51
|
Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:11-28. [PMID: 17971042 DOI: 10.1111/j.1365-313x.2007.03318.x] [Citation(s) in RCA: 409] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Delta-1-pyrroline-5-carboxylate synthetase enzymes, which catalyse the rate-limiting step of proline biosynthesis, are encoded by two closely related P5CS genes in Arabidopsis. Transcription of the P5CS genes is differentially regulated by drought, salinity and abscisic acid, suggesting that these genes play specific roles in the control of proline biosynthesis. Here we describe the genetic characterization of p5cs insertion mutants, which indicates that P5CS1 is required for proline accumulation under osmotic stress. Knockout mutations of P5CS1 result in the reduction of stress-induced proline synthesis, hypersensitivity to salt stress, and accumulation of reactive oxygen species. By contrast, p5cs2 mutations cause embryo abortion during late stages of seed development. The desiccation sensitivity of p5cs2 embryos does not reflect differential control of transcription, as both P5CS mRNAs are detectable throughout embryonic development. Cellular localization studies with P5CS-GFP gene fusions indicate that P5CS1 is sequestered into subcellular bodies in embryonic cells, where P5CS2 is dominantly cytoplasmic. Although proline feeding rescues the viability of mutant embryos, p5cs2 seedlings undergo aberrant development and fail to produce fertile plants even when grown on proline. In seedlings, specific expression of P5CS2-GFP is seen in leaf primordia where P5CS1-GFP levels are very low, and P5CS2-GFP also shows a distinct cell-type-specific and subcellular localization pattern compared to P5CS1-GFP in root tips, leaves and flower organs. These data demonstrate that the Arabidopsis P5CS enzymes perform non-redundant functions, and that P5CS1 is insufficient for compensation of developmental defects caused by inactivation of P5CS2.
Collapse
Affiliation(s)
- Gyöngyi Székely
- Institute of Plant Biology, Biological Research Center, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 2008; 8:47-60. [DOI: 10.1016/j.mito.2007.10.004] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 08/20/2007] [Accepted: 10/02/2007] [Indexed: 12/22/2022]
|
53
|
Fujita M, Mizukado S, Fujita Y, Ichikawa T, Nakazawa M, Seki M, Matsui M, Yamaguchi-Shinozaki K, Shinozaki K. Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system. Biochem Biophys Res Commun 2007; 364:250-7. [PMID: 17937930 DOI: 10.1016/j.bbrc.2007.09.124] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 09/27/2007] [Indexed: 11/26/2022]
Abstract
Recently, we developed a novel system known as Full-length cDNA Over-eXpressor (FOX) gene hunting [T. Ichikawa, M. Nakazawa, M. Kawashima, H. Iizumi, H. Kuroda, Y. Kondou, Y. Tsuhara, K. Suzuki, A. Ishikawa, M. Seki, M. Fujita, R. Motohashi, N. Nagata, T. Takagi, K. Shinozaki, M. Matsui, The FOX hunting system: an alternative gain-of-function gene hunting technique, Plant J. 48 (2006) 974-985], which involves the random overexpression of a normalized Arabidopsis full-length cDNA library. While our system allows large-scale collection of full-length cDNAs for gene discovery, we sought to downsize it to analyze a small pool of full-length cDNAs. As a model system, we focused on stress-inducible transcription factors. The full-length cDNAs of 43 stress-inducible transcription factors were mixed to create a transgenic plant library. We screened for salt-stress-resistant lines in the T1 generation and identified a number of salt-tolerant lines that harbored the same transgene (F39). F39 encodes a bZIP-type transcription factor that is identical to AtbZIP60, which is believed to be involved in the endoplasmic reticulum stress response. Microarray analysis revealed that a number of stress-inducible genes were up-regulated in the F39-overexpressing lines, suggesting that AtbZIP60 is involved in stress signal transduction. Thus, our mini-scale FOX system may be used to screen for genes with valuable functions, such as transcription factors, from a small pool of genes that show similar expression profiles.
Collapse
Affiliation(s)
- Miki Fujita
- Gene Discovery Research Group, RIKEN Plant Science Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Parre E, Ghars MA, Leprince AS, Thiery L, Lefebvre D, Bordenave M, Richard L, Mazars C, Abdelly C, Savouré A. Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:503-12. [PMID: 22121247 PMCID: PMC1913778 DOI: 10.1104/pp.106.095281] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Proline (Pro) accumulation occurs in various plant organisms in response to environmental stresses. To identify the signaling components involved in the regulation of Pro metabolism upon water stress in Arabidopsis (Arabidopsis thaliana), a pharmacological approach was developed. The role of phosphoinositide-specific phospholipases C (PLCs) in Pro accumulation was assessed by the use of the aminosteroid U73122, a commonly employed specific inhibitor of receptor-mediated PLCs. We found that U73122 reduced pyrroline-5-carboxylate synthetase transcript and protein as well as Pro levels in salt-treated seedlings. Inhibition of PLC activity by U73122 was quantified by measuring the decrease of inositol 1,4,5-trisphosphate (InsP(3)) levels. Moreover, the utilization of diacylglycerol kinase and InsP(3)-gated calcium release receptor inhibitors suggested that InsP(3) or its derivatives are essential for Pro accumulation upon salt stress, involving calcium as a second messenger in ionic stress signaling. This observation was further supported by a partial restoration of Pro accumulation in salt- and U73122-treated seedlings after addition of extracellular calcium, or when calcium homeostasis was perturbed by cyclopiazonic acid, a blocker of plant type IIA calcium pumps. Taken together, our data indicate that PLC-based signaling is a committed step in Pro biosynthesis upon salinity but not in the case of mannitol stress. Calcium acts as a molecular switch to trigger downstream signaling events. These results also demonstrated the specific involvement of lipid signaling pathway to discriminate between ionic and nonionic stresses.
Collapse
Affiliation(s)
- Elodie Parre
- Université Pierre et Marie Curie-Paris6 and Centre National de la Recherche Scientifique, UMR 7180, Physiologie Cellulaire et Moléculaire des Plantes, Paris F-75005, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Tian C, Chikayama E, Tsuboi Y, Kuromori T, Shinozaki K, Kikuchi J, Hirayama T. Top-down phenomics of Arabidopsis thaliana: metabolic profiling by one- and two-dimensional nuclear magnetic resonance spectroscopy and transcriptome analysis of albino mutants. J Biol Chem 2007; 282:18532-18541. [PMID: 17468106 DOI: 10.1074/jbc.m700549200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elucidating the function of each gene in a genome is important for understanding the whole organism. We previously constructed 4000 disruptant mutants of Arabidopsis by insertion of Ds transposons. Here, we describe a top-down phenomics approach based on metabolic profiling that uses one-dimensional 1H and two-dimensional 1H,13C NMR analyses and transcriptome analysis of albino mutant lines of Arabidopsis. One-dimensional 1H NMR metabolic fingerprinting revealed global metabolic changes in the albino mutants, notably a decrease in aromatic metabolites and changes in aliphatic metabolites. NMR measurements of plants fed with 13C6-glucose showed that the albino lines had dramatically different 13C-labeling patterns and increased levels of several amino acids, especially Asn and Gln. Microarray analysis of one of the albino lines revealed a unique expression profile and showed that changes in the expression of genes encoding metabolic enzymes did not correspond with changes in the levels of metabolites. Collectively, these results suggest that albino mutants lose the normal carbon/nitrogen balance, presumably mainly through lack of photosynthesis. Our study offers an idea of how much the metabolite network is affected by chloroplast function in plants and shows the effectiveness of NMR-based metabolic analysis for metabolite profiling. On the basis of these findings, we propose that future investigations of plant systems biology combine transcriptomic, metabolomic, and phenomic analyses of gene disruptant lines.
Collapse
Affiliation(s)
- Chunjie Tian
- Laboratory of Environmental Molecular Biology, RIKEN Wako Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Eisuke Chikayama
- Metabolomics Research Group, RIKEN Plant Science Center, 1-7-22 Tsurumi, Yokohama 230-0045, Japan
| | - Yuuri Tsuboi
- Laboratory of Environmental Molecular Biology, RIKEN Wako Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Takashi Kuromori
- Gene Discovery Research Group, RIKEN Plant Science Center, 1-7-22 Tsurumi, Yokohama 230-0045, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Plant Science Center, 1-7-22 Tsurumi, Yokohama 230-0045, Japan
| | - Jun Kikuchi
- Metabolomics Research Group, RIKEN Plant Science Center, 1-7-22 Tsurumi, Yokohama 230-0045, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi 332-0012, Japan; Graduate School of Bioagriculture Science, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Takashi Hirayama
- Laboratory of Environmental Molecular Biology, RIKEN Wako Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Integrated Science, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama 230-0045, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Hon-cho, Kawaguchi 332-0012, Japan.
| |
Collapse
|
56
|
Ribarits A, Abdullaev A, Tashpulatov A, Richter A, Heberle-Bors E, Touraev A. Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. PLANTA 2007; 225:1313-24. [PMID: 17106685 DOI: 10.1007/s00425-006-0429-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 10/10/2006] [Indexed: 05/12/2023]
Abstract
Proline dehydrogenase is the rate-limiting enzyme in proline degradation and serves important functions in the stress responses and development of plants. We isolated two tobacco proline dehydrogenases, NtPDH1 and NtPDH2, in the course of screening for genes upregulated in stressed tobacco (Nicotiana tabacum) microspores. Expression analysis revealed that the two genes are differentially regulated. Under unstressed conditions, their steady-state transcript levels were similar in mature pollen and apical meristems, whereas NtPDH2 was expressed predominantly in vegetative organs, styles, and ovules. The expression of NtPDH1 was maintained at a constant low level during 24 h of dehydration, whereas NtPDH2 was upregulated within 1 h after the onset of stress and subsequently downregulated to undetectable levels. Differential and sustained expression was also found for the two enzymatic isoforms of Arabidopsis thaliana AtPDH. Silencing of the NtPDH genes by RNA interference using the CaMV 35S promoter led to increased proline contents, decreased seed set, delayed seed germination and retarded seedling development pointing towards an important function of at least one of the two NtPDH genes during plant reproductive development.
