51
|
Portulano C, Paroder-Belenitsky M, Carrasco N. The Na+/I- symporter (NIS): mechanism and medical impact. Endocr Rev 2014; 35:106-49. [PMID: 24311738 PMCID: PMC3895864 DOI: 10.1210/er.2012-1036] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/11/2013] [Indexed: 12/26/2022]
Abstract
The Na(+)/I(-) symporter (NIS) is the plasma membrane glycoprotein that mediates active I(-) transport in the thyroid and other tissues, such as salivary glands, stomach, lactating breast, and small intestine. In the thyroid, NIS-mediated I(-) uptake plays a key role as the first step in the biosynthesis of the thyroid hormones, of which iodine is an essential constituent. These hormones are crucial for the development of the central nervous system and the lungs in the fetus and the newborn and for intermediary metabolism at all ages. Since the cloning of NIS in 1996, NIS research has become a major field of inquiry, with considerable impact on many basic and translational areas. In this article, we review the most recent findings on NIS, I(-) homeostasis, and related topics and place them in historical context. Among many other issues, we discuss the current outlook on iodide deficiency disorders, the present stage of understanding of the structure/function properties of NIS, information gleaned from the characterization of I(-) transport deficiency-causing NIS mutations, insights derived from the newly reported crystal structures of prokaryotic transporters and 3-dimensional homology modeling, and the novel discovery that NIS transports different substrates with different stoichiometries. A review of NIS regulatory mechanisms is provided, including a newly discovered one involving a K(+) channel that is required for NIS function in the thyroid. We also cover current and potential clinical applications of NIS, such as its central role in the treatment of thyroid cancer, its promising use as a reporter gene in imaging and diagnostic procedures, and the latest studies on NIS gene transfer aimed at extending radioiodide treatment to extrathyroidal cancers, including those involving specially engineered NIS molecules.
Collapse
Affiliation(s)
- Carla Portulano
- Department of Molecular and Cellular Physiology (C.P., N.C.), Yale University School of Medicine, New Haven, Connecticut 06510; and Department of Molecular Pharmacology (M.P.-B.), Albert Einstein College of Medicine, Bronx, New York 10469
| | | | | |
Collapse
|
52
|
Darrouzet E, Lindenthal S, Marcellin D, Pellequer JL, Pourcher T. The sodium/iodide symporter: state of the art of its molecular characterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:244-53. [PMID: 23988430 DOI: 10.1016/j.bbamem.2013.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/05/2013] [Accepted: 08/19/2013] [Indexed: 12/30/2022]
Abstract
The sodium/iodide symporter (NIS or SLC5A5) is an intrinsic membrane protein implicated in iodide uptake into thyroid follicular cells. It plays a crucial role in iodine metabolism and thyroid regulation and its function is widely exploited in the diagnosis and treatment of benign and malignant thyroid diseases. A great effort is currently being made to develop a NIS-based gene therapy also allowing the radiotreatment of nonthyroidal tumors. NIS is also expressed in other tissues, such as salivary gland, stomach and mammary gland during lactation, where its physiological role remains unclear. The molecular identity of the thyroid iodide transporter was elucidated approximately fifteen years ago. It belongs to the superfamily of sodium/solute symporters, SSS (and to the human transporter family, SLC5), and is composed of 13 transmembrane helices and 643 amino acid residues in humans. Knowledge concerning NIS structure/function relationship has been obtained by taking advantage of the high resolution structure of one member of the SSS family, the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT), and from studies of gene mutations leading to congenital iodine transport defects (ITD). This review will summarize current knowledge regarding the molecular characterization of NIS.
Collapse
Affiliation(s)
- Elisabeth Darrouzet
- SBTN, bât 170, centre de Marcoule, BP 17171, 30207 Bagnols sur Cèze CEDEX, France; Laboratoire TIRO, Faculté de médecine, Université de Nice Sophia-Antipolis, 28 Avenue de Valombrose, 06107 Nice CEDEX, France; CAL, TIRO, F-06107 Nice, France.
| | | | | | | | | |
Collapse
|
53
|
Wei W, Wang Y, Dong J, Wang Y, Min H, Song B, Shan Z, Teng W, Xi Q, Chen J. Hypothyroxinemia induced by mild iodine deficiency deregulats thyroid proteins during gestation and lactation in dams. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3233-45. [PMID: 23917811 PMCID: PMC3774435 DOI: 10.3390/ijerph10083233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 11/17/2022]
Abstract
The main object of the present study was to explore the effect on thyroidal proteins following mild iodine deficiency (ID)-induced maternal hypothyroxinemia during pregnancy and lactation. In the present study, we established a maternal hypothyroxinemia model in female Wistar rats by using a mild ID diet. Maternal thyroid iodine content and thyroid weight were measured. Expressions of thyroid-associated proteins were analyzed. The results showed that the mild ID diet increased thyroid weight, decreased thyroid iodine content and increased expressions of thyroid transcription factor 1, paired box gene 8 and Na+/I- symporter on gestational day (GD) 19 and postpartum days (PN) 21 in the maternal thyroid. Moreover, the up-regulated expressions of type 1 iodothyronine deiodinase (DIO1) and type 2 iodothyronine deiodinase (DIO2) were detected in the mild ID group on GD19 and PN21. Taken together, our data indicates that during pregnancy and lactation, a maternal mild ID could induce hypothyroxinemia and increase the thyroidal DIO1 and DIO2 levels.
Collapse
Affiliation(s)
- Wei Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
- Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Z.S.); (W.T.)
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
- Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Z.S.); (W.T.)
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
- Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Z.S.); (W.T.)
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
| | - Hui Min
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
| | - Binbin Song
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
| | - Zhongyan Shan
- Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Z.S.); (W.T.)
| | - Weiping Teng
- Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Z.S.); (W.T.)
| | - Qi Xi
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
- Department of Physiology, the University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: (W.W.); (Y.W.); (J.D.); (Y.W.); (H.M.); (B.S.); (Q.X.)
- Liaoning Provincial Key Laboratory of Endocrine Diseases, the First Hospital of China Medical University, Shenyang 110001, China; E-Mails: (Z.S.); (W.T.)
| |
Collapse
|
54
|
Tran L, Hammuda M, Wood C, Xiao CW. Soy extracts suppressed iodine uptake and stimulated the production of autoimmunogen in rat thyrocytes. Exp Biol Med (Maywood) 2013; 238:623-30. [PMID: 23918874 DOI: 10.1177/1535370213489488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Soy consumption is associated with thyroid disorders such as hypothyroidism, goiter, and autoimmune thyroid disease (ATD) as well as increased iodine requirement in certain cases. However, the anti-thyroid component(s) in soy are yet to be identified and the molecular mechanism(s) involved remain unclear. This study examined the effects of soy isoflavones (ISF) on iodide uptake and expression of thyroglobulin (Tg) and sodium/iodide symporter (NIS) in thyrocytes. Fischer rat thyroid cells (FRTL) were treated with Novasoy (a soy alcohol extract containing 30% ISF) or major ISF aglycones or glycosides for 24 h. Iodide uptake was measured by a colorimetric assay. The protein level of Tg and NIS was measured by Western blotting. Cytotoxicity of tested compounds was determined by the MTT cell proliferation assay. Iodide uptake in FRTL cells was dose-dependently suppressed by Novasoy added into the cell culture (10, 25, or 50 µg/mL, P < 0.05). However, neither the major ISF aglycones nor glycosides alone or in combination had similar effects. Novasoy (up to 200 µg/mL) had no cytotoxic effect. Novasoy (1, 10, and 50 µg/mL) and genistein (1 and 10 µM) markedly increased the protein content of a 40 kDa Tg fragment (P40, a known autoimmunogen) and non-glycosylated NIS in the FRTL cells (P < 0.05). Overall, this study demonstrated that the alcohol soluble component(s) other than the major ISF in soy remarkably inhibited iodide uptake in the FRTL cells. Soy ISF, particularly genistein, induced the production of P40, which might be responsible for the higher incidence of ATD reported in soy infant formula-fed children.
Collapse
Affiliation(s)
- Lisa Tran
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | | | | | | |
Collapse
|
55
|
Paroder V, Nicola JP, Ginter CS, Carrasco N. The iodide-transport-defect-causing mutation R124H: a δ-amino group at position 124 is critical for maturation and trafficking of the Na+/I- symporter. J Cell Sci 2013; 126:3305-13. [PMID: 23690546 DOI: 10.1242/jcs.120246] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Na(+)/I(-) symporter (NIS)-mediated active accumulation of I(-) in thyrocytes is a key step in the biosynthesis of the iodine-containing thyroid hormones T3 and T4. Several NIS mutants have been identified as a cause of congenital I(-) transport defect (ITD), and their investigation has yielded valuable mechanistic information on NIS. Here we report novel findings derived from the thorough characterization of the ITD-causing mutation R124H, located in the second intracellular loop (IL-2). R124H NIS is incompletely glycosylated and colocalizes with endoplasmic reticulum (ER)-resident protein markers. As a result, R124H NIS is not targeted to the plasma membrane and therefore does not mediate any I(-) transport in transfected COS-7 cells. Strikingly, however, the mutant is intrinsically active, as revealed by its ability to mediate I(-) transport in membrane vesicles. Of all the amino acid substitutions we carried out at position 124 (K, D, E, A, W, N and Q), only Gln restored targeting of NIS to the plasma membrane and NIS activity, suggesting a key structural role for the δ-amino group of R124 in the transporter's maturation and cell surface targeting. Using our NIS homology model based on the structure of the Vibrio parahaemolyticus Na(+)/galactose symporter, we propose an interaction between the δ-amino group of either R or Q124 and the thiol group of C440, located in IL-6. We conclude that the interaction between IL-2 and IL-6 is critical for the local folding required for NIS maturation and plasma membrane trafficking.
