. The identified candidate immune effector and stress-related genes may provide important information about the unusual ecology and evolution of the burying beetles.
Collapse
Affiliation(s)
- H Vogel
- Max Planck Institute for Chemical Ecology, Department of Entomology, Jena, Germany
| | | | | |
Collapse
|
56
|
LBP/BPI proteins and their relatives: conservation over evolution and roles in mutualism. Biochem Soc Trans 2011; 39:1039-44. [PMID: 21787344 DOI: 10.1042/bst0391039] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
LBP [LPS (lipopolysaccharide)-binding protein] and BPI (bactericidal/permeability-increasing protein) are components of the immune system that have been principally studied in mammals for their involvement in defence against bacterial pathogens. These proteins share a basic architecture and residues involved in LPS binding. Putative orthologues, i.e. proteins encoded by similar genes that diverged from a common ancestor, have been found in a number of non-mammalian vertebrate species and several non-vertebrates. Similar to other aspects of immunity, such as the activity of Toll-like receptors and NOD (nucleotide-binding oligomerization domain) proteins, analysis of the conservation of LBPs and BPIs in the invertebrates promises to provide insight into features essential to the form and function of these molecules. This review considers state-of-the-art knowledge in the diversity of the LBP/BPI proteins across the eukaryotes and also considers their role in mutualistic symbioses. Recent studies of the LBPs and BPIs in an invertebrate model of beneficial associations, the Hawaiian bobtail squid Euprymna scolopes' alliance with the marine luminous bacterium Vibrio fischeri, are discussed as an example of the use of non-vertebrate models for the study of LBPs and BPIs.
Collapse
|
57
|
Vogel H, Altincicek B, Glöckner G, Vilcinskas A. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 2011; 12:308. [PMID: 21663692 PMCID: PMC3224240 DOI: 10.1186/1471-2164-12-308] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 06/11/2011] [Indexed: 01/20/2023] Open
Abstract
Background The larvae of the greater wax moth Galleria mellonella are increasingly used (i) as mini-hosts to study pathogenesis and virulence factors of prominent bacterial and fungal human pathogens, (ii) as a whole-animal high throughput infection system for testing pathogen mutant libraries, and (iii) as a reliable host model to evaluate the efficacy of antibiotics against human pathogens. In order to compensate for the lack of genomic information in Galleria, we subjected the transcriptome of different developmental stages and immune-challenged larvae to next generation sequencing. Results We performed a Galleria transcriptome characterization on the Roche 454-FLX platform combined with traditional Sanger sequencing to obtain a comprehensive transcriptome. To maximize sequence diversity, we pooled RNA extracted from different developmental stages, larval tissues including hemocytes, and from immune-challenged larvae and normalized the cDNA pool. We generated a total of 789,105 pyrosequencing and 12,032 high-quality Sanger EST sequences which clustered into 18,690 contigs with an average length of 1,132 bases. Approximately 40% of the ESTs were significantly similar (E ≤ e-03) to proteins of other insects, of which 45% have a reported function. We identified a large number of genes encoding proteins with established functions in immunity related sensing of microbial signatures and signaling, as well as effector molecules such as antimicrobial peptides and inhibitors of microbial proteinases. In addition, we found genes known as mediators of melanization or contributing to stress responses. Using the transcriptomic data, we identified hemolymph peptides and proteins induced upon immune challenge by 2D-gelelectrophoresis combined with mass spectrometric analysis. Conclusion Here, we have developed extensive transcriptomic resources for Galleria. The data obtained is rich in gene transcripts related to immunity, expanding remarkably our knowledge about immune and stress-inducible genes in Galleria and providing the complete sequences of genes whose primary structure have only partially been characterized using proteomic methods. The generated data provide for the first time access to the genetic architecture of immunity in this model host, allowing us to elucidate the molecular mechanisms underlying pathogen and parasite response and detailed analyses of both its immune responses against human pathogens, and its coevolution with entomopathogens.
Collapse
Affiliation(s)
- Heiko Vogel
- Institute of Phytopathology and Applied Zoology, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | |
Collapse
|
58
|
Nakamura Y, Gotoh T, Imanishi S, Mita K, Kurtti TJ, Noda H. Differentially expressed genes in silkworm cell cultures in response to infection by Wolbachia and Cardinium endosymbionts. INSECT MOLECULAR BIOLOGY 2011; 20:279-289. [PMID: 21349119 DOI: 10.1111/j.1365-2583.2010.01056.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Wolbachia and Cardinium are bacterial endosymbionts that are widely distributed amongst arthropods. Both cause reproductive alterations, such as cytoplasmic incompatibility, parthenogenesis and feminization. Here we studied differentially expressed genes in Wolbachia- and Cardinium-infected Bm-aff3 silkworm cells using a silkworm microarray. Wolbachia infection did not alter gene expression or induce or suppress immune responses. In contrast, Cardinium infection induced many immune-related genes, including antimicrobial peptides, pattern recognition receptors and a serine protease. Host immune responses differed, possibly because of the different cell wall structures of Wolbachia and Cardinium because the former lacks genes encoding lipopolysaccharide components and two racemases for peptidoglycan formation. A few possibly non-immune-related genes were differentially expressed, but their involvement in host reproductive alteration was unclear.
Collapse
Affiliation(s)
- Y Nakamura
- National Institute of Agrobiological Sciences, Owashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
59
|
Abstract
Lepidopteran insects provide important model systems for innate immunity of insects, particularly for cell biology of hemocytes and biochemical analyses of plasma proteins. Caterpillars are also among the most serious agricultural pests, and understanding of their immune systems has potential practical significance. An early response to infection in lepidopteran larvae is the activation of hemocyte adhesion, leading to phagocytosis, nodule formation, or encapsulation. Plasmatocytes and granular cells are the hemocyte types involved in these responses. Infectious microorganisms are recognized by binding of hemolymph plasma proteins to microbial surface components. This "pattern recognition" triggers phagocytosis and nodule formation, activation of prophenoloxidase and melanization and the synthesis of antimicrobial proteins that are secreted into the hemolymph. Many hemolymph proteins that function in such innate immune responses of insects were first discovered in lepidopterans. Microbial proteinases and nucleic acids released from lysed host cells may also activate lepidopteran immune responses. Hemolymph antimicrobial peptides and proteins can reach high concentrations and may have activity against a broad spectrum of microorganisms, contributing significantly to clearing of infections. Serine proteinase cascade pathways triggered by microbial components interacting with pattern recognition proteins stimulate activation of the cytokine Spätzle, which initiates the Toll pathway for expression of antimicrobial peptides. A proteinase cascade also results inproteolytic activation of phenoloxidase and production of melanin coatings that trap and kill parasites and pathogens. The proteinases in hemolymph are regulated by specific inhibitors, including members of the serpin superfamily. New developments in lepidopteran functional genomics should lead to much more complete understanding of the immune systems of this insect group.