Collapse
Affiliation(s)
- Alexandra Ribarits
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Plant Molecular Biology, University of Vienna, Dr. Bohrgasse 9, 1030 Wien, Austria
| | | | | | | | | | | |
Collapse
|
57
|
Dluzniewska P, Gessler A, Dietrich H, Schnitzler JP, Teuber M, Rennenberg H. Nitrogen uptake and metabolism in Populus x canescens as affected by salinity. THE NEW PHYTOLOGIST 2007; 173:279-93. [PMID: 17204075 DOI: 10.1111/j.1469-8137.2006.01908.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
External salinization can affect different steps of nitrogen (N) metabolism (ion uptake, N assimilation, and amino acid and protein synthesis) depending on the inorganic N source. Here, we assessed the net uptake of N supplied as nitrate or ammonium and N assimilation (combining metabolite analyses with molecular biological approaches) in grey poplar (Populus x canescens) plants grown under saline (75 mM NaCl) and control conditions. The specific (micromol N g(-1) dry weight fine roots h(-1)) and total plant (micromol N per plant h(-1)) N net uptake rates, total plant N content, total plant biomass and total leaf protein concentration were reduced under saline conditions when plants were supplied with ammonium. In both nutritional groups, salt treatment caused pronounced accumulation of soluble N compounds in the leaves. The mRNAs of genes coding for enzymes catalyzing rate-limiting steps of both proline synthesis and degradation (delta-1-pyrroline-5-carboxylate synthase and proline dehydrogenase) as well as for NADH-dependent glutamate synthase were accumulated under saline conditions. Whereas under control conditions the plant N status seemed to be superior when ammonium was supplied, the N balance of ammonium-fed plants was more severely affected by salt stress than that of plants supplied with nitrate. Possible metabolic implications of stress-related accumulation of particular amino acids are discussed.
Collapse
Affiliation(s)
- P Dluzniewska
- Institute of Forest Botany and Tree Physiology, University of Freiburg, Georges-Koehler-Allee 53/54, D-79110 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Kant S, Kant P, Raveh E, Barak S. Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. PLANT, CELL & ENVIRONMENT 2006; 29:1220-34. [PMID: 17080945 DOI: 10.1111/j.1365-3040.2006.01502.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Salt-sensitive glycophytes and salt-tolerant halophytes employ common mechanisms to cope with salinity, and it is hypothesized that differences in salt tolerance arise because of changes in the regulation of a basic set of salt tolerance genes. We explored the expression of genes involved in two key salt tolerance mechanisms in Arabidopsis thaliana and the halophytic A. thaliana relative model system (ARMS), Thellungiella halophila. Salt overly sensitive 1 (SOS1) is a plasma membrane Na+/H+ antiporter that retrieves and loads Na+ ions from and into the xylem. Shoot SOS1 transcript was more strongly induced by salt in T. halophila while root SOS1 was constitutively higher in unstressed T. halophila. This is consistent with a lower salt-induced rise in T. halophila xylem sap Na+ concentration than in A. thaliana. Thellungiella halophila contained higher unstressed levels of the compatible osmolyte proline than A. thaliana, while under salt stress, T. halophila accumulated more proline mainly in shoots. Expression of the A. thaliana ortholog of proline dehydrogenase (PDH), involved in proline catabolism, was undetectable in T. halophila shoots. The PDH enzyme activity was lower and T. halophila seedlings were hypersensitive to exogenous proline, indicating repression of proline catabolism in T. halophila. Our results suggest that differential gene expression between glycophytes and halophytes contributes to the salt tolerance of halophytes.
Collapse
Affiliation(s)
- Surya Kant
- Albert Katz Department of Dryland Biotechnologies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | | | | | | |
Collapse
|
59
|
Weltmeier F, Ehlert A, Mayer CS, Dietrich K, Wang X, Schütze K, Alonso R, Harter K, Vicente-Carbajosa J, Dröge-Laser W. Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors. EMBO J 2006; 25:3133-43. [PMID: 16810321 PMCID: PMC1500977 DOI: 10.1038/sj.emboj.7601206] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 05/30/2006] [Indexed: 12/28/2022] Open
Abstract
Proline metabolism has been implicated in plant responses to abiotic stresses. The Arabidopsis thaliana proline dehydrogenase (ProDH) is catalysing the first step in proline degradation. Transcriptional activation of ProDH by hypo-osmolarity is mediated by an ACTCAT cis element, a typical binding site of basic leucine zipper (bZIP) transcription factors. In this study, we demonstrate by gain-of-function and loss-of-function approaches, as well as chromatin immunoprecipitation (ChIP), that ProDH is a direct target gene of the group-S bZIP factor AtbZIP53. Dimerisation studies making use of yeast and Arabidopsis protoplast-based two-hybrid systems, as well as bimolecular fluorescence complementation (BiFC) reveal that AtbZIP53 does not preferentially form dimers with group-S bZIPs but strongly interacts with members of group-C. In particular, a synergistic interplay of AtbZIP53 and group-C AtbZIP10 was demonstrated by colocalisation studies, strong enhancement of ACTCAT-mediated transcription as well as complementation studies in atbzip53 atbzip10 T-DNA insertion lines. Heterodimer mediated activation of transcription has been found to operate independent of the DNA-binding properties and is described as a crucial mechanism to modulate transcription factor activity and function.
Collapse
Affiliation(s)
| | - Andrea Ehlert
- Albrecht-von-Haller Institut, Universität Göttingen, Göttingen, Germany
| | - Caroline S Mayer
- Albrecht-von-Haller Institut, Universität Göttingen, Göttingen, Germany
| | - Katrin Dietrich
- Albrecht-von-Haller Institut, Universität Göttingen, Göttingen, Germany
| | - Xuan Wang
- Albrecht-von-Haller Institut, Universität Göttingen, Göttingen, Germany
| | - Katia Schütze
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Tübingen, Germany
| | - Rosario Alonso
- Department of Bioquimica y Biologia Molecular, ETSI Agronomos, Universidad Politecnica, Ciudad Universitaria, Madrid, Spain
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Tübingen, Germany
| | - Jesús Vicente-Carbajosa
- Department of Bioquimica y Biologia Molecular, ETSI Agronomos, Universidad Politecnica, Ciudad Universitaria, Madrid, Spain
| | - Wolfgang Dröge-Laser
- Albrecht-von-Haller Institut, Universität Göttingen, Göttingen, Germany
- Albrecht-von-Haller Institut, University of Götiingen, Untere Karspüle 2, Göttingen 37073, Germany. Tel.: +49 (0)551 39 19816; Fax: +49 (0)551 39 7820; E-mail:
| |
Collapse
|
60
|
Carter C, Shafir S, Yehonatan L, Palmer RG, Thornburg R. A novel role for proline in plant floral nectars. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2006; 93:72-9. [PMID: 16365739 DOI: 10.1007/s00114-005-0062-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
Plants offer metabolically rich floral nectar to attract visiting pollinators. The composition of nectar includes not only sugars, but also amino acids. We have examined the amino acid content of the nectar of ornamental tobacco and found that it is extremely rich (2 mM) in proline. Because insect pollinators preferentially utilize proline during the initial phases of insect flight and can reportedly taste proline, we determined whether honeybees showed a preference for synthetic nectars rich in proline. We therefore established an insect preference test and found that honeybees indeed prefer nectars rich in the amino acid proline. To determine whether this was a general phenomenon, we also examined the nectars of two insect-pollinated wild perennial species of soybean. These species also showed high levels of proline in their nectars demonstrating that plants often produce proline-rich floral nectar. Because insects such as honeybees prefer proline-rich nectars, we hypothesize that some plants offer proline-rich nectars as a mechanism to attract visiting pollinators.
Collapse
Affiliation(s)
- Clay Carter
- Department of Biochemistry, Biophysics and Molecular Biology 2212 Molecular Biology Building, Iowa State University, Ames, IA 50010, USA
| | | | | | | | | |
Collapse
|
61
|
Simon-Sarkadi L, Kocsy G, Várhegyi A, Galiba G, de Ronde JA. Genetic manipulation of proline accumulation influences the concentrations of other amino acids in soybean subjected to simultaneous drought and heat stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:7512-7. [PMID: 16159180 DOI: 10.1021/jf050540l] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The effect of simultaneous drought and heat stress on free amino acid levels was compared in wild type and transgenic soybean (Glycine max (L.) Merr cv Ibis) plants transformed with the cDNA coding for the last enzyme of Pro biosynthesis, l-Delta(1)-pyrroline-5-carboxylate reductase (EC 1.5.1.2), in sense and antisense directions. The most rapid increase in Pro content was found in the sense transformants that exhibited the least water loss, while the slowest elevation of Pro levels was detected in the antisense transformants that exhibited the greatest water loss during stress. Correspondingly, the level of the Pro precursors Glu and Arg was higher in sense transformants and lower in antisense ones compared to the wild type plants during the initial part of the stress. Interestingly, genetic manipulation of Pro levels also affected the stress-induced changes in the concentration of several other amino acids, which indicates the coordinated regulation of their metabolic pathways.