Collapse
Affiliation(s)
- Viktoriya Paroder
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
56
|
Li W, Nicola JP, Amzel LM, Carrasco N. Asn441 plays a key role in folding and function of the Na+/I- symporter (NIS). FASEB J 2013; 27:3229-38. [PMID: 23650190 DOI: 10.1096/fj.13-229138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Na(+)/I(-) symporter (NIS) is a plasma membrane glycoprotein that mediates active I(-) transport in the thyroid, the first step in the biosynthesis of the iodine-containing thyroid hormones T3 and T4. Several NIS mutants have been identified as a cause of congenital I(-) transport defect (ITD), and their investigation has yielded valuable mechanistic information on NIS. Here we report a thorough characterization of the ITD-causing NIS mutation in which the sixth intracellular loop residues 439-443 are missing. This mutant protein was intracellularly retained, incompletely glycosylated, and intrinsically inactive. Engineering 5 Ala at positions 439-443 partially recovered cell surface targeting and activity (∼15%). Strikingly, NIS with the sequence 439-AANAA-443, in which Asn was restored at position 441, was targeted to the plasma membrane and exhibited ∼95% the transport activity of WT NIS. Based on our NIS homology model, we propose that the side chain of N441, a residue conserved throughout most of the SLC5 family, interacts with the main chain amino group of G444, capping the α-helix of transmembrane segment XII and thus stabilizing the structure of the molecule. Our data provide insight into a critical interhelical interaction required for NIS folding and activity.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | |
Collapse
|
57
|
Ringseis R, Rauer C, Rothe S, Gessner DK, Schütz LM, Luci S, Wen G, Eder K. Sterol regulatory element-binding proteins are regulators of the NIS gene in thyroid cells. Mol Endocrinol 2013; 27:781-800. [PMID: 23542164 DOI: 10.1210/me.2012-1269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The uptake of iodide into the thyroid, an essential step in thyroid hormone synthesis, is an active process mediated by the sodium-iodide symporter (NIS). Despite its strong dependence on TSH, the master regulator of the thyroid, the NIS gene was also reported to be regulated by non-TSH signaling pathways. In the present study we provide evidence that the rat NIS gene is subject to regulation by sterol regulatory element-binding proteins (SREBPs), which were initially identified as master transcriptional regulators of lipid biosynthesis and uptake. Studies in FRTL-5 thyrocytes revealed that TSH stimulates expression and maturation of SREBPs and expression of classical SREBP target genes involved in lipid biosynthesis and uptake. Almost identical effects were observed when the cAMP agonist forskolin was used instead of TSH. In TSH receptor-deficient mice, in which TSH/cAMP-dependent gene regulation is blocked, the expression of SREBP isoforms in the thyroid was markedly reduced when compared with wild-type mice. Sterol-mediated inhibition of SREBP maturation and/or RNA interference-mediated knockdown of SREBPs reduced expression of NIS and NIS-specific iodide uptake in FRTL-5 cells. Conversely, overexpression of active SREBPs caused a strong activation of the 5'-flanking region of the rat NIS gene mediated by binding to a functional SREBP binding site located in the 5'-untranslated region of the rat NIS gene. These findings show that TSH acts as a regulator of SREBP expression and maturation in thyroid epithelial cells and that SREBPs are novel transcriptional regulators of NIS.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Wege N, Schutkowski A, König B, Brandsch C, Weiwad M, Stangl GI. PPARα modulates the TSH β-subunit mRNA expression in thyrotrope TαT1 cells and in a mouse model. Mol Nutr Food Res 2012; 57:376-89. [PMID: 23255496 DOI: 10.1002/mnfr.201200409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/23/2012] [Accepted: 10/30/2012] [Indexed: 11/07/2022]
Abstract
SCOPE Fasting leads to a significant downregulation of the hypothalamus-pituitary-thyroid axis, and peroxisome proliferator-activated receptor (PPAR) α is a key transcription factor in mediating a magnitude of adaptive responses to fasting. In this study, we examined the role of PPARα in regulation of the hypothalamus-pituitary-thyroid axis. METHODS AND RESULTS Thyroid-stimulating hormone β-subunit (TSHβ) mRNA abundance was being reduced in response to treatment of TαT1 cells with PPARα agonists (p < 0.05), indicating an inhibitory transcriptional regulation of TSHβ by PPARα. As expected, fasting significantly downregulated TSHβ mRNA expression in a two-factorial study with fed or fasted wild-type (WT) and PPARα knockout mice (p < 0.05). In contrast to the in vitro data, fasted PPARα knockout mice revealed lower mRNA concentrations of pituitary TSHβ (-64%) and TSH-regulated thyroid genes, and lower plasma concentrations of thyroxine (T4, -25%), triiodothyronine (T3, -25%), free T4 (-60%), and free T3 (-35%) than fasted WT mice (p < 0.05). Those differences were not observed in fed mice. CONCLUSIONS Data from thyrotrope cells revealed that PPARα could contribute to the fasting-associated downregulation of the TSHβ mRNA expression. In a mouse model, fasting led to a significant reduction in TSHβ mRNA level, but unexpectedly this effect was stronger in mice lacking PPARα than in WT mice.
Collapse
Affiliation(s)
- Nicole Wege
- Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
59
|
Kucharska AM, Czarnocka B, Demkow U. Anti-natrium/iodide symporter antibodies and other anti-thyroid antibodies in children with Turner's syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 756:131-8. [PMID: 22836628 DOI: 10.1007/978-94-007-4549-0_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antibodies against the Na/I symporter (anti-NIS ab) have been found in adult patients with autoimmune thyroid diseases. As easily available for the immune system, NIS can play a role in the initial stage of autoimmune thyroid diseases. Children with Turner's syndrome (TS) being at high risk of autoimmune thyroid disease development seem a valuable group for the investigation of the early autoimmune process. The aim of the study was to investigate the presence of anti-NIS ab and its potential clinical significance in TS children. Fifty four girls with TS were examined (age 11.9 ± 2.46 years), and 23 healthy girls with normal thyroid function, free of autoimmune diseases. Anti-NIS antibodies were measured by the in-house ELISA method and the Western blotting. Sera considered positive for anti-NIS ab were used for the iodide uptake bioassay using COS7 cells stably transfected with hNIS. In all patients the thyroid function, antithyroid antibodies presence and thyroid ultrasonography were evaluated. In 20% of the patients a subclinical hypothyroidism was diagnosed and 70.4% had antithyroid antibodies (anti-TPO - 64.8% and Anti-Tg - 24%). Anti-NISab were present in 14.8% girls with TS and in none of the control group. Their presence was unrelated to other antithyroid antibodies titre or patients' age. A positive correlation between the anti-NIS ab presence and the hypothyroidism was found (p < 0.04). Anti-NIS ab-positive sera did not suppress iodine uptake. In conclusion, anti-NIS antibodies were present in 14.8% of children with TS and they were related to the presence of hypothyroidism.
Collapse
Affiliation(s)
- Anna M Kucharska
- Department of Paediatrics and Endocrinology, Medical University of Warsaw, Warsaw, Poland.
| | | | | |
Collapse
|
60
|
Chung S, Liao XH, Di Cosmo C, Van Sande J, Wang Z, Refetoff S, Civelli O. Disruption of the melanin-concentrating hormone receptor 1 (MCH1R) affects thyroid function. Endocrinology 2012; 153:6145-54. [PMID: 23024261 PMCID: PMC3512057 DOI: 10.1210/en.2011-1435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melanin-concentrating hormone (MCH) is a peptide produced in the hypothalamus and the zona incerta that acts on one receptor, MCH receptor 1 (MCH1R), in rodents. The MCH system has been implicated in the regulation of several centrally directed physiological responses, including the hypothalamus-pituitary-thyroid axis. Yet a possible direct effect of the MCH system on thyroid function has not been explored in detail. We now show that MCH1R mRNA is expressed in thyroid follicular cells and that mice lacking MCH1R [MCH1R-knockout (KO)] exhibit reduced circulating iodothyronine (T(4), free T(4), T(3), and rT(3)) levels and high TRH and TSH when compared with wild-type (WT) mice. Because the TSH of MCH1R-KO mice displays a normal bioactivity, we hypothesize that their hypothyroidism may be caused by defective thyroid function. Yet expression levels of the genes important for thyroid hormones synthesis or secretion are not different between the MCH1R-KO and WT mice. However, the average thyroid follicle size of the MCH1R-KO mice is larger than that of WT mice and contained more free and total T(4) and T(3) than the WT glands, suggesting that they are sequestered in the glands. Indeed, when challenged with TSH, the thyroids of MCH1R-KO mice secrete lower amounts of T(4). Similarly, secretion of iodothyronines in the plasma upon (125)I administration is significantly reduced in MCH1R-KO mice. Therefore, the absence of MCH1R affects thyroid function by disrupting thyroid hormone secretion. To our knowledge, this study is the first to link the activity of the MCH system to the thyroid function.
Collapse
Affiliation(s)
- Shinjae Chung
- Department of Pharmacology, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Nicola JP, Reyna-Neyra A, Carrasco N, Masini-Repiso AM. Dietary iodide controls its own absorption through post-transcriptional regulation of the intestinal Na+/I- symporter. J Physiol 2012; 590:6013-26. [PMID: 23006481 DOI: 10.1113/jphysiol.2012.241307] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Dietary I(-) absorption in the gastrointestinal tract is the first step in I(-) metabolism. Given that I(-) is an essential constituent of the thyroid hormones, its concentrating mechanism is of significant physiological importance. We recently described the expression of the Na(+)/I(-) symporter (NIS) on the apical surface of the intestinal epithelium as a central component of the I(-) absorption system and reported reduced intestinal NIS expression in response to an I(-)-rich diet in vivo. Here, we evaluated the mechanism involved in the regulation of NIS expression by I(-) itself in enterocytes. Excess I(-) reduced NIS-mediated I(-) uptake in IEC-6 cells in a dose- and time-dependent fashion, which was correlated with a reduction of NIS expression at the plasma membrane. Perchlorate, a competitive inhibitor of NIS, prevented these effects, indicating that an increase in intracellular I(-) regulates NIS. Iodide induced rapid intracellular recruitment of plasma membrane NIS molecules and NIS protein degradation. Lower NIS mRNA levels were detected in response to I(-) treatment, although no transcriptional effect was observed. Interestingly, I(-) decreased NIS mRNA stability, affecting NIS translation. Heterologous green fluorescent protein-based reporter constructs revealed a significant repressive effect of the I(-)-targeting NIS mRNA 3 untranslated region. In conclusion, excess I(-) downregulates NIS expression in enterocytes by virtue of a complex mechanism. Our data suggest that I(-) regulates intestinal NIS mRNA expression at the post-transcriptional level as part of an autoregulatory effect of I(-) on its own metabolism.
Collapse
Affiliation(s)
- Juan Pablo Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000HUA, Córdoba, Argentina
| | | | | | | |
Collapse
|
62
|
Kleiman DA, Buitrago D, Crowley MJ, Beninato T, Veach AJ, Zanzonico PB, Jin M, Fahey TJ, Zarnegar R. Thyroid stimulating hormone increases iodine uptake by thyroid cancer cells during BRAF silencing. J Surg Res 2012; 182:85-93. [PMID: 22998776 DOI: 10.1016/j.jss.2012.08.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/21/2012] [Accepted: 08/24/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND The BRAF(V600E) mutation is present in 62% of radioactive iodine-resistant thyroid tumors and is associated with downregulation of the sodium-iodide symporter (NIS) and thyroid stimulating hormone receptor (TSHr). We sought to evaluate the combined effect of BRAF inhibition and TSH supplementation on (131)I uptake of BRAF(V600E)-mutant human thyroid cancer cells. MATERIALS AND METHODS WRO cells (a BRAF(V600E)-mutant follicular-derived papillary thyroid carcinoma cell line) were transfected with small interfering RNA targeting BRAF for 72 h in a physiological TSH environment. NIS and TSHr expression were then evaluated at three levels: gene expression, protein levels, and (131)I uptake. These three main outcomes were then reassessed in TSH-depleted media and media supplemented with supratherapeutic concentrations of TSH. RESULTS NIS gene expression increased 5.5-fold 36 h after transfection (P = 0.01), and TSHr gene expression increased 2.8-fold at 24 h (P = 0.02). NIS and TSHr protein levels were similarly increased 48 and 24 h after transfection, respectively. Seventy-two hours after BRAF inhibition, (131)I uptake was unchanged in TSH-depleted media, increased by 7.5-fold (P < 0.01) in physiological TSH media, and increased by 9.1-fold (P < 0.01) in supratherapeutic TSH media. CONCLUSIONS The combined strategy of BRAF inhibition and TSH supplementation results in greater (131)I uptake than when either technique is used alone. This represents a simple and feasible approach that may improve outcomes in patients with radioactive iodine-resistant thyroid carcinomas for which current treatment algorithms are ineffective.
Collapse
Affiliation(s)
- David A Kleiman
- Division of Endocrine and Minimally Invasive Surgery, Department of Surgery, New York Presbyterian Hospital-Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Sue M, Akama T, Kawashima A, Nakamura H, Hara T, Tanigawa K, Wu H, Yoshihara A, Ishido Y, Hiroi N, Yoshino G, Kohn LD, Ishii N, Suzuki K. Propylthiouracil increases sodium/iodide symporter gene expression and iodide uptake in rat thyroid cells in the absence of TSH. Thyroid 2012; 22:844-52. [PMID: 22853729 PMCID: PMC3407387 DOI: 10.1089/thy.2011.0290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Propylthiouracil (PTU) and methimazole (MMI) are drugs that are widely used to treat Graves' disease. Although both exert an antithyroid effect primarily by blocking thyroid peroxidase activity, their molecular structure and other actions are different. We hypothesized that PTU and MMI may have differential effects on thyroid-specific gene expression and function. METHODS The effects of PTU and MMI on thyroid-specific gene expression and function were examined in rat thyroid FRTL-5 cells using DNA microarray, reverse transcriptase (RT)-polymerase chain reaction (PCR), real-time PCR, Western blot, immunohistochemistry, and radioiodine uptake studies. RESULTS DNA microarray analysis showed a marked increase in sodium/iodide symporter (NIS) gene expression after PTU treatment, whereas MMI had no effect. RT-PCR and real-time PCR analysis revealed that PTU-induced NIS mRNA levels were comparable to those elicited by thyroid-stimulating hormone (TSH). PTU increased 5'-1880-bp and 5'-1052-bp activity of the rat NIS promoter. While PTU treatment also increased NIS protein levels, the size of the induced protein was smaller than that induced by TSH, and the protein localized predominantly in the cytoplasm rather than the plasma membrane. Accumulation of (125)I in FRTL-5 cells was increased by PTU stimulation, but this effect was weaker than that produced by TSH. CONCLUSIONS We found that PTU induces NIS expression and iodide uptake in rat thyroid FRTL-5 cells in the absence of TSH. Although PTU and MMI share similar antithyroid activity, their effects on other thyroid functions appear to be quite different, which could affect their therapeutic effectiveness.