Collapse
|
60
|
Kurata S. Fly immunity: recognition of pathogens and induction of immune responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 708:205-17. [PMID: 21528700 DOI: 10.1007/978-1-4419-8059-5_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Despite the lack of adaptive immunity based on gene rearrangement such as that in higher vertebrates, flies are able to defend themselves from a wide array of pathogens using multiple innate immune responses whose molecular mechanisms are strikingly similar to those of the innate immune responses of other multicellular organisms, including humans. Invading pathogens passing through the epithelial barriers, the first line of self-defense, are detected by pattern recognition receptors that identify pathogen-associated molecular patterns in the hemolymph or on the immune cell surface and are eliminated by humoral and cellular responses. Some pathogens escape recognition and elimination in the hemolymphby invading the host cell cytoplasm. Some of these intracellular pathogens, however, such as Listeria monocytogenes, are identified by pattern recognition receptors in the cytoplasm and are eliminated by intracellular responses, including autophagy, an intracellular degradation system. Although some of these pattern recognition receptors are encoded in the germ-line as protein families, another type of receptor in the immunoglobulin-superfamily is extensively diversified by alternative splicing in somatic immune cells in Drosophila.
Collapse
Affiliation(s)
- Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
61
|
Wang Y, Sumathipala N, Rayaprolu S, Jiang H. Recognition of microbial molecular patterns and stimulation of prophenoloxidase activation by a β-1,3-glucanase-related protein in Manduca sexta larval plasma. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:322-31. [PMID: 21296155 PMCID: PMC3066292 DOI: 10.1016/j.ibmb.2011.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 01/03/2011] [Accepted: 01/27/2011] [Indexed: 05/03/2023]
Abstract
Detection of pathogenic invaders is the essential first step of a successful defense response in multicellular organisms. In this study, we have identified a new member of the β-1,3-glucanase-related protein superfamily from the tobacco hornworm Manduca sexta. This protein, designated microbe binding protein (MBP), is 61% identical in sequence to Bombyx mori Gram-negative bacteria binding protein, but only 34-36% identical to M. sexta β-1,3-glucan recognition protein-1 and 2. Its mRNA levels were strongly up-regulated in hemocytes and fat body of immune challenged larvae, along with an increase in concentration of the plasma protein. We expressed M. sexta MBP in a baculovirus-insect cell system. The purified protein associated with intact bacteria and fungi. It specifically bound to lipoteichoic acid, lipopolysaccharide, diaminopimelic acid-type peptidoglycans (DAP-PGs) from Escherichia coli and Bacillus subtilis, but less so to laminarin or Lys-type PG from Staphylococcus aureus. The complex binding pattern was influenced by other plasma factors and additional microbial surface molecules. After different amounts of MBP had been incubated with larval plasma on ice, a concentration-dependent increase in phenoloxidase (PO) activity occurred in the absence of any microbial elicitor. The activity increase was also observed in the mixture of plasma and a bacterial or fungal cell wall component. The prophenoloxidase (proPO) activation became more prominent when DAP-PGs, Micrococcus luteus Lys-PG, or lipoteichoic acid was included in the mixture of MBP and plasma. Statistic analysis suggested that a synergistic enhancement of proPO activation was caused by an interaction between MBP and these elicitors, but not S. aureus Lys-PG, lipopolysaccharide, curdlan, or laminarin. These data indicate that M. sexta MBP is a component of the surveillance mechanism and, by working together with other pattern recognition molecules and serine proteinases, triggers the proPO activation system.
Collapse
Affiliation(s)
- Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | |
Collapse
|
62
|
Khajuria C, Buschman LL, Chen MS, Zurek L, Zhu KY. Characterization of six antibacterial response genes from the European corn borer (Ostrinia nubilalis) larval gut and their expression in response to bacterial challenge. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:345-355. [PMID: 21167833 DOI: 10.1016/j.jinsphys.2010.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 05/30/2023]
Abstract
Six cDNAs encoding putative antibacterial response proteins were identified and characterized from the larval gut of the European corn borer (Ostrinia nubilalis). These antibacterial response proteins include four peptidoglycan recognition proteins (PGRPs), one β-1,3-glucanase-1 (βglu-1), and one lysozyme. Tissue-specific expression analysis showed that these genes were highly expressed in the midgut, except for lysozyme. Analysis of expression of these genes in different developmental stage showed that they were expressed in larval stages, but little or no detectable expression was found in egg, pupa and adult. When larvae were challenged with Gram-negative bacteria (Enterobacter aerogenes), the expression of all six genes was up-regulated in the fatbodies. However, when larvae were challenged with Gram-positive bacteria (Micrococcus luteus), only PGRP-C and lysozyme genes were up-regulated. This study provides additional insights into the expression of antibacterial response genes in O. nubilalis larvae and helps us better understand the immune defense response in O. nubilalis.
Collapse
Affiliation(s)
- Chitvan Khajuria
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
63
|
Zheng LP, Hou L, Chang AK, Yu M, Ma J, Li X, Zou XY. Expression pattern of a Gram-negative bacteria-binding protein in early embryonic development of Artemia sinica and after bacterial challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:35-43. [PMID: 20699104 DOI: 10.1016/j.dci.2010.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 05/29/2023]
Abstract
Gram-negative bacteria-binding proteins (GNBPs) are important pattern recognition receptors (PRRs) in invertebrate innate immune systems. These immune proteins are capable of identifying and binding to specific targets on the surface of microorganisms, and thereby trigger a variety of defense reactions through the activation of protease cascades and intracellular immune signaling pathways. In this paper, a full-length cDNA of GNBP coding for a conserved β-glucan-binding domain was isolated from Artemia sinica. Bioinformatic analysis showed that it belonged to a new member of the GNBP family. The expression of GNBP was investigated at various stages during the embryonic development of A. sinica using real-time PCR and immunohistochemistry assay. The result showed that the highest expression level was on the 10th day of the embryo. The larvae showed a remarkable down-regulation of GNBP transcript after challenged with Gram-negative bacteria. In contrast, the level of GNBP transcript in the larvae increased gradually after challenged with Gram-positive bacteria. Immunohistochemistry assay showed that during embryonic development, GNBP protein was mainly expressed in the head, thorax, and on the alimentary canal surface. This new GNBP member showed a constitutive and regional expression during the early embryonic development of A. sinica, and may therefore play an important role at the adult stage, as well as during infection.
Collapse
Affiliation(s)
- Lu-Ping Zheng
- College of Life Sciences, Liaoning Normal University, No. 850 Huanghe Road, Shahekou District, Dalian, 116029, China
| | | | | | | | | | | | | |
Collapse
|
64
|
Rao XJ, Yu XQ. Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression in the tobacco hornworm Manduca sexta. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1119-28. [PMID: 20600279 PMCID: PMC2914183 DOI: 10.1016/j.dci.2010.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/09/2010] [Accepted: 06/09/2010] [Indexed: 05/03/2023]
Abstract
Activation of prophenoloxidase and synthesis of antimicrobial peptides (AMPs) are two important innate immune mechanisms in insects. In the current study, we investigated immune responses activated by three major bacterial components, lipopolysaccharide (LPS) (including rough mutants of LPS), lipoteichoic acid (LTA), and peptidoglycan (PG), in the larvae of a lepidopteran insect, Manduca sexta. We found that two DAP (diaminopimelic acid)-type PGs from Escherichia coli and Bacillus subtilis were much more potent than LPS and LTA from the respective bacteria as well as a Lysine-type PG in activation of prophenoloxidase in M. sexta larval plasma in vitro. Transcription levels of AMP genes, such as Attacin, Lebocin and Moricin genes, in the hemocytes and fat body of larvae were significantly induced by smooth LPS (TLR4grade) and rough mutants of LPS (TLRgrade), synthetic lipid A, LTA, and PG. LPS from E. coli and LTA from B. subtilis activated AMP expression to significantly higher levels than PGs from the respective bacterial strains, and smooth LPS were more potent than lipid A and rough mutants of LPS in activation of AMP expression. Our results demonstrated for the first time that LTA can activate AMP expression, and different moieties of LPS may synergistically activate AMP expression in M. sexta.