Collapse
Affiliation(s)
- Livia Simon-Sarkadi
- Department of Biochemistry and Food Technology, Budapest University of Technology and Economics, Hungary.
| | | | | | | | | |
Collapse
|
62
|
Miller G, Stein H, Honig A, Kapulnik Y, Zilberstein A. Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation. PLANTA 2005. [PMID: 15809861 DOI: 10.1007/s00425-005-1518-1514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Free proline accumulation is an innate response of many plants to osmotic stress. To characterize transcriptional regulation of the key proline cycle enzymes in alfalfa (Medicago sativa), two proline dehydrogenase (MsPDH) genes and a partial sequence of Delta (1) -pyrroline-5-carboxylate dehydrogenase (MsP5CDH) gene were identified and cloned. The two MsPDH genes share a high nucleotide sequence homology and a similar exon/intron structure. Estimation of transcript levels during salt stress and recovery revealed that proline accumulation during stress was linearly correlated with a strong decline in MsPDH transcript levels, while Delta (1) -pyrroline-5-carboxylate synthetase (MsP5CS) and MsP5CDH steady-state transcript levels remained essentially unchanged. MsPDH transcript levels dramatically decreased in a fast, salt concentration-dependent manner. The extent of salt-induced proline accumulation also correlated with salt concentrations. Salt-induced repression of MsPDH1 promoter linked to the GUS reporter gene confirmed that the decline in MsPDH transcript levels was due to less transcription initiation. Contrary to the salt-dependent repression, a rapid induction of MsPDH transcription occurred at a very early stage of the recovery process, independently of earlier salt treatments. Hence our results suggest the existence of two different regulatory modes of MsPDH expression; the repressing mode that quantifies salt concentration in an as yet unknown mechanism and the "rehydration"-enhancing mode that responds to stress relief in a maximal induction of MsPDH transcription. As yet the components of salt sensing as well as those that might interact with MsPDH promoter to reduce transcription are still unknown.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Medicago sativa/drug effects
- Medicago sativa/enzymology
- Medicago sativa/genetics
- Medicago sativa/metabolism
- Molecular Sequence Data
- Plant Leaves/enzymology
- Plant Roots/enzymology
- Proline/metabolism
- Proline Oxidase/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sodium Chloride/pharmacology
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Gadi Miller
- Department of Plant Science, Tel Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
63
|
Miller G, Stein H, Honig A, Kapulnik Y, Zilberstein A. Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation. PLANTA 2005; 222:70-79. [PMID: 15809861 DOI: 10.1007/s00425-005-1518-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 01/24/2005] [Indexed: 05/24/2023]
Abstract
Free proline accumulation is an innate response of many plants to osmotic stress. To characterize transcriptional regulation of the key proline cycle enzymes in alfalfa (Medicago sativa), two proline dehydrogenase (MsPDH) genes and a partial sequence of Delta (1) -pyrroline-5-carboxylate dehydrogenase (MsP5CDH) gene were identified and cloned. The two MsPDH genes share a high nucleotide sequence homology and a similar exon/intron structure. Estimation of transcript levels during salt stress and recovery revealed that proline accumulation during stress was linearly correlated with a strong decline in MsPDH transcript levels, while Delta (1) -pyrroline-5-carboxylate synthetase (MsP5CS) and MsP5CDH steady-state transcript levels remained essentially unchanged. MsPDH transcript levels dramatically decreased in a fast, salt concentration-dependent manner. The extent of salt-induced proline accumulation also correlated with salt concentrations. Salt-induced repression of MsPDH1 promoter linked to the GUS reporter gene confirmed that the decline in MsPDH transcript levels was due to less transcription initiation. Contrary to the salt-dependent repression, a rapid induction of MsPDH transcription occurred at a very early stage of the recovery process, independently of earlier salt treatments. Hence our results suggest the existence of two different regulatory modes of MsPDH expression; the repressing mode that quantifies salt concentration in an as yet unknown mechanism and the "rehydration"-enhancing mode that responds to stress relief in a maximal induction of MsPDH transcription. As yet the components of salt sensing as well as those that might interact with MsPDH promoter to reduce transcription are still unknown.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Medicago sativa/drug effects
- Medicago sativa/enzymology
- Medicago sativa/genetics
- Medicago sativa/metabolism
- Molecular Sequence Data
- Plant Leaves/enzymology
- Plant Roots/enzymology
- Proline/metabolism
- Proline Oxidase/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sodium Chloride/pharmacology
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Gadi Miller
- Department of Plant Science, Tel Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
64
|
Bartels D, Sunkar R. Drought and Salt Tolerance in Plants. CRITICAL REVIEWS IN PLANT SCIENCES 2005. [PMID: 0 DOI: 10.1080/07352680590910410] [Citation(s) in RCA: 1075] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
65
|
Singh AP, Asthana RK, Kayastha AM, Singh SP. A comparison of proline, thiol levels and GAPDH activity in cyanobacteria of different origins facing temperature-stress. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-004-0872-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer WB. The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. THE PLANT CELL 2004; 16:3413-25. [PMID: 15548746 PMCID: PMC535882 DOI: 10.1105/tpc.104.023622] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 09/06/2004] [Indexed: 05/18/2023]
Abstract
In response to stress, plants accumulate Pro, requiring degradation after release from adverse conditions. Delta1-Pyrroline-5-carboxylate dehydrogenase (P5CDH), the second enzyme for Pro degradation, is encoded by a single gene expressed ubiquitously. To study the physiological function of P5CDH, T-DNA insertion mutants in AtP5CDH were isolated and characterized. Although Pro degradation was undetectable in p5cdh mutants, neither increased Pro levels nor an altered growth phenotype were observed under normal conditions. Thus AtP5CDH is essential for Pro degradation but not required for vegetative plant growth. External Pro application caused programmed cell death, with callose deposition, reactive oxygen species production, and DNA laddering, involving a salicylic acid signal transduction pathway. p5cdh mutants were hypersensitive toward Pro and other molecules producing P5C, such as Arg and Orn. Pro levels were the same in the wild type and mutants, but P5C was detectable only in p5cdh mutants, indicating that P5C accumulation may be the cause for Pro hypersensitivity. Accordingly, overexpression of AtP5CDH resulted in decreased sensitivity to externally supplied Pro. Thus, Pro and P5C/Glu semialdehyde may serve as a link between stress responses and cell death.
Collapse
Affiliation(s)
- Karen Deuschle
- Plant Physiology, Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
De Ronde JA, Cress WA, Krüger GHJ, Strasser RJ, Van Staden J. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:1211-24. [PMID: 15602813 DOI: 10.1016/j.jplph.2004.01.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The biochemical basis of heat/drought tolerance was investigated by comparing the response of antisense and sense transgenic soybean plants (containing the L-delta1-pyrroline-5-carboxylate reductase gene) with non-transgenic wild-type plants. The plants were subjected to a simultaneous drought and heat stress of 2 days, whereafter they were rewatered at 25 degrees C. During this time the sense plants only showed mild symptoms of stress compared to the antisense plants which were severely stressed. Upon stress, nicotinamide adenine dinucleotide phosphate (NADP+) levels decreased in antisense while it increased in sense plants. Recovery with respect to NADP+ levels was best in sense plants. Sense plants had the highest ability to accumulate proline during stress and to metabolise proline after rewatering. Analyses of the fast phase chlorophyll-a fluorescence transients showed dissociation of the oxygen-evolving complex (OEC) upon stress in all plants tested. In the sense plants, which best resisted the stress, OEC dissociation was bypassed by proline feeding electrons into photosystem 2 (PSII), maintaining an acceptable nicotinamide adenine dinucleotide hydrogen phosphate (NADPH) level, preventing further damage. Upon recovery, NADPH is consumed during oxidation of accumulated proline providing high Levels of NADP+ to act as electron acceptor to PSII, which indirectly may ameliorate the inhibition and/or the effect of uncoupling of the OEC.
Collapse
Affiliation(s)
- J A De Ronde
- ARC Roodeplaat Vegetable and Ornamental Plant Institute, Private bag X293, Pretoria 0001, South Africa.
| | | | | | | | | |
Collapse
|
68
|
Fabro G, Kovács I, Pavet V, Szabados L, Alvarez ME. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:343-50. [PMID: 15077666 DOI: 10.1094/mpmi.2004.17.4.343] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Accumulation of free L-proline (Pro) is a typical stress response incited by osmotic injuries in plants and microorganisms. Although the protective role of Pro in osmotic stress is not well understood, it is thought to function as compatible osmolyte or as a scavenger of reactive oxygen species (ROS). Here we show that, in Arabidopsis thaliana, Pro biosynthesis can be activated by incompatible plant-pathogen interactions triggering a hypersensitive response (HR). Pro accumulates in leaf tissues treated with Pseudomonas syringae pv. tomato avirulent strains (avrRpt2 and avrRpm1) but remains unchanged in leaves infected with isogenic virulent bacteria. Incompatible interactions lead to transcriptional activation of AtP5CS2, but not AtP5CS1, encoding the rate limiting enzyme in Pro biosynthesis pyrroline-5-carboxylate synthase (P5CS). AtP5CS2:GUS and AtP5CS2:LUC transgenes were induced inside and around the HR lesions produced by avirulent Pseudomonas spp. in transgenic plants. Pro accumulation was faster and stronger when stimulated by avrRpm1 than by avrRpt2, and was compromised in the low-salicylic acid plants NahG and eds5 when signaled through the RPS2-dependent pathway. In addition, Pro content and AtP5CS2 expression were enhanced by ROS in wild-type plants, suggesting that ROS may function as an intermediate signal in AtP5CS2-mediated Pro accumulation.
