51
|
Waldmann T, Eckerich C, Baack M, Gruss C. The ubiquitous chromatin protein DEK alters the structure of DNA by introducing positive supercoils. J Biol Chem 2002; 277:24988-94. [PMID: 11997399 DOI: 10.1074/jbc.m204045200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the molecular mechanism by which the proto-oncogene protein DEK, an abundant chromatin-associated protein, changes the topology of DNA in chromatin in vitro. Band-shift assays and electron microscopy revealed that DEK induces both intra- and intermolecular interactions between DNA molecules. Binding of the DEK protein introduces constrained positive supercoils both into protein-free DNA and into DNA in chromatin. The induced change in topology is reversible after removal of the DEK protein. As shown by sedimentation analysis and electron microscopy, the DEK-induced positive supercoiling causes distinct structural changes of DNA and chromatin. The observed direct effects of DEK on chromatin folding help to understand the function that this major chromatin protein performs in the nucleus.
Collapse
Affiliation(s)
- Tanja Waldmann
- Department of Biology, University of Konstanz, Federal Republic of Germany
| | | | | | | |
Collapse
|
52
|
Affiliation(s)
- P J Bock
- Department of Internal Medicine, Division of Infectious Diseases, Graduate Program in Cellular and Molecular Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | | |
Collapse
|
53
|
Bruserud Ø, Wendelboe Ø. Biological treatment in acute myelogenous leukaemia: how should T-cell targeting immunotherapy be combined with intensive chemotherapy? Expert Opin Biol Ther 2001; 1:1005-16. [PMID: 11728232 DOI: 10.1517/14712598.1.6.1005] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
T-cell targeting immunotherapy is now considered as a possible strategy in the treatment of acute myelogenous leukaemia (AML). Clinical importance of antileukaemic T-cell reactivity after allogeneic stem cell transplantation (SCT) is well established and the early experience from IL-2 therapy suggests that even autologous T-cells can mediate antileukaemic reactivity. The clinical experience also indicates that immunotherapy should begin when the leukaemia cell burden is minimal, and the detection of an operative cellular immune system, even in patients with chemotherapy-induced cytopenia, further suggests that it is possible to begin T-cell targeting therapy early after chemotherapy while patients are still cytopenic. However, adult patients in particular have a T-cell defect after chemotherapy that may last for several months. For this reason immunotherapy should probably be continued or repeated until a maximal effect is achieved when the patients no longer have a T-cell defect. This treatment approach may also be considered in combination with autologous SCT. T-cell targeting regimens should include, if possible, several therapeutic components. Firstly, native AML blasts can function as accessory cells during T-cell activation and in vivo therapy with T-cell growth factors (e.g., IL-2, IL-15) may then enhance antileukaemic reactivity or non-specific cytotoxicity against the AML cells; and secondly, a further enhancement of AML-specific reactivity may be achieved by vaccination with AML-specific peptides, immunisation with AML-blasts expressing a dendritic cell phenotype, or exposure to normal antigen-presenting cells (APC) pulsed with or expressing AML-specific peptide sequences.
Collapse
Affiliation(s)
- Ø Bruserud
- Division of Hematology, Department of Medicine, Haukeland University Hospital and the University of Bergen, Norway.
| | | |
Collapse
|
54
|
Kappes F, Burger K, Baack M, Fackelmayer FO, Gruss C. Subcellular localization of the human proto-oncogene protein DEK. J Biol Chem 2001; 276:26317-23. [PMID: 11333257 DOI: 10.1074/jbc.m100162200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent data revealed that DEK associates with splicing complexes through interactions mediated by serine/arginine-repeat proteins. However, the DEK protein has also been shown to change the topology of DNA in chromatin in vitro. This could indicate that the DEK protein resides on cellular chromatin. To investigate the in vivo localization of DEK, we performed cell fractionation studies, immunolabeling, and micrococcal nuclease digestion analysis. Most of the DEK protein was found to be released by DNase treatment of nuclei, and only a small amount by treatment with RNase. Furthermore, micrococcal nuclease digestion of nuclei followed by glycerol gradient sedimentation revealed that DEK co-sedimentates with oligonucleosomes, clearly demonstrating that DEK is associated with chromatin in vivo. Additional chromatin fractionation studies, based on the different accessibilities to micrococcal nuclease, showed that DEK is associated both with extended, genetically active and more densely organized, inactive chromatin. We found no significant change in the amount and localization of DEK in cells that synchronously traversed the cell cycle. In summary these data demonstrate that the major portion of DEK is associated with chromatin in vivo and suggest that it might play a role in chromatin architecture.
