51
|
Parris TZ, Kovács A, Aziz L, Hajizadeh S, Nemes S, Semaan M, Forssell-Aronsson E, Karlsson P, Helou K. Additive effect of the AZGP1, PIP, S100A8 and UBE2C molecular biomarkers improves outcome prediction in breast carcinoma. Int J Cancer 2013; 134:1617-29. [PMID: 24114735 DOI: 10.1002/ijc.28497] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/12/2013] [Indexed: 01/03/2023]
Abstract
The deregulation of key cellular pathways is fundamental for the survival and expansion of neoplastic cells, which in turn can have a detrimental effect on patient outcome. To develop effective individualized cancer therapies, we need to have a better understanding of which cellular pathways are perturbed in a genetically defined subgroup of patients. Here, we validate the prognostic value of a 13-marker signature in independent gene expression microarray datasets (n = 1,141) and immunohistochemistry with full-faced FFPE samples (n = 71). The predictive performance of individual markers and panels containing multiple markers was assessed using Cox regression analysis. In the external gene expression dataset, six of the 13 genes (AZGP1, NME5, S100A8, SCUBE2, STC2 and UBE2C) retained their prognostic potential and were significantly associated with disease-free survival (p < 0.001). Protein analyses refined the signature to a four-marker panel [AZGP1, Prolactin-inducible protein (PIP), S100A8 and UBE2C] significantly correlated with cycling, high grade tumors and lower disease-specific survival rates. AZGP1 and PIP were found in significantly lower levels in invasive breast tissue as compared with adjacent normal tissue, whereas elevated levels of S100A8 and UBE2C were observed. A predictive model containing the four-marker panel in conjunction with established clinical variables outperformed a model containing the clinical variables alone. Our findings suggest that deregulated AZGP1, PIP, S100A8 and UBE2C are critical for the aggressive breast cancer phenotype, which may be useful as novel therapeutic targets for drug development to complement established clinical variables.
Collapse
Affiliation(s)
- Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Inhibition of ubiquitin conjugating enzyme UBE2C reduces proliferation and sensitizes breast cancer cells to radiation, doxorubicin, tamoxifen and letrozole. Cell Oncol (Dordr) 2013; 36:459-67. [PMID: 24072565 DOI: 10.1007/s13402-013-0150-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2013] [Indexed: 01/04/2023] Open
Abstract
PURPOSE The objective of this study was to determine radiation, doxorubicin, tamoxifen and letrozole sensitivity of breast cancer cells in response to functional inhibition of the ubiquitin conjugating enzyme UBE2C. METHODS Taqman Real time PCR was performed to measure UBE2C levels in breast cancer cell lines and control HBL100 and HEK293T cells. A dominant negative form of UBE2C (DN-UBE2C) was used to functionally inhibit wild type UBE2C. Cell proliferation and anchorage independent growth were measured by colorimetric and soft agar assays, respectively. Radiation, doxorubicin, tamoxifen and letrozole responses of the cell lines were assessed by colorimetric and clonogenic assays. RESULTS Overexpression of UBE2C was observed in all breast cancer cell lines tested using quantitative real time PCR. UBE2C expression was found to be highest in MDAMB231 and relatively lowest in MCF7 cells, compared to control cells. Both the growth rate and the anchorage independent growth of MCF7 and MDAMB231 cells transfected with DN-UBE2C were significantly reduced compared to cells transfected with vector alone. MCF7 and MDAMB231 cells expressing DN-UBE2C were significantly more sensitive to different doses of radiation and doxorubicin compared to both wild type and vector alone transfected cells. In addition, DN-UBE2C transfected MCF7 cells were more sensitive to inhibition by tamoxifen and letrozole compared to wild type and vector alone transfected cells. CONCLUSIONS Our results show that inhibition of UBE2C sensitizes breast cancer cells to radiation, doxorubicin and hormone blocking agents. UBE2C may, therefore, serve as a potential therapeutic target aimed at inducing radiation and chemo sensitization.
Collapse
|
53
|
Morikawa T, Kawai T, Abe H, Kume H, Homma Y, Fukayama M. UBE2C is a marker of unfavorable prognosis in bladder cancer after radical cystectomy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:1367-1374. [PMID: 23826418 PMCID: PMC3693202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 06/02/2023]
Abstract
It has been suggested that ubiquitin-conjugating enzyme E2C (UBE2C, also known as UBCH10) represents a promising cancer biomarker. However, the clinicopathological or prognostic significance as well as the functions of UBE2C in bladder cancer are largely unknown. To investigate the significance of UBE2C expression in bladder cancer, immunohistochemical analysis was performed using a tissue microarray. UBE2C positivity was observed in 51 of 82 (62%) bladder urothelial carcinoma cases treated with radical cystectomy. In contrast, UBE2C was negative in all of the non-neoplastic urothelium examined. UBE2C positivity was significantly associated with higher tumor stage (p=0.0061) and presence of lymphovascular invasion (p=0.0045). In addition, UBE2C positivity was significantly associated with shorter cancer-specific survival after cystectomy (log rank p=0.0017; multivariate hazard ratio, 2.49; 95% confidence interval, 1.09-5.71). Small interfering RNA-mediated suppression of UBE2C in UM-UC-3 bladder cancer cells inhibited cell proliferation in vitro. Taken together, our results suggest that UBE2C is a novel prognostic biomarker as well as a potential therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Teppei Morikawa
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
54
|
Shen Z, Jiang X, Zeng C, Zheng S, Luo B, Zeng Y, Ding R, Jiang H, He Q, Guo J, Jie W. High expression of ubiquitin-conjugating enzyme 2C (UBE2C) correlates with nasopharyngeal carcinoma progression. BMC Cancer 2013; 13:192. [PMID: 23587173 PMCID: PMC3637393 DOI: 10.1186/1471-2407-13-192] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Background Overexpression of ubiquitin-conjugating enzyme 2C (UBE2C) has been detected in many types of human cancers, and is correlated with tumor malignancy. However, the role of UBE2C in human nasopharyngeal carcinoma (NPC) is unclear. In this study, we investigated the role of aberrant UBE2C expression in the progression of human NPC. Methods Immunohistochemical analysis was performed to detect UBE2C protein in clinical samples of NPC and benign nasopharyngeal tissues, and the association of UBE2C expression with patient clinicopathological characteristics was analyzed. UBEC2 expression profiles were evaluated in cell lines representing varying differentiated stages of NPC and immortalized nasopharyngeal epithelia NP-69 cells using quantitative RT-PCR, western blotting and fluorescent staining. Furthermore, UBE2C was knocked down using RNA interference in these cell lines and proliferation and cell cycle distribution was investigated. Results Immunohistochemical analysis revealed that UBE2C protein expression levels were higher in NPC tissues than in benign nasopharyngeal tissues (P<0.001). Moreover, high UBE2C protein expression was positively correlated with tumor size (P=0.017), lymph node metastasis (P=0.016) and distant metastasis (P=0.015) in NPC patients. In vitro experiments demonstrated that UBE2C expression levels were inversely correlated with the degree of differentiation of NPC cell lines, whereas UBE2C displayed low level of expression in NP-69 cells. Knockdown of UBE2C led to significant arrest at the S and G2/M phases of the cell cycle, and decreased cell proliferation was observed in poorly-differentiated CNE2Z NPC cells and undifferentiated C666-1 cells, but not in well-differentiated CNE1 and immortalized NP-69 cells. Conclusions Our findings suggest that high expression of UBE2C in human NPC is closely related to tumor malignancy, and may be a potential marker for NPC progression.