Collapse
Affiliation(s)
- Georgina Fabro
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
69
|
Armengaud P, Thiery L, Buhot N, Grenier-De March G, Savouré A. Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. PHYSIOLOGIA PLANTARUM 2004; 120:442-450. [PMID: 15032841 DOI: 10.1111/j.0031-9317.2004.00251.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The model legume plant Medicago truncatula accumulates free proline in response to hyperosmotic stress as do many other organisms. In order to analyse the transcriptional regulation of proline biosynthesis in M. truncatula, three cDNAs encoding Delta(1)-pyrroline-5-carboxylate synthetase (P5CS1, P5CS2; EC not assigned) and ornithine delta-aminotransferase (OAT; EC 2.6.1.13) were isolated. The cDNAs shared high homologies with the other plant sequences and genomic organization analysis indicated the presence of two P5CS and two putative OAT genes. The two P5CS genes showed differing transcript level regulation according to organs and in response to osmotic stress. MtP5CS1 steady-state transcript levels in the different plant organs were correlated with proline levels but transcript abundance was unaffected by osmotic stresses. MtP5CS2 transcripts were poorly detected in all organs but were strongly accumulated in shoots of salt-stressed plants. We suggest a specific of MtP5CS1 and MtP5CS2 as a housekeeping product and as a stress specific isoform, respectively. MtOAT transcripts were predominantly detected in roots and shoots of unstressed plants. Salt-stress treatment induced the accumulation of MtOAT transcripts in the whole plant whatever the developmental stage. In salt-stressed roots, a positive correlation was found between proline and MtOAT transcript accumulation. These results suggest that both ornithine and glutamate biosynthesis pathways contribute to the osmotic stress-induced proline accumulation in M. truncatula.
Collapse
Affiliation(s)
- Patrick Armengaud
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens cedex, France
| | | | | | | | | |
Collapse
|
70
|
Satoh R, Fujita Y, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K. A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. PLANT & CELL PHYSIOLOGY 2004; 45:309-17. [PMID: 15047879 DOI: 10.1093/pcp/pch036] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A 6-bp sequence, ACTCAT, acts as a cis-acting element involved in hypoosmolarity- and proline-responsive expression of an Arabidopsis proline dehydrogenase (ProDH) gene. Search of the database for plant cis-acting elements revealed that the ACTCAT sequence is similar to the GCN4 motif [ATGA(C/G)TCAT] that is recognized by bZIP transcription factors. To identify transcription factor(s) for regulation of ProDH, we examined whether Arabidopsis bZIPs function as transcription factors for the ACTCAT sequence. Transient expression analysis revealed that the four proteins in Group S bZIPs, AtbZIP11/ATB2, AtbZIP44, AtbZIP2/GBF5 and AtbZIP53, formed an ATB2 subgroup that activated expression of the GUS reporter gene driven by the ACTCAT sequence while other bZIPs and different families of plant transcription factors did not. The transactivation activity of the ATB2 subgroup was enhanced in a hypoosmotic condition. In a gel mobility shift assay, the recombinant proteins of the ATB2 subgroup specifically bound to the ACTCAT sequence. RNA gel blot analysis indicated that the expression of AtbZIP2/GBF5 and AtbZIP53, as well as that of ProDH, is induced by hypoosmolarity. Moreover, we showed that the sGFP::AtbZIP11/ATB2 fusion protein is localized in the nucleus. These results suggest that the ATB2 subgroup functions as a transcriptional activator for hypoosmolarity-inducible ProDH in Arabidopsis:
Collapse
Affiliation(s)
- Rie Satoh
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686 Japan
| | | | | | | | | |
Collapse
|
71
|
Thiery L, Leprince AS, Lefebvre D, Ghars MA, Debarbieux E, Savouré A. Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. J Biol Chem 2004; 279:14812-8. [PMID: 14742440 DOI: 10.1074/jbc.m308456200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulation of proline has been observed in a large number of plant species in response to drought and salt stresses, suggesting a key role of this amino acid in plant stress adaptation. Upstream components of the proline biosynthesis signal transduction pathways are still poorly defined. We provide experimental evidence that phospholipase D (PLD) is involved in the regulation of proline metabolism in Arabidopsis thaliana. The application of primary butyl alcohols, which divert part of PLD-derived phosphatidic acid by transphosphatidylation, stimulated proline biosynthesis even without hyperosmotic constraints. Moreover, application of primary butyl alcohols enhanced the proline responsiveness of seedlings to mild hyperosmotic stress. These data indicate that some PLDs are negative regulators of proline biosynthesis and that plants present a higher proline responsiveness to hyperosmotic stress when this regulator is abolished. We clearly demonstrate that PLD signaling for proline biosynthesis is similar to RD29A gene expression and different from the abscisic acid-dependent RAB18 gene expression. Our data reveal that PLDs play positive and negative roles in hyperosmotic stress signal transduction in plants, contributing to a precise regulation of ion homeostasis and plant salt tolerance.
Collapse
Affiliation(s)
- Laurent Thiery
- Unité de "Physiologie Cellulaire et Moléculaire des Plantes," UMR 7632 CNRS, Université Pierre & Marie Curie, Case 156, 4 place Jussieu, 75252 Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
72
|
Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K. Toxicity of free proline revealed in an arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. PLANT & CELL PHYSIOLOGY 2003; 44:541-8. [PMID: 12773641 DOI: 10.1093/pcp/pcg066] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The toxicity of proline (Pro) to plant growth has raised questions despite its protective functions in response to environmental stresses. To evaluate Pro toxicity, we isolated an Arabidopsis T-DNA-tagged mutant, pdh, that had a defect in Pro dehydrogenase (AtProDH), which catalyzes the first step of Pro catabolism. The pdh mutant showed hypersensitivity to exogenous application of < or =10 mM L-Pro, at which wild-type plants grew normally. A dose-dependent increase in internal free Pro accumulation was observed in pdh plants during external Pro supply. These results do not just prove the toxicity of Pro, but also suggest that AtProDH is the only enzyme acting as a functional ProDH in Arabidopsis: To further analyze the targets of Pro toxicity, we compared the expression of thousands of genes by pdh plants with that by wild-type plants by cDNA microarray analysis. Most genes were unaffected. Here we demonstrate Pro toxicity by using the pdh mutant and discuss a cause-and-effect action between an excess of free Pro and growth inhibition in Arabidopsis.
Collapse
Affiliation(s)
- Tokihiko Nanjo
- Laboratory of Plant Molecular Biology, RIKEN Tsukuba Institute, 3-1-1, Koyadai, Tsukuba, Ibaraki, 305-0074 Japan
| | | | | | | | | | | |
Collapse
|
73
|
Satoh R, Nakashima K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. PLANT PHYSIOLOGY 2002; 130:709-19. [PMID: 12376638 PMCID: PMC166600 DOI: 10.1104/pp.009993] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2002] [Accepted: 06/13/2002] [Indexed: 05/18/2023]
Abstract
Proline (Pro) is one of the most widely distributed osmolytes in water-stressed plants. We previously isolated from Arabidopsis a gene encoding Pro dehydrogenase (ProDH), a mitochondrial enzyme involved in the first step of the conversion of Pro to glutamic acid. The ProDH gene in Arabidopsis is up-regulated by rehydration after dehydration but is down-regulated by dehydration. ProDH is also induced by L-Pro and hypoosmolarity. The induction of ProDH expression under rehydration seems to be caused by both accumulated Pro and hypoosmolarity. We analyzed a DNA region that is located 5' to the transcription start site (a promoter region) of ProDH to identify cis-acting elements involved in L-Pro-induced and hypoosmolarity-induced expression in transgenic tobacco (Nicotiana tabacum) and Arabidopsis plants. We found that a 9-bp sequence, ACTCATCCT, in the ProDH promoter is necessary for the efficient expression of ProDH in response to L-Pro and hypoosmolarity. Moreover, ACTCAT is a core cis-acting element, which we have called Pro- or hypoosmolarity-responsive element (PRE), that is necessary for L-Pro-responsive and hypoosmolarity-responsive expression of ProDH. Microarray and RNA gel-blot analyses showed that 21 L-Pro-inducible genes have the PRE sequences in their promoter regions. These results indicate that the PRE sequence play an important role in the L-Pro-responsive gene expression.
Collapse
Affiliation(s)
- Rie Satoh
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | | | | | | | | |
Collapse
|
74
|
RAYMOND MARJORIEJ, SMIRNOFF NICHOLAS. Proline metabolism and transport in maize seedlings at low water potential. ANNALS OF BOTANY 2002; 89 Spec No:813-23. [PMID: 12102507 PMCID: PMC4233804 DOI: 10.1093/aob/mcf082] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The growing zone of maize seedling primary roots accumulates proline at low water potential. Endosperm removal and excision of root tips rapidly decreased the proline pool and greatly reduced proline accumulation in root tips at low water potential. Proline accumulation was not restored by exogenous amino acids. Labelling root lips with [14C]glutamate and [14C]proline showed that the rate of proline utilization (oxidation and protein synthesis) exceeded the rate of biosynthesis by five-fold at high and low water potentials. This explains the reduction in the proline pool following root and endosperm excision and the inability to accumulate proline at low water potential. The endosperm is therefore the source of the proline that accumulates in the root tips of intact seedlings. Proline constituted 10% of the amino acids released from the endosperm. [14C]Proline was transported from the scutellum to other parts of the seedling and reached the highest concentration in the root tip. Less [14C]proline was transported at low water potential but because of the lower rate of protein synthesis and oxidation, more accumulated as proline in the root tip. Despite the low biosynthesis capacity of the roots, the extent of proline accumulation in relation to water potential is precisely controlled by transport and utilization rate.