Collapse
Affiliation(s)
| | - Xiao-Qiang Yu
- Send correspondence to: Xiao-Qiang Yu, Ph.D., Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, Telephone: (816)-235-6379, Fax: (816)-235-1503,
| |
Collapse
|
65
|
Song JM, Nam K, Sun YU, Kang MH, Kim CG, Kwon ST, Lee J, Lee YH. Molecular and biochemical characterizations of a novel arthropod endo-β-1,3-glucanase from the Antarctic springtail, Cryptopygus antarcticus, horizontally acquired from bacteria. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:403-12. [DOI: 10.1016/j.cbpb.2010.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 10/20/2022]
|
66
|
Wang Q, Liu Y, He HJ, Zhao XF, Wang JX. Immune responses of Helicoverpa armigera to different kinds of pathogens. BMC Immunol 2010; 11:9. [PMID: 20196874 PMCID: PMC2847984 DOI: 10.1186/1471-2172-11-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 03/03/2010] [Indexed: 11/24/2022] Open
Abstract
Background Insects react against pathogens through innate immunity. The cotton bollworm Helicoverpa armigera (H. armigera) is an important defoliator and an extremely destructive pest insect of many crops. The elucidation of the mechanism of the immune response of H. armigera to various pathogens can provide a theoretical basis for new approaches to biologically control this pest. Results Four kinds of pathogens Bacillus thuringiensis, Klebsiella pneumoniae, Candida albicans, and Autographa californica multiple nucleocapsid nucleopolyhedrovirus harbored green fluorescence protein and polyhedron (AcMNPV-GFP) were used to challenge the insect. The cellular and humoral immune responses to the pathogens were analyzed in the challenged H. armigera. The results show that in the five kinds of haemocytes, only granulocytes phagocytized the Gram-negative and Gram-positive bacteria and fungi. All haemocytes can be infected by AcMNPV. Fourteen immune-related genes including pattern recognition receptors (PRRs) such as peptidoglycan recognition proteins (HaPGRP and HaPGRP C) and Gram-Negative Bacteria-Binding Protein (HaGNBP), and antimicrobial peptides (AMPs) such as cecropin-1, 2 and 3 (HaCec-1, 2 and 3), lysozyme (HaLys), attacin (HaAtt), gallerimycin-like (HaGall), gloverin-like (HaGlo), moricin-like (HaMor), cobatoxin-like (HaCob), galiomicin-like (HaGali), and immune inducible protein (HaIip) appeared in different expression profiles to different pathogen infections. The transcripts of 13 immune related genes (except HaPGRPC) are obviously up-regulated by Gram-positive bacteria. HaCec-1 and 3, HaMor, HaAtt, HaLys, HaIip, HaPGRP and HaGNBP are greatly up-regulated after fungal infection. HaGNBP, HaCec-2, HaGall, HaGlo, HaMor, HaCob, HaGali obviously increased in Gram-negative bacterial infection. Only five genes, HaGNBP, HaCec-1, HaGali, HaGlo, and HaLys, are weakly up-regulated after viral infection. The AMP transcripts had higher expression levels than the PRR transcripts after the microbial challenge. Conclusions These data suggest that the granulocytes are the major phagocytes in H. armigera. All haemocytes can be infected by AcMNPV. The transcripts of 14 immune related genes have different expression patterns in H. armigera infected by different pathogens, which means that the immune-related genes may have different functions against various kinds of pathogens.
Collapse
Affiliation(s)
- Qian Wang
- School of Life Sciences, Shandong University; Jinan, Shandong 250100, China
| | | | | | | | | |
Collapse
|
67
|
Kurata S. Extracellular and intracellular pathogen recognition by Drosophila PGRP-LE and PGRP-LC. Int Immunol 2010; 22:143-8. [PMID: 20089584 PMCID: PMC2829096 DOI: 10.1093/intimm/dxp128] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 12/24/2009] [Indexed: 12/16/2022] Open
Abstract
Despite lacking the adaptive immunity that is found in higher vertebrates, insects are able to defend themselves from a large battery of pathogens by multiple innate immune responses using molecular mechanisms that are strikingly similar to the innate immune responses of other multicellular organisms, including humans. The fruit fly Drosophila melanogaster is therefore an excellent model organism for studying the basic principles of innate immunity using genetic and molecular biology techniques. In Drosophila, invading pathogens that pass through the epithelial barriers (a first line of self-defense) can encounter humoral and cellular responses that utilize pattern-recognition receptors to identify pathogen-associated molecular patterns in the hemolymph or on the immune cell surface. Some pathogens escape recognition and elimination in the hemolymph by invading the host cytoplasm. Some intracellular pathogens such as Listeria monocytogenes are, nevertheless, eliminated by immune reactions such as autophagy through intracellular identification by pattern-recognition receptors.
Collapse
Affiliation(s)
- Shoichiro Kurata
- Laboratory of Molecular Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
68
|
Huan P, Zhang X, Li F, Zhang Y, Zhao C, Xiang J. Chromosomal localization and molecular marker development of the lipopolysaccharide and beta-1,3-glucan binding protein gene in the Zhikong scallop Chlamys farreri (Jones et Preston) (Pectinoida, Pectinidae). Genet Mol Biol 2010; 33:36-43. [PMID: 21637602 PMCID: PMC3036087 DOI: 10.1590/s1415-47572010005000015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 08/17/2009] [Indexed: 11/22/2022] Open
Abstract
Zhikong scallop Chlamys farreri (Jones et Preston) is an economically important species in China. Understanding its immune system would be of great help in controlling diseases. In the present study, an important immunity-related gene, the Lipopolysaccharide and Beta-1,3-glucan Binding Protein (LGBP) gene, was located on C. farreri chromosomes by mapping several lgbp-containing BAC clones through fluorescence in situ hybridization (FISH). Through the localization of various BAC clones, it was shown that only one locus of this gene existed in the genome of C. farreri, and that this was located on the long arm of a pair of homologous chromosomes. Molecular markers, consisting of eight single nucleotide polymorphism (SNPs) markers and one insertion-deletion (indel), were developed from the LGBP gene. Indel marker testing in an F1 family revealed slightly distorted segregation (p = 0.0472). These markers can be used to map the LGBP gene to the linkage map and assign the linkage group to the corresponding chromosome. Segregation distortion of the indel marker indicated genes with deleterious alleles might exist in the surrounding region of the LGBP gene.
Collapse
Affiliation(s)
- Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao P.R. China
| | | | | | | | | | | |
Collapse
|
69
|
Bilej M, Procházková P, Silerová M, Josková R. Earthworm immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 708:66-79. [PMID: 21528693 DOI: 10.1007/978-1-4419-8059-5_4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Earthworms belonging to oligochaete annelids became a model for comparative immunologists in the early sixties with the publication of results from transplantation experiments that proved the existence of self/nonself recognition in earthworms. This initiated extensive studies on the earthworm immune mechanisms that evolved to prevent the invasion of pathogens. In the last four decades important cellular and humoral pathways were described and numerous biologically active compounds were characterized and often cloned.