Collapse
Affiliation(s)
- F Kappes
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
55
|
Faulkner NE, Hilfinger JM, Markovitz DM. Protein phosphatase 2A activates the HIV-2 promoter through enhancer elements that include the pets site. J Biol Chem 2001; 276:25804-12. [PMID: 11320078 DOI: 10.1074/jbc.m006454200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) gene expression is regulated by upstream promoter elements, including the peri-Ets (pets) site, which mediate enhancer stimulation following treatment with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). We previously showed that the oncoprotein DEK binds to the pets site in a site-specific manner. In this report, we show that binding to the HIV-2 pets site is modulated by treatment of U937 monocytic cells with TPA, an activator of protein kinase C. TPA treatment resulted in a reduction in the levels of DEK and the formation of a faster migrating pets complex in gel shift assays. We show further that the actions of TPA on pets binding can be duplicated by phosphatase treatment of nuclear proteins and is blocked with okadaic acid, a protein phospatase-2A (PP2A) inhibitor. Finally, we demonstrate that ectopic expression of the catalytic domain of PP2A can activate the HIV-2 enhancer/promoter alone or in synergy with TPA, an effect mediated in part through the pets site. These results suggest that, through an interaction with the protein kinase C pathway, PP2A is strongly involved in regulating HIV-2 enhancer-mediated transcription. This is a consequence of its effects on DEK expression and binding to the pets site, as well as its effects on other promoter elements. These findings have implications not only for HIV-2 transcription but also for multiple cellular processes involving DEK or PP2A.
Collapse
Affiliation(s)
- N E Faulkner
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0640, USA
| | | | | |
Collapse
|
56
|
Smith MJ, Gitlin SD, Browning CM, Lane BR, Clark NM, Shah N, Rainier S, Markovitz DM. GLI-2 modulates retroviral gene expression. J Virol 2001; 75:2301-13. [PMID: 11160733 PMCID: PMC114813 DOI: 10.1128/jvi.75.5.2301-2313.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2000] [Accepted: 12/07/2000] [Indexed: 11/20/2022] Open
Abstract
GLI proteins are involved in the development of mice, humans, zebrafish, Caenorhabditis elegans, Xenopus, and Drosophila. While these zinc finger-containing proteins bind to TG-rich promoter elements and are known to regulate gene expression in C. elegans and Drosophila, mechanistic understanding of how regulation is mediated through naturally occurring transcriptional promoters is lacking. One isoform of human GLI-2 appears to be identical to a factor previously called Tax helper protein (THP), thus named due to its ability to interact with a TG-rich element in the human T-lymphotropic virus type 1 (HTLV-1) enhancer thought to mediate transcriptional stimulation by the Tax protein of HTLV-1. We now demonstrate that, working through its TG-rich binding site and adjacent elements, GLI-2/THP actually suppresses gene expression driven by the HTLV-1 promoter. GLI-2/THP has no effect on the HTLV-2 promoter, activates expression from the promoters of human immunodeficiency virus types 1 and (HIV-1 and -2), and stimulates HIV-1 replication. Both effective suppression and activation of gene expression and viral replication require the first of the five zinc fingers, which is not necessary for DNA binding, to be intact. Thus, not only can GLI-2/THP either activate or suppress gene expression, depending on the promoter, but the same domain (first zinc finger) mediates both effects. These findings suggest a role for GLI-2 in retroviral gene regulation and shed further light on the mechanisms by which GLI proteins regulate naturally occurring promoters.