Collapse
Affiliation(s)
- MARJORIE J. RAYMOND
- School of Biological Sciences, University of Exeter, Washington Singer Laboratories, Perry Road, Exeter EX4 4QG, UK
| | | |
Collapse
|
75
|
Shabala SN, Lew RR. Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. PLANT PHYSIOLOGY 2002; 129:290-9. [PMID: 12011359 PMCID: PMC155892 DOI: 10.1104/pp.020005] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2002] [Accepted: 01/14/2002] [Indexed: 05/05/2023]
Abstract
Hyperosmotic stress is known to significantly enhance net uptake of inorganic ions into plant cells. Direct evidence for cell turgor recovery via such a mechanism, however, is still lacking. In the present study, we performed concurrent measurements of net ion fluxes (with the noninvasive microelectrode ion flux estimation technique) and cell turgor changes (with the pressure-probe technique) to provide direct evidence that inorganic ion uptake regulates turgor in osmotically stressed Arabidopsis epidermal root cells. Immediately after onset of hyperosmotic stress (100/100 mM mannitol/sorbitol treatment), the cell turgor dropped from 0.65 to about 0.25 MPa. Turgor recovery started within 2 to 10 min after the treatment and was accompanied by a significant (30-80 nmol m-2 s-1) increase in uptake of K+, Cl-, and Na+ by root cells. In most cells, almost complete (>90% of initial values) recovery of the cell turgor was observed within 40 to 50 min after stress onset. In another set of experiments, we combined the voltage-clamp and the microelectrode ion flux estimation techniques to show that this process is, in part, mediated by voltage-gated K+ transporters at the cell plasma membrane. The possible physiological significance of these findings is discussed.
Collapse
Affiliation(s)
- Sergey N Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia
| | | |
Collapse
|
76
|
Bhatnagar P, Minocha R, Minocha SC. Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism. PLANT PHYSIOLOGY 2002. [PMID: 11950994 DOI: 10.1104/pp.010792.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We investigated the catabolism of putrescine (Put) in a non-transgenic (NT) and a transgenic cell line of poplar (Populus nigra x maximowiczii) expressing a mouse (Mus musculus) ornithine (Orn) decarboxylase (odc) cDNA. The transgenic cells produce 3- to 4-fold higher amounts of Put than the NT cells. The rate of loss of Put from the cells and the initial half-life of cellular Put were determined by feeding the cells with [U-(14)C]Orn and [1,4-(14)C]Put as precursors and following the loss of [(14)C]Put in the cells at various times after transfer to label-free medium. The amount of Put converted into spermidine as well as the loss of Put per gram fresh weight were significantly higher in the transgenic cells than the NT cells. The initial half-life of exogenously supplied [(14)C]Put was not significantly different in the two cell lines. The activity of diamine oxidase, the major enzyme involved in Put catabolism, was comparable in the two cell lines even though the Put content of the transgenic cells was severalfold higher than the NT cells. It is concluded that in poplar cells: (a) exogenously supplied Orn enters the cells and is rapidly converted into Put, (b) the rate of Put catabolism is proportional to the rate of its biosynthesis, and (c) the increased Put degradation occurs without significant changes in the activity of diamine oxidase.
Collapse
Affiliation(s)
- Pratiksha Bhatnagar
- Department of Plant Biology, University of New Hampshire, Durham, NH 03824, USA
| | | | | |
Collapse
|
77
|
Bhatnagar P, Minocha R, Minocha SC. Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism. PLANT PHYSIOLOGY 2002; 128:1455-69. [PMID: 11950994 PMCID: PMC154273 DOI: 10.1104/pp.010792] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Revised: 11/15/2001] [Accepted: 01/07/2002] [Indexed: 05/20/2023]
Abstract
We investigated the catabolism of putrescine (Put) in a non-transgenic (NT) and a transgenic cell line of poplar (Populus nigra x maximowiczii) expressing a mouse (Mus musculus) ornithine (Orn) decarboxylase (odc) cDNA. The transgenic cells produce 3- to 4-fold higher amounts of Put than the NT cells. The rate of loss of Put from the cells and the initial half-life of cellular Put were determined by feeding the cells with [U-(14)C]Orn and [1,4-(14)C]Put as precursors and following the loss of [(14)C]Put in the cells at various times after transfer to label-free medium. The amount of Put converted into spermidine as well as the loss of Put per gram fresh weight were significantly higher in the transgenic cells than the NT cells. The initial half-life of exogenously supplied [(14)C]Put was not significantly different in the two cell lines. The activity of diamine oxidase, the major enzyme involved in Put catabolism, was comparable in the two cell lines even though the Put content of the transgenic cells was severalfold higher than the NT cells. It is concluded that in poplar cells: (a) exogenously supplied Orn enters the cells and is rapidly converted into Put, (b) the rate of Put catabolism is proportional to the rate of its biosynthesis, and (c) the increased Put degradation occurs without significant changes in the activity of diamine oxidase.
Collapse
Affiliation(s)
- Pratiksha Bhatnagar
- Department of Plant Biology, University of New Hampshire, Durham, NH 03824, USA
| | | | | |
Collapse
|
78
|
Showler AT. Effects of water deficit stress, shade, weed competition, and kaolin particle film on selected foliar free amino acid accumulations in cotton, Gossypium hirsutum (L.). J Chem Ecol 2002; 28:631-51. [PMID: 11944838 DOI: 10.1023/a:1014556515489] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Leaves of cotton plants, Gossypium hirsutum L., stressed by water deficit, reduced daylight, and weed competition, or treated with a kaolin wettable powder formulation were analyzed for levels of 17 free amino acids (FAAs) using reversed-phase high-performance liquid chromatography. Water deficit stress resulted in heightened free proline levels (49.9-fold, P < 0.001) that were correlated with diffusive resistance (seconds per centimeter). Five other FAAs increased, and the amounts of total free essential (for insect growth and development) amino acids and total FAAs also increased (P < or = 0.05). Cotton grown in 50% shade accumulated significantly more free arginine than control plants. In a small-plot weed competition assay, four FAAs increased and three FAAs decreased in association with weed competition, but because free proline levels were not altered and free arginine levels increased, other stresses aside from water deficit, possibly including shading by tall weeds, appear to have caused the changes. In a small-plot kaolin particle film assay, five FAAs were lower in cotton foliage sprayed weekly with kaolin. Because free proline was unaffected and free arginine was lower, it is possible that kaolin's reflectivity heightened light reception. The responses of free proline and arginine to the treatments used in these assays demonstrate that types and degrees of some stresses to cotton can be characterized by accumulations of certain FAAs. The study also demonstrates how some FAA levels can indicate degrees of cotton stress resulting from weed competition and from kaolin particle film application. Porometry and leaf water potential measurements assisted in corroborating some findings of the study.
Collapse
Affiliation(s)
- Allan T Showler
- Kika de la Garza Subtropical Agricultural Research Center, USDA-ARS, Weslaco, Texas 78596, USA.
| |
Collapse
|
79
|
Mani S, Van De Cotte B, Van Montagu M, Verbruggen N. Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. PLANT PHYSIOLOGY 2002; 128:73-83. [PMID: 11788754 DOI: 10.1104/pp.010572] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pro dehydrogenase (PDH) catalyzes the first and rate-limiting step in the Pro catabolic pathway. In Arabidopsis, this enzyme is encoded by At-PDH. To investigate the role of Pro catabolism in plants, we generated transgenic Arabidopsis plants with altered levels of PDH by sense (PDH-S plants) and antisense (PDH-AS plants) strategies. Free Pro levels were reduced by up to 50% in PDH-S plants under stress and recovery conditions and enhanced by a maximum of 25% in PDH-AS plants, despite large modifications of the At-PDH transcript and At-PDH protein levels. A similar trend in free Pro levels was observed in the PDH-S and PDH-AS seeds without visible effects on germination or growth. Under stress conditions, PDH transgenic plants showed no signs of change in osmotolerance. However, addition of exogenous Pro increased survival rates of salt-stressed PDH-S plants by 30%. Isotope-labeling studies showed that the conversion of [14C]Pro to Glu was reduced in PDH-AS plants and increased in PDH-S plants, especially under stress conditions. Furthermore, PDH-AS plants were hypersensitive to exogenous Pro, whereas PDH-S plants were sensitive to Pro analogs. These findings demonstrate that altered At-PDH levels lead to weakly modified free Pro accumulation with a limited impact on plant development and growth, suggesting a tight control of Pro homeostasis and/or gene redundancy.
Collapse
Affiliation(s)
- Srikrishnan Mani
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | |
Collapse
|
80
|
Mani S, Van De Cotte B, Van Montagu M, Verbruggen N. Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. PLANT PHYSIOLOGY 2002; 128:73-83. [PMID: 11788754 PMCID: PMC148945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/28/2001] [Revised: 08/10/2001] [Accepted: 09/30/2001] [Indexed: 03/16/2024]
Abstract
Pro dehydrogenase (PDH) catalyzes the first and rate-limiting step in the Pro catabolic pathway. In Arabidopsis, this enzyme is encoded by At-PDH. To investigate the role of Pro catabolism in plants, we generated transgenic Arabidopsis plants with altered levels of PDH by sense (PDH-S plants) and antisense (PDH-AS plants) strategies. Free Pro levels were reduced by up to 50% in PDH-S plants under stress and recovery conditions and enhanced by a maximum of 25% in PDH-AS plants, despite large modifications of the At-PDH transcript and At-PDH protein levels. A similar trend in free Pro levels was observed in the PDH-S and PDH-AS seeds without visible effects on germination or growth. Under stress conditions, PDH transgenic plants showed no signs of change in osmotolerance. However, addition of exogenous Pro increased survival rates of salt-stressed PDH-S plants by 30%. Isotope-labeling studies showed that the conversion of [14C]Pro to Glu was reduced in PDH-AS plants and increased in PDH-S plants, especially under stress conditions. Furthermore, PDH-AS plants were hypersensitive to exogenous Pro, whereas PDH-S plants were sensitive to Pro analogs. These findings demonstrate that altered At-PDH levels lead to weakly modified free Pro accumulation with a limited impact on plant development and growth, suggesting a tight control of Pro homeostasis and/or gene redundancy.