Collapse
Affiliation(s)
- Zhihua Shen
- Department of Pathology & Pathophysiology, School of Basic Medicine Science, Guangdong Medical College, Zhanjiang 524023, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, van Deursen J, Galardy PJ. USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest 2012. [PMID: 23187126 DOI: 10.1172/jci63084] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most human tumors have abnormal numbers of chromosomes, a condition known as aneuploidy. The mitotic checkpoint is an important mechanism that prevents aneuploidy by restraining the activity of the anaphase-promoting complex (APC). The deubiquitinase USP44 was identified as a key regulator of APC activation; however, the physiological importance of USP44 and its impact on cancer biology are unknown. To clarify the role of USP44 in mitosis, we engineered a mouse lacking Usp44. We found that USP44 regulated the mitotic checkpoint and prevented chromosome lagging. Mice lacking Usp44 were prone to the development of spontaneous tumors, particularly in the lungs. Additionally, USP44 was frequently downregulated in human lung cancer, and low expression correlated with a poor prognosis. USP44 inhibited chromosome segregation errors independent of its role in the mitotic checkpoint by regulating centrosome separation, positioning, and mitotic spindle geometry. These functions required direct binding to the centriole protein centrin. Our data reveal a new role for the ubiquitin system in mitotic spindle regulation and underscore the importance of USP44 in the pathogenesis of human cancer.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Du H, Jie L, Xu W, Wu Y, Liu T, Li M. A monoclonal antibody against a potential cancer biomarker, human ubiquitin-conjugating enzyme E2. Hybridoma (Larchmt) 2012; 31:196-202. [PMID: 22741584 DOI: 10.1089/hyb.2012.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human ubiquitin-conjugating enzyme E2, also known as UbcH10, is defined as a cyclin-selective ubiquitin carrier protein and is essential for selective degradation of many short-lived proteins in eukaryotic cells. Recently more and more data show that UbcH10 could be a potential cancer biomarker. In this study, we have developed a monoclonal antibody (MAb) against UbcH10 using an expression recombinant protein. Hybridomas F001, F007, and F008 with high affinities belong to IgG1 subclass with κ light and are highly specific for UbcH10. Further experimentation showed that MAbs F001, F007, and F008 are suitable for the development of immunoassay core agents with sufficient sensitivity and specificity in vitro by Western-blot, immunofluorescence, and immunohistochemistry. These MAbs can be used as a tool for further investigation on functions related to the role of UbcH10 in tumorigenesis and development.
Collapse
Affiliation(s)
- Hongyan Du
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
57
|
Kefeli M, Yildiz L, Celik H, Tosun M, Karagoz F. UbcH10 Expression in Benign, Hyperplastic, and Malignant Endometrial Curetted Materials. Int J Surg Pathol 2012; 20:360-366. [DOI: 10.1177/1066896912437414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The aim of this study was to investigate the role of UbcH10 expression in the differential diagnosis of benign, hyperplastic, and malignant endometrial tissues and also the relationship of UbcH10 with the clinicopathologic parameters of malignant cases. A tissue microarray was performed for 81 endometrial curettage biopsies, which histological diagnosis had demonstrated to be 13 cases of proliferative endometrium, 7 cases of disordered proliferative endometrium, 5 cases of complex atypical hyperplasia, 24 cases of nonatypical hyperplasia, and 32 cases of endometrioid adenocarcinoma. Expression of UbcH10 was assessed by immunohistochemistry. When groups were compared according to UbcH10 percentages and scores, a statistically significant difference was found only between the carcinoma group and the other groups, except the complex atypical hyperplasia group ( P < .05). In the malignant group, UbcH10 percentages and scores were only significantly related to age. There was no significant association between UbcH10 expression and tumor grade and stage. Overexpression of UbcH10 may be a useful indicator of endometrial carcinoma. UbcH10 also deserves further evaluation in the detection of prognostic mean and also for its role in endometrial carcinogenesis.
Collapse
Affiliation(s)
| | | | - Handan Celik
- Ondokuz Mayis University, Kurupelit, Samsun, Turkey
| | | | | |
Collapse
|
58
|
Aguado-Llera D, Doménech R, Marenchino M, Vidal M, Neira JL. Non-canonical residues of the marginally stable monomeric ubiquitin conjugase from goldfish are involved in binding to the C terminus of Ring 1B. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:991-1001. [PMID: 22609416 DOI: 10.1016/j.bbapap.2012.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/04/2012] [Accepted: 05/09/2012] [Indexed: 06/01/2023]
Abstract
E2 ubiquitin conjugases are ~20kDa enzymes involved in ubiquitination processes in eukaryotes. The E2s are responsible for the transference of ubiquitin (Ub) to E3 enzymes, which finally transfer Ub to diverse target proteins, labelling them for degradation, localization and regulation. Although their functions are relatively well-characterized, their conformational stabilities are poorly known. In this work, we have used, as a model for our biophysical and binding studies, the E2-C from Carassius auratus (goldfish), a homologue of the human ubiquitin conjugase UbcH10. E2-C(ca) was a monomeric protein with an elongated shape; moreover, the protein was only marginally stable within a narrow pH range (from 6.0 to 8.0). We also explored the binding of E2-C(ca) towards non-canonical E3 ligases. Binding of E2-C(ca) to the C terminus of murine Ring 1B (C-Ring1B), which does not contain the RING finger of the whole Ring1B, occurred with an affinity of ~400nM, as shown by fluorescence and ITC. Furthermore, binding of E2-C(ca) to C-Ring1B did not occur at its canonical E2-loops, since residues M43 and F53, far away from those loops, were involved in binding. Thus, the C-Ring1B-interacting region of E2-C(ca) comprises the first β-strand and nearby residues.
Collapse
Affiliation(s)
- David Aguado-Llera
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante, Spain
| | | | | | | | | |
Collapse
|
59
|
Bose MV, Gopisetty G, Selvaluxmy G, Rajkumar T. Dominant negative Ubiquitin-conjugating enzyme E2C sensitizes cervical cancer cells to radiation. Int J Radiat Biol 2012; 88:629-34. [PMID: 22694363 DOI: 10.3109/09553002.2012.702299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To find the radiation sensitivity of human cervical carcinoma cell lines and to investigate the effect of the dominant negative-Ubiquitin-conjugating enzyme E2C (DN-UBE2C) on cell proliferation and radiation response. MATERIALS AND METHODS Radiation sensitivities of human cervical cell lines (SiHa, HeLa, BU25TK, ME 180, and C33A) were analyzed by assessing their cell survival after irradiation by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Soft agar cloning assay, growth curve and radiation response of DN-UBE2C stably transfected SiHa and HeLa cell lines were assessed by MTS assay and Clonogenic assay. RESULTS Difference in sensitivity to radiation was observed among the cervical cancer cell lines studied. SiHa was found to be the most resistant cell line whereas C33A cells were the most sensitive. The growth rate of SiHa and HeLa transfected with DN-UBE2C was significantly reduced compared to vector control. Furthermore, DN-UBE2C-mediated radiosensitivity was correlated with a significant decrease in resistance to radiation by SiHa and HeLa cells after transfection with the DN-UBE2C when compared to control cultures. CONCLUSION These results suggested that the Ubiquitin-conjugating enzyme E2C (UBE2C) gene is a potential therapeutic target for cervical cancer treatment.