Collapse
Affiliation(s)
- Martin Bilej
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | |
Collapse
|
70
|
Matti KM, Savanurmath CJ, Hinchigeri SB. A promising broad spectrum antimicrobial red fluorescent protein present in silkworm excreta. Biol Pharm Bull 2010; 33:1143-7. [PMID: 20606304 DOI: 10.1248/bpb.33.1143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The purified silkworm excretory red fluorescent protein (SE-RFP) has exhibited a potent broad spectrum antimicrobial activity. The anti-microbial assays of purified SE-RFP against several pathogenic bacterial (both Gram positive and Gram negative) and fungal strains were performed by agar cup plate method. The minimum inhibitory concentration (MIC) of SE-RFP against pathogenic bacteria and fungi was evaluated by agar dilution technique. The SE-RFP has exhibited highest activity (lowest minimum inhibitory concentration and largest zone of inhibition) against Staphylococcus aureus and Candida albicans among the tested bacteria and fungi, respectively. For the first time, we are reporting here the bioactivity of a red fluorescent protein purified from the silkworm excreta against clinically important bacteria and fungi. The bioactive SE-RFP has two absorption peaks at 280 and 603 nm and, it has exhibited fluorescence emission peaks at 334 and 619 nm upon exciting at 280 and 603 nm, respectively. The SE-RFP being an aqua-soluble, economically feasible and eco-friendly protein, it can therefore be used for the practical applications as an effective antimicrobial agent.
Collapse
|
71
|
Hetru C, Hoffmann JA. NF-kappaB in the immune response of Drosophila. Cold Spring Harb Perspect Biol 2009; 1:a000232. [PMID: 20457557 DOI: 10.1101/cshperspect.a000232] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The nuclear factor kappaB (NF-kappaB) pathways play a major role in Drosophila host defense. Two recognition and signaling cascades control this immune response. The Toll pathway is activated by Gram-positive bacteria and by fungi, whereas the immune deficiency (Imd) pathway responds to Gram-negative bacterial infection. The basic mechanisms of recognition of these various types of microbial infections by the adult fly are now globally understood. Even though some elements are missing in the intracellular pathways, numerous proteins and interactions have been identified. In this article, we present a general picture of the immune functions of NF-kappaB in Drosophila with all the partners involved in recognition and in the signaling cascades.
Collapse
Affiliation(s)
- Charles Hetru
- Centre National de la Recherche Scientifique, Institute of Molecular and Cellular Biology, 15 rue René Descartes, 67084 Strasbourg, France
| | | |
Collapse
|
72
|
Liu F, Ling E, Wu S. Gene expression profiling during early response to injury and microbial challenges in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 72:16-33. [PMID: 19557735 DOI: 10.1002/arch.20320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
To identify Bombyx mori genes involved in the early response to injury and microbial challenge, we performed genome-wide gene expression-profiling experiments using oligonucleotide DNA microarrays. Of approximately 23,000 genes examined, 465 displayed changes in mRNA expression levels. Of these, 306 were induced and 159 were repressed in response to injury (injection with phosphate buffer saline) or challenges by Gram-negative (Serratia marcescens), Gram-positive bacteria (Staphylococcus aureus), or fungus (Beauveria bassiana). Many of these differentially expressed genes can be assigned to specific functional groups of the innate immune response, including recognition, signaling, melanization and coagulation, and antimicrobial peptides. Seventeen percent of differentially expressed genes encode proteins with no obvious similarity to known functional domains. Of particular interest is a member of the juvenile hormone-binding protein family, which was highly induced by both injury and microbial challenges. The possible role of juvenile hormone in innate immunity is discussed.
Collapse
Affiliation(s)
- Fei Liu
- Research Center for Insect Science, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences Graduate School, Shanghai, People's Republic of China
| | | | | |
Collapse
|
73
|
Molecular cloning and characterization of the lipopolysaccharide and β-1, 3-glucan binding protein in Chinese mitten crab (Eriocheir sinensis). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:17-24. [DOI: 10.1016/j.cbpb.2009.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/11/2009] [Accepted: 04/25/2009] [Indexed: 11/19/2022]
|
74
|
Mishima Y, Coste F, Bobezeau V, Hervouet N, Kellenberger C, Roussel A. Expression, purification, crystallization and preliminary X-ray analysis of the N-terminal domain of GNBP3 from Drosophila melanogaster. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:870-3. [PMID: 19724120 PMCID: PMC2795588 DOI: 10.1107/s1744309109014997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/22/2009] [Indexed: 11/10/2022]
Abstract
Gram-negative bacteria-binding protein 3 (GNBP3) is a pattern-recognition receptor which contributes to the defensive response against fungal infection in Drosophila. The protein consists of an N-terminal domain, which is considered to recognize beta-glucans from the fungal cell wall, and a C-terminal domain, which is homologous to bacterial glucanases but devoid of activity. The N-terminal domain of GNBP3 (GNBP3-Nter) was successfully purified after expression in Drosophila S2 cells. Diffraction-quality crystals were produced by the hanging-drop vapour-diffusion method using PEG 2000 and PEG 8000 as precipitants. Preliminary X-ray diffraction analysis revealed that the GNBP3-Nter crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 134.79, b = 30.55, c = 51.73 A, beta = 107.4 degrees, and diffracted to 1.7 A using synchrotron radiation. The asymmetric unit is expected to contain two copies of GNBP3-Nter. Heavy-atom derivative data were collected and a samarium derivative showed one high-occupancy site per molecule.
Collapse
Affiliation(s)
- Yumiko Mishima
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans, France
| | - Franck Coste
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans, France
| | - Vanessa Bobezeau
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans, France
| | - Nadège Hervouet
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans, France
| | | | - Alain Roussel
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans, France
| |
Collapse
|
75
|
Mishima Y, Quintin J, Aimanianda V, Kellenberger C, Coste F, Clavaud C, Hetru C, Hoffmann JA, Latgé JP, Ferrandon D, Roussel A. The N-terminal domain of Drosophila Gram-negative binding protein 3 (GNBP3) defines a novel family of fungal pattern recognition receptors. J Biol Chem 2009; 284:28687-97. [PMID: 19692333 DOI: 10.1074/jbc.m109.034587] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gram-negative binding protein 3 (GNBP3), a pattern recognition receptor that circulates in the hemolymph of Drosophila, is responsible for sensing fungal infection and triggering Toll pathway activation. Here, we report that GNBP3 N-terminal domain binds to fungi upon identifying long chains of beta-1,3-glucans in the fungal cell wall as a major ligand. Interestingly, this domain fails to interact strongly with short oligosaccharides. The crystal structure of GNBP3-Nter reveals an immunoglobulin-like fold in which the glucan binding site is masked by a loop that is highly conserved among glucan-binding proteins identified in several insect orders. Structure-based mutagenesis experiments reveal an essential role for this occluding loop in discriminating between short and long polysaccharides. The displacement of the occluding loop is necessary for binding and could explain the specificity of the interaction with long chain structured polysaccharides. This represents a novel mechanism for beta-glucan recognition.