Collapse
Affiliation(s)
- Mariko Sue
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine (Omori), Toho University School of Medicine, Tokyo, Japan
| | - Takeshi Akama
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Kawashima
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hannah Nakamura
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine (Omori), Toho University School of Medicine, Tokyo, Japan
- Cell Regulation Section, Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Takeshi Hara
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazunari Tanigawa
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Huhehasi Wu
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aya Yoshihara
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine (Omori), Toho University School of Medicine, Tokyo, Japan
| | - Yuko Ishido
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Hiroi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine (Omori), Toho University School of Medicine, Tokyo, Japan
| | - Gen Yoshino
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine (Omori), Toho University School of Medicine, Tokyo, Japan
| | - Leonard D. Kohn
- Cell Regulation Section, Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
- Department of Biomedical Sciences, Edison Biotechnology Institute, College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Norihisa Ishii
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Suzuki
- Laboratory of Molecular Diagnostics, Department of Mycobacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- Cell Regulation Section, Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
64
|
Serrano-Nascimento C, Calil-Silveira J, Goulart-Silva F, Nunes MT. New insights about the posttranscriptional mechanisms triggered by iodide excess on sodium/iodide symporter (NIS) expression in PCCl3 cells. Mol Cell Endocrinol 2012; 349:154-61. [PMID: 22001309 DOI: 10.1016/j.mce.2011.09.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/06/2011] [Accepted: 09/24/2011] [Indexed: 10/17/2022]
Abstract
Iodide excess acutely downregulates NIS mRNA expression, as already demonstrated. PCCl3 cells treated or not with NaI, NaI+NaClO(4) or NaI+Methimazole, for 30 min to 24 h, were used to further explore how iodide reduces NIS gene expression. NIS mRNA expression was evaluated by Real-Time PCR; its poly(A) tail length, by RACE-PAT; its translation rate, by polysome profile; total NIS content, by Western blotting. NIS mRNA decay rate was evaluated in actinomycin-D-treated cells, incubated with or without NaI for 0-6 h. Iodide treatment caused a reduction in NIS mRNA expression, half-life, poly(A) tail length, recruitment to ribosomes, as well as NIS protein expression. Perchlorate, but not methimazole, prevented these effects. Therefore, reduced poly(A) tail length of NIS mRNA seems to be related to its decreased half-life, in addition to its translation impairment. These data provide new insights about the molecular mechanisms involved in the rapid and posttranscriptional inhibitory effect of iodide on NIS expression.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
65
|
Poole A, Saghir SA. Diiodomethyl-p-tolylsulfone: evaluation of the mode of action for reproductive toxicity. Regul Toxicol Pharmacol 2011; 62:504-12. [PMID: 22166729 DOI: 10.1016/j.yrtph.2011.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/14/2011] [Accepted: 11/28/2011] [Indexed: 11/29/2022]
Abstract
The mode of action (MOA) underpinning the reproductive toxicity of diiodomethyl-p-tolylsulfone (DIMPTS) is excess systemic iodine levels, resulting in hypothyroidism. This MOA evaluation also addresses the potential for toxicity and adverse health outcomes during critical windows of development for different tissues. The data indicate that testicular development in the neonate represents the tissue and life-stage that are most sensitive to iodine toxicity. Life-stage specific dosimetry appears to be a major determinant of this sensitivity, with the neonate being exposed to higher levels of iodine than the fetus during the period of testicular development, in particular Sertoli cell maturation and differentiation. While no reports could be found in the literature linking excess iodine exposure in humans to testicular toxicity, there is evidence that neonates born to mothers with excessive iodine intake do exhibit signs of transient hypothyroidism. Although there are major physiological and temporal differences in testicular development and Sertoli cell replication between the rat and human, it is not inconceivable that continuous long term exposures to excess iodine first from maternal milk and then in the diet through to the onset of puberty could affect testicular development. However, exposures to iodinated substances - such as DIMPTS - contribute less than 1% of the required daily iodine intake for normal fetal and neonatal development and, consequently, continuous exposure to excess iodine during the pre-pubertal period is unlikely. As exposures to DIMPTS are both very low and sporadic in nature it is not likely that they represent any risk to health at any life-stage.
Collapse
Affiliation(s)
- Alan Poole
- Toxicology and Environmental Research and Consulting, Dow Europe GmbH, Bachtobelstrasse 3, CH-8810 Horgen, Switzerland.
| | | |
Collapse
|
66
|
Mechanism of anion selectivity and stoichiometry of the Na+/I- symporter (NIS). Proc Natl Acad Sci U S A 2011; 108:17933-8. [PMID: 22011571 DOI: 10.1073/pnas.1108278108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
I(-) uptake in the thyroid, the first step in thyroid hormone biosynthesis, is mediated by the Na(+)/I(-) symporter (NIS) with an electrogenic 2Na(+):1I(-) stoichiometry. We have obtained mechanistic information on NIS by characterizing the congenital I(-) transport defect-causing NIS mutant G93R. This mutant is targeted to the plasma membrane but is inactive. Substitutions at position 93 show that the longer the side chain of the neutral residue at this position, the higher the K(m) for the anion substrates. Unlike WT NIS, which mediates symport of Na(+) and the environmental pollutant perchlorate electroneutrally, G93T/N/Q/E/D NIS, strikingly, do it electrogenically with a 21 stoichiometry. Furthermore, G93E/Q NIS discriminate between anion substrates, a discovery with potential clinical relevance. A 3D homology model of NIS based on the structure of the bacterial Na(+)/galactose transporter identifies G93 as a critical player in the mechanism of the transporter: the changes from an outwardly to an inwardly open conformation during the transport cycle use G93 as a pivot.
Collapse
|
67
|
Abstract
The trace element selenium is an essential micronutrient that is required for the biosynthesis of selenocysteine-containing selenoproteins. Most of the known selenoproteins are expressed in the thyroid gland, including some with still unknown functions. Among the well-characterized selenoproteins are the iodothyronine deiodinases, glutathione peroxidases and thioredoxin reductases, enzymes involved in thyroid hormone metabolism, regulation of redox state and protection from oxidative damage. Selenium content in selenium-sensitive tissues such as the liver, kidney or muscle and expression of nonessential selenoproteins, such as the glutathione peroxidases GPx1 and GPx3, is controlled by nutritional supply. The thyroid gland is, however, largely independent from dietary selenium intake and thyroid selenoproteins are preferentially expressed. As a consequence, no explicit effects on thyroid hormone profiles are observed in healthy individuals undergoing selenium supplementation. However, low selenium status correlates with risk of goiter and multiple nodules in European women. Some clinical studies have demonstrated that selenium-deficient patients with autoimmune thyroid disease benefit from selenium supplementation, although the data are conflicting and many parameters must still be defined. The baseline selenium status of an individual could constitute the most important parameter modifying the outcome of selenium supplementation, which might primarily disrupt self-amplifying cycles of the endocrine-immune system interface rectifying the interaction of lymphocytes with thyroid autoantigens. Selenium deficiency is likely to constitute a risk factor for a feedforward derangement of the immune system-thyroid interaction, while selenium supplementation appears to dampen the self-amplifying nature of this derailed interaction.
Collapse
Affiliation(s)
- Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-University Medicine Berlin, Südring 10, CVK, 13353 Berlin, Germany.
| |
Collapse
|
68
|
Opitz R, Maquet E, Zoenen M, Dadhich R, Costagliola S. TSH receptor function is required for normal thyroid differentiation in zebrafish. Mol Endocrinol 2011; 25:1579-99. [PMID: 21737742 DOI: 10.1210/me.2011-0046] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
TSH is the primary physiological regulator of thyroid gland function. The effects of TSH on thyroid cells are mediated via activation of its membrane receptor [TSH receptor (TSHR)]. In this study, we examined functional thyroid differentiation in zebrafish and characterized the role of TSHR signaling during thyroid organogenesis. Cloning of a cDNA encoding zebrafish Tshr showed conservation of primary structure and functional properties between zebrafish and mammalian TSHR. In situ hybridization confirmed that the thyroid is the major site of tshr expression during zebrafish development. In addition, we identified tpo, iyd, duox, and duoxa as novel thyroid differentiation markers in zebrafish. Temporal analyses of differentiation marker expression demonstrated the induction of an early thyroid differentiation program along with thyroid budding, followed by a delayed onset of duox and duoxa expression coincident with thyroid hormone synthesis. Furthermore, comparative analyses in mouse and zebrafish revealed for the first time a thyroid-enriched expression of cell death regulators of the B-cell lymphoma 2 family during early thyroid morphogenesis. Knockdown of tshr function by morpholino microinjection into embryos did not affect early thyroid morphogenesis but caused defects in later functional differentiation. The thyroid phenotype observed in tshr morphants at later stages comprised a reduction in number and size of functional follicles, down-regulation of differentiation markers, as well as reduced thyroid transcription factor expression. A comparison of our results with phenotypes observed in mouse models of defective TSHR and cAMP signaling highlights the value of zebrafish as a model to enhance the understanding of functional differentiation in the vertebrate thyroid.
Collapse
Affiliation(s)
- Robert Opitz
- Institute of Interdisciplinary Research in Molecular Human Biology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | |
Collapse
|
69
|
Nicola JP, Nazar M, Serrano-Nascimento C, Goulart-Silva F, Sobrero G, Testa G, Nunes MT, Muñoz L, Miras M, Masini-Repiso AM. Iodide transport defect: functional characterization of a novel mutation in the Na+/I- symporter 5'-untranslated region in a patient with congenital hypothyroidism. J Clin Endocrinol Metab 2011; 96:E1100-7. [PMID: 21565787 DOI: 10.1210/jc.2011-0349] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Iodide transport defect (ITD) is an autosomal recessive disorder caused by impaired Na(+)/I(-) symporter (NIS)-mediated active iodide accumulation into thyroid follicular cells. Clinical manifestations comprise a variable degree of congenital hypothyroidism and goiter, and low to absent radioiodide uptake, as determined by thyroid scintigraphy. Hereditary molecular defects in NIS have been shown to cause ITD. OBJECTIVE Our objective was to perform molecular studies on NIS in a patient with congenital hypothyroidism presenting a clinical ITD phenotype. DESIGN The genomic DNA encoding NIS was sequenced, and an in vitro functional study of a newly identified NIS mutation was performed. RESULTS The analysis revealed the presence of an undescribed homozygous C to T transition at nucleotide -54 (-54C>T) located in the 5'-untranslated region in the NIS sequence. Functional studies in vitro demonstrated that the mutation was associated with a substantial decrease in iodide uptake when transfected into Cos-7 cells. The mutation severely impaired NIS protein expression, although NIS mRNA levels remained similar to those in cells transfected with wild-type NIS, suggesting a translational deficiency elicited by the mutation. Polysome profile analysis demonstrated reduced levels of polyribosomes-associated mutant NIS mRNA, consistent with reduced translation efficiency. CONCLUSIONS We described a novel mutation in the 5'-untranslated region of the NIS gene in a newborn with congenital hypothyroidism bearing a clinical ITD phenotype. Functional evaluation of the molecular mechanism responsible for impaired NIS-mediated iodide concentration in thyroid cells indicated that the identified mutation reduces NIS translation efficiency with a subsequent decrease in protein expression and function.