Collapse
Affiliation(s)
- M J Smith
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0640, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Grottke C, Mantwill K, Dietel M, Schadendorf D, Lage H. Identification of differentially expressed genes in human melanoma cells with acquired resistance to various antineoplastic drugs. Int J Cancer 2000; 88:535-46. [PMID: 11058868 DOI: 10.1002/1097-0215(20001115)88:4<535::aid-ijc4>3.0.co;2-v] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Malignant melanoma displays strong resistance against various antineoplastic drugs. The mechanisms conferring this intrinsic resistance are unclear. To better understand the molecular events associated with drug resistance in melanoma, a panel of human melanoma cell variants exhibiting low and high levels of resistance to 4 commonly used drugs in melanoma treatment, i.e., vindesine, etoposide, fotemustine and cisplatin, was characterized by differential display reverse transcription-polymerase chain reaction (DDRT-PCR). Of 269 mRNA fragments found to be altered in expression level by DDRT-PCR, a total of 11 cDNA clones was characterized after confirmation of a differential expression pattern by Northern blot analyses. These clones include 3 genes (DSM-1, DSM-3 and DSM-5) of known function, 4 previously sequenced genes (DSM-2, DSM-4, DSM-6 and DSM-7) of uncharacterized function and 4 novel genes (DSM-8-DSM-11) without match in GenBank. All of these genes exhibited altered mRNA expression in high level etoposide-resistant cells, whereby 7 genes (DSM-1-DSM-6 and DSM-8) were found to be decreased in the transcription rate in these etoposide-resistant cells. The mRNA synthesis of the remaining genes (DSM-7 and DSM-9-DSM11) was enhanced in high level etoposide-resistant melanoma cells. The expression of 5 (DSM-5 and DSM-7-DSM-10) of the cloned cDNA encoding mRNAs was modulated in various independently established drug-resistant melanoma cells, indicating to be associated with drug resistance. Further characterization of these genes may yield inside into the biology and development of drug resistance in malignant melanoma.
Collapse
Affiliation(s)
- C Grottke
- Institute of Pathology, Charité, Campus Mitte, Humboldt University Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
58
|
Lymar ES, Clark AM, Reeves R, Griswold MD. Clusterin gene in rat sertoli cells is regulated by a core-enhancer element. Biol Reprod 2000; 63:1341-51. [PMID: 11058537 DOI: 10.1095/biolreprod63.5.1341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Clusterin is a ubiquitous glycoprotein that is promiscuously expressed at a low basal level but can be highly induced by a variety of stress conditions. In contrast, in some secretory cells associated with tissue-fluid interfaces such as the Sertoli cells in the testis, clusterin demonstrates high constitutive expression. In this study, we address the mechanisms that regulate the constitutive expression of the clusterin gene by using primary cultures of immature rat Sertoli cells. We have identified a region of the rat clusterin gene promoter that activated transcription only in Sertoli cells and that mapped between positions -426 and -311. Sequence analysis of this region revealed a high concentration of potential regulatory elements. Using gel-shift assays combined with hydroxyl radical footprinting, we identified the elements recognized by the Sertoli cell nuclear factors. Comparison of the interactions with this region of the nuclear factors from different cell types demonstrated that recognition of the core-enhancer element is specific for the Sertoli cells, and in vitro, the core region was recognized by the transcription factor CBF. Transient transfections showed that a core enhancer is responsible for more than a half of the total promoter activity and is an essential element for the cell-specific activity of the Sertoli-specific region. In addition to the core enhancer, tandem Sp1 sites are also required for maximal activity of this region.
Collapse
Affiliation(s)
- E S Lymar
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | | | | | |
Collapse
|
59
|
Kroes RA, Jastrow A, McLone MG, Yamamoto H, Colley P, Kersey DS, Yong VW, Mkrdichian E, Cerullo L, Leestma J, Moskal JR. The identification of novel therapeutic targets for the treatment of malignant brain tumors. Cancer Lett 2000; 156:191-8. [PMID: 10880769 DOI: 10.1016/s0304-3835(00)00462-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A two-step strategy was developed consisting of differential display reverse transcriptase polymerase chain reaction (DDRT-PCR) with cultured normal human fetal astrocytes and U-373MG glioma cells followed by reverse Northern analysis of normal brain and primary tumor tissues. hu-dek, alpha-NAC, ribosomal proteins L7a and L35a, and five novel genes were identified. Since none of these genes has been previously shown to be associated with malignant brain tumor formation, this approach may be useful to identify novel targets for the diagnosis and treatment of brain tumors.