Collapse
Affiliation(s)
- Mayil Vahanan Bose
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, India
| | | | | | | |
Collapse
|
60
|
Kouniavsky G, Zeiger MA. The quest for diagnostic molecular markers for thyroid nodules with indeterminate or suspicious cytology. J Surg Oncol 2012; 105:438-43. [PMID: 22441894 DOI: 10.1002/jso.21935] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thyroid nodules are very common and fine needle aspiration (FNA) is a very sensitive means of diagnosis. However, its limitations include the fact that the cytology reports are often indeterminate or suspicious only. The quest for adjunctive measures to improve its specificity has been ongoing for decades, but significant results have remained elusive. The potential use of diagnostic molecular markers appears to be the most promising area of research at this time.
Collapse
Affiliation(s)
- Guennadi Kouniavsky
- Division of Endocrine Surgery, Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | |
Collapse
|
61
|
Perrotta I, Bruno L, Maltese L, Russo E, Donato A, Donato G. Immunohistochemical analysis of the ubiquitin-conjugating enzyme UbcH10 in lung cancer: a useful tool for diagnosis and therapy. J Histochem Cytochem 2012; 60:359-65. [PMID: 22388643 PMCID: PMC3351232 DOI: 10.1369/0022155412439717] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ubiquitin-conjugating enzyme (UbcH10) plays important roles in the regulation of cell cycle progression. Recently, UbcH10 expression has been demonstrated in several human and experimental tumors, and proteasome inhibitors have been tested in trials for pulmonary neoplasms; however, the underlying mechanisms as well as the clinicopathological relevance of UbcH10 in the genesis and progression of lung cancer remain largely unknown. Therefore, the authors evaluated the expression of UbcH10 in human lung cancer and evaluated its possible diagnostic and prognostic use. They found that most cases of lung adenocarcinoma, squamous cell carcinoma, and large cell and small cell carcinoma were positive for UbcH10. The expression levels of UbcH10 progressively increased with decreasing degree of tumor differentiation. There was a statistically significant difference of UbcH10 positivity between grade I/III of lung adenocarcinoma (p=0.013) and squamous cell carcinoma (p=0.002). No significant differences were found between histological types (p=0.072). In the case of cell blocks prepared from pleural effusions, inflammatory and reactive mesothelial elements did not show appreciable UbcH10 expression, whereas neoplastic cells exhibited clear UbcH10 positivity. The results suggest that UbcH10 might represent a new and promising diagnostic and prognostic marker in both histologic and cytologic specimens of lung cancer.
Collapse
Affiliation(s)
- Ida Perrotta
- Department of Ecology, University of Calabria, Rende, Italy.
| | | | | | | | | | | |
Collapse
|
62
|
Zeng X, King RW. An APC/C inhibitor stabilizes cyclin B1 by prematurely terminating ubiquitination. Nat Chem Biol 2012; 8:383-92. [PMID: 22366722 PMCID: PMC3307893 DOI: 10.1038/nchembio.801] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/13/2012] [Indexed: 02/04/2023]
Abstract
The anaphase-promoting complex/cyclosome (APC) is a ubiquitin ligase that is required for exit from mitosis. We previously showed that tosyl arginine methyl ester (TAME) inhibits APC-dependent proteolysis by competing with the C-terminal isoleucine-arginine tail of the APC activator cell division cycle 20 (Cdc20) for APC binding. Here we show that in the absence of APC substrates, TAME ejects Cdc20 from the APC by promoting Cdc20 autoubiquitination in its N-terminal region. Cyclin B1 antagonizes TAME's effect by promoting binding of free Cdc20 to the APC and by suppressing Cdc20 autoubiquitination. Nevertheless, TAME stabilizes cyclin B1 in Xenopus extracts by two mechanisms. First, it reduces the k(cat) of the APC-Cdc20-cyclin B1 complex without affecting the K(m), slowing the initial ubiquitination of unmodified cyclin B1. Second, as cyclin B1 becomes ubiquitinated, it loses its ability to promote Cdc20 binding to the APC in the presence of TAME. As a result, cyclin B1 ubiquitination terminates before reaching the threshold necessary for proteolysis.
Collapse
Affiliation(s)
- Xing Zeng
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
63
|
Hao Z, Zhang H, Cowell J. Ubiquitin-conjugating enzyme UBE2C: molecular biology, role in tumorigenesis, and potential as a biomarker. Tumour Biol 2011; 33:723-30. [PMID: 22170434 DOI: 10.1007/s13277-011-0291-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/01/2011] [Indexed: 01/28/2023] Open
Abstract
Ubiquitin-conjugating enzyme 2C (UBE2C) participates in cell cycle progression and checkpoint control by targeted degradation of short-lived proteins. As a conjugating enzyme, it directs polyubiquitination to preferred lysine in the substrates. In addition to its well-known role in cyclin B destruction that is essential for exit from mitosis, UBE2C also plays an important role in mitotic spindle checkpoint control. Cells overexpressing UBE2C ignore the mitotic spindle checkpoint signals and lose genomic stability, which is a hallmark of cancer. UBE2C expression is upregulated upon malignant transformation, and amplification of UBE2C is often seen at the chromosome level in cancers in a manner similar to c-Myc, which is directly upstream of UBE2C. UBE2C levels are upregulated in a wide range of solid tumors and hematological malignancies. The level of expression correlates with the aggressiveness of the tumor. High UBE2C expression is predictive of poor survival and perhaps high risk for relapse. UBE2C immunochemistry may be integrated into the diagnosis of thyroid malignancy and gliomas. This minireview summarizes what is known about the function of UBE2C focusing on its role in the regulation of spindle assembly checkpoint, its part in tumorigenesis, and its potential as a tumor marker for various cancers.
Collapse
Affiliation(s)
- Zhonglin Hao
- Georgia Health Sciences University Cancer Center, Georgia Health Sciences University, 1120 15th street, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
64
|
Müller GA, Quaas M, Schümann M, Krause E, Padi M, Fischer M, Litovchick L, DeCaprio JA, Engeland K. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes. Nucleic Acids Res 2011; 40:1561-78. [PMID: 22064854 PMCID: PMC3287175 DOI: 10.1093/nar/gkr793] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G(0)/G(1). It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G(0). Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G(0)/G(1), but also for activation in S, G(2) and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle.