Collapse
Affiliation(s)
- Juan Pablo Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, 5000 Córdoba, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Huang H, Shi Y, Lin L, Li L, Lin X, Li X, Xu D. Inhibition of thyroid-restricted genes by follicular thyroglobulin involves iodinated degree. J Cell Biochem 2011; 112:971-7. [PMID: 21308730 DOI: 10.1002/jcb.23014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Follicular thyroglobulin (TG) reflects the storage of both iodine and thyroid hormone. This is because it is a macromolecular precursor of thyroid hormone and organic iodinated compound in follicular lumen. Thus, it may have an important feedback role in thyroid function. In this study, monolayer cells were cultured and follicles were reconstituted with primary pig thyroid cells in vitro. Reconstituted follicles were treated with iodine and methimazole (MMI), a drug that blocks iodine organification and reduces the degree of TG iodination in follicular lumen. The high degree of iodinated TG in follicular lumen was observed to inhibit thyroid-restricted gene expression. To confirm this finding, monolayer thyroid cells were treated with a different degree of TG iodination at the same concentration. These iodinated TG were extracted from reconstituted follicles of different groups. In this manner, this study provides firsthand evidence suggesting that follicular TG inhibits the expressions of thyroid-restricted genes NIS, TPO, TG, and TSHr.
Collapse
Affiliation(s)
- Huibin Huang
- Division of Immunology, Second Affiliated Hospital of Fujian Medical University, Fujian Province Quanzhou, Fujian, PR China
| | | | | | | | | | | | | |
Collapse
|
71
|
Beyer S, Lakshmanan A, Liu YY, Zhang X, Wapnir I, Smolenski A, Jhiang S. KT5823 differentially modulates sodium iodide symporter expression, activity, and glycosylation between thyroid and breast cancer cells. Endocrinology 2011; 152:782-92. [PMID: 21209020 PMCID: PMC3040054 DOI: 10.1210/en.2010-0782] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Na(+)/I(-) symporter (NIS)-mediated iodide uptake into thyroid follicular cells serves as the basis of radioiodine therapy for thyroid cancer. NIS protein is also expressed in the majority of breast tumors, raising potential for radionuclide therapy of breast cancer. KT5823, a staurosporine-related protein kinase inhibitor, has been shown to increase thyroid-stimulating hormone-induced NIS expression, and thus iodide uptake, in thyroid cells. In this study, we found that KT5823 does not increase but decreases iodide uptake within 0.5 h of treatment in trans-retinoic acid and hydrocortisone-treated MCF-7 breast cancer cells. Moreover, KT5823 accumulates hypoglycosylated NIS, and this effect is much more evident in breast cancer cells than thyroid cells. The hypoglycosylated NIS is core glycosylated, has not been processed through the Golgi apparatus, but is capable of trafficking to the cell surface. KT5823 impedes complex NIS glycosylation at a regulatory point similar to brefeldin A along the N-linked glycosylation pathway, rather than targeting a specific N-glycosylated site of NIS. KT5823-mediated effects on NIS activity and glycosylation are also observed in other breast cancer cells as well as human embryonic kidney cells expressing exogenous NIS. Taken together, KT5823 will serve as a valuable pharmacological reagent to uncover mechanisms underlying differential NIS regulation between thyroid and breast cancer cells at multiple levels.
Collapse
Affiliation(s)
- Sasha Beyer
- Integrated Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Silberschmidt D, Rodriguez-Mallon A, Mithboakar P, Calì G, Amendola E, Sanges R, Zannini M, Scarfò M, De Luca P, Nitsch L, Di Lauro R, De Felice M. In vivo role of different domains and of phosphorylation in the transcription factor Nkx2-1. BMC DEVELOPMENTAL BIOLOGY 2011; 11:9. [PMID: 21345181 PMCID: PMC3055846 DOI: 10.1186/1471-213x-11-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/23/2011] [Indexed: 11/11/2022]
Abstract
BACKGROUND The transcription factor Nkx2-1 (also known as TTF-1, Titf1 or T/EBP) contains two apparently redundant activation domains and is post-translationally modified by phosphorylation. We have generated mouse mutant strains to assess the roles of the two activation domains and of phosphorylation in mouse development and differentiation. RESULTS Mouse strains expressing variants of the transcription factor Nkx2-1 deleted of either activation domain have been constructed. Phenotypic analysis shows for each mutant a distinct set of defects demonstrating that distinct portions of the protein endow diverse developmental functions of Nkx2-1. Furthermore, a mouse strain expressing a Nkx2-1 protein mutated in the phosphorylation sites shows a thyroid gland with deranged follicular organization and gene expression profile demonstrating the functional role of phosphorylation in Nkx2-1. CONCLUSIONS The pleiotropic functions of Nkx2-1 are not all due to the protein as a whole since some of them can be assigned to separate domains of the protein or to specific post-translational modifications. These results have implication for the evolutionary role of mutations in transcription factors.
Collapse
Affiliation(s)
- Daniel Silberschmidt
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Alina Rodriguez-Mallon
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | | | - Gaetano Calì
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Elena Amendola
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Remo Sanges
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Mariastella Zannini
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Via Pansini 5, 80131 Napoli, Italy
| | - Marzia Scarfò
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino (AV), Italy
| | - Pasquale De Luca
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Lucio Nitsch
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Roberto Di Lauro
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino (AV), Italy
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Mario De Felice
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino (AV), Italy
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Via Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
73
|
Di Cosmo C, Liao XH, Dumitrescu AM, Philp NJ, Weiss RE, Refetoff S. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion. J Clin Invest 2010; 120:3377-88. [PMID: 20679730 PMCID: PMC2929715 DOI: 10.1172/jci42113] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 06/16/2010] [Indexed: 11/17/2022] Open
Abstract
The mechanism of thyroid hormone (TH) secretion from the thyroid gland into blood is unknown. Humans and mice deficient in monocarboxylate transporter 8 (MCT8) have low serum thyroxine (T4) levels that cannot be fully explained by increased deiodination. Here, we have shown that Mct8 is localized at the basolateral membrane of thyrocytes and that the serum TH concentration is reduced in Mct8-KO mice early after being taken off a treatment that almost completely depleted the thyroid gland of TH. Thyroid glands in Mct8-KO mice contained more non-thyroglobulin-associated T4 and triiodothyronine than did those in wild-type mice, independent of deiodination. In addition, depletion of thyroidal TH content was slower during iodine deficiency. After administration of 125I, the rate of both its secretion from the thyroid gland and its appearance in the serum as trichloroacetic acid-precipitable radioactivity was greatly reduced in Mct8-KO mice. Similarly, the secretion of T4 induced by injection of thyrotropin was reduced in Mct8-KO in which endogenous TSH and T4 were suppressed by administration of triiodothyronine. To our knowledge, this study is the first to demonstrate that Mct8 is involved in the secretion of TH from the thyroid gland and contributes, in part, to the low serum T4 level observed in MCT8-deficient patients.
Collapse
Affiliation(s)
- Caterina Di Cosmo
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Department of Pediatrics and
Committee on Genetics, University of Chicago, Chicago, Illinois, USA
| | - Xiao-Hui Liao
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Department of Pediatrics and
Committee on Genetics, University of Chicago, Chicago, Illinois, USA
| | - Alexandra M. Dumitrescu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Department of Pediatrics and
Committee on Genetics, University of Chicago, Chicago, Illinois, USA
| | - Nancy J. Philp
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Department of Pediatrics and
Committee on Genetics, University of Chicago, Chicago, Illinois, USA
| | - Roy E. Weiss
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Department of Pediatrics and
Committee on Genetics, University of Chicago, Chicago, Illinois, USA
| | - Samuel Refetoff
- Department of Medicine, University of Chicago, Chicago, Illinois, USA.
Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Department of Pediatrics and
Committee on Genetics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
74
|
Hingorani M, Spitzweg C, Vassaux G, Newbold K, Melcher A, Pandha H, Vile R, Harrington K. The biology of the sodium iodide symporter and its potential for targeted gene delivery. Curr Cancer Drug Targets 2010; 10:242-67. [PMID: 20201784 DOI: 10.2174/156800910791054194] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 02/16/2010] [Indexed: 12/12/2022]
Abstract
The sodium iodide symporter (NIS) is responsible for thyroidal, salivary, gastric, intestinal and mammary iodide uptake. It was first cloned from the rat in 1996 and shortly thereafter from human and mouse tissue. In the intervening years, we have learned a great deal about the biology of NIS. Detailed knowledge of its genomic structure, transcriptional and post-transcriptional regulation and pharmacological modulation has underpinned the selection of NIS as an exciting approach for targeted gene delivery. A number of in vitro and in vivo studies have demonstrated the potential of using NIS gene therapy as a means of delivering highly conformal radiation doses selectively to tumours. This strategy is particularly attractive because it can be used with both diagnostic (99mTc, 125I, 124I)) and therapeutic (131I, 186Re, 188Re, 211At) radioisotopes and it lends itself to incorporation with standard treatment modalities, such as radiotherapy or chemoradiotherapy. In this article, we review the biology of NIS and discuss its development for gene therapy.
Collapse
Affiliation(s)
- Mohan Hingorani
- The Institute of Cancer Research, 237 Fulham Road, London SW36JB, UK
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Harun-Or-Rashid, Asai M, Sun XY, Hayashi Y, Sakamoto J, Murata Y. Effect of thyroid statuses on sodium/iodide symporter (NIS) gene expression in the extrathyroidal tissues in mice. Thyroid Res 2010; 3:3. [PMID: 20529371 PMCID: PMC2901223 DOI: 10.1186/1756-6614-3-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Iodide that is essential for thyroid hormone synthesis is actively transported into the thyroid follicular cells via sodium/iodide symporter (NIS) protein in vertebrates. It is well known that NIS expression in thyroid is regulated by the thyroid statuses mainly through thyroid stimulating hormone (TSH). Although NIS mRNA expressions in extrathyroidal tissues have been qualitatively reported, their regulation by thyroid statuses has not been well clarified. METHODS Male ICR mice aged four weeks were assigned into three groups (control, hypothyroid, and hyperthyroid). Hypothyroid group of mice were treated with 0.02% methimazole in drinking water and hyperthyroid group of mice received intraperitoneal injection (4 mug L-T4 twice a week) for four weeks. NIS mRNA expression levels in the tissues were evaluated using Northern blot hybridization and quantitative real-time RTPCR (qPCR). Additionally, end-point RTPCR for the thyroid follicular cell-characteristic genes (TSH receptor, TSHR; thyroid transcription factor-1, TTF1; and paired box gene 8, Pax8) was carried out. RESULTS By Northern blot analysis, NIS mRNA was detected in thyroid and stomach. In addition to these organs, qPCR revealed the expression also in the submandibular gland, colon, testis, and lung. Expression of NIS mRNA in thyroid was significantly increased in hypothyroid and decreased in hyperthyroid group. Trends of NIS mRNA expression in extrathyroidal tissues were not in line with that in the thyroid gland in different thyroid statuses. Only in lung, NIS mRNA was regulated by thyroid statuses but in opposite way compared to the manner in the thyroid gland. There were no extrathyroidal tissues that expressed all three characteristic genes of thyroid follicular cells. CONCLUSIONS NIS mRNA expression in the thyroid gland was up-regulated in hypothyroid mice and was down-regulated in hyperthyroid mice, suggesting that NIS mRNA in the thyroid gland is regulated by thyroid statuses. In contrast, NIS mRNA expression in extrathyroidal tissues was not altered by thyroid statuses although it was widely expressed. Lack of responsiveness of NIS mRNA expressions in extrathyroidal tissues reemphasizes additional functions of NIS protein in extrathyroidal tissues other than iodide trapping.