Collapse
Affiliation(s)
- R A Kroes
- The Chicago Institute of Neurosurgery and Neuroresearch, 2515 N. Clark St., Suite 800, Chicago, IL, 60614, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
McGarvey T, Rosonina E, McCracken S, Li Q, Arnaout R, Mientjes E, Nickerson JA, Awrey D, Greenblatt J, Grosveld G, Blencowe BJ. The acute myeloid leukemia-associated protein, DEK, forms a splicing-dependent interaction with exon-product complexes. J Cell Biol 2000; 150:309-20. [PMID: 10908574 PMCID: PMC2180225 DOI: 10.1083/jcb.150.2.309] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2000] [Accepted: 06/07/2000] [Indexed: 11/22/2022] Open
Abstract
DEK is an approximately 45-kD phosphoprotein that is fused to the nucleoporin CAN as a result of a (6;9) chromosomal translocation in a subset of acute myeloid leukemias (AMLs). It has also been identified as an autoimmune antigen in juvenile rheumatoid arthritis and other rheumatic diseases. Despite the association of DEK with several human diseases, its function is not known. In this study, we demonstrate that DEK, together with SR proteins, associates with the SRm160 splicing coactivator in vitro. DEK is recruited to splicing factor-containing nuclear speckles upon concentration of SRm160 in these structures, indicating that DEK and SRm160 associate in vivo. We further demonstrate that DEK associates with splicing complexes through interactions mediated by SR proteins. Significantly, DEK remains bound to the exon-product RNA after splicing, and this association requires the prior formation of a spliceosome. Thus, DEK is a candidate factor for controlling postsplicing steps in gene expression that are influenced by the prior removal of an intron from pre-mRNA.
Collapse
Affiliation(s)
- Tim McGarvey
- Banting and Best Department of Medical Research, C.H. Best Institute, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - Emanuel Rosonina
- Banting and Best Department of Medical Research, C.H. Best Institute, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - Susan McCracken
- Banting and Best Department of Medical Research, C.H. Best Institute, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - Qiyu Li
- Banting and Best Department of Medical Research, C.H. Best Institute, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - Ramy Arnaout
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Edwin Mientjes
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jeffrey A. Nickerson
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Don Awrey
- Banting and Best Department of Medical Research, C.H. Best Institute, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - Jack Greenblatt
- Banting and Best Department of Medical Research, C.H. Best Institute, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| | - Gerard Grosveld
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Benjamin J. Blencowe
- Banting and Best Department of Medical Research, C.H. Best Institute, University of Toronto, Toronto, Ontario, Canada M5G 1L6
| |
Collapse
|
61
|
Compagnone NA, Zhang P, Vigne JL, Mellon SH. Novel role for the nuclear phosphoprotein SET in transcriptional activation of P450c17 and initiation of neurosteroidogenesis. Mol Endocrinol 2000; 14:875-88. [PMID: 10847589 DOI: 10.1210/mend.14.6.0469] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurosteroids are important endogenous regulators of gamma-aminobutryic acid (GABA(A)) and N-methyl-D-aspartate (NMDA) receptors and also influence neuronal morphology and function. Neurosteroids are produced in the brain using many of the same enzymes found in the adrenal and gonad. The crucial enzyme for the synthesis of DHEA (dehydroepiandrosterone) in the brain is cytochrome P450c17. The transcriptional strategy for the expression of P450c17 is clearly different in the brain from that in the adrenal or gonad. We previously characterized a novel transcriptional regulator from Leydig MA-10 cells, termed StF-IT-1, that binds at bases -447/-399 of the rat P450c17 promoter, along with the known transcription factors COUP-TF (chicken ovalbumin upstream promoter transcription factor), NGF-IB (nerve growth factor inducible protein B), and SF-1 (steroidogenic factor-1). We have now purified and sequenced this protein from immature porcine testes, identifying it as the nuclear phosphoprotein SET; a role for SET in transcription was not established previously. Binding of bacterially expressed human and rat SET to the DNA site at -418/-399 of the rat P450c17 gene transactivates P450c17 in neuronal and in testicular Leydig cells. We also found SET expressed in human NT2 neuronal precursor cells, implicating a role in neurosteroidogenesis. Immunocytochemistry and in situ hybridization in the mouse fetus show that the ontogeny and distribution of SET in the developing nervous system are consistent with SET being crucial for initiating P450c17 transcription. SET's developmental pattern of expression suggests it may participate in the early ontogenesis of the nervous, as well as the skeletal and hematopoietic, systems. These studies delineate an important new factor in the transcriptional regulation of P450c17 and consequently, in the production of DHEA and sex steroids.