Collapse
Affiliation(s)
- Gerd A Müller
- Molecular Oncology, Medical School, University of Leipzig, Semmelweisstrasse 14, 04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Psyrri A, Kalogeras KT, Kronenwett R, Wirtz RM, Batistatou A, Bournakis E, Timotheadou E, Gogas H, Aravantinos G, Christodoulou C, Makatsoris T, Linardou H, Pectasides D, Pavlidis N, Economopoulos T, Fountzilas G. Prognostic significance of UBE2C mRNA expression in high-risk early breast cancer. A Hellenic Cooperative Oncology Group (HeCOG) Study. Ann Oncol 2011; 23:1422-7. [PMID: 22056852 DOI: 10.1093/annonc/mdr527] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The ubiquitin-proteasome system (UPS) plays a pivotal role in tumorigenesis. Components of the UPS have recently been implicated in breast cancer progression. In the present study, we sought to explore the prognostic and/or predictive significance of UBE2C messenger RNA (mRNA) expression on disease-free survival (DFS) and overall survival (OS) in high-risk operable breast cancer patients. METHODS Five hundred and ninety-five high-risk breast cancer patients were treated in a two-arm trial evaluating postoperative, dose-dense sequential chemotherapy with epirubicin followed by CMF (cyclophosphamide, methotrexate and 5-fluorouracil) with or without paclitaxel (Taxol). RNA was extracted from 313 formalin-fixed primary tumor tissue samples followed by one-step quantitative RT-PCR for assessment of mRNA expression of UBE2C. RESULTS High UBE2C mRNA expression was associated with poor DFS (Wald's P = 0.003) and OS (Wald's P = 0.005). High tumor grade, as well as high Ki67 protein expression, was more frequent in the high-expression group of UBE2C. Results of the Cox multivariate regression analysis revealed that high UBE2C mRNA expression remained an independent adverse prognostic factor for relapse (P = 0.037) and death (P = 0.05). CONCLUSIONS High UBE2C mRNA expression was found to be of adverse prognostic significance in high-risk breast cancer patients. These findings need to be validated in larger cohorts.
Collapse
Affiliation(s)
- A Psyrri
- Second Department of Internal Medicine, Attikon University Hospital, Athens.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Nilsson J. Cdc20 control of cell fate during prolonged mitotic arrest: do Cdc20 protein levels affect cell fate in response to antimitotic compounds? Bioessays 2011; 33:903-9. [PMID: 22045620 DOI: 10.1002/bies.201100094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The fate of cells arrested in mitosis by antimitotic compounds is complex but is influenced by competition between pathways promoting cell death and pathways promoting mitotic exit. As components of both of these pathways are regulated by Cdc20-dependent degradation, I hypothesize that variations in Cdc20 protein levels, rather than mutations in checkpoint genes, could affect cell fate during prolonged mitotic arrest. This hypothesis is supported by experiments where manipulation of Cdc20 levels affects the response to antimitotic compounds. The observed differences in Cdc20 levels between cell lines likely reflects differences in the rate of synthesis or degradation of the protein; therefore, understanding these pathways at a molecular level could pave the way for modulating the activity of Cdc20, in turn presenting novel therapeutic possibilities.
Collapse
Affiliation(s)
- Jakob Nilsson
- Faculty of Health Sciences, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
67
|
Wickliffe KE, Williamson A, Meyer HJ, Kelly A, Rape M. K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 2011; 21:656-63. [PMID: 21978762 DOI: 10.1016/j.tcb.2011.08.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/24/2011] [Accepted: 08/31/2011] [Indexed: 02/07/2023]
Abstract
Modification of proteins with ubiquitin chains is an essential regulatory event in cell cycle control. Differences in the connectivity of ubiquitin chains are believed to result in distinct functional consequences for the modified proteins. Among eight possible homogenous chain types, canonical Lys48-linked ubiquitin chains have long been recognized to drive the proteasomal degradation of cell cycle regulators, and Lys48 is the only essential lysine residue of ubiquitin in yeast. It thus came as a surprise that in higher eukaryotes atypical K11-linked ubiquitin chains regulate the substrates of the anaphase-promoting complex and control progression through mitosis. We discuss recent findings that shed light on the assembly and function of K11-linked chains during cell division.
Collapse
Affiliation(s)
- Katherine E Wickliffe
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, USA
| | | | | | | | | |
Collapse
|
68
|
Meyer HJ, Rape M. Processive ubiquitin chain formation by the anaphase-promoting complex. Semin Cell Dev Biol 2011; 22:544-50. [PMID: 21477659 PMCID: PMC3201729 DOI: 10.1016/j.semcdb.2011.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Progression through mitosis requires the sequential ubiquitination of cell cycle regulators by the anaphase-promoting complex, resulting in their proteasomal degradation. Although several mechanisms contribute to APC/C regulation during mitosis, the APC/C is able to discriminate between its many substrates by exploiting differences in the processivity of ubiquitin chain assembly. Here, we discuss how the APC/C achieves processive ubiquitin chain formation to trigger the sequential degradation of cell cycle regulators during mitosis.
Collapse
Affiliation(s)
- Hermann-Josef Meyer
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720
| | - Michael Rape
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720
| |
Collapse
|
69
|
Lößner C, Meier J, Warnken U, Rogers MA, Lichter P, Pscherer A, Schnölzer M. Quantitative proteomics identify novel miR-155 target proteins. PLoS One 2011; 6:e22146. [PMID: 21799781 PMCID: PMC3143118 DOI: 10.1371/journal.pone.0022146] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 06/17/2011] [Indexed: 12/02/2022] Open
Abstract
Background MicroRNAs are 22 nucleotides long non-coding RNAs and exert their function either by transcriptional or translational inhibition. Although many microRNA profiles in different tissues and disease states have already been discovered, only little is known about their target proteins. The microRNA miR-155 is deregulated in many diseases, including cancer, where it might function as an oncoMir. Methodology/Principal Findings We employed a proteomics technique called “stable isotope labelling by amino acids in cell culture” (SILAC) allowing relative quantification to reliably identify target proteins of miR-155. Using SILAC, we identified 46 putative miR-155 target proteins, some of which were previously reported. With luciferase reporter assays, CKAP5 was confirmed as a new target of miR-155. Functional annotation of miR-155 target proteins pointed to a role in cell cycle regulation. Conclusions/Significance To the best of our knowledge we have investigated for the first time miR-155 target proteins in the HEK293T cell line in large scale. In addition, by comparing our results to previously identified miR-155 target proteins in other cell lines, we provided further evidence for the cell line specificity of microRNAs.
Collapse
Affiliation(s)
- Christopher Lößner
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Meier
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael A. Rogers
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin Pscherer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
70
|
|
71
|
Bavi P, Uddin S, Ahmed M, Jehan Z, Bu R, Abubaker J, Sultana M, Al-Sanea N, Abduljabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Prabhakaran S, Hussain AR, Al-Kuraya KS. Bortezomib stabilizes mitotic cyclins and prevents cell cycle progression via inhibition of UBE2C in colorectal carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2109-2120. [PMID: 21514426 PMCID: PMC3081207 DOI: 10.1016/j.ajpath.2011.01.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 01/06/2011] [Accepted: 01/25/2011] [Indexed: 12/12/2022]
Abstract
Substantial evidence implicates the ubiquitin-conjugating enzyme E2C (UBE2C) gene, in several human cancers, including colorectal carcinoma (CRC). We therefore investigated the prognostic value of UBE2C alterations in CRC and UBE2C signaling in CRC cell lines. UBE2C protein expression and UBE2C gene copy number were evaluated on clinical samples by immunohistochemistry and fluorescence in situ hybridization in a TMA format. The effect of the proteasome inhibitor bortezomib and small-interfering RNA knockdown was assessed by apoptotic assays and immunoblotting. UBE2C dysregulation was associated with proliferative marker Ki-67, accumulation of cyclin A and B1, and a poor overall survival. UBE2C expression was an independent prognostic marker in early-stage (I and II) CRC. UBE2C depletion resulted in suppression of cellular growth and accumulation of cyclin A and B1. In vitro, bortezomib treatment of CRC cells caused inhibition of cell viability via down-regulation of UBE2C. UBE2C knockdown by bortezomib or transfection with specific small-interfering RNA against UBE2C also caused cells to be arrested at the G2/M level, leading to accumulation of cyclin A and cyclin B1. In vivo, a significant reduction in tumor volume and weight was noted in mice treated with a combination of subtoxic doses of oxaliplatin and bortezomib compared with treatment with oxaliplatin or bortezomib alone. Altogether, our results suggest that UBE2C and the ubiquitin-proteasome pathway may be potential targets for therapeutic intervention in CRC.