Collapse
Affiliation(s)
- Harun-Or-Rashid
- Research Institute of Environmental Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Asai
- Research Institute of Environmental Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xiao-yang Sun
- Research Institute of Environmental Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Hayashi
- Research Institute of Environmental Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junichi Sakamoto
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiharu Murata
- Research Institute of Environmental Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
76
|
Liu XH, Chen GG, Vlantis AC, van Hasselt CA. Iodine mediated mechanisms and thyroid carcinoma. Crit Rev Clin Lab Sci 2009; 46:302-18. [DOI: 10.3109/10408360903306384] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
77
|
Baratta MG, Porreca I, Di Lauro R. Oncogenic ras blocks the cAMP pathway and dedifferentiates thyroid cells via an impairment of pax8 transcriptional activity. Mol Endocrinol 2009; 23:838-48. [PMID: 19282367 DOI: 10.1210/me.2008-0353] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A deranged differentiation is often a landmark of transformed cells. We used a thyroid cell line expressing an inducible Ras oncoprotein in order to study the hierarchy of molecular events leading to suppression of thyroid-specific gene expression. We find that, upon Ras activation, there is an immediate global down-regulation of thyroid differentiation, which is associated with an inhibition of the cAMP signaling pathway. We demonstrate that an unusual negative cross talk between Ras oncogene and the cAMP pathway induces inactivation of the transcription factor Pax8 that we propose as a crucial event in Ras-induced dedifferentiation.
Collapse
|
78
|
Bizhanova A, Kopp P. Minireview: The sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology 2009; 150:1084-90. [PMID: 19196800 PMCID: PMC2654752 DOI: 10.1210/en.2008-1437] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thyroid hormones are essential for normal development and metabolism. Thyroid hormone biosynthesis requires iodide uptake into the thyrocytes and efflux into the follicular lumen, where it is organified on selected tyrosyls of thyroglobulin. Uptake of iodide into the thyrocytes is mediated by an intrinsic membrane glycoprotein, the sodium-iodide symporter (NIS), which actively cotransports two sodium cations per each iodide anion. NIS-mediated transport of iodide is driven by the electrochemical sodium gradient generated by the Na(+)/K(+)-ATPase. NIS is expressed in the thyroid, the salivary glands, gastric mucosa, and the lactating mammary gland. TSH and iodide regulate iodide accumulation by modulating NIS activity via transcriptional and posttranscriptional mechanisms. Biallelic mutations in the NIS gene lead to a congenital iodide transport defect, an autosomal recessive condition characterized by hypothyroidism, goiter, low thyroid iodide uptake, and a low saliva/plasma iodide ratio. Pendrin is an anion transporter that is predominantly expressed in the inner ear, the thyroid, and the kidney. Biallelic mutations in the SLC26A4 gene lead to Pendred syndrome, an autosomal recessive disorder characterized by sensorineural deafness, goiter, and impaired iodide organification. In thyroid follicular cells, pendrin is expressed at the apical membrane. Functional in vitro data and the impaired iodide organification observed in patients with Pendred syndrome support a role of pendrin as an apical iodide transporter.
Collapse
Affiliation(s)
- Aigerim Bizhanova
- Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
79
|
Nicola JP, Basquin C, Portulano C, Reyna-Neyra A, Paroder M, Carrasco N. The Na+/I- symporter mediates active iodide uptake in the intestine. Am J Physiol Cell Physiol 2008; 296:C654-62. [PMID: 19052257 DOI: 10.1152/ajpcell.00509.2008] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Absorption of dietary iodide, presumably in the small intestine, is the first step in iodide (I(-)) utilization. From the bloodstream, I(-) is actively taken up via the Na(+)/I(-) symporter (NIS) in the thyroid for thyroid hormone biosynthesis and in such other tissues as lactating breast, which supplies I(-) to the newborn in the milk. The molecular basis for intestinal I(-) absorption is unknown. We sought to determine whether I(-) is actively accumulated by enterocytes and, if so, whether this process is mediated by NIS and regulated by I(-) itself. NIS expression was localized exclusively at the apical surface of rat and mouse enterocytes. In vivo intestine-to-blood transport of pertechnetate, a NIS substrate, was sensitive to the NIS inhibitor perchlorate. Brush border membrane vesicles accumulated I(-) in a sodium-dependent, perchlorate-sensitive manner with kinetic parameters similar to those of thyroid cells. NIS was expressed in intestinal epithelial cell line 6, and I(-) uptake in these cells was also kinetically similar to that in thyrocytes. I(-) downregulated NIS protein expression and its own NIS-mediated transport both in vitro and in vivo. We conclude that NIS is functionally expressed on the apical surface of enterocytes, where it mediates active I(-) accumulation. Therefore, NIS is a significant and possibly central component of the I(-) absorption system in the small intestine, a system of key importance for thyroid hormone biosynthesis and thus systemic intermediary metabolism.
Collapse
Affiliation(s)
- Juan Pablo Nicola
- Dept. of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
80
|
Fort DJ, Degitz S, Tietge J, Touart LW. The Hypothalamic-Pituitary-Thyroid (HPT) Axis in Frogs and Its Role in Frog Development and Reproduction. Crit Rev Toxicol 2008; 37:117-61. [PMID: 17364707 DOI: 10.1080/10408440601123545] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Metamorphosis of the amphibian tadpole is a thyroid hormone (TH)-dependent developmental process. For this reason, the tadpole is considered to be an ideal bioassay system to identify disruption of thyroid function by environmental contaminants. Here we provide an in-depth review of the amphibian thyroid system with particular focus on the role that TH plays in metamorphosis. The amphibian thyroid system is similar to that of mammals and other tetrapods. We review the amphibian hypothalamic-pituitary-thyroid (HPT) axis, focusing on thyroid hormone synthesis, transport, and metabolism. We also discuss the molecular mechanisms of TH action, including the role of TH receptors, the actions of TH on organogenesis, and the mechanisms that underlie the pleiotropic actions of THs. Finally, we discuss methods for evaluating thyroid disruption in frogs, including potential sites of action, relevant endpoints, candidate protocols for measuring thyroid axis disruption, and current gaps in our knowledge. The utility of amphibian metamorphosis as a model for evaluating thyroid axis disruption has recently led to the development of a bioassay using Xenopus laevis.
Collapse
Affiliation(s)
- Douglas J Fort
- Fort Environmental Laboratories, Stillwater, Oklahoma 74074, USA.
| | | | | | | |
Collapse
|
81
|
Sodré AKMB, Rubio IGS, Galrão ALR, Knobel M, Tomimori EK, Alves VAF, Kanamura CT, Buchpiguel CA, Watanabe T, Friguglietti CUM, Kulcsar MAV, Medeiros-Neto G, Camargo RYA. Association of low sodium-iodide symporter messenger ribonucleic acid expression in malignant thyroid nodules with increased intracellular protein staining. J Clin Endocrinol Metab 2008; 93:4141-5. [PMID: 18628528 DOI: 10.1210/jc.2007-0353] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT The expression of sodium iodide symporter (NIS) is required for iodide uptake in thyroid cells. Benign and malignant thyroid tumors have low iodide uptake. However, previous studies by RT-PCR or immunohistochemistry have shown divergent results of NIS expression in these nodules. OBJECTIVE The objective of the study was to investigate NIS mRNA transcript levels, compare with NIS and TSH receptor proteins expression, and localize the NIS protein in thyroid nodules samples and their surrounding nonnodular tissues (controls). DESIGN NIS mRNA levels, quantified by real-time RT-PCR, and NIS and TSH receptor proteins, evaluated by immunohistochemistry, were examined in surgical specimens of 12 benign and 13 malignant nodules and control samples. RESULTS When compared with controls, 83.3% of the benign and 100% of the malignant nodules had significantly lower NIS gene expression. Conversely, 66.7% of the benign and 100% of malignant nodules had stronger intracellular NIS immunostaining than controls. Low gene expression associated with strong intracellular immunostaining was most frequently detected in malignant (100%) than benign nodules (50%; P = 0.005). NIS protein was located at the basolateral membrane in 24% of the control samples, 8.3% of the benign, and 15.4% of the malignant nodules. The percentage of benign nodules with strong TSH receptor positivity (41.6%) was higher than malignant (7.7%). CONCLUSION We confirmed that reduced NIS mRNA expression in thyroid malignant nodules is associated with strong intracellular protein staining and may be related to the inability of the NIS protein to migrate to the cellular basolateral membrane. These results may explain the low iodide uptake of malignant nodules.
Collapse
|
82
|
Carvalho DP, Ferreira ACF. The importance of sodium/iodide symporter (NIS) for thyroid cancer management. ACTA ACUST UNITED AC 2008; 51:672-82. [PMID: 17891230 DOI: 10.1590/s0004-27302007000500004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/17/2007] [Indexed: 01/02/2023]
Abstract
The thyroid gland has the ability to uptake and concentrate iodide, which is a fundamental step in thyroid hormone biosynthesis. Radioiodine has been used as a diagnostic and therapeutic tool for several years. However, the studies related to the mechanisms of iodide transport were only possible after the cloning of the gene that encodes the sodium/iodide symporter (NIS). The studies about the regulation of NIS expression and the possibility of gene therapy with the aim of transferring NIS gene to cells that normally do not express the symporter have also become possible. In the majority of hypofunctioning thyroid nodules, both benign and malignant, NIS gene expression is maintained, but NIS protein is retained in the intracellular compartment. The expression of NIS in non-thyroid tumoral cells in vivo has been possible through the transfer of NIS gene under the control of tissue-specific promoters. Apart from its therapeutic use, NIS has also been used for the localization of metastases by scintigraphy or PET-scan with 124I. In conclusion, NIS gene cloning led to an important development in the field of thyroid pathophysiology, and has also been fundamental to extend the use of radioiodine for the management of non-thyroid tumors.
Collapse
Affiliation(s)
- Denise P Carvalho
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
83
|
Unal ES, Zhao R, Qiu A, Goldman ID. N-linked glycosylation and its impact on the electrophoretic mobility and function of the human proton-coupled folate transporter (HsPCFT). BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:1407-14. [PMID: 18405659 PMCID: PMC2762823 DOI: 10.1016/j.bbamem.2008.03.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 03/07/2008] [Accepted: 03/07/2008] [Indexed: 01/26/2023]
Abstract
The human proton-coupled folate transporter (HsPCFT, SLC46A1) mediates intestinal absorption of folates and transport of folates into the liver, brain and other tissues. On Western blot, HsPCFT migrates as a broad band (~55 kDa), higher than predicted (~50 kDa) in cell lines. Western blot analysis required that membrane preparations not be incubated in the loading buffer above 50 degrees C to avoid aggregation of the protein. Treatment of membrane fractions from HsPCFT-transfected HeLa cells with peptidyl N-glycanase F, or cells with tunicamycin, resulted in conversion to a ~35 kDa species. Substitution of asparagine residues of two canonical glycosylation sites to glutamine, individually, yielded a ~47 kDa protein; substitution of both sites gave a smaller (~35 kDa) protein. Single mutants retained full transport activity; the double mutant retained a majority of activity. Transport function and molecular size were unchanged when the double mutant was hemagglutinin (HA) tagged at either the NH(2) or COOH terminus and probed with an anti-HA antibody excluding degradation of the deglycosylated protein. Wild-type or deglycosylated HsPCFT HA, tagged at amino or carboxyl termini, could only be visualized on the plasma membrane when HeLa cells were first permeabilized, consistent with the intracellular location of these domains.