Collapse
Affiliation(s)
- N A Compagnone
- Center for Reproductive Sciences, Department of Obstetrics & Gynecology & Reproductive Sciences, University of California San Francisco 94143-0556, USA
| | | | | | | |
Collapse
|
62
|
Alexiadis V, Waldmann T, Andersen J, Mann M, Knippers R, Gruss C. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes Dev 2000. [DOI: 10.1101/gad.14.11.1308] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The structure of chromatin regulates the genetic activity of the underlying DNA sequence. We report here that the protein encoded by the proto-oncogene DEK, which is involved in acute myelogenous leukemia, induces alterations of the superhelical density of DNA in chromatin. The change in topology is observed with chromatin but not with naked DNA and does not involve dissociation of core histones from chromatin. Moreover, these effects require histone H2A/H2B dimers in addition to histone H3/H4. We additionally tested whether the DEK protein affects DNA-utilizing processes and found that the DEK protein substantially reduces the replication efficiency of chromatin but not of naked DNA templates.
Collapse
|
63
|
Alexiadis V, Waldmann T, Andersen J, Mann M, Knippers R, Gruss C. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes Dev 2000; 14:1308-12. [PMID: 10837023 PMCID: PMC316669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/1999] [Accepted: 04/11/2000] [Indexed: 02/16/2023]
Abstract
The structure of chromatin regulates the genetic activity of the underlying DNA sequence. We report here that the protein encoded by the proto-oncogene DEK, which is involved in acute myelogenous leukemia, induces alterations of the superhelical density of DNA in chromatin. The change in topology is observed with chromatin but not with naked DNA and does not involve dissociation of core histones from chromatin. Moreover, these effects require histone H2A/H2B dimers in addition to histone H3/H4. We additionally tested whether the DEK protein affects DNA-utilizing processes and found that the DEK protein substantially reduces the replication efficiency of chromatin but not of naked DNA templates.
Collapse
Affiliation(s)
- V Alexiadis
- University of Konstanz, Department of Biology, 78457 Konstanz, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
64
|
Bergamo NA, Rogatto SR, Poli-Frederico RC, Reis PP, Kowalski LP, Zielenska M, Squire JA. Comparative genomic hybridization analysis detects frequent over-representation of DNA sequences at 3q, 7p, and 8q in head and neck carcinomas. CANCER GENETICS AND CYTOGENETICS 2000; 119:48-55. [PMID: 10812171 DOI: 10.1016/s0165-4608(99)00213-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Comparative genomic hybridization (CGH) was used to identify chromosomal imbalances in 19 samples of squamous cell carcinoma of the head and neck (HNSCC). The chromosome arms most often over-represented were 3q (48%), 8q (42%), and 7p (32%); in many cases, these changes were observed at high copy number. Other commonly over-represented sites were 1q, 2q, 6p, 6q, and 18q. The most frequently under-represented segments were 3p and 22q. Loss of heterozygosity of two polymorphic microsatellite loci from chromosome 22 was observed in two tongue tumors, in agreement with the CGH analysis. Gains of 1q and 2q material were detected in patients exhibiting a clinical history of recurrence and/or metastasis followed by terminal disease. This association suggests that gain of 1q and 2q may be a new marker of head and neck tumors with a refractory clinical response.
Collapse
Affiliation(s)
- N A Bergamo
- Department of Genetics, IB, UNESP, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
65
|
Wichmann I, Respaldiza N, Garcia-Lozano JR, Montes M, Sanchez-Roman J, Nuñez-Roldan A. Autoantibodies to DEK oncoprotein in systemic lupus erythematosus (SLE). Clin Exp Immunol 2000; 119:530-2. [PMID: 10691927 PMCID: PMC1905599 DOI: 10.1046/j.1365-2249.2000.01154.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/1999] [Indexed: 12/14/2022] Open
Abstract
Autoantibodies against the transcriptional DEK protein have been considered characteristic of the pauciarticular onset subtype of juvenile rheumatoid arthritis (JRA) associated with iridocyclitis in young girls. In this study we investigated the presence of anti-DEK autoantibodies in the sera of 288 patients with SLE using a recombinant DEK protein as autoantigenic target. Thirty sera (10.4%) were positive against DEK protein by immunoblotting. Patients with anti-DEK autoantibodies show a lower frequency of cutaneous manifestation, exhibit more frequently certain markers of a chronic inflammatory status like anaemia and positivity for C-reactive protein, as well as a higher frequency of anti-double-stranded DNA autoantibodies. In contrast to JRA patients positive for anti-DEK autoantibodies, no association with erosive arthritis nor iridocyclitis were found in SLE. In conclusion, our results show that 10.4% of SLE patients from our area show antibodies against DEK protein, although this feature did not clearly establish a clinical subset of the disease.