Collapse
Affiliation(s)
- Prashant Bavi
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Shahab Uddin
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maqbool Ahmed
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zeenath Jehan
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rong Bu
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jehad Abubaker
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mehar Sultana
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nasser Al-Sanea
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alaa Abduljabbar
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Luai H. Ashari
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Samar Alhomoud
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Surgery, Colorectal Section, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sarita Prabhakaran
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Azhar R. Hussain
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
72
|
Nath S, Banerjee T, Sen D, Das T, Roychoudhury S. Spindle assembly checkpoint protein Cdc20 transcriptionally activates expression of ubiquitin carrier protein UbcH10. J Biol Chem 2011; 286:15666-77. [PMID: 21454660 DOI: 10.1074/jbc.m110.160671] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures accurate segregation of chromosomes by monitoring kinetochore attachment of spindles during mitosis. Proper progression of mitosis depends on orderly ubiquitination and subsequent degradation of various mitotic inhibitors. At the molecular level, upon removal of SAC, Cdc20 activates E3 ubiquitin ligase anaphase-promoting complex/cyclosome that, along with E2 ubiquitin-conjugating enzyme UbcH10, executes this function. Both Cdc20 and UbcH10 are overexpressed in many cancer types and are associated with defective SAC function leading to chromosomal instability. The precise mechanism of correlated overexpression of these two proteins remains elusive. We show that Cdc20 transcriptionally up-regulates UbcH10 expression. The WD40 domain of Cdc20 is required for this activity. Physical interaction between Cdc20 and anaphase-promoting complex/cyclosome-CBP/p300 complex and its subsequent recruitment to the UBCH10 promoter are involved in this transactivation process. This transcriptional regulatory function of Cdc20 was observed to be cell cycle-specific. We hypothesize that this co-regulated overexpression of both proteins contributes to chromosomal instability.
Collapse
Affiliation(s)
- Somsubhra Nath
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | | | | | | | | |
Collapse
|
73
|
Rajkumar T, Sabitha K, Vijayalakshmi N, Shirley S, Bose MV, Gopal G, Selvaluxmy G. Identification and validation of genes involved in cervical tumourigenesis. BMC Cancer 2011; 11:80. [PMID: 21338529 PMCID: PMC3050856 DOI: 10.1186/1471-2407-11-80] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 02/22/2011] [Indexed: 12/26/2022] Open
Abstract
Background Cervical cancer is the most common cancer among Indian women. This cancer has well defined pre-cancerous stages and evolves over 10-15 years or more. This study was undertaken to identify differentially expressed genes between normal, dysplastic and invasive cervical cancer. Materials and methods A total of 28 invasive cervical cancers, 4 CIN3/CIS, 4 CIN1/CIN2 and 5 Normal cervix samples were studied. We have used microarray technique followed by validation of the significant genes by relative quantitation using Taqman Low Density Array Real Time PCR. Immunohistochemistry was used to study the protein expression of MMP3, UBE2C and p16 in normal, dysplasia and cancers of the cervix. The effect of a dominant negative UBE2C on the growth of the SiHa cells was assessed using a MTT assay. Results Our study, for the first time, has identified 20 genes to be up-regulated and 14 down-regulated in cervical cancers and 5 up-regulated in CIN3. In addition, 26 genes identified by other studies, as to playing a role in cervical cancer, were also confirmed in our study. UBE2C, CCNB1, CCNB2, PLOD2, NUP210, MELK, CDC20 genes were overexpressed in tumours and in CIN3/CIS relative to both Normal and CIN1/CIN2, suggesting that they could have a role to play in the early phase of tumorigenesis. IL8, INDO, ISG15, ISG20, AGRN, DTXL, MMP1, MMP3, CCL18, TOP2A AND STAT1 were found to be upregulated in tumours. Using Immunohistochemistry, we showed over-expression of MMP3, UBE2C and p16 in cancers compared to normal cervical epithelium and varying grades of dysplasia. A dominant negative UBE2C was found to produce growth inhibition in SiHa cells, which over-expresses UBE2C 4 fold more than HEK293 cells. Conclusions Several novel genes were found to be differentially expressed in cervical cancer. MMP3, UBE2C and p16 protein overexpression in cervical cancers was confirmed by immunohistochemistry. These will need to be validated further in a larger series of samples. UBE2C could be evaluated further to assess its potential as a therapeutic target in cervical cancer.
Collapse
|
74
|
McLean JR, Chaix D, Ohi MD, Gould KL. State of the APC/C: organization, function, and structure. Crit Rev Biochem Mol Biol 2011; 46:118-36. [PMID: 21261459 DOI: 10.3109/10409238.2010.541420] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ubiquitin-proteasome protein degradation system is involved in many essential cellular processes including cell cycle regulation, cell differentiation, and the unfolded protein response. The anaphase-promoting complex/cyclosome (APC/C), an evolutionarily conserved E3 ubiquitin ligase, was discovered 15 years ago because of its pivotal role in cyclin degradation and mitotic progression. Since then, we have learned that the APC/C is a very large, complex E3 ligase composed of 13 subunits, yielding a molecular machine of approximately 1 MDa. The intricate regulation of the APC/C is mediated by the Cdc20 family of activators, pseudosubstrate inhibitors, protein kinases and phosphatases and the spindle assembly checkpoint. The large size, complexity, and dynamic nature of the APC/C represent significant obstacles toward high-resolution structural techniques; however, over the last decade, there have been a number of lower resolution APC/C structures determined using single particle electron microscopy. These structures, when combined with data generated from numerous genetic and biochemical studies, have begun to shed light on how APC/C activity is regulated. Here, we discuss the most recent developments in the APC/C field concerning structure, substrate recognition, and catalysis.