Collapse
Key Words
- rfc, reduced folate carrier
- pcft, proton-coupled folate transporter
- slc, solute carrier family
- tmds, transmembrane domains
- pngasef, peptide-n4-(n-acetyl-β-d-glucosaminyl)asparagine amidase f
- endo h, endo-β-n-acetylglucosaminidase h
- mtx, methotrexate
- dtt, dithiothreitol
- sds-page, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- omim, online mendelian inheritance in man
- hcp1
- pcft/hcp1
- pcft glycosylation
- folate transport
- intestinal folate absorption
- pcft secondary structure
- hereditary folate malabsorption (hfm)
- slc46a1
Collapse
Affiliation(s)
- Ersin Selcuk Unal
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
84
|
McLanahan ED, Andersen ME, Fisher JW. A biologically based dose-response model for dietary iodide and the hypothalamic-pituitary-thyroid axis in the adult rat: evaluation of iodide deficiency. Toxicol Sci 2008; 102:241-53. [PMID: 18178547 DOI: 10.1093/toxsci/kfm312] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A biologically based dose-response (BBDR) model was developed for dietary iodide and the hypothalamic-pituitary-thyroid (HPT) axis in adult rats. This BBDR-HPT axis model includes submodels for dietary iodide, thyroid-stimulating hormone (TSH), and the thyroid hormones, T(4) and T(3). The submodels are linked together via key biological processes, including (1) the influence of T(4) on TSH production (the HPT axis negative feedback loop), (2) stimulation of thyroidal T(4) and T(3) production by TSH, (3) TSH upregulation of the thyroid sodium (Na(+))/iodide symporter, and (4) recycling of iodide from metabolism of thyroid hormones. The BBDR-HPT axis model was calibrated to predict steady-state concentrations of iodide, T(4), T(3), and TSH for the euthyroid rat whose dietary intake of iodide was 20 mug/day. Then the BBDR-HPT axis model was used to predict perturbations in the HPT axis caused by insufficient dietary iodide intake, and simulation results were compared to experimental findings. The BBDR-HPT axis model was successful in simulating perturbations in serum T(4), TSH, and thyroid iodide stores for low-iodide diets of 0.33-1.14 mug/day. Model predictions of serum T(3) concentrations were inconsistent with observations in some cases. BBDR-HPT axis model simulations show a steep dose-response relationship between dietary intake of iodide and serum T(4) and TSH when dietary iodide intake becomes insufficient (less than 2 mug/day) to sustain the HPT axis. This BBDR-HPT axis model can be linked with physiologically based pharmacokinetic models for thyroid-active chemicals to evaluate and predict dose-dependent HPT axis alterations based on hypothesized modes of action. To support continued development of this model, future studies should include time course data after perturbation of the HPT axis to capture changes in endogenous iodide, serum TSH, T(4), and T(3).
Collapse
Affiliation(s)
- Eva D McLanahan
- University of Georgia, Interdisciplinary Toxicology Program, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
85
|
Goto A, Uchino S, Noguchi S, Wakiya S, Watanabe Y, Murakami T, Matsuura B, Onji M. NIS mRNA expression level in resected thyroid tissue as a marker of postoperative hypothyroidism after subtotal thyroidectomy in patients with Graves' disease. Endocr J 2008; 55:73-81. [PMID: 18187871 DOI: 10.1507/endocrj.k07-061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Subtotal thyroidectomy for Graves' disease sometimes leads to hypothyroidism or relapse during long-term follow-up in a significant proportion of patients. Factors predictive of postoperative hypothyroidism after subtotal thyroidectomy are not known. The objective of this study was to determine the relation between clinical features and expression of transcripts associated with thyroid hormone synthesis in resected thyroid tissues of patients with Graves' disease. Thyroid tissues were obtained from 65 patients with Graves' disease who underwent subtotal thyroidectomy. Expression of mRNAs from thyroglobulin (Tg), TSH receptor (TSHR), thyroid peroxidase (TPO), sodium/iodide symporter (NIS), and the Pendred's syndrome (PDS) genes were analyzed by quantitative reverse transcription-polymerase chain reaction. Uni- and multivariate analyses were performed to identify for postoperative hypothyroidism. We detected significant correlations between the NIS mRNA level and levels of free T(3) (fT(3)) and free T(4) (fT(4)) and between the Tg mRNA level and goiter weight before initial drug treatment. Mean levels of expression of all five mRNAs were significantly higher in patients who did not require L-thyroxine replacement therapy than in those who required replacement therapy at 6 months after surgery. In patients who did not require replacement therapy, a significant correlation was found between NIS mRNA expression and fT(4) levels. Univariate analysis revealed that decreased NIS mRNA expression (NIS/PGK<1.69) and low TBII levels before initial treatment were significant of postoperative hypothyroidism. Multivariate analysis showed decreased expression of NIS mRNA (NIS/PGK<1.69) to be an independent risk factor for L-thyroxine replacement after surgery (risk ratio, 3.26, confidence interval, 1.36-9.08, p<0.01). NIS expression reflects the level of thyroid hormone synthesis in Graves' disease patients. Evaluation of NIS mRNA expression in thyroid tissues may help determine prognoses of Graves' disease patients, and therefore an appropriate treatment can be determined for each patient.
Collapse
Affiliation(s)
- Aya Goto
- Noguchi Thyroid Clinic and Hospital Foundation, Oita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
86
|
de Keizer B, Arsos G, Smit JW, Lam MG, Rinkes IHB, Goldschmeding R, van Isselt JW. I-131 accumulation in a benign cystic mesothelioma in a patient with follicular thyroid cancer. Thyroid 2008; 18:369-71. [PMID: 18298317 DOI: 10.1089/thy.2007.0155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Focal I-131 accumulation is generally a reliable indicator of functioning normal thyroid tissue or a differentiated thyroid cancer metastasis. However, physiologic accumulation of activity may also be observed in organs such as the intestinal tract, liver, and salivary glands. Extrathyroidal I-131 accumulation has been reported in various sites, such as ectopic gastric mucosa, gastrointestinal and urinary tract abnormalities, cysts (mammary, liver, kidney, and ovaries), and inflammation and infection foci. We report a case of focal I-131 accumulation in a benign cystic mesothelioma in a patient with follicular thyroid cancer.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/complications
- Adenocarcinoma, Follicular/diagnostic imaging
- Adenocarcinoma, Follicular/pathology
- Adult
- Humans
- Iodine Radioisotopes/pharmacokinetics
- Male
- Mesothelioma, Cystic/complications
- Mesothelioma, Cystic/diagnostic imaging
- Mesothelioma, Cystic/pathology
- Neoplasms/complications
- Neoplasms/diagnostic imaging
- Neoplasms/pathology
- Neoplasms, Second Primary/diagnostic imaging
- Neoplasms, Second Primary/pathology
- Peritoneal Neoplasms/complications
- Peritoneal Neoplasms/diagnostic imaging
- Peritoneal Neoplasms/pathology
- Radiography
- Thyroid Nodule/complications
- Thyroid Nodule/diagnostic imaging
- Thyroid Nodule/pathology
- Tissue Distribution
- Tomography, Emission-Computed, Single-Photon/adverse effects
Collapse
Affiliation(s)
- Bart de Keizer
- Department of Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
87
|
The Na+/I symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. Proc Natl Acad Sci U S A 2007; 104:20250-5. [PMID: 18077370 DOI: 10.1073/pnas.0707207104] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Na(+)/I(-) symporter (NIS) is a key plasma membrane protein that mediates active I(-) uptake in the thyroid, lactating breast, and other tissues with an electrogenic stoichiometry of 2 Na(+) per I(-). In the thyroid, NIS-mediated I(-) uptake is the first step in the biosynthesis of the iodine-containing thyroid hormones, which are essential early in life for proper CNS development. In the lactating breast, NIS mediates the translocation of I(-) to the milk, thus supplying this essential anion to the nursing newborn. Perchlorate (ClO(4)(-)) is a well known competitive inhibitor of NIS. Exposure to food and water contaminated with ClO(4)(-) is common in the U.S. population, and the public health impact of such exposure is currently being debated. To date, it is still uncertain whether ClO(4)(-) is a NIS blocker or a transported substrate of NIS. Here we show in vitro and in vivo that NIS actively transports ClO(4)(-), including ClO(4)(-) translocation to the milk. A simple mathematical fluxes model accurately predicts the effect of ClO(4)(-) transport on the rate and extent of I(-) accumulation. Strikingly, the Na(+)/ ClO(4)(-) transport stoichiometry is electroneutral, uncovering that NIS translocates different substrates with different stoichiometries. That NIS actively concentrates ClO(4)(-) in maternal milk suggests that exposure of newborns to high levels of ClO(4)(-) may pose a greater health risk than previously acknowledged because ClO(4)(-) would thus directly inhibit the newborns' thyroidal I(-) uptake.
Collapse
|
88
|
De la Vieja A, Reed MD, Ginter CS, Carrasco N. Amino Acid Residues in Transmembrane Segment IX of the Na+/I– Symporter Play a Role in Its Na+ Dependence and Are Critical for Transport Activity. J Biol Chem 2007; 282:25290-8. [PMID: 17606623 DOI: 10.1074/jbc.m700147200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Na+/I- symporter (NIS) is a key plasma membrane glycoprotein that mediates Na+-dependent active I- transport in the thyroid, lactating breast, and other tissues. The OH group of the side chain at position 354 in transmembrane segment (TMS) IX of NIS has been demonstrated to be essential for NIS function, as revealed by the study of the congenital I- transport defect-causing T354P NIS mutation. TMS IX has the most beta-OH group-containing amino acids (Ser and Thr) of any TMS in NIS. We have thoroughly characterized the functional significance of all Ser and Thr in TMS IX in NIS, as well as of other residues in TMS IX that are highly conserved in other transporters of the SLC5A protein family. Here we show that five beta-OH group-containing residues (Thr-351, Ser-353, Thr-354, Ser-356, and Thr-357) and Asn-360, all of which putatively face the same side of the helix in TMS IX, plus Asp-369, located in the membrane/cytosol interface, play key roles in NIS function and seem to be involved in Na+ binding/translocation.
Collapse
Affiliation(s)
- Antonio De la Vieja
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
89
|
Kirk AB, Dyke JV, Martin CF, Dasgupta PK. Temporal patterns in perchlorate, thiocyanate, and iodide excretion in human milk. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:182-6. [PMID: 17384762 PMCID: PMC1817678 DOI: 10.1289/ehp.9558] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 11/20/2006] [Indexed: 05/03/2023]
Abstract
BACKGROUND Perchlorate and thiocyanate interfere with iodide uptake at the sodium-iodide symporter and are potential disruptors of thyroid hormone synthesis. Perchlorate is a common contaminant of water, food, and human milk. Although it is known that iodide undergoes significant diurnal variations in serum and urinary excretion, less is known about diurnal variations of milk iodide levels. OBJECTIVES Variability in perchlorate and thiocyanate excretion in human milk has not been examined. Our objective was to determine variability of perchlorate, thiocyanate, and iodide in serially collected samples of human milk. METHODS Ten lactating women were asked to collect six milk samples on each of 3 days. As an alternative, subjects were asked to collect as many milk samples as comfortably possible over 3 days. Samples were analyzed for perchlorate, iodide, and thiocyanate by ion chromatography coupled with mass spectrometry. RESULTS Individual perchlorate, iodide, and thiocyanate levels varied significantly over time; there was also considerable variation among individuals. The iodide range, mean +/- SD, and median for all samples (n = 108) were 3.1-334 microg/L, 87.9 +/- 80.9 microg/L, and 55.2 microg/L, respectively. The range, mean +/- SD, and median of perchlorate in all samples (n = 147) were 0.5-39.5 microg/L, 5.8 +/- 6.2 microg/L, and 4.0 microg/L. The range, mean +/- SD, and median of thiocyanate in all samples (n = 117) were 0.4 -228.3 microg/L, 35.6 +/- 57.9 microg/L, and 5.6 microg/L. The data are not symmetrically distributed; the mean is higher than the median in all cases. CONCLUSIONS Iodine intake may be inadequate in a significant fraction of this study population. Perchlorate and thiocyanate appear to be common in human milk. The role of these chemicals in reducing breast milk iodide is in need of further investigation.