Collapse
Affiliation(s)
- I Wichmann
- Servicio de Inmunología, Hospital Universitario Virgen del Rocio, Servicio Andaluz de Salud, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
66
|
Dong X, Wang J, Kabir FN, Shaw M, Reed AM, Stein L, Andrade LE, Trevisani VF, Miller ML, Fujii T, Akizuki M, Pachman LM, Satoh M, Reeves WH. Autoantibodies to DEK oncoprotein in human inflammatory disease. ARTHRITIS AND RHEUMATISM 2000; 43:85-93. [PMID: 10643703 DOI: 10.1002/1529-0131(200001)43:1<85::aid-anr11>3.0.co;2-d] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To evaluate the specificity of anti-DEK antibodies for juvenile rheumatoid arthritis (JRA). METHODS Anti-DEK autoantibodies were measured by enzyme-linked immunosorbent assay (ELISA) using affinity-purified his6-DEK fusion protein. Sera from 639 subjects (417 patients with systemic autoimmune disease, 13 with sarcoidosis, 44 with pulmonary tuberculosis, 125 with uveitis, and 6 with scleritis, and 34 healthy control subjects) were screened. Reactivity was verified by immunoblotting and immunoprecipitation studies using baculovirus-expressed human DEK. RESULTS Anti-DEK activity was found at the following frequencies: JRA 39.4% (n = 71), systemic lupus erythematosus (SLE) 25.1% (n = 216), sarcoidosis 46.2% (n = 13), rheumatoid arthritis 15.5% (n = 71), systemic sclerosis 36.0% (n = 22), polymyositis 6.2% (n = 16), and adult Still's disease 0% (n = 21). Autoantibodies also were detected in 9.1% of tuberculosis sera (n = 44), but were undetectable in sera from the 34 healthy controls. Western blot and immunoprecipitation assay results correlated well with the ELISA findings. In general, levels of anti-DEK autoantibodies were higher in SLE than in other patient subsets, including JRA. CONCLUSION Anti-DEK autoantibodies are less specific for JRA than previously believed. They are produced in association with a variety of inflammatory conditions, many of which are associated with granuloma formation and/or predominant Thl cytokine production. Anti-DEK antibodies may be a marker for a subset of autoimmunity associated with interferon-gamma production rather than a particular disease subset.
Collapse
Affiliation(s)
- X Dong
- Thurston Arthritis Research Center and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
We have molecularly characterized a proteolytic cleavage in conserved nuclear pore complex proteins. This cleavage, previously demonstrated to be essential for the biogenesis of two nuclear pore complex proteins in mammals (Nup98 and Nup96) and yeast (Nup145-N and Nup145-C), occurs between Phe and Ser residues within a highly conserved domain in a polyprotein precursor. Here, we show that a protease is not involved in the cleavage event. By using a combination of domain mapping and site-directed mutagenesis, we demonstrate that the human nuclear pore complex protein Nup98 specifically cleaves itself between F863 and S864. A region of Nup98, amino acids 715-920, is able to cleave, whereas a smaller region, amino acids 772-920, does not cleave. In addition, we have generated a Nup98 mutant that cleaves under defined conditions in vitro. Further, the two cleaved fragments of Nup98 form a complex, providing a possible mechanism whereby specific, yet low-affinity, binding between Nup98 and Nup96 is responsible for the nuclear targeting of Nup96. Although apparently unrelated evolutionarily, Nup98 has converged on an autoproteolytic biogenesis mechanism similar to that of hedgehog proteins, the inteins, and the N-terminal nucleophile proteins.