Collapse
Affiliation(s)
- Yumiko Mishima
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, 45071 Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Freitak D, Heckel DG, Vogel H. Dietary-dependent trans-generational immune priming in an insect herbivore. Proc Biol Sci 2009; 276:2617-24. [PMID: 19369263 DOI: 10.1098/rspb.2009.0323] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trans-generational effects on immunity are well known in vertebrates and are considered in many evolutionary and ecological theories of species interaction. Maternal effects have been identified to be of special importance, and are now recognized as a mechanism for adaptive phenotypic response to environmental heterogeneity. We have previously shown that exposure to dietary non-pathogenic bacteria can induce several aspects of immune response in an insect herbivore, the cabbage semilooper (Trichoplusia ni). Here, we test the effects of this exposure on the immune status of the next generation, measuring immune parameters on three different levels-enzyme activities, protein expression and transcript abundance. We also monitored fitness-related traits which are often negatively correlated with increased immunocompetence. We found evidence for trans-generational priming on all these levels, with immune system parameters that are clearly not transmitted in a 1 : 1 ratio from parent to offspring, but rather in a complex manner with a strong but not exclusive maternal component. These findings indicate that trans-generational priming is a complex and multifaceted phenomenon, potentially playing a role as a long-term but non-genetic mode of environmental adaptation.
Collapse
Affiliation(s)
- Dalial Freitak
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse-8, 07745 Jena, Germany
| | | | | |
Collapse
|
77
|
Nakahara Y, Shimura S, Ueno C, Kanamori Y, Mita K, Kiuchi M, Kamimura M. Purification and characterization of silkworm hemocytes by flow cytometry. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:439-448. [PMID: 18840462 DOI: 10.1016/j.dci.2008.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 09/03/2008] [Accepted: 09/03/2008] [Indexed: 05/26/2023]
Abstract
Hemocyte functions are well-investigated in the silkworm, Bombyx mori, however, detailed analysis of each hemocyte subset has been hampered by the lack of appropriate separation method. Here we use an array of flow cytometric analyses to characterize silkworm hemocytes with various molecular probes, such as propidium iodide, green fluorescence protein, monoclonal antibodies, and fluorescent lectins. Of these, separation using propidium iodide was the simplest and provided most reliable results for the isolation of the hemocyte subsets. cDNAs were then synthesized from these sorted populations and subset-specific gene expression was examined by RT-PCR. Granulocytes, plasmatocytes, and oenocytoids expressed different classes of immune genes, suggesting that they have multiple roles in silkworm immunity. In contrast, a contribution of spherulocytes to immunity was not documented in that they failed to express most of the genes. The functions of spherulocytes are thus likely to be distinct from those of the other three hemocyte subsets.
Collapse
Affiliation(s)
- Yuichi Nakahara
- National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | |
Collapse
|
78
|
Dong Y, Dimopoulos G. Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites. J Biol Chem 2009; 284:9835-44. [PMID: 19193639 DOI: 10.1074/jbc.m807084200] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The fibrinogen-related protein family (FREP, also known as FBN) is an evolutionarily conserved immune gene family found in mammals and invertebrates. It is the largest pattern recognition receptor gene family in Anopheles gambiae, with as many as 59 putative members, while the Drosophila melanogaster genome has only 14 known FREP members. Our sequence and phylogenetic analysis suggest that this remarkable gene expansion in the mosquito is the result of tandem duplication of the fibrinogen domain. We found that the majority of the FREP genes displayed immune-responsive transcription after challenge with bacteria, fungi, or Plasmodium, and these expression patterns correlated strongly with gene phylogeny and chromosomal location. Using RNAi-mediated gene-silencing assays, we further demonstrated that some FREP members are essential factors of the mosquito innate immune system that are required for maintaining immune homeostasis, and members of this family have complementary and synergistic functions. One of the most potent anti-Plasmodium FREP proteins, FBN9, was found to interact with both Gram-negative and Gram-positive bacteria and strongly co-localized with both rodent and human malaria parasites in the mosquito midgut epithelium, suggesting that its defensive activity involves direct interaction with the pathogen. Interestingly, FBN9 formed dimers that bound to the bacterial surfaces with different affinities. Our findings indicate that the A. gambiae FREP gene family plays a central role in the mosquito innate immune system and provides an expanded pattern recognition and anti-microbial defense repertoire.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
79
|
Marmaras VJ, Lampropoulou M. Regulators and signalling in insect haemocyte immunity. Cell Signal 2009; 21:186-95. [DOI: 10.1016/j.cellsig.2008.08.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/24/2008] [Indexed: 02/06/2023]
|
80
|
Lessons from the fly: pattern recognition in Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 653:162-74. [PMID: 19799118 DOI: 10.1007/978-1-4419-0901-5_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drosophila have a variety of innate immune strategies for defending itself from infection, including humoral and cell mediated responses to invading microorganisms. At the front lines of these responses, are a diverse group of pattern recognition receptors that recognize pathogen associated molecular patterns. These patterns include bacterial lipopolysaccharides, peptidoglycans, and fungal beta-1,3 glucans. Some of the receptors catalytically modify the pathogenic determinant, but all are responsible for directly facilitating a signaling event that results in an immune response. Some of these events require multiple pattern recognition receptors acting sequentially to activate a pathway. In some cases, a signaling pathway may be activated by a variety of different pathogens, through parallel receptors detecting different pathogenic determinants. In this chapter, we review what is known about pattern recognition receptors in Drosophila, and how those lessons may be applied towards a broader understanding of immunity.
Collapse
|
81
|
Zhou ZH, Yang HJ, Chen M, Lou CF, Zhang YZ, Chen KP, Wang Y, Yu ML, Yu F, Li JY, Zhong BX. Comparative Proteomic Analysis between the Domesticated Silkworm (Bombyx mori) Reared on Fresh Mulberry Leaves and on Artificial Diet. J Proteome Res 2008; 7:5103-11. [DOI: 10.1021/pr800383r] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhong-hua Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, College of Life Sciences, Zhejiang University of Science and Technology, Hangzhou 310018, P. R. China, and Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Hui-juan Yang
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, College of Life Sciences, Zhejiang University of Science and Technology, Hangzhou 310018, P. R. China, and Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ming Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, College of Life Sciences, Zhejiang University of Science and Technology, Hangzhou 310018, P. R. China, and Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Cheng-fu Lou
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, College of Life Sciences, Zhejiang University of Science and Technology, Hangzhou 310018, P. R. China, and Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yao-zhou Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, College of Life Sciences, Zhejiang University of Science and Technology, Hangzhou 310018, P. R. China, and Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ke-ping Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, College of Life Sciences, Zhejiang University of Science and Technology, Hangzhou 310018, P. R. China, and Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yong Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, College of Life Sciences, Zhejiang University of Science and Technology, Hangzhou 310018, P. R. China, and Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Mei-lan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, College of Life Sciences, Zhejiang University of Science and Technology, Hangzhou 310018, P. R. China, and Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Fang Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, College of Life Sciences, Zhejiang University of Science and Technology, Hangzhou 310018, P. R. China, and Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jian-ying Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, College of Life Sciences, Zhejiang University of Science and Technology, Hangzhou 310018, P. R. China, and Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Bo-xiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, P. R. China, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China, College of Life Sciences, Zhejiang University of Science and Technology, Hangzhou 310018, P. R. China, and Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
82
|
Yuki M, Moriya S, Inoue T, Kudo T. Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Zoolog Sci 2008; 25:401-6. [PMID: 18459822 DOI: 10.2108/zsj.25.401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 01/30/2008] [Indexed: 11/17/2022]
Abstract
Microorganisms dwell symbiotically in the termite hindgut. In this study, we identified genes that contribute to the role of the host in maintaining this symbiotic relationship with microorganisms. Body tissue and digestive organs (salivary gland, foregut, midgut, and hindgut) dissected from the lower termite Hodotermopsis sjostedti were used for the analyses. The transcriptomes in these organs were investigated using expressed sequence tag (EST) analysis. The cDNA libraries from the salivary gland and foregut included not only cellulase genes, but also several genes involved in glucose production, heme-cellulose degradation, chitin degradation, the innate immune system, and anti-microbial activity. We compared the expression level of these genes in the organs and body by real-time quantitative RT-PCR. Real time RT-PCR analyses confirmed that the genes associated with cellulose degradation, innate immunity, and anti-microbial proteins are much more strongly expressed in the salivary gland than in other tissues. Our results identify functional genes used by the host in the termite symbiotic system.