Collapse
Affiliation(s)
| | | | - Clyde F. Martin
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas, USA
| | | |
Collapse
|
90
|
Expression of the Na+/I- symporter (NIS) is markedly decreased or absent in gastric cancer and intestinal metaplastic mucosa of Barrett esophagus. BMC Cancer 2007; 7:5. [PMID: 17214887 PMCID: PMC1794416 DOI: 10.1186/1471-2407-7-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 01/10/2007] [Indexed: 11/16/2022] Open
Abstract
Background The sodium/iodide symporter (NIS) is a plasma membrane glycoprotein that mediates iodide (I-) transport in the thyroid, lactating breast, salivary glands, and stomach. Whereas NIS expression and regulation have been extensively investigated in healthy and neoplastic thyroid and breast tissues, little is known about NIS expression and function along the healthy and diseased gastrointestinal tract. Methods Thus, we investigated NIS expression by immunohistochemical analysis in 155 gastrointestinal tissue samples and by immunoblot analysis in 17 gastric tumors from 83 patients. Results Regarding the healthy Gl tract, we observed NIS expression exclusively in the basolateral region of the gastric mucin-producing epithelial cells. In gastritis, positive NIS staining was observed in these cells both in the presence and absence of Helicobacter pylori. Significantly, NIS expression was absent in gastric cancer, independently of its histological type. Only focal faint NIS expression was detected in the direct vicinity of gastric tumors, i.e., in the histologically intact mucosa, the expression becoming gradually stronger and linear farther away from the tumor. Barrett mucosa with junctional and fundic-type columnar metaplasia displayed positive NIS staining, whereas Barrett mucosa with intestinal metaplasia was negative. NIS staining was also absent in intestinalized gastric polyps. Conclusion That NIS expression is markedly decreased or absent in case of intestinalization or malignant transformation of the gastric mucosa suggests that NIS may prove to be a significant tumor marker in the diagnosis and prognosis of gastric malignancies and also precancerous lesions such as Barrett mucosa, thus extending the medical significance of NIS beyond thyroid disease.
Collapse
|
91
|
Schwartz IF, Ingbir M, Chernichovski T, Reshef R, Chernin G, Litvak A, Weinstein T, Levo Y, Schwartz D. Arginine uptake is attenuated, through post-translational regulation of cationic amino acid transporter-1, in hyperlipidemic rats. Atherosclerosis 2006; 194:357-63. [PMID: 17178122 DOI: 10.1016/j.atherosclerosis.2006.10.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/13/2006] [Accepted: 10/30/2006] [Indexed: 11/30/2022]
Abstract
Endothelial cell dysfunction (ECD) is a common feature of hypercholesterolemia. Defective nitric oxide (NO) generation due to decreased endothelial nitric oxide synthase (eNOS) activity is a crucial parameter characterizing ECD. L-arginine is the sole precursor for NO biosynthesis. Among several transporters that mediate L-arginine uptake, cationic amino acid transporter-1 (CAT-1) acts as a specific arginine transporter for eNOS. Our hypothesis implies that CAT-1 is a major determinant of eNOS activity in hypercholesterolemia. We studied aortic arginine uptake, CAT-1 and CAT-2 mRNA expression, and CAT-1, and PKC alpha protein in: (a) control, untreated animals (CTL), (b) rats fed with 4% cholesterol+1% cholate and 2% corn oil for 6 weeks (CHOL) and (c) rats with hypercholesterolemia treated orally with either atorvastatin (CHOL+ATORVA, 20mg/kg BW/day) or arginine 1% (CHOL+ARG) in the drinking water (modalities which have been shown to enhance CAT-1 activity and improve endothelial function). Serum cholesterol levels significantly increased in cholesterol fed animals, an increase which was blocked by atorvastatin (CTL: 66.8+/-15, CHOL: 133.9+/-22, CHOL+ARG: 128.2+/-20, CHOL+ATORVA: 77+/-15 mg/dl). Arginine transport was significantly decreased in CHOL. Treatment with neither arginine nor atorvastatin had an effect. Using RT-PCR, we found no change in aortic CAT-1 and CAT-2 mRNA expression in CHOL as well as following arginine or atorvastatin administration. The abundance of CAT-1 protein was significantly augmented in cholesterol fed rats and was not affected by arginine or atorvastatin. PKC alpha protein content, which was previously shown to regulate CAT-1 activity, increased significantly in CHOL and was neither affected by atorvastatin nor arginine. In conclusion, aortic arginine uptake is attenuated in hypercholesterolemia, through post-translational modulation of CAT-1 protein, possibly via upregulation of PKC alpha.
Collapse
Affiliation(s)
- Idit F Schwartz
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Dayem M, Navarro V, Marsault R, Darcourt J, Lindenthal S, Pourcher T. From the molecular characterization of iodide transporters to the prevention of radioactive iodide exposure. Biochimie 2006; 88:1793-806. [PMID: 16905238 DOI: 10.1016/j.biochi.2006.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 07/19/2006] [Indexed: 12/23/2022]
Abstract
In the event of a nuclear reactor accident, the major public health risk will likely result from the release and dispersion of volatile radio-iodines. Upon body exposure and food ingestion, these radio-iodines are concentrated in the thyroid, resulting in substantial thyroidal irradiation and accordingly causing thyroid cancers. Stable potassium iodide (KI) effectively blocks thyroid iodine uptake and is thus used in iodide prophylaxis for reactor accidents. The efficiency of KI is directly related to the physiological inhibition of the thyroid function in the presence of high plasma iodide concentrations. This regulation is called the Wolff-Chaikoff effect. However, to be fully effective, KI should be administered shortly before or immediately after radioiodine exposure. If KI is provided only several hours after exposure, it will elicit the opposite effect e.g. lead to an increase in the thyroid irradiation dose. To date, clear evaluation of the benefit and the potential toxicity of KI administration remain difficult, and additional data are needed. We outline in this review the molecular characterization of KI-induced regulation of the thyroid function. Significant advances in the knowledge of the iodide transport mechanisms and thyroid physiology have been made. Recently developed molecular tools should help clarify iodide metabolism and the Wolff-Chaikoff effect. The major goals are clarifying the factors which increase thyroid cancer risk after a reactor accident and improving the KI administration protocol. These will ultimately lead to the development of novel strategies to decrease thyroid irradiation after radio-iodine exposure.
Collapse
Affiliation(s)
- M Dayem
- Unité TIRO (Transporter in Imaging and Radiotherapy in Oncology), Commissariat à l'énergie atomique DSV-DIEP-SBTN, School of Medicine, University of Nice Sophia Antipolis, 28, avenue de Valombrose, 06107 Nice cedex, France
| | | | | | | | | | | |
Collapse
|
93
|
Grommen SVH, Taniuchi S, Janssen T, Schoofs L, Takahashi S, Takeuchi S, Darras VM, De Groef B. Molecular cloning, tissue distribution, and ontogenic thyroidal expression of the chicken thyrotropin receptor. Endocrinology 2006; 147:3943-51. [PMID: 16709612 DOI: 10.1210/en.2005-1223] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TSH and the interaction with its receptor (TSHR) in the thyroid gland play a crucial role in the pituitary-thyroid axis of all vertebrates. Released upon stimulation by TSH, thyroid hormones influence numerous processes in the body and are extremely important during the last week of chicken embryonic development. In this study, we have cloned and functionally characterized the chicken TSHR (cTSHR), which was found to be a G protein-coupled receptor consisting of 10 exons. Besides the full-length cDNA, we detected two splice variants lacking either exon 3, or exons 2 and 3, both part of the extracellular domain of the receptor. Bovine TSH increased intracellular cAMP levels in HEK-239 cells transiently expressing the full-length cTSHR (EC50 = 1.43 nm). In situ hybridization showed the expression of cTSHR mRNA in the thyroidal follicular cells. cTSHR mRNA expression, as determined by real-time PCR, was also found in several other tissues such as brain, pituitary, pineal gland, and retina, suggesting that the TSH-TSHR interaction is not only important in regulating thyroid function. TSHR mRNA expression in the thyroid gland did not change significantly during the last week of embryonic development, which suggests that an increased thyroidal sensitivity is not part of the cause of the concomitant increasing T4 levels.
Collapse
Affiliation(s)
- Sylvia V H Grommen
- Laboratory of Comparative Endocrinology, Katholieke Universiteit Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Liu YY, van der Pluijm G, Karperien M, Stokkel MPM, Pereira AM, Morreau J, Kievit J, Romijn JA, Smit JWA. Lithium as adjuvant to radioiodine therapy in differentiated thyroid carcinoma: clinical and in vitro studies. Clin Endocrinol (Oxf) 2006; 64:617-24. [PMID: 16712662 DOI: 10.1111/j.1365-2265.2006.02515.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Lithium has been reported to increase radioactive iodine (RaI) doses in benign thyroid disease and in differentiated thyroid carcinoma (DTC). It is not known whether lithium influences the outcome of RaI therapy in DTC. We therefore studied the clinical effects of RaI without and with lithium carbonate in patients with proven metastatic DTC. Controversy also exists on the mechanism by which lithium increases RaI dose in DTC. We performed an in vitro study specifically aimed at examining the effects of lithium on the sodium iodide symporter (NIS). DESIGN In a clinical study, 12 patients were selected with metastases of DTC who had received previous RaI therapy without lithium (control) that had not influenced tumour progression, despite RaI accumulation in metastases. The patients received 1200 mg lithium carbonate/day followed by 6000 MBq RaI. Outcome parameters were RaI uptake, serum thyroglobulin (Tg) levels and radiological dimensions of metastases compared between RaI with lithium and control. In an in vitro study, iodide uptake was studied in the benign rat thyroid cell line FRTL-5, in the polarized non-thyroid MDCK cell line, stably transfected with human sodium iodide symporter (hNIS) to study the effects of lithium on NIS in a non-thyroid background, and the human follicular thyroid carcinoma cell line FTC133-hNIS to study lithium effects in a background of DTC. Lithium chloride (LiCl) was added in concentrations up to 2 mM for 0-48 h. Both steady-state iodide uptake (30 min) and initial rate (2 min) were studied using a specific activity of 100 mCi/mmol I, the latter experiment to determine lithium effects on substrate dependency. Iodide efflux studies were performed as well. RESULTS Despite an increased uptake of RaI in seven patients, no beneficial effect of RaI with lithium was observed on the clinical course as assessed by serum Tg measurements and radiographically. In the in vitro studies, no effects of LiCl on iodide uptake or efflux were observed. CONCLUSIONS The addition of lithium to RaI did not have any beneficial effects on the clinical course in 12 patients with metastatic DTC. No beneficial effects of lithium on iodide uptake were observed in vitro. Therefore, the clinical value of lithium in DTC remains subject to debate.
Collapse
MESH Headings
- Adjuvants, Pharmaceutic/therapeutic use
- Aged
- Animals
- Antithyroid Agents/therapeutic use
- Carcinoma, Papillary/drug therapy
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/radiotherapy
- Carcinoma, Papillary, Follicular/drug therapy
- Carcinoma, Papillary, Follicular/metabolism
- Carcinoma, Papillary, Follicular/radiotherapy
- Cell Line
- Cell Line, Tumor
- Female
- Humans
- Iodine Radioisotopes/metabolism
- Iodine Radioisotopes/therapeutic use
- Lithium Carbonate/therapeutic use
- Male
- Middle Aged
- Rats
- Symporters/genetics
- Symporters/metabolism
- Thyroid Gland/metabolism
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/radiotherapy
- Transfection/methods
- Treatment Failure
Collapse
Affiliation(s)
- Y Y Liu
- Department of Endocrinology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Paroder V, Spencer SR, Paroder M, Arango D, Schwartz S, Mariadason JM, Augenlicht LH, Eskandari S, Carrasco N. Na(+)/monocarboxylate transport (SMCT) protein expression correlates with survival in colon cancer: molecular characterization of SMCT. Proc Natl Acad Sci U S A 2006; 103:7270-5. [PMID: 16670197 PMCID: PMC1456061 DOI: 10.1073/pnas.0602365103] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Indexed: 12/15/2022] Open
Abstract
We report an extensive characterization of the Na(+)/monocarboxylate transporter (SMCT), a plasma membrane protein that mediates active transport of monocarboxylates such as propionate and nicotinate, and we show that SMCT may play a role in colorectal cancer diagnosis. SMCT, the product of the SLC5A8 gene, is 70% similar to the Na(+)/I(-) symporter, the protein that mediates active I(-) uptake in the basolateral surface of thyrocytes and other cells. SMCT was reported in the apical surface of thyrocytes and formerly proposed also to transport I(-) and was called the apical I(-) transporter. However, it is now clear that SMCT does not transport I(-). Here we demonstrate a high-affinity Na(+)-dependent monocarboxylate transport system in thyroid cells, which is likely to be SMCT. We show that, whereas thyroidal Na(+)/I(-) symporter expression is thyroid-stimulating hormone (TSH)-dependent and basolateral, SMCT expression is TSH-independent and apical not only in the thyroid but also in kidney and colon epithelial cells and in polarized Madin-Darby canine kidney cells. We determine the kinetic parameters of SMCT activity and show its inhibition by ibuprofen (K(i) = 73 +/- 9 microM) in Xenopus laevis oocytes. SMCT was proposed to be a tumor suppressor in colon cancer. Significantly, we show that higher expression of SMCT in colon samples from 113 colorectal cancer patients correlates with longer disease-free survival, suggesting that SMCT expression may be a favorable indicator of colorectal cancer prognosis.