Collapse
Affiliation(s)
- J S Rosenblum
- Laboratory of Cell Biology, Rockefeller University, New York, NY 10021, USA.
| | | |
Collapse
|
68
|
Hollnagel A, Oehlmann V, Heymer J, Rüther U, Nordheim A. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem 1999; 274:19838-45. [PMID: 10391928 DOI: 10.1074/jbc.274.28.19838] [Citation(s) in RCA: 414] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are morphogenetic signaling molecules essential for embryonic patterning. To obtain molecular insight into the influence of BMPs on morphogenesis, we searched for new genes directly activated by BMP signaling. In vitro cultured mouse embryonic stem (ES) cells were used, cultivated in chemically defined growth medium (CDM). CDM-cultured ES cells responded very selectively to stimulation by various mesoderm inducers (BMP2/4, activin A, and basic fibroblast growth factor). BMP2/4 rapidly induced transcript levels of the homeobox genes Msx-1 and Msx-2 and the proto-oncogene JunB, whereas c-jun transcripts displayed delayed albeit prolonged increase. Using differential display cDNA cloning, six direct BMP target genes were identified. These include Id3, which showed strong mRNA induction, and the moderately induced Cyr61, DEK, and eIF4AII genes, as well as a gene encoding a GC-binding protein. Besides Id3, also the Id1 and Id2 genes were activated by BMP4 in both ES cells and a range of different cell lines. Id genes encode negative regulators of basic helix-loop-helix transcription factors. In vivo we observed local ectopic expression of Id3 and Msx-2 mRNAs in Ft/+ embryos at overlapping regions of ectopic Bmp4 misexpression. We therefore propose that the Msx and Id genes are direct target genes of embryonic BMP4 signaling in vivo.
Collapse
Affiliation(s)
- A Hollnagel
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
69
|
Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol 1999; 19:764-76. [PMID: 9858599 PMCID: PMC83933 DOI: 10.1128/mcb.19.1.764] [Citation(s) in RCA: 264] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1998] [Accepted: 09/29/1998] [Indexed: 11/20/2022] Open
Abstract
Genes encoding the Phe-Gly (FG) repeat-containing nucleoporins NUP98 and CAN/NUP214 are at the breakpoints of several chromosomal translocations associated with human acute myeloid leukemia (AML), but their role in oncogenesis is unclear. Here we demonstrate that the NUP98-HOXA9 fusion gene encodes two nuclear oncoproteins with either 19 or 37 NUP98 FG repeats fused to the DNA binding and PBX heterodimerization domains of the transcription factor HOXA9. Both NUP98-HOXA9 chimeras transformed NIH 3T3 fibroblasts, and this transformation required the HOXA9 domains for DNA binding and PBX interaction. Surprisingly, the FG repeats acted as very potent transactivators of gene transcription. This NUP98-derived activity is essential for transformation and can be replaced by the bona fide transactivation domain of VP16. Interestingly, FG repeat-containing segments derived from the nucleoporins NUP153 and CAN/NUP214 functioned similarly to those from NUP98. We further demonstrate that transactivation by FG repeat-rich segments of NUP98 correlates with their ability to interact functionally and physically with the transcriptional coactivators CREB binding protein (CBP) and p300. This finding shows, for the first time, that a translocation-generated fusion protein appears to recruit CBP/p300 as an important step of its oncogenic mechanism. Together, our results suggest that NUP98-HOXA9 chimeras are aberrant transcription factors that deregulate HOX-responsive genes through the transcriptional activation properties of nucleoporin-specific FG repeats that recruit CBP/p300. Indeed, FG repeat-mediated transactivation may be a shared pathogenic function of nucleoporins implicated human AML.
Collapse
Affiliation(s)
- L H Kasper
- Departments of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
70
|
Wichmann I, Garcia-Lozano JR, Respaldiza N, Gonzalez-Escribano MF, Nuñez-Roldan A. Autoantibodies to transcriptional regulation proteins DEK and ALY in a patient with systemic lupus erythematosus. Hum Immunol 1999; 60:57-62. [PMID: 9952027 DOI: 10.1016/s0198-8859(98)00085-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A human cDNA expression library that was used to investigate the nature of autoantigens recognized by the serum from a patient with systemic lupus erythematosus revealed the presence of antibodies directed against two transcriptional regulation protein: DEK, a site-specific 45 kD DNA binding protein, likely involved in signal transduction and transcriptional regulation, and a novel 28 kD protein that showed a 94% homology with murine ALY, a nuclear protein that plays a role in regulating the activity of TCRalpha enhancer complex. Whereas autoantibodies directed to epitopes on DEK are commonly found in patients with pauciarticular onset juvenile rheumatoid arthritis, autoantibodies against ALY have not been described and their occurrence has led to the cloning of the cDNA sequence of the first member of the human ALY family.