Collapse
Affiliation(s)
- Masahiro Yuki
- Laboratory of Environmental Molecular Biology, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
83
|
Campbell PM, Cao AT, Hines ER, East PD, Gordon KHJ. Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:950-958. [PMID: 18760362 DOI: 10.1016/j.ibmb.2008.07.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 05/26/2023]
Abstract
The peritrophic matrix from the midgut of the caterpillar, Helicovera armigera, was solubilized by treatment with anhydrous trifluoromethanesulfonic acid, apparently by depolymerisation of its chitin component. This allowed the efficient extraction of proteins in a technique that may be broadly applicable to the analysis of other structures containing chitin. Gel electrophoresis and mass spectrometry of tryptic peptides were used to identify the extracted proteins with gut-expressed cDNA sequences. The major proteins of this cohesive, digestion-resistant structure are chitin deacetylase-like and mucin-like proteins, the latter with multiple chitin-binding domains that may cross-link chitin fibrils to provide a barrier against abrasive food particles and parasites, one of the major functions of the matrix. Other proteins found in the H. armigera gut peritrophic matrix suggest that the matrix is a dynamic, complex structure that may participate in the immobilization of digestive enzymes, actively protect the gut from parasite invasion and intercept toxins such as lectins and Bacillus thuringiensis crystal proteins.
Collapse
|
84
|
Lin YC, Vaseeharan B, Chen JC. Identification and phylogenetic analysis on lipopolysaccharide and beta-1,3-glucan binding protein (LGBP) of kuruma shrimp Marsupenaeus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1260-1269. [PMID: 18572243 DOI: 10.1016/j.dci.2008.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 05/07/2008] [Accepted: 05/09/2008] [Indexed: 05/26/2023]
Abstract
A lipopolysaccharide (LPS) and beta-1,3-glucan binding protein (LGBP) gene was cloned from hemocytes of kuruma shrimp Marsupenaeus japonicus by reverse-transcription polymerase chain reaction (RT-PCR), cloning and sequencing of overlapping PCR, and rapid amplification of cDNA ends (RACE) method. The open reading frame (ORF) of M. japonicus LGBP is 1062 bp and encodes a 354 amino acid (aa) sequence with a 23 aa signal peptide. The calculated molecular mass of the mature protein (331 aa) is 40.15 kDa with an estimated pI of 4.78. The M. japonicus LGBP sequence contains (1) two putative N-linked glycosylation sites, (2) two putative integrin-binding motifs, (3) a kinase C phosphorylation site (KCPS), (4) a glucanase motif (GM), and (5) two potential polysaccharide recognition motifs (polysaccharide binding motif (PsBM) and beta-glucan recognition motif (GRM)), and with features of tryptophan-rich, slight homology to lysozyme, and slight homology to lectin. A sequence comparison showed that the deduced amino acids of M. japonicus LGBP has an overall high similarity to penaeid LGBP and betaGBP (85.6-89.9%), lobster Homarus gammarus betaGBP (77.0%), and crayfish Pacifastacius leniusculus LGBP (67.8%). The phylogenetic analysis revealed that M. japonicus LGBP grouped together with other crustacean LGBP and betaGBP, and was close to termite GNBP, but was far way from moth betaGBP, betaGRP, fly GNBP, and mosquito betaGRP. The LGBP of M. japonicus was strongly expressed in hemocytes. The LGBP mRNA transcript in hemocytes of M. japonicus was significantly upregulated 12-48 h after a LPS injection, indicating activation of the innate immune system through the binding of the LGBP and LPS complex.
Collapse
Affiliation(s)
- Yong-Chin Lin
- College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan 202, ROC
| | | | | |
Collapse
|
85
|
Pauchet Y, Muck A, Svatoš A, Heckel DG, Preiss S. Mapping the Larval Midgut Lumen Proteome of Helicoverpa armigera, a Generalist Herbivorous Insect. J Proteome Res 2008; 7:1629-39. [DOI: 10.1021/pr7006208] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yannick Pauchet
- Department of Entomology and Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Alexander Muck
- Department of Entomology and Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Aleš Svatoš
- Department of Entomology and Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - David G. Heckel
- Department of Entomology and Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Susanne Preiss
- Department of Entomology and Mass Spectrometry Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| |
Collapse
|
86
|
|
87
|
Warr E, Das S, Dong Y, Dimopoulos G. The Gram-negative bacteria-binding protein gene family: its role in the innate immune system of anopheles gambiae and in anti-Plasmodium defence. INSECT MOLECULAR BIOLOGY 2008; 17:39-51. [PMID: 18237283 DOI: 10.1111/j.1365-2583.2008.00778.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gram-negative bacteria-binding proteins (GNBPs) are pattern recognition receptors which contribute to the defensive response against Plasmodium infection in Anopheles. We have characterized the GNBP gene family in Anopheles gambiae at the molecular level, and show that they are functionally diverse components of the A. gambiae innate immune system. GNBPB4 is a major factor in the defence against a broad range of pathogens, while the other GNBPs have narrower defence specificities. GNBPB4 is associated with the regulation of immune signalling pathways and was found to interact with the Gram-negative Escherichia coli and weakly co-localized with Plasmodium berghei ookinetes in the mosquito midgut epithelium.
Collapse
Affiliation(s)
- E Warr
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | | | | | | |
Collapse
|
88
|
Ishii K, Hamamoto H, Kamimura M, Sekimizu K. Activation of the Silkworm Cytokine by Bacterial and Fungal Cell Wall Components via a Reactive Oxygen Species-triggered Mechanism. J Biol Chem 2008; 283:2185-91. [DOI: 10.1074/jbc.m705480200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
89
|
Cheng TC, Zhang YL, Liu C, Xu PZ, Gao ZH, Xia QY, Xiang ZH. Identification and analysis of Toll-related genes in the domesticated silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:464-75. [PMID: 17499357 DOI: 10.1016/j.dci.2007.03.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 05/15/2023]
Abstract
Silkworm (Bombyx mori), a model system for Lepidoptera, has contributed enormously to the study of insect immunology especially in humoral immunity. But little is known about the molecular mechanism of immune response in the silkworm. Toll receptors are a group of evolutionarily ancient proteins, which play a crucial role in the innate immunity of both insects and vertebrates. In human, Toll-like receptors (TLRs) are the typical pattern recognition receptors for different kinds of pathogen molecules. Toll-related receptors in Drosophila, however, were thought to function as cytokine receptors in immune response and embryogenesis. We have identified 11 putative Toll-related receptors and two Toll analogs in the silkworm genome. Phylogenetic analysis of insect Toll family and human TLRs showed that BmTolls is grouped with Drosophila Tolls and Anopheles Tolls. These putative proteins are typical transmembrane receptors flanked by the extracellular leucine-rich repeat (LRR) domain and the cytoplasmic TIR domain. Structural prediction of the TIR domain alignment found five stranded sheets and five helices, which are alternatingly joined. Microarray data indicated that BmToll and BmToll-2 were expressed with remarkable enrichment in the ovary, suggesting that they might play a role in the embryogenesis. However, the enriched expression of BmToll-2 and -4 in the midgut suggested that the proteins they encode may be involved in immune defense. Testis-specific expression of BmToll-10 and -11 and BmToLK-2 implies that these may be involved in sex-specific biological functions. The RT-PCR results indicated that 10 genes were induced or suppressed with different degrees after their immune system was challenged by different invaders. Expression profiles of BmTolls and BmToLKs reported here provide insight into their role in innate immunity and development.