Collapse
Affiliation(s)
- Viktoriya Paroder
- *Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Shelly R. Spencer
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768
| | - Monika Paroder
- *Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Diego Arango
- Molecular Oncology and Aging Group, Molecular Biology and Biochemistry Research Center, Valle Hebron Hospital Research Institute, Passeig Valle d’Hebron 119-129, 08035 Barcelona, Spain; and
| | - Simo Schwartz
- Molecular Oncology and Aging Group, Molecular Biology and Biochemistry Research Center, Valle Hebron Hospital Research Institute, Passeig Valle d’Hebron 119-129, 08035 Barcelona, Spain; and
| | - John M. Mariadason
- Department of Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, 111 East 210th Street, Bronx, NY 10467
| | - Leonard H. Augenlicht
- Department of Oncology, Montefiore Medical Center, Albert Einstein Cancer Center, 111 East 210th Street, Bronx, NY 10467
| | - Sepehr Eskandari
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768
| | - Nancy Carrasco
- *Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
96
|
Mitrofanova E, Unfer R, Vahanian N, Link C. Rat sodium iodide symporter allows using lower dose of 131I for cancer therapy. Gene Ther 2006; 13:1052-6. [PMID: 16525480 DOI: 10.1038/sj.gt.3302758] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Efficient gene delivery is a critical obstacle for gene therapy that must be overcome. Until current limits of gene delivery technology are solved, identification of systems with bystander effects is highly desirable. As an anticancer agent, radioactive iodine (131)I has minimal toxicity. The physical characteristics of (131)I decay allow radiation penetration within a local area causing bystander killing of adjacent cells. Accumulation of (131)I mediated by the sodium iodide symporter (NIS) provides a highly effective treatment for well-differentiated thyroid carcinoma. Other types of cancer could also be treated by NIS-mediated concentration of lethal (131)I radiation in tumor cells. Our group and others previously reported that a significant antitumor effect in mice was achieved after adenoviral delivery of rat or human NIS gene following administration of 3 mCi of (131)I. We have also demonstrated 5-6-fold greater uptake of (125)I by rat NIS over human NIS in human cancer cells. Recently, we reported the capability of the rat NIS and (131)I to effectively induce growth arrest of relatively large tumors (approximately 800 mm(3)) in an animal model. In the present work tumor growth inhibition was achieved using adenoviral delivery of the rat NIS gene and 1 mCi of (131)I (one-third of the dose used in earlier reports). We also demonstrated that a higher concentration of (123)I was accumulated in the NIS-expressing tumors than in the thyroid 20 min after radioiodine administration. The highest intratumoral radioiodine concentration was observed along the needle track; however, the rat NIS-(131)I effectively induced growth arrest of tumor xenografts in mice through its radiological bystander effect. Importantly, the rat NIS allowed reducing the injected radioiodine dose by 70% with the same antitumor efficacy in pre-established tumors. These results suggest that the rat NIS gene may be advantageous compared to the human gene in its ability to enhance intratumoral (131)I uptake.
Collapse
Affiliation(s)
- E Mitrofanova
- Iowa Cancer Research Foundation, Des Moines, 50322, USA.
| | | | | | | |
Collapse
|
97
|
Schwartz IF, Ayalon R, Chernichovski T, Reshef R, Chernin G, Weinstein T, Litvak A, Levo Y, Schwartz D. Arginine uptake is attenuated through modulation of cationic amino-acid transporter-1, in uremic rats. Kidney Int 2006; 69:298-303. [PMID: 16408119 DOI: 10.1038/sj.ki.5000067] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endothelial cell dysfunction (ECD) is a common feature of chronic renal failure (CRF). Defective nitric oxide (NO) generation due to decreased endothelial NO synthase (eNOS) activity is a crucial parameter characterizing ECD. L-arginine is the sole precursor for NO biosynthesis. Among several transporters that mediate L-arginine uptake, cationic amino-acid transporter-1 (CAT-1) acts as the specific arginine transporter for eNOS. Our hypothesis implies that CAT-1 is a major determinant of eNOS activity in CRF. We studied glomerular and aortic arginine uptake, CAT-1, and CAT-2 messenger ribonucleic acid (mRNA) expression, and CAT-1 protein in: (a) rats 6 weeks following 5/6 nephrectomy (CRF), (b) sham-operated animals, and (c) rats with CRF treated orally with either atorvastatin or arginine in drinking water (modalities which have been shown to enhance eNOS activity and improve endothelial function). Both glomerular and aortic arginine transport were significantly decreased in CRF. Treatment with either arginine or atorvastatin abolished the decrease in arginine uptake in CRF rats. Using reverse transcriptase-polymerase chain reaction and Northern blotting, we found a significant increase in glomerular and aortic CAT-1 mRNA expression in CRF. Western blotting revealed that CAT-1 protein was decreased in CRF, but remained intact following arginine and atorvastatin administration. Renal and systemic arginine uptake is attenuated in CRF, through modulation of CAT-1 protein. These findings provide a possible novel mechanism to eNOS inactivation and endothelial dysfunction in uremia.
Collapse
Affiliation(s)
- I F Schwartz
- Department of Nephrology, Tel Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Dohán O, De la Vieja A, Carrasco N. Hydrocortisone and purinergic signaling stimulate sodium/iodide symporter (NIS)-mediated iodide transport in breast cancer cells. Mol Endocrinol 2006; 20:1121-37. [PMID: 16439463 DOI: 10.1210/me.2005-0376] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The sodium/iodide symporter (NIS) mediates a remarkably effective targeted radioiodide therapy in thyroid cancer; this approach is an emerging candidate for treating other cancers that express NIS, whether endogenously or by exogenous gene transfer. Thus far, the only extrathyroidal malignancy known to express functional NIS endogenously is breast cancer. Therapeutic efficacy in thyroid cancer requires that radioiodide uptake be maximized in tumor cells by manipulating well-known regulatory factors of NIS expression in thyroid cells, such as TSH, which stimulates NIS expression via cAMP. Similarly, therapeutic efficacy in breast cancer will likely depend on manipulating NIS regulation in mammary cells, which differs from that in the thyroid. Human breast adenocarcinoma MCF-7 cells modestly express endogenous NIS when treated with all-trans-retinoic acid (tRa). We report here that hydrocortisone and ATP each markedly stimulates tRa-induced NIS protein expression and plasma membrane targeting in MCF-7 cells, leading to at least a 100% increase in iodide uptake. Surprisingly, the adenyl cyclase activator forskolin, which promotes NIS expression in thyroid cells, markedly decreases tRa-induced NIS protein expression in MCF-7 cells. Isobutylmethylxanthine increases tRa-induced NIS expression in MCF-7 cells, probably through a purinergic signaling system independent of isobutylmethylxanthine's action as a phosphodiesterase inhibitor. We also observed that neither iodide, which at high concentrations down-regulates NIS in the thyroid, nor cAMP has a significant effect on NIS expression in MCF-7 cells. Our findings may open new strategies for breast-selective pharmacological modulation of functional NIS expression, thus improving the feasibility of using radioiodide to effectively treat breast cancer.
Collapse
Affiliation(s)
- Orsolya Dohán
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | |
Collapse
|
99
|
Radović B, Schmutzler C, Köhrle J. Xanthohumol stimulates iodide uptake in rat thyroid-derived FRTL-5 cells. Mol Nutr Food Res 2005; 49:832-6. [PMID: 16092068 DOI: 10.1002/mnfr.200500053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sodium-iodide-symporter (NIS), an integral plasma membrane glycoprotein, mediates the sodium-dependent active uptake of iodide (I(-)) into the thyroid gland, which is a fundamental step in thyroid hormone synthesis. In this work, we analyzed the influence of xanthohumol (XN), a prenylated chalcone from hops (Humulus lupulus L.), on the I(-) uptake in a cell culture model of normal, nontransformed rat thyrocytes (FRTL-5). Acute treatment with nanomolar concentrations of XN does not influence I(-) uptake, but after 2 and 3-days of XN stimulation an increase in I(-) uptake was observed; I(-) uptake was maximally increased by 50% compared to control after 3-days of XN stimulation at 1 nM. A clear time-dependent stimulation was observed which showed no marked concentration relationship, however. To investigate whether expression of NIS mRNA is also increased, we grew FRTL-5 cells for 3-days in a medium containing increasing concentrations of XN (0.1 nM-1 muM). Northern blot analysis showed no difference in NIS mRNA transcript levels between control cells and those treated with different concentrations of XN. This study revealed that nanomolar concentrations of XN, a unique compound with anticancer properties, exert stimulating effects on radioiodide uptake. In contrast to many other plant-derived phenolic secondary metabolites such as (iso-)flavonoids, which inhibit I(-) uptake, XN might be an interesting candidate for more efficient radioiodide therapy of thyroid and perhaps other cancer expressing NIS such as breast cancer.
Collapse
Affiliation(s)
- Branislav Radović
- Institut für Experimentelle Endokrinologie und Endokrinologisches, Forschungszentrum EnForCé, Charité Universitätsmedizin Berlin, Berlin, Germany.
| | | | | |
Collapse
|
100
|
García-Jiménez C, Zaballos MA, Santisteban P. DARPP-32 (dopamine and 3',5'-cyclic adenosine monophosphate-regulated neuronal phosphoprotein) is essential for the maintenance of thyroid differentiation. Mol Endocrinol 2005; 19:3060-72. [PMID: 16020482 DOI: 10.1210/me.2005-0129] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coordination of events leading to differentiation is mediated by the concerted action of multiple signal transduction pathways. In general, the uncoupling of mechanisms linking differentiation to cell cycle exit is a hallmark of cancer, yet the identity and regulation of molecules integrating signal transduction pathways remains largely unknown. One notable exception is DARPP-32 (dopamine and cAMP-regulated neuronal phosphoprotein, molecular mass, 32 kDa), a third messenger that integrates multiple signaling pathways in the brain. Thyroid cells represent an excellent model for understanding the coupling of signal transduction pathways leading to both proliferation and differentiation. The cooperative action of IGF-I and TSH together, but not alone, enable thyroid cells to proliferate while maintaining their differentiated state. How signaling downstream from these molecules is integrated is not known. Here we show that DARPP-32 expression is targeted by TSH and IGF-I in thyrocytes. Significantly, dedifferentiated, tumoral, or Ras-transformed thyrocytes fail to express DARPP-32 whereas short interfering RNA-mediated silencing of DARPP-32 expression in normally differentiated thyroid cells results in loss of differentiation markers such as thyroid transcription factor 1, Pax8, thyroglobulin, and the Na/I symporter. Consistently, DARPP-32 reexpression in ras-transformed cells results in reactivation of the otherwise silent thyroglobulin and thyroperoxidase promoter. Thus, DARPP-32 is critical for the maintenance of thyroid differentiation by TSH and IGF-I, and loss of DARPP-32 expression may be a characteristic of thyroid cancer. Our results also raise the possibility that DARPP-32 may play a similar role in the maintenance of differentiation of a range of other cell types.
Collapse
Affiliation(s)
- Custodia García-Jiménez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Cientificas, C/Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | |
Collapse
|