Collapse
Affiliation(s)
- I Wichmann
- Servicio de Inmunologia. Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | | | | | | | | |
Collapse
|
71
|
Boer J, Bonten-Surtel J, Grosveld G. Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Mol Cell Biol 1998; 18:1236-47. [PMID: 9488438 PMCID: PMC108836 DOI: 10.1128/mcb.18.3.1236] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/1997] [Accepted: 12/02/1997] [Indexed: 02/06/2023] Open
Abstract
The human CAN gene was first identified as a target of t(6;9)(p23;q34), associated with acute myeloid leukemia and myelodysplastic syndrome, which results in the expression of a DEK-CAN fusion gene. CAN, also called NUP214, is a nuclear pore complex (NPC) protein that contains multiple FG-peptide sequence motifs. It interacts at the NPC with at least two other proteins, the nucleoporin NUP88 and hCRM1 (exportin 1), which was recently shown to function as a nuclear export receptor. Depletion of CAN in knockout mouse embryonic cells results in cell cycle arrest in G2, followed by inhibition of nuclear protein import and a block of mRNA export. We overexpressed CAN and DEK-CAN in U937 myeloid precursor cells. DEK-CAN expression did not interfere with terminal myeloid differentiation of U937 cells, whereas CAN-overexpressing cells arrested in G0, accumulated mRNA in their nuclei, and died in an apoptotic manner. Interestingly, we found that hCRM1 and import factor p97/importin beta colocalized with the ectopically expressed CAN protein, resulting in depletion of both factors from the NPC. Overexpression of the C-terminal FG-repeat region of CAN, which contains the binding site for hCRM1, caused sequestering of hCRM1 in the nucleoplasm and was sufficient to inhibit cell growth and to induce apoptosis. These results confirm that CAN plays a crucial role in nucleocytoplasmic transport and imply an essential role for hCRM1 in cell growth and survival.
Collapse
Affiliation(s)
- J Boer
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
72
|
Browning C, Hilfinger JM, Rainier S, Lin V, Hedderwick S, Smith M, Markovitz DM. The sequence and structure of the 3' arm of the first stem-loop of the human immunodeficiency virus type 2 trans-activation responsive region mediate Tat-2 transactivation. J Virol 1997; 71:8048-55. [PMID: 9311903 PMCID: PMC192170 DOI: 10.1128/jvi.71.10.8048-8055.1997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) causes AIDS, but generally after a much longer asymptomatic period than that which follows infection with HIV-1. At the molecular level, HIV-2 is much more closely related to the simian immunodeficiency viruses than to HIV-1 and our previous studies have demonstrated that HIV-2 and HIV-1 enhancer stimulation is mediated by different sets of cellular proteins following T-cell activation. Similar to HIV-1, HIV-2 encodes a transactivating protein, Tat, which appears to be necessary for viral replication and stimulates viral transcriptional initiation and/or elongation. While Tat-1 binds to the RNA of the trans-activation responsive (TAR) region of HIV-1 and HIV-2, cellular factors that bind to the RNA transcript are also necessary for Tat to function in vivo. Since almost all previous investigations of cellular cofactors for Tat had focused on HIV-1, we undertook studies aimed at understanding the interaction between the TAR RNA region of the HIV-2 promoter (TAR-2) and cellular proteins. By using extension inhibition analysis (toeprinting) and RNA electrophoretic mobility shift assays, we demonstrated binding of a nuclear factor(s) in T cells to the base of the promoter-proximal stem-loop structure. Mutational analysis of this region revealed that both the sequence of the 3' arm and the stem structure itself are important for activation of the promoter by Tat-2. In contrast, the structure is necessary for activation of TAR-2 by Tat-1 but the sequence is less important. These results suggest that a cellular factor interacts with the 3' arm of the proximal stem-loop structure of TAR-2 and mediates Tat-2-induced increases in the level of HIV-2 transcripts.
Collapse
Affiliation(s)
- C Browning
- Department of Microbiology and Immunology, University of Michigan Medical Center, Ann Arbor 48109-0642, USA
| | | | | | | | | | | | | |
Collapse
|