Collapse
Affiliation(s)
- Ting-Cai Cheng
- College of Life Science, Southwest University, Chongqing 400716, China
| | | | | | | | | | | | | |
Collapse
|
90
|
Aguilar R, Das S, Dong Y, Dimopoulos G. Continuous exposure to Plasmodium results in decreased susceptibility and transcriptomic divergence of the Anopheles gambiae immune system. BMC Genomics 2007; 8:451. [PMID: 18053261 PMCID: PMC2234432 DOI: 10.1186/1471-2164-8-451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 12/05/2007] [Indexed: 11/10/2022] Open
Abstract
Background Plasmodium infection has been shown to compromise the fitness of the mosquito vector, reducing its fecundity and longevity. However, from an evolutionary perspective, the impact of Plasmodium infection as a selective pressure on the mosquito is largely unknown. Results In the present study we have addressed the effect of a continuous Plasmodium berghei infection on the resistance to infection and global gene expression in Anopheles gambiae. Exposure of A. gambiae to P. berghei-infected blood and infection for 16 generations resulted in a decreased susceptibility to infection, altered constitutive expression levels for approximately 2.4% of the mosquito's total transcriptome and a lower basal level of immune genes expression, including several anti-Plasmodium factors. The infection-responsiveness for several defense genes was elevated in the P. berghei exposed mosquito colonies. Conclusion Our study establishes the existence of a selective pressure exerted by the parasite P. berghei on the malaria vector A. gambiae that results in a decreased permissiveness to infection and changes in the mosquito transcriptome regulation that suggest a decreased constitutive immune gene activity but a more potent immune response upon Plasmodium challenge.
Collapse
Affiliation(s)
- Ruth Aguilar
- W, Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N, Wolfe Street, Baltimore, MD 21205-2179, USA.
| | | | | | | |
Collapse
|
91
|
The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 2007; 7:862-74. [DOI: 10.1038/nri2194] [Citation(s) in RCA: 653] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
92
|
Rannikko K, Ortutay C, Vihinen M. Immunity genes and their orthologs: a multi-species database. Int Immunol 2007; 19:1361-70. [PMID: 17965450 DOI: 10.1093/intimm/dxm109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metazoan species, from sponges to insects and mammals, possess successful defence systems against their pathogens and parasites. The evolutionary origins of these diverse systems are beginning to be more comprehensively investigated and mapped out. We have collected 1811 metazoan immunity genes from literature and gene ontology annotations. Tentative orthologs of these genes were identified using reciprocal protein-protein Blast searches against proteins from the GenBank and RefSeq databases. We have defined different levels or classes of ortholog group according to the order of reciprocal ortholog pairs among the seed immunity genes. The genes were clustered into these different ortholog groups. Initial phylogenetic analysis of these ortholog groups suggests that by this approach, we can collect a spectrum of immunity genes representing well the taxa in which they appear. All the immunity genes and their evidence of immune function, orthologs and ortholog groups have been combined into an open access database -- ImmunomeBase, which is publicly available from (http://bioinf.uta.fi/ImmunomeBase).
Collapse
Affiliation(s)
- Kathryn Rannikko
- Bioinformatics Research Group, Institute of Medical Technology, FI-33014, University of Tampere, Finland
| | | | | |
Collapse
|
93
|
Abstract
To combat infection, the fruit fly Drosophila melanogaster relies on multiple innate defense reactions, many of which are shared with higher organisms. These reactions include the use of physical barriers together with local and systemic immune responses. First, epithelia, such as those beneath the cuticle, in the alimentary tract, and in tracheae, act both as a physical barrier and local defense against pathogens by producing antimicrobial peptides and reactive oxygen species. Second, specialized hemocytes participate in phagocytosis and encapsulation of foreign intruders in the hemolymph. Finally, the fat body, a functional equivalent of the mammalian liver, produces humoral response molecules including antimicrobial peptides. Here we review our current knowledge of the molecular mechanisms underlying Drosophila defense reactions together with strategies evolved by pathogens to evade them.
Collapse
Affiliation(s)
- Bruno Lemaitre
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
94
|
Dong Y, Taylor HE, Dimopoulos G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 2006; 4:e229. [PMID: 16774454 PMCID: PMC1479700 DOI: 10.1371/journal.pbio.0040229] [Citation(s) in RCA: 315] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/05/2006] [Indexed: 12/18/2022] Open
Abstract
Activation of the insect innate immune system is dependent on a limited number of pattern recognition receptors (PRRs) capable of interacting with pathogen-associated molecular pattern. Here we report a novel role of an alternatively spliced hypervariable immunoglobulin domain-encoding gene,
Dscam, in generating a broad range of PRRs implicated in immune defense in the malaria vector
Anopheles gambiae. The mosquito Down syndrome cell adhesion molecule gene,
AgDscam, has a complex genome organization with 101 exons that can produce over 31,000 potential alternative splice forms with different combinations of adhesive domains and interaction specificities.
AgDscam responds to infection by producing pathogen challenge-specific splice form repertoires. Transient silencing of
AgDscam compromises the mosquito's resistance to infections with bacteria and the malaria parasite
Plasmodium. AgDscam is mediating phagocytosis of bacteria with which it can associate and defend against in a splice form–specific manner. AgDscam is a hypervariable PRR of the
A. gambiae innate immune system.
AgDscam has 101 exons that can produce more than 31,000 potential alternative splice forms. Specific splice forms produced in response to infection by a given pathogen contribute to the mosquito's resistance against pathogens.
Collapse
Affiliation(s)
- Yuemei Dong
- 1W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Harry E Taylor
- 1W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- 1W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
95
|
Hernández-Martínez S, Román-Martínez U, Martínez-Barnetche J, Garrido E, Rodríguez MH, Lanz-Mendoza H. Induction of DNA synthesis in Anopheles albimanus tissue cultures in response to a Saccharomyces cerevisiae challenge. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 63:147-58. [PMID: 17103404 DOI: 10.1002/arch.20150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA synthesis was detected by the incorporation of 5-bromo-2' deoxy-uridine (BrdU) in adult Anopheles albimanus organs in culture in response to a challenge with Saccharomyces cerevisiae. Abdomens of mosquitoes inoculated with Roswell Park Memorial Institute medium (RPMI, control) or yeast were cultivated in RPMI plus ConA and BrdU for 5 days. DNA was obtained by phenolic extraction and the incorporated BrdU was quantified by ELISA using anti-BrdU peroxidase-labeled antibodies. Abdomen tissues of mosquitoes inoculated with yeast showed higher DNA synthesis than controls. Organs from untreated mosquitoes cultured in the presence of zymosan also synthesized DNA but at a lower level than tissues from yeast-inoculated mosquitoes. In similar experiments, DNA synthesis was inhibited by the addition of colchicine. DNA synthesis, evidenced by epifluorescence using an anti-BrdU fluorescein-labeled antibody, occurred in fat body, epithelial cells in pleural membranes, and the dorsal vessel. Pleural membranes showed the highest number of labeled cells. These tissues were also labeled with anti-PCNA (proliferating cell nuclear antigen) antibodies, two of which were able to produce polytene chromosomes under yeast stimulation. These results demonstrate that different An. albimanus tissues undergo DNA synthesis in response to foreign particles.