Collapse
Affiliation(s)
- Janel R McLean
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
75
|
Compromised spindle assembly checkpoint due to altered expression of Ubch10 and Cdc20 in human papillomavirus type 16 E6- and E7-expressing keratinocytes. J Virol 2010; 84:10956-64. [PMID: 20739533 DOI: 10.1128/jvi.00259-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cells expressing human papillomavirus type 16 (HPV-16) E6 and E7 proteins exhibit deregulation of G2/M genes, allowing bypass of DNA damage arrest signals. Normally, cells with DNA damage that override the G2 damage checkpoint would precociously enter mitosis and ultimately face mitotic catastrophe and apoptotic cell death. However, E6/E7-expressing cells (E6/E7 cells) have the ability to enter and exit mitosis in the presence of DNA damage and continue with the next round of the cell cycle. Little is known about the mechanism that allows these cells to gain entry into and exit from mitosis. Here, we show that in the presence of DNA damage, E6/E7 cells have elevated levels of cyclin B, which would allow entry into mitosis. Also, as required for exit from mitosis, cyclin B is degraded in these cells, permitting initiation of the next round of DNA synthesis and cell cycle progression. Proteasomal degradation of cyclin B by anaphase-promoting complex/cyclosome (APC/C) is, in part, due to elevated levels of the E2-conjugating enzyme, Ubch10, and the substrate recognition protein, Cdc20, of APC/C. Also, in E6/E7 cells with DNA damage, while Cdc20 is complexed with BubR1, indicating an active checkpoint, it is also present in complexes free of BubR1, presumably allowing APC/C activity and slippage through the checkpoint.
Collapse
|
76
|
Kops GJPL, van der Voet M, Manak MS, van Osch MHJ, Naini SM, Brear A, McLeod IX, Hentschel DM, Yates JR, van den Heuvel S, Shah JV. APC16 is a conserved subunit of the anaphase-promoting complex/cyclosome. J Cell Sci 2010; 123:1623-33. [PMID: 20392738 PMCID: PMC2864710 DOI: 10.1242/jcs.061549] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2010] [Indexed: 12/15/2022] Open
Abstract
Error-free chromosome segregation depends on timely activation of the multi-subunit E3 ubiquitin ligase APC/C. Activation of the APC/C initiates chromosome segregation and mitotic exit by targeting critical cell-cycle regulators for destruction. The APC/C is the principle target of the mitotic checkpoint, which prevents segregation while chromosomes are unattached to spindle microtubules. We now report the identification and characterization of APC16, a conserved subunit of the APC/C. APC16 was found in association with tandem-affinity-purified mitotic checkpoint complex protein complexes. APC16 is a bona fide subunit of human APC/C: it is present in APC/C complexes throughout the cell cycle, the phenotype of APC16-depleted cells copies depletion of other APC/C subunits, and APC16 is important for APC/C activity towards mitotic substrates. APC16 sequence homologues can be identified in metazoans, but not fungi, by four conserved primary sequence stretches. We provide evidence that the C. elegans gene K10D2.4 and the D. rerio gene zgc:110659 are functional equivalents of human APC16. Our findings show that APC/C is composed of previously undescribed subunits, and raise the question of why metazoan APC/C is molecularly different from unicellular APC/C.
Collapse
Affiliation(s)
- Geert J. P. L. Kops
- Department of Physiological Chemistry and Cancer Genomics Centre, UMC Utrecht, Utrecht, The Netherlands
| | | | - Michael S. Manak
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Maria H. J. van Osch
- Department of Physiological Chemistry and Cancer Genomics Centre, UMC Utrecht, Utrecht, The Netherlands
| | - Said M. Naini
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Andrea Brear
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Ian X. McLeod
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dirk M. Hentschel
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Jagesh V. Shah
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston MA 02115, USA
| |
Collapse
|
77
|
Chen SM, Jiang CY, Wu JY, Liu B, Chen YJ, Hu CJ, Liu XX. RNA interference-mediated silencing of UBCH10 gene inhibits colorectal cancer cell growthin vitroandin vivo. Clin Exp Pharmacol Physiol 2010. [DOI: 10.1111/j.1440-1681.2010.05348.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
78
|
Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis. PLoS One 2010; 5:e9983. [PMID: 20386695 PMCID: PMC2851616 DOI: 10.1371/journal.pone.0009983] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/07/2010] [Indexed: 01/02/2023] Open
Abstract
Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (>40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r≥0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2.
Collapse
|
79
|
Hershko A. From rabbit reticulocytes to clam oocytes: in search of the system that targets mitotic cyclins for degradation. Mol Biol Cell 2010; 21:1645-7. [PMID: 20335505 PMCID: PMC2869371 DOI: 10.1091/mbc.e09-07-0583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
By the late 1980s, the basic biochemistry of ubiquitin-mediated protein degradation had already been elucidated by studies that used reticulocyte lysates. However, the scope and biological functions of this system remained largely obscure. Therefore, I became interested at that time in the mechanisms by which mitotic cyclins are degraded in exit from mitosis. Using a cell-free system from clam oocytes that faithfully reproduced cell cycle stage-specific degradation of cyclins, we identified in 1995 a large ubiquitin ligase complex that targets mitotic cyclins for degradation. Subsequent studies in many laboratories showed that this ubiquitin ligase, now called the anaphase-promoting complex/cyclosome, has centrally important roles in many aspects of cell cycle control.
Collapse
Affiliation(s)
- Avram Hershko
- Unit of Biochemistry, the Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
80
|
Chen S, Chen Y, Hu C, Jing H, Cao Y, Liu X. Association of clinicopathological features with UbcH10 expression in colorectal cancer. J Cancer Res Clin Oncol 2010; 136:419-26. [PMID: 19779934 DOI: 10.1007/s00432-009-0672-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 08/17/2009] [Indexed: 12/27/2022]
Abstract
PURPOSE UbcH10 is the cancer-related E2 ubiquitin-conjugating enzyme, and its overexpression has been demonstrated in a variety of malignancies. The aim of this study is to investigate the association of UbcH10 gene expression with the carcinogenesis and tumor progression of colorectal cancer. METHODS The expression levels of UbcH10 in human malignant colorectal carcinoma tissues and their adjacent normal tissues were examined using real-time quantitative RT-PCR and immunohistochemical analysis. The correlations of UbcH10 expression to the clinicalpathologic characteristics of the colorectal cancer were analyzed. Cell proliferation and Matrigel invasion assays were performed in HT-29 cells transfected with UbcH10 expression plasmid pcDNA3.1-UbcH10, UbcH10 RNA interference vector pUbcH10-RNAi as well as their control vectors. RESULTS Our study demonstrated that the expression of UbcH10 in colorectal carcinoma tissues was significantly higher than that in non-cancerous tissues (P < 0.01), and the UbcH10 overexpression was related to the degree of tumor differentiation and lymph node metastasis of colorectal cancer patients (P < 0.05). In vitro, the overexpression of UbcH10 promoted cell proliferation and tumor invasiveness, but the downregulation of UbcH10 expression significantly reduced the growth rate and the invasiveness activity of tumor cell line. CONCLUSIONS Our study suggests that the overexpression of UbcH10 gene plays a critical role in the carcinogenesis and tumor progression of colorectal cancer. It may be a new marker in diagnosis and prognosis of colorectal cancer, and the inhibition of UbcH10 may be a therapeutic potential for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Shimin Chen
- Institute of Biochemistry and Molecular Biology, Shandong University School of Medicine, 44#, Wenhua Xi Road, 250012, Jinan, Shandong, China
| | | | | | | | | | | |
Collapse
|
81
|
Oliveira RA, Hamilton RS, Pauli A, Davis I, Nasmyth K. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat Cell Biol 2010; 12:185-92. [PMID: 20081838 PMCID: PMC3284228 DOI: 10.1038/ncb2018] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/20/2009] [Indexed: 12/15/2022]
Abstract
The metaphase-anaphase transition is orchestrated through proteolysis of numerous proteins by a ubiquitin protein ligase called the anaphase-promoting complex or cyclosome (APC/C). A crucial aspect of this process is sister chromatid separation, which is thought to be mediated by separase, a thiol protease activated by the APC/C. Separase cleaves cohesin, a ring-shaped complex that entraps sister DNAs. It is a matter of debate whether cohesin-independent forces also contribute to sister chromatid cohesion. Using 4D live-cell imaging of Drosophila melanogaster syncytial embryos blocked in metaphase (via APC/C inhibition), we show that artificial cohesin cleavage is sufficient to trigger chromosome disjunction. This is nevertheless insufficient for correct chromosome segregation. Kinetochore-microtubule attachments are rapidly destabilized by the loss of tension caused by cohesin cleavage in the presence of high Cdk1 (cyclin-dependent kinase 1) activity, as occurs when the APC/C cannot destroy mitotic cyclins. Metaphase chromosomes undergo a bona fide anaphase when cohesin cleavage is combined with Cdk1 inhibition. We conclude that only two key events, opening of cohesin rings and downregulation of Cdk1, are sufficient to drive proper segregation of chromosomes in anaphase.