Collapse
Affiliation(s)
- Srikrishnan Mani
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | |
Collapse
|
81
|
DUVAL BRIAN, SHETTY KAUDAS. THE STIMULATION OF PHENOLICS AND ANTIOXIDANT ACTIVITY IN PEA (PISUM SATIVUM) ELICITED BY GENETICALLY TRANSFORMED ANISE ROOT EXTRACT. J Food Biochem 2001. [DOI: 10.1111/j.1745-4514.2001.tb00746.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
82
|
Deuschle K, Funck D, Hellmann H, Däschner K, Binder S, Frommer WB. A nuclear gene encoding mitochondrial Delta-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:345-56. [PMID: 11532180 DOI: 10.1046/j.1365-313x.2001.01101.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Delta1-pyrroline-5-carboxylate (P5C), an intermediate in biosynthesis and degradation of proline (Pro), is assumed to play a role in cell death in plants and animals. Toxicity of external Pro and P5C supply to Arabidopsis suggested that P5C dehydrogenase (P5CDH; EC 1.2.1.12) plays a crucial role in this process by degrading the toxic Pro catabolism intermediate P5C. Also in a Deltaput2 yeast mutant, lacking P5CDH, Pro led to growth inhibition and formation of reactive oxygen species (ROS). Complementation of the Deltaput2 mutant allowed identification of the Arabidopsis P5CDH gene. AtP5CDH is a single-copy gene and the encoded protein was localized to the mitochondria. High homology of AtP5CDH to LuFIS1, an mRNA up-regulated during susceptible pathogen attack in flax, suggested a role for P5CDH in inhibition of hypersensitive reactions. An Arabidopsis mutant (cpr5) displaying a constitutive pathogen response was found to be hypersensitive to external Pro. In agreement with a role in prevention of cell death, AtP5CDH was expressed at a basal level in all tissues analysed. The highest expression was found in flowers that are known to contain the highest Pro levels under normal conditions. External supply of Pro induced AtP5CDH expression, but much more slowly than Pro dehydrogenase (AtProDH) expression. Uncoupled induction of the AtProDH and AtP5CDH genes further supports the hypothesis that P5C levels have to be tightly controlled. These results indicate that, in addition to the well-studied functions of Pro, for example in osmoregulation, the Pro metabolism intermediate P5C also serves as a regulator of cellular stress responses.
Collapse
Affiliation(s)
- K Deuschle
- Plant Physiology, ZMBP, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. ACTA ACUST UNITED AC 2000; 51:463-499. [PMID: 15012199 DOI: 10.1146/annurev.arplant.51.1.463] [Citation(s) in RCA: 1687] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant responses to salinity stress are reviewed with emphasis on molecular mechanisms of signal transduction and on the physiological consequences of altered gene expression that affect biochemical reactions downstream of stress sensing. We make extensive use of comparisons with model organisms, halophytic plants, and yeast, which provide a paradigm for many responses to salinity exhibited by stress-sensitive plants. Among biochemical responses, we emphasize osmolyte biosynthesis and function, water flux control, and membrane transport of ions for maintenance and re-establishment of homeostasis. The advances in understanding the effectiveness of stress responses, and distinctions between pathology and adaptive advantage, are increasingly based on transgenic plant and mutant analyses, in particular the analysis of Arabidopsis mutants defective in elements of stress signal transduction pathways. We summarize evidence for plant stress signaling systems, some of which have components analogous to those that regulate osmotic stress responses of yeast. There is evidence also of signaling cascades that are not known to exist in the unicellular eukaryote, some that presumably function in intercellular coordination or regulation of effector genes in a cell-/tissue-specific context required for tolerance of plants. A complex set of stress-responsive transcription factors is emerging. The imminent availability of genomic DNA sequences and global and cell-specific transcript expression data, combined with determinant identification based on gain- and loss-of-function molecular genetics, will provide the infrastructure for functional physiological dissection of salt tolerance determinants in an organismal context. Furthermore, protein interaction analysis and evaluation of allelism, additivity, and epistasis allow determination of ordered relationships between stress signaling components. Finally, genetic activation and suppression screens will lead inevitably to an understanding of the interrelationships of the multiple signaling systems that control stress-adaptive responses in plants.
Collapse
Affiliation(s)
- Paul M. Hasegawa
- Center for Plant Environmental Stress Physiology, 1165 Horticulture Building, Purdue University, West Lafayette, Indiana 47907-1165; e-mail: , Departments of 1 Plant Sciences and 2Biochemistry, University of Arizona, Tucson, Arizona 85721; e-mail:
| | | | | | | |
Collapse
|
84
|
Hong Z, Lakkineni K, Zhang Z, Verma DP. Removal of feedback inhibition of delta(1)-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. PLANT PHYSIOLOGY 2000; 122:1129-36. [PMID: 10759508 PMCID: PMC58947 DOI: 10.1104/pp.122.4.1129] [Citation(s) in RCA: 331] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/1999] [Accepted: 12/30/1999] [Indexed: 05/18/2023]
Abstract
The Delta(1)-pyrroline-5-carboxylate synthetase (P5CS; EC not assigned) is the rate-limiting enzyme in proline (Pro) biosynthesis in plants and is subject to feedback inhibition by Pro. It has been suggested that the feedback regulation of P5CS is lost in plants under stress conditions. We compared Pro levels in transgenic tobacco (Nicotiana tabacum) plants expressing a wild-type form of Vigna aconitifolia P5CS and a mutated form of the enzyme (P5CSF129A) whose feedback inhibition by Pro was removed by site-directed mutagenesis. Transgenic plants expressing P5CSF129A accumulated about 2-fold more Pro than the plants expressing V. aconitifolia wild-type P5CS. This difference was further increased in plants treated with 200 mM NaCl. These results demonstrated that the feedback regulation of P5CS plays a role in controlling the level of Pro in plants under both normal and stress conditions. The elevated Pro also reduced free radical levels in response to osmotic stress, as measured by malondialdehyde production, and significantly improved the ability of the transgenic seedlings to grow in medium containing up to 200 mM NaCl. These findings shed new light on the regulation of Pro biosynthesis in plants and the role of Pro in reducing oxidative stress induced by osmotic stress, in addition to its accepted role as an osmolyte.
Collapse
Affiliation(s)
- Z Hong
- Department of Molecular Genetics and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210-1002, USA
| | | | | | | |
Collapse
|
85
|
Roosens NH, Willem R, Li Y, Verbruggen I, Biesemans M, Jacobs M. Proline metabolism in the wild-type and in a salt-tolerant mutant of nicotiana plumbaginifolia studied by (13)C-nuclear magnetic resonance imaging. PLANT PHYSIOLOGY 1999; 121:1281-90. [PMID: 10594115 PMCID: PMC59495 DOI: 10.1104/pp.121.4.1281] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/1999] [Accepted: 08/18/1999] [Indexed: 05/20/2023]
Abstract
To obtain insight into the link between proline (Pro) accumulation and the increase in osmotolerance in higher plants, we investigated the biochemical basis for the NaCl tolerance of a Nicotiana plumbaginifolia mutant (RNa) that accumulates Pro. Pro biosynthesis and catabolism were investigated in both wild-type and mutant lines. (13)C-Nuclear magnetic resonance with [5-(13)C]glutamate (Glu) as the Pro precursor was used to provide insight into the mechanism of Pro accumulation via the Glu pathway. After 24 h under 200 mM NaCl stress in the presence of [5-(13)C]Glu, a significant enrichment in [5-(13)C]Pro was observed compared with non-stress conditions in both the wild type (P2) and the mutant (RNa). Moreover, under the same conditions, [5-(13)C]Pro was clearly synthesized in higher amounts in RNa than in P2. On the other hand, measurements of enzyme activities indicate that neither the biosynthesis via the ornithine pathway, nor the catabolism via the Pro oxidation pathway were affected in the RNa mutant. Finally, the regulatory effect exerted by Pro on its biosynthesis was evaluated. In P2 plantlets, exogenous Pro markedly reduced the conversion of [5-(13)C]Glu into [5-(13)C]Pro, whereas Pro feedback inhibition was not detected in the RNa plantlets. It is proposed that the origin of tolerance in the RNa mutant is due to a mutation leading to a substantial reduction of the feedback inhibition normally exerted in a wild-type (P2) plant by Pro at the level of the Delta-pyrroline-5-carboxylate synthetase enzyme.
Collapse
Affiliation(s)
- NH Roosens
- Laboratory of Plant Genetics, Institute of Molecular Biology, Free University of Brussels, Paardenstraat 65, B-1640 Sint-Genesius-Rode, Belgium
| | | | | | | | | | | |
Collapse
|
86
|
Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 1999; 461:205-10. [PMID: 10567698 DOI: 10.1016/s0014-5793(99)01451-9] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Synthesis, degradation, and transport of proline (Pro) are thought to cooperatively control its endogenous levels in higher plants in response to environmental conditions. To evaluate the function of Pro degradation in the regulation of the levels of Pro and to elucidate roles of Pro in stress tolerance, we generated antisense transgenic Arabidopsis plants with an AtProDH cDNA encoding proline dehydrogenase (ProDH), which catalyzes Pro degradation. Several transgenic lines accumulated Pro at higher levels than wild-type plants, providing evidence for a key role of ProDH in Pro degradation in Arabidopsis. These antisense transgenics were more tolerant to freezing and high salinity than wild-type plants, showing a positive correlation between Pro accumulation and stress tolerance in plants.