Collapse
Affiliation(s)
- S Hernández-Martínez
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | | | | | | | | | | |
Collapse
|
96
|
Jiggins FM, Kim KW. Contrasting evolutionary patterns in Drosophila immune receptors. J Mol Evol 2006; 63:769-80. [PMID: 17103056 PMCID: PMC1808192 DOI: 10.1007/s00239-006-0005-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 08/28/2006] [Indexed: 10/23/2022]
Abstract
Vertebrate immune system molecules that bind directly to parasites are commonly subject to strong directional natural selection, probably because they are engaged in an evolutionary arms race with parasites. We have investigated whether similar patterns of evolution are seen in components of the Drosophila immune system that bind parasite-derived molecules. In insects, TEPs (thioester-containing proteins) function as opsonins, binding to parasites and promoting their phagocytosis or encapsulation. The Drosophila melanogaster genome encodes four TEPs, three of which are upregulated after an immune challenge. We report that two of these three Drosophila genes evolve rapidly under positive selection and that, in both TepI and TepII, the "bait-like region" (also known as the variable region) shows the strongest signature of positive selection. This region may be the site of proteolytic cleavage that leads to the activation of the molecule. It is possible that the proteolytic activation of TEPs is a target of host-parasite coevolution, with parasites evolving to prevent proteolysis, which in turn favors mutations in the bait-like region that restore the response. We also sequenced three gram-negative binding proteins (GNBPs) and two immune-induced peptides with strong homology to the GNBPs. In contrast to the Tep genes, the GNBP genes are highly conserved. We discuss the reasons why different components of the immune system have such different patterns of evolution.
Collapse
Affiliation(s)
- Francis M Jiggins
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, Scotland.
| | | |
Collapse
|
97
|
Abstract
The elimination of infectious non-self by the host defense systems of multicellular organisms requires a variety of recognition and effector molecules. The diversity is generated in somatic cells or encoded in the germ-line. In adaptive immunity in jawed vertebrates, the diversity of immunoglobulins and antigen receptors is generated by gene rearrangements in somatic cells. In innate immunity, various effector molecules and pattern recognition receptors, such as antimicrobial peptides and peptidoglycan recognition proteins, are encoded in the germ-line of multicellular organisms, including insects and jawed vertebrates. In the present review, we discuss how insect host defense systems recognize and eliminate a multitude of microbes via germ-line-encoded molecules, including recent findings that a Drosophila member of the immunoglobulin superfamily is extensively diversified by alternative splicing in somatic immune cells and participates in the elimination of bacteria.
Collapse
Affiliation(s)
- Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
98
|
Du XJ, Zhao XF, Wang JX. Molecular cloning and characterization of a lipopolysaccharide and beta-1,3-glucan binding protein from fleshy prawn (Fenneropenaeus chinensis). Mol Immunol 2006; 44:1085-94. [PMID: 16930711 DOI: 10.1016/j.molimm.2006.07.288] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/08/2006] [Accepted: 07/10/2006] [Indexed: 11/30/2022]
Abstract
Pattern recognition proteins (PRPs), such as lipopolysaccharide and beta-1,3-glucan binding protein (LGBP), have been identified in many animals and play a crucial role in invertebrate defense systems. In the current study, an LGBP gene was cloned from fleshy prawn (Fenneropenaeus chinensis, Fc-LGBP) utilizing homology cloning and RACE methods. The full cDNA of the Fc-LGBP gene in fleshy prawn was 1253bp in size with a deduced 366 amino acid protein that includes a glycosyl hydrolase domain. Northern blot and RT-PCR data suggested that Fc-LGBP mRNA was mostly synthesized in haemocytes and that the expression was down-regulated 24h post-injection of bacteria. In situ hybridization demonstrated that Fc-LGBP mRNA was only detected in haemocyte cytoplasm, with no detection in other tissues. The molecular weight of the purified recombinantly expressed Fc-LGBP was approximately 46kDa. Immunohistochemistry of haemocytes revealed that Fc-LGBP protein was localized on the membrane of most cells. Data from bacterial binding assays utilizing purified protein suggested that rFc-LGBP had strong binding activity to Gram-negative bacteria.
Collapse
Affiliation(s)
- Xin-Jun Du
- School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | | | | |
Collapse
|
99
|
Taniai K, Lee JH, Lee IH. Bombyx mori cell line as a model of immune-system organs. INSECT MOLECULAR BIOLOGY 2006; 15:269-79. [PMID: 16756546 DOI: 10.1111/j.1365-2583.2006.00639.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We tested 11 Bombyx mori cell lines for induction of cecropin B gene (CecB) expression. After the immune challenge, CecB expression was induced in seven cell lines. A mixture of the cell-free supernatant from the immune-responsive cell lines and lipopolysaccharide activated a promoter of CecB in the non-immune-responsive cell line, indicating that secreted factor(s) is involved in CecB activation. The expressed sequence tags of one of the immune-responsive cell lines, NISES-BoMo-Cam1, contained genes encoding proteins similar to Relish, Cactus, clip-domain serine protease, serpin, lectin, peptidoglycan recognition protein, 6tox and gloverin, in addition to seven known B. mori immune-inducible genes. These results show that NISES-BoMo-Cam1 cells can be used as an in vitro model of the immune system organs of B. mori.
Collapse
Affiliation(s)
- K Taniai
- Insect Biotechnology and Sericology Department, National Institute of Agrobiological Sciences, Ibaraki, Japan.
| | | | | |
Collapse
|
100
|
Kurata S, Ariki S, Kawabata SI. Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiology 2006; 211:237-49. [PMID: 16697917 DOI: 10.1016/j.imbio.2005.10.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Accepted: 10/29/2005] [Indexed: 10/24/2022]
Abstract
In innate immunity, pattern recognition receptors discriminate between self- and infectious non-self-matter. Mammalian homologs of the Drosophila Toll protein, which are collectively referred to as Toll-like receptors (TLRs), recognize pathogen-associated molecular patterns (PAMPs), including lipopolysaccharides (LPS) and lipoproteins, whereas the Drosophila Toll protein does not act as a PAMP receptor, but rather binds to Spätzle, an endogenous peptide. In Drosophila, innate immune surveillance is mediated by members of the peptidoglycan recognition protein (PGRP) family, which recognize diverse bacteria-derived peptidoglycans and initiate appropriate immune reactions including the release of antimicrobial peptides and the activation of the prophenoloxidase cascade, the latter effecting localized wound healing, melanization, and microbial phagocytosis. In the horseshoe crab, LPS induces hemocyte exocytotic degranulation, resulting in the secretion of various defense molecules, such as coagulation factors, antimicrobial peptides, and lectins. Recent studies have demonstrated that the zymogen form of the serine protease factor C, a major granular component of hemocyte, also exists on the hemocyte surface and functions as a biosensor for LPS. The proteolytic activity of activated factor C initiates hemocyte exocytosis via a G protein mediated signal transduction pathway. Furthermore, it has become clear that an endogenous mechanism for the feedback amplification of the innate immune response exists and is dependent upon a granular component of the horseshoe crab hemocyte.
Collapse
Affiliation(s)
- Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | | | | |
Collapse
|