Collapse
Affiliation(s)
- Raquel A Oliveira
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | | | | | | |
Collapse
|
82
|
Jiang L, Bao Y, Luo C, Hu G, Huang C, Ding X, Sun K, Lu Y. Knockdown of ubiquitin-conjugating enzyme E2C/UbcH10 expression by RNA interference inhibits glioma cell proliferation and enhances cell apoptosis in vitro. J Cancer Res Clin Oncol 2010; 136:211-7. [PMID: 19657671 DOI: 10.1007/s00432-009-0651-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Accepted: 07/17/2009] [Indexed: 12/18/2022]
Abstract
PURPOSE To address the role of ubiquitin-conjugating enzyme, E2C/UbcH10, in astrocytic carcinogenesis. METHODS Expression pattern of UbcH10 in U251 glioma cells was evaluated by immunohistochemistry and western blot. RNA interference was employed to downregulate UbcH10 expression in U251 cell line. The effect of UbcH10 silencing on cell proliferation was assessed by MTT assay and cell cycle analysis. Cell apoptosis was determined by flow cytometry, TUNEL staining and western blot. RESULTS Levels of UbcH10 protein were significantly upregulated in U251 cells compared with normal brain tissues. Marked immunoreactivity for UbcH10 was demonstrated in the cytoplasm of U251 glioma cells, especially in the mitotic cells. The growth rate of U251 cells was significantly inhibited by depletion of UbcH10 by short interference RNA. Further, UbcH10 RNAi induced apoptosis through induction of Bax and p53, downregulation of Bcl-2 and G2/M arrest of the cell cycle. CONCLUSION These data imply that knocking-down UbcH10 protein expression may represent a potential therapeutic option for glioma.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, No. 415 FengYang Road, 200003, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Troncone G, Guerriero E, Pallante P, Pallante P, Berlingieri MT, Ferraro A, Del Vecchio L, Gorrese M, Mariotti E, Iaccarino A, Palmieri EA, Zeppa P, Palombini L, Fusco A. UbcH10 expression in human lymphomas. Histopathology 2009; 54:731-40. [PMID: 19438748 DOI: 10.1111/j.1365-2559.2009.03296.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS The UbcH10 ubiquitin-conjugating enzyme plays a key role in regulating mitosis completion. We have previously reported that UbcH10 overexpression is associated with aggressive thyroid, ovarian and breast carcinomas. The aim of this study was to investigate UbcH10 expression in human lymphomas. METHODS AND RESULTS Cell lines and tissue samples of Hodgkin's lymphoma (HL) and of non-Hodgkin's lymphoma (NHL) were screened for UbcH10 expression at transcriptional and translational levels. UbcH10 expression was related to the grade of malignancy. In fact, it was low in indolent tumours and high in a variety of HL and NHL cell lines and in aggressive lymphomas. It was highest in Burkitt's lymphoma, as shown by quantitative real-time polymerase chain reaction and by tissue microarray immunohistochemistry. Flow cytometry of cell lines confirmed that UbcH10 expression is cell-cycle dependent, steadily increasing in S phase, peaking in G(2)/M phase and dramatically decreasing in G(0)/G(1) phases. We also showed that UbcH10 plays a relevant role in lymphoid cell proliferation, since blocking of its synthesis by RNA interference inhibited cell growth. CONCLUSIONS Taken together, these results indicate that UbcH10 is a novel lymphoid proliferation marker encompassing the cell cycle window associated with exit from mitosis. Its overexpression in aggressive lymphomas suggests that UbcH10 could be a therapeutic target in this setting.
Collapse
Affiliation(s)
- Giancarlo Troncone
- Dipartimento di Scienze Biomorfologiche e Funzionali, University of Naples Federico II, Napoli, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Ying M, Zhan Z, Wang W, Chen D. Origin and evolution of ubiquitin-conjugating enzymes from Guillardia theta nucleomorph to hominoid. Gene 2009; 447:72-85. [PMID: 19664694 DOI: 10.1016/j.gene.2009.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/24/2009] [Accepted: 07/29/2009] [Indexed: 11/19/2022]
Abstract
The origin of eukaryotic ubiquitin-conjugating enzymes (E2s) can be traced back to the Guillardia theta nucleomorph about 2500 million years ago (Mya). E2s are largely vertically inherited over eukaryotic evolution [Lespinet, O., Wolf, Y.I., Koonin, E.V., Aravind, L., 2002. The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 1048-1059], while mammal E2s experienced evolution of multigene families by gene duplications which have been accompanied by the increase in the species complexity. Because of alternatively splicing, primate-specific expansions of E2s happened once again at a transcriptional level. Both of them resulted in increasing genomic complexity and diversity of primate E2 proteomic function. The evolutionary processes of human E2 gene structure during expansions were accompanied by exon duplication and exonization of intronic sequences. Exonizations of Transposable Elements (TEs) in UBE2D3, UBE2L3 and UBE2V1 genes from primates indicate that exaptation of TEs also plays important roles in the structural innovation of primate-specific E2s and may create alternative splicing isoforms at a transcriptional level. Estimates for the ratio of dN/dS suggest that a strong purifying selection had acted upon protein-coding sequences of their orthologous UBE2D2, UBE2A, UBE2N, UBE2I and Rbx1 genes from animals, plants and fungi. The similar rates of synonymous substitutions are in accordance with the neutral mutation-random drift hypothesis of molecular evolution. Systematic detection of the origin and evolution of E2s, analyzing the evolution of E2 multigene families by gene duplications and the evolutionary processes of E2s during expansions, and testing its evolutionary force using E2s from distant phylogenetic lineages may advance our distinguishing of ancestral E2s from created E2s, and reveal previously unknown relationships between E2s and metazoan complexity. Analysis of these conserved proteins provides strong support for a close relationship between social amoeba and eukaryote, choanoflagellate and metazoan, and for the central roles of social amoeba and choanoflagellate in the origin and evolution of eukaryote and metazoan. Retracing the different stages of primate E2 exonization by monitoring genomic events over 63 Myr of primate evolution will advance our understanding of how TEs dynamically modified primate transcriptome and proteome in the past, and continue to do so.