Collapse
Affiliation(s)
- T Nanjo
- Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1-1 Koyadai, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
87
|
Stines AP, Naylor DJ, Høj PB, van Heeswijck R. Proline accumulation in developing grapevine fruit occurs independently of changes in the levels of delta1-pyrroline-5-carboxylate synthetase mRNA or protein. PLANT PHYSIOLOGY 1999; 120:923. [PMID: 10398729 PMCID: PMC59332 DOI: 10.1104/pp.120.3.923] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/1998] [Accepted: 04/05/1999] [Indexed: 05/18/2023]
Abstract
Mature fruit of grapevine (Vitis vinifera) contains unusually high levels of free proline (Pro; up to 24 micromol or 2.8 mg/g fresh weight). Pro accumulation does not occur uniformly throughout berry development but only during the last 4 to 6 weeks of ripening when both berry growth and net protein accumulation have ceased. In contrast, the steady-state levels of both the mRNA encoding V. vinifera Delta1-pyrroline-5-carboxylate synthetase (VVP5CS), a key regulatory enzyme in Pro biosynthesis, and its protein product remain relatively uniform throughout fruit development. In addition, the steady-state protein levels of Pro dehydrogenase, the first enzyme in Pro degradation, increased throughout early fruit development but thereafter remained relatively constant. The developmental accumulation of free Pro late in grape berry ripening is thus clearly distinct from the osmotic stress-induced accumulation of Pro in plants. It is not associated with either sustained increases in steady-state levels of P5CS mRNA or protein or a decrease in steady-state levels of Pro dehydrogenase protein, suggesting that other physiological factors are important for its regulation.
Collapse
Affiliation(s)
- A P Stines
- Department of Horticulture, Viticulture, and Oenology, University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia
| | | | | | | |
Collapse
|
88
|
Lee JH, Van Montagu M, Verbruggen N. A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. Proc Natl Acad Sci U S A 1999; 96:5873-7. [PMID: 10318977 PMCID: PMC21953 DOI: 10.1073/pnas.96.10.5873] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/1999] [Indexed: 11/18/2022] Open
Abstract
Osmotic stress (drought, salt stress) is a major limiting factor for crop productivity in the world. Because cellular responses to osmotic stress are thought to be conserved in eukaryotes and because yeast is much more amenable than plants to genetic research, a functional strategy has been performed to identify limiting steps in osmotolerance of plants based on the complementation of yeast with a plant library. A new plant cDNA that encodes a functional homologue of the yeast Dbf2 kinase enhances salt, drought, cold, and heat tolerance upon overexpression in yeast as well as in transgenic plant cells.
Collapse
Affiliation(s)
- J H Lee
- Laboratorium voor Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | |
Collapse
|
89
|
Verslues PE, Sharp RE. Proline accumulation in maize (Zea mays L.) primary roots at low water potentials. II. Metabolic source of increased proline deposition in the elongation zone. PLANT PHYSIOLOGY 1999; 119:1349-60. [PMID: 10198094 PMCID: PMC32020 DOI: 10.1104/pp.119.4.1349] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/1998] [Accepted: 12/20/1998] [Indexed: 05/21/2023]
Abstract
The proline (Pro) concentration increases greatly in the growing region of maize (Zea mays L.) primary roots at low water potentials (psiw), largely as a result of an increased net rate of Pro deposition. Labeled glutamate (Glu), ornithine (Orn), or Pro was supplied specifically to the root tip of intact seedlings in solution culture at high and low psiw to assess the relative importance of Pro synthesis, catabolism, utilization, and transport in root-tip Pro deposition. Labeling with [3H]Glu indicated that Pro synthesis from Glu did not increase substantially at low psiw and accounted for only a small fraction of the Pro deposition. Labeling with [14C]Orn showed that Pro synthesis from Orn also could not be a substantial contributor to Pro deposition. Labeling with [3H]Pro indicated that neither Pro catabolism nor utilization in the root tip was decreased at low psiw. Pro catabolism occurred at least as rapidly as Pro synthesis from Glu. There was, however, an increase in Pro uptake at low psiw, which suggests increased Pro transport. Taken together, the data indicate that increased transport of Pro to the root tip serves as the source of low-psiw-induced Pro accumulation. The possible significance of Pro catabolism in sustaining root growth at low psiw is also discussed.
Collapse
Affiliation(s)
- PE Verslues
- Department of Agronomy, Plant Science Unit, 1-87 Agriculture Building, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
90
|
Thorlby G, Veale E, Butcher K, Warren G. Map positions of SFR genes in relation to other freezing-related genes of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:445-452. [PMID: 10205901 DOI: 10.1046/j.1365-313x.1999.00395.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We determined the map positions of seven SFR genes and compared them to the positions of 51 genes suspected of involvement in freezing tolerance in Arabidopsis thaliana. The SFR genes were recognized by the freezing sensitivity of mutants; the others (including 14 whose map positions we have determined) were genes whose expression is induced by low temperature, genes involved in abscisic acid (ABA) biosynthesis and perception, and genes involved in tolerance of oxidative stress. The comparison of map positions indicated a limited set of potential identities, some of which were eliminated by further mapping or by an allelism test.
Collapse
Affiliation(s)
- G Thorlby
- Department of Biochemistry, Imperial College, London, UK
| | | | | | | |
Collapse
|
91
|
Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. PLANT PHYSIOLOGY 1998; 118:1233-41. [PMID: 9847097 PMCID: PMC34739 DOI: 10.1104/pp.118.4.1233] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 08/18/1998] [Indexed: 05/18/2023]
Abstract
The cDNA clone ERD5 (early responsive to dehydration), isolated from 1-h-dehydrated Arabidopsis, encodes a precursor of proline (Pro) dehydrogenase (ProDH), which is a mitochondrial enzyme involved in the first step of the conversion of Pro to glutamic acid. The transcript of the erd5 (ProDH) gene was undetectable when plants were dehydrated, but large amounts of transcript accumulated when plants were subsequently rehydrated. Accumulation of the transcript was also observed in plants that had been incubated under hypoosmotic conditions in media that contained L- or D-Pro. We isolated a 1.4-kb DNA fragment of the putative promoter region of the ProDH gene. The beta-glucuronidase (GUS) reporter gene driven by the 1.4-kb ProDH promoter was induced not only by rehydration but also by hypoosmolarity and L- and D-Pro at significant levels in transgenic Arabidopsis plants. The promoter of the ProDH gene directs strong GUS activity in reproductive organs such as pollen and pistils and in the seeds of the transgenic plants. GUS activity was detected in vegetative tissues such as veins of leaves and root tips when the transgenic plants were exposed to hypoosmolarity and Pro solutions. GUS activity increased during germination of the transgenic plants under hypoosmolarity. The relationship between Pro metabolism and the physiological aspects of stress response and development are discussed.
Collapse
MESH Headings
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Base Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant
- Genes, Reporter
- Glucuronidase/genetics
- Molecular Sequence Data
- Osmolar Concentration
- Plants, Genetically Modified
- Proline/pharmacology
- Proline Oxidase/genetics
- Promoter Regions, Genetic
Collapse
Affiliation(s)
- K Nakashima
- Biological Resources Division, Japan International Research Center for Agricultural Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | | | | | | | | |
Collapse
|
92
|
Fujita T, Maggio A, Garcia-Rios M, Bressan RA, Csonka LN. Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Delta1-pyrroline-5-carboxylate synthetase from tomato. PLANT PHYSIOLOGY 1998; 118:661-74. [PMID: 9765552 PMCID: PMC34842 DOI: 10.1104/pp.118.2.661] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/1998] [Accepted: 07/09/1998] [Indexed: 05/20/2023]
Abstract
We isolated two tomato (Lycopersicon esculentum) cDNA clones, tomPRO1 and tomPRO2, specifying Delta1-pyrroline-5-carboxylate synthetase (P5CS), the first enzyme of proline (Pro) biosynthesis. tomPRO1 is unusual because it resembles prokaryotic polycistronic operons (M.G. García-Ríos, T. Fujita, P.C. LaRosa, R.D. Locy, J.M. Clithero, R.A. Bressan, L.N. Csonka [1997] Proc Natl Acad Sci USA 94: 8249-8254), whereas tomPRO2 encodes a full-length P5CS. We analyzed the accumulation of Pro and the tomPRO1 and tomPRO2 messages in response to NaCl stress and developmental signals. Treatment with 200 mM NaCl resulted in a >60-fold increase in Pro levels in roots and leaves. However, there was a <3-fold increase in the accumulation of the tomPRO2 message and no detectable induction in the level of the tomPRO1 message in response to NaCl stress. Although pollen contained approximately 100-fold higher levels of Pro than other plant tissues, there was no detectable increase in the level of either message in pollen. We conclude that transcriptional regulation of these genes for P5CS is probably not important for the osmotic or pollen-specific regulation of Pro synthesis in tomato. Using restriction fragment-length polymorphism mapping, we determined the locations of tomPRO1 and tomPRO2 loci in the tomato nuclear genome. Sequence comparison suggested that tomPRO1 is similar to prokaryotic P5CS loci, whereas tomPRO2 is closely related to other eukaryotic P5CS genes.
Collapse
Affiliation(s)
- T Fujita
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
93
|
Xin Z, Browse J. Eskimo1 mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci U S A 1998; 95:7799-804. [PMID: 9636231 PMCID: PMC22762 DOI: 10.1073/pnas.95.13.7799] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Temperate plants develop a greater ability to withstand freezing in response to a period of low but nonfreezing temperatures through a complex, adaptive process of cold acclimation. Very little is known about the signaling processes by which plants perceive the low temperature stimulus and transduce it into the nucleus to activate genes needed for increased freezing tolerance. To help understand the signaling processes, we have isolated mutants of Arabidopsis that are constitutively freezing-tolerant in the absence of cold acclimation. Freezing tolerance of wild-type Arabidopsis was increased from -5.5 degreesC to -12.6 degreesC by cold acclimation whereas the freezing tolerance of 26 mutant lines ranged from -6.8 degreesC to -10.6 degreesC in the absence of acclimation. Plants with mutations at the eskimo1 (esk1) locus accumulated high levels of proline, a compatible osmolyte, but did not exhibit constitutively increased expression of several cold-regulated genes involved in freezing tolerance. RNA gel blot analysis suggested that proline accumulation in esk1 plants was mediated by regulation of transcript levels of genes involved in proline synthesis and degradation. The characterization of esk1 mutants and results from other mutants suggest that distinct signaling pathways activate different aspects of cold acclimation and that activation of one pathway can result in considerable freezing tolerance without activation of other pathways.
Collapse
Affiliation(s)
- Z Xin
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | |
Collapse
|
94
|
Hare PD, Cress WA, Van Staden J. Dissecting the roles of osmolyte accumulation during stress. PLANT, CELL AND ENVIRONMENT 1998; 21:535-553. [PMID: 0 DOI: 10.1046/j.1365-3040.1998.00309.x] [Citation(s) in RCA: 497] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
95
|
Roosens NH, Thu TT, Iskandar HM, Jacobs M. Isolation of the ornithine-delta-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. PLANT PHYSIOLOGY 1998; 117:263-71. [PMID: 9576796 PMCID: PMC35011 DOI: 10.1104/pp.117.1.263] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/1997] [Accepted: 02/05/1998] [Indexed: 05/18/2023]
Abstract
To evaluate the relative importance of ornithine (Orn) as a precursor in proline (Pro) synthesis, we isolated and sequenced a cDNA encoding the Orn-delta-aminotransferase (delta-OAT) from Arabidopsis thaliana. The deduced amino acid sequence showed high homology with bacterial, yeast, mammalian, and plant sequences, and the N-terminal residues exhibited several common features with a mitochondrial transit peptide. Our results show that under both salt stress and normal conditions, delta-OAT activity and mRNA in young plantlets are slightly higher than in older plants. This appears to be related to the necessity to dispose of an easy recycling product, glutamate. Analysis of the expression of the gene revealed a close association with salt stress and Pro production. In young plantlets, free Pro content, Delta1-pyrroline-5-carboxylate synthase mRNA, delta-OAT activity, and delta-OAT mRNA were all increased by salt-stress treatment. These results suggest that for A. thaliana, the Orn pathway, together with the glutamate pathway, plays an important role in Pro accumulation during osmotic stress. Conversely, in 4-week-old A. thaliana plants, although free Pro level also increased under salt-stress conditions, the delta-OAT activity appeared to be unchanged and delta-OAT mRNA was not detectable. Delta1-pyrroline-5-carboxylate synthase mRNA was still induced at a similar level. Therefore, for the adult plants the free Pro increase seemed to be due to the activity of the enzymes of the glutamate pathway.
Collapse
Affiliation(s)
- N H Roosens
- Laboratorium voor Plantengenetica, Vrije Universiteit Brussel, Paardenstraat 65, Sint-Genesius-Rode, B-1640 Belgium.
| | | | | | | |
Collapse
|
96
|
Shinozaki K, Yamaguchi-Shinozaki K. Gene Expression and Signal Transduction in Water-Stress Response. PLANT PHYSIOLOGY 1997; 121:58-65. [PMID: 15086818 DOI: 10.1111/j.0031-9317.2004.00294.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- K. Shinozaki
- Laboratory of Plant Molecular Biology, Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1-1 Koyadai, Tsukuba, Ibaraki 305, Japan (K.S.)
| | | |
Collapse
|
97
|
Garcia AB, Engler J, Iyer S, Gerats T, Van Montagu M, Caplan AB. Effects of Osmoprotectants upon NaCl Stress in Rice. PLANT PHYSIOLOGY 1997; 115:159-169. [PMID: 12223797 PMCID: PMC158471 DOI: 10.1104/pp.115.1.159] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants accumulate a number of osmoprotective substances in response to NaCl stress, one of them being proline (Pro). While characterizing some of the changes in solute accumulation in NaCl-stressed rice (Oryza sativa L.), we identified several other potential osmoprotectants. One such substance, trehalose, begins to accumulate in small amounts in roots after 3 d. We performed a series of experiments to compare the effects of Pro and trehalose on ion accumulation to determine whether the two chemicals protect the same physiological processes. We found that Pro either has no effect or, in some cases, exasperates the effect of NaCl on growth inhibition, chlorophyll loss, and induction of a highly sensitive marker for plant stress, the osmotically regulated salT gene. By contrast, low to moderate concentrations of trehalose reduce Na+ accumulation, salT expression, and growth inhibition. Somewhat higher concentrations (10 mM) prevent NaCl-induced loss of chlorophyll in blades, preserve root integrity, and enhance growth. The results of this study indicate that during osmotic stress trehalose or carbohydrates might be more important for rice than Pro.
Collapse
Affiliation(s)
- A. B. Garcia
- Laboratorium voor Genetica, Departement Genetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium (A.B.G., J.d.A.E., T.G., M.V.M., A.B.C.)
| | | | | | | | | | | |
Collapse
|
98
|
Hua XJ, van de Cotte B, Van Montagu M, Verbruggen N. Developmental regulation of pyrroline-5-carboxylate reductase gene expression in Arabidopsis. PLANT PHYSIOLOGY 1997; 114:1215-24. [PMID: 9276946 PMCID: PMC158414 DOI: 10.1104/pp.114.4.1215] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
At-P5R, a gene encoding the last enzyme of the proline (Pro) biosynthetic pathway in Arabidopsis thaliana, is developmentally regulated. To characterize the cis elements responsible for this developmental regulation, a series of 5' deletions of the At-P5R promoter were transcriptionally fused to a beta-glucuronidase (GUS)-coding region and transformed into Arabidopsis. The complete promoter of At-P5R directs strong GUS activity in root tips, the shoot meristem, guard cells, hydathodes, pollen grains, ovules, and developing seeds, all of which contain rapidly dividing cells and/or are undergoing changes in osmotic potential. This expression pattern is consistent with the function of Pro as an energy, nitrogen, and carbon source and as an osmoticum in response to dehydration. Promoters longer than 212 base pairs (bp) showed the same expression pattern, whereas those shorter than 143 bp did not direct any detectable GUS activity in any organs. This suggests that a 69-bp promoter region located between -212 and -143 bp is necessary to establish the tissue-specific expression of At-P5R during development. The Pro content measured in different organs suggests that, in addition to transcriptional control of the biosynthetic pathway, the transport of Pro may play a role in its distribution within Arabidopsis. Several aspects of the relationship between Pro metabolism and plant physiology are discussed.
Collapse
Affiliation(s)
- X J Hua
- Department of Genetics, Flanders Interuniversity Institute for Biotechnology, Universiteit Gent, Belgium
| | | | | | | |
Collapse
|
99
|
Forlani G, Scainelli D, Nielsen E. [delta]1-Pyrroline-5-Carboxylate Dehydrogenase from Cultured Cells of Potato (Purification and Properties). PLANT PHYSIOLOGY 1997; 113:1413-1418. [PMID: 12223682 PMCID: PMC158265 DOI: 10.1104/pp.113.4.1413] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
[delta]1-Pyrroline-5-carboxylate (P5C) dehydrogenase (EC 1.5.1.12), the second enzyme in the proline catabolic pathway and a catalyst for the oxidation of P5C to glutamate, was purified from cultured potato (Solanum tuberosum L. var Desiree) cells. Homogeneous enzyme preparations were obtained by a three-step procedure that used anion-exchange, adsorption, and substrate elution chromatography. A 1600-fold purification was achieved, with a recovery of one-third of the initial activity. The purified enzyme was characterized with respect to structural, kinetic, and biochemical properties. It appeared to be an [alpha]-4 tetramer with subunits of an apparent molecular mass of about 60 kD and had a mildly acidic isoelectric point value. Potato P5C dehydrogenase had Michaelis constant values of 0.11 and 0.46 mM for NAD+ and P5C, respectively. Although NAD+ was the preferred electron acceptor, NADP+ also yielded an unusually high rate, and thus was found to serve as a substrate. Maximal activity was observed at pH values in the 7.3 to 8.3 range, and was progressively inhibited by chloride ions, a finding that strengthens recent suggestions that hyperosmotic stress negatively modulates in vivo proline oxidation.
Collapse
Affiliation(s)
- G. Forlani
- Department of Genetics and Microbiology, University of Pavia, I-27100 Pavia, Italy
| | | | | |
Collapse
|
100
|
Abstract
A variety of plant genes are induced by drought and cold stress, and they are thought to be involved in the stress tolerance of the plant. At least five signal transduction pathways control these genes: two are dependent on abscisic acid (ABA), and the others are ABA-independent. A novel cis-acting element involved in one of the ABA-independent signal transduction pathways has been identified. In addition, a number of genes for protein kinases and transcription factors thought to be involved in the stress signal transduction cascades have been shown to be induced by environmental stresses.
Collapse
Affiliation(s)
- K Shinozaki
- Laboratory of Plant Molecular Biology, The Institute of Physical and Chemical Research (RIKEN), Tsukuba Life Science Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305, Japan.
| | | |
Collapse
|