Collapse
Affiliation(s)
- Muying Ying
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | |
Collapse
|
85
|
Wickliffe K, Williamson A, Jin L, Rape M. The multiple layers of ubiquitin-dependent cell cycle control. Chem Rev 2009; 109:1537-48. [PMID: 19146381 PMCID: PMC3206288 DOI: 10.1021/cr800414e] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Katherine Wickliffe
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720, USA
| | - Adam Williamson
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720, USA
| | - Lingyan Jin
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720, USA
| | - Michael Rape
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720, USA
| |
Collapse
|
86
|
Fujita T, Ikeda H, Taira N, Hatoh S, Naito M, Doihara H. Overexpression of UbcH10 alternates the cell cycle profile and accelerate the tumor proliferation in colon cancer. BMC Cancer 2009; 9:87. [PMID: 19302711 PMCID: PMC2666760 DOI: 10.1186/1471-2407-9-87] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 03/21/2009] [Indexed: 12/03/2022] Open
Abstract
Background UbcH10 participates in proper metaphase to anaphase transition, and abrogation of UbcH10 results in the premature separation of sister chromatids. To assess the potential role of UbcH10 in colon cancer progression, we analyzed the clinicopathological relevance of UbcH10 in colon cancer. Methods We firstly screened the expression profile of UbcH10 in various types of cancer tissues as well as cell lines. Thereafter, using the colon cancer cells line, we manipulated the expression of UbcH10 and evaluated the cell cycle profile and cellular proliferations. Furthermore, the clinicopathological significance of UbcH10 was immunohistologically evaluated in patients with colon cancer. Statistical analysis was performed using the student's t-test and Chi-square test. Results Using the colon cancer cells, depletion of UbcH10 resulted in suppression of cellular growth whereas overexpression of UbcH10 promoted the cellular growth and oncogenic cellular growth. Mitotic population was markedly alternated by the manipulation of UbcH10 expression. Immunohistochemical analysis indicated that UbcH10 was significantly higher in colon cancer tissue compared with normal colon epithelia. Furthermore, the clinicopathological evaluation revealed that UbcH10 was associated with high-grade histological tumors. Conclusion The results show the clinicopathological significance of UbcH10 in the progression of colon cancer. Thus UbcH10 may act as a novel biomarker in patients with colon cancer.
Collapse
Affiliation(s)
- Takeo Fujita
- Department of Cancer and Thoracic Surgery, Okayama University School of Medicine, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
87
|
Fujita T, Ikeda H, Kawasaki K, Taira N, Ogasawara Y, Nakagawara A, Doihara H. Clinicopathological relevance of UbcH10 in breast cancer. Cancer Sci 2009; 100:238-48. [PMID: 19038004 PMCID: PMC11159056 DOI: 10.1111/j.1349-7006.2008.01026.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/04/2008] [Accepted: 10/09/2008] [Indexed: 11/28/2022] Open
Abstract
Abrogated mitotic progression is a common hallmark of cancer. UbcH10, one of the components of the ubiquitin/proteasome pathway, plays a pivotal role in the regulation of mitotic progression. Abnormal UbcH10 activity is reported in certain types of human cancers; its overexpression is occasionally encountered in cancerous tissue compared with adjacent normal tissue. Current studies have suggested the critical role of UbcH10 in the spindle assembly checkpoint and the subsequent accurate separation of sister chromatids, which is orchestrated by a series of molecular interactions governed by the complex and diverse cell cycle machinery. To validate the potential role of UbcH10 in cell proliferation in cancer, we have analyzed the clinicopathological relevance of UbcH10 in progression of breast cancer using a combinatorial approach of human tumor arrays and biochemical analyses. Our results show that the percentage of tested samples which stained positive for UbcH10 in breast cancer tissues is significantly higher compared to the adjacent nonmalignant tissue. Furthermore, results from the clinicopathological analysis have revealed that elevated expression of UbcH10 is associated with higher histological grade tumors. In addition, depletion of UbcH10 by RNA interference in breast cancer cells resulted in decreased cellular proliferation, while overexpression of UbcH10 significantly enhanced cellular growth in breast cancer. Our results suggest a pathological correlation between UbcH10 and cell proliferation in breast cancer. Thus, aberrant UbcH10 activity may induce the dysfunction of proper cell cycle progression and result in the aggressive behavior of tumor cells in patients with breast cancer.
Collapse
Affiliation(s)
- Takeo Fujita
- Department of Cancer and Thoracic Surgery, Okayama University School of Medicine, 2-5-1 Shikata-cho, Okayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
88
|
Ibrahim B, Schmitt E, Dittrich P, Diekmann S. In silico study of kinetochore control, amplification, and inhibition effects in MCC assembly. Biosystems 2009; 95:35-50. [DOI: 10.1016/j.biosystems.2008.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 06/16/2008] [Accepted: 06/24/2008] [Indexed: 02/07/2023]
|
89
|
Chakraborty P, Wang Y, Wei JH, van Deursen J, Yu H, Malureanu L, Dasso M, Forbes DJ, Levy DE, Seemann J, Fontoura BM. Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev Cell 2008; 15:657-67. [PMID: 19000832 PMCID: PMC2835575 DOI: 10.1016/j.devcel.2008.08.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Revised: 07/13/2008] [Accepted: 08/28/2008] [Indexed: 01/09/2023]
Abstract
The Nup107-160 complex, the largest subunit of the nuclear pore, is multifunctional. It mediates mRNA export in interphase, and has roles in kinetochore function, spindle assembly, and postmitotic nuclear pore assembly. We report here that the levels of constituents of the Nup107-160 complex are coordinately cell cycle-regulated. At mitosis, however, a member of the complex, Nup96, is preferentially downregulated. This occurs via the ubiquitin-proteasome pathway. When the levels of Nup96 are kept high, a significant delay in G1/S progression occurs. Conversely, in cells of Nup96(+/-) mice, which express low levels of Nup96, cell cycle progression is accelerated. These lowered levels of Nup96 yield specific defects in nuclear export of certain mRNAs and protein expression, among which are key cell cycle regulators. Thus, Nup96 levels regulate differential gene expression in a phase-specific manner, setting the stage for proper cell cycle progression.
Collapse
Affiliation(s)
- Papia Chakraborty
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yaming Wang
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Jen-Hsuan Wei
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan van Deursen
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Hongtao Yu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Liviu Malureanu
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, NICHD, NIH, Bethesda, MD 20892, USA
| | - Douglass J. Forbes
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - David E. Levy
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Beatriz M.A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
90
|
van Leuken R, Clijsters L, Wolthuis R. To cell cycle, swing the APC/C. Biochim Biophys Acta Rev Cancer 2008; 1786:49-59. [DOI: 10.1016/j.bbcan.2008.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/05/2008] [Accepted: 05/13/2008] [Indexed: 11/30/2022]
|
91
|
Summers MK, Pan B, Mukhyala K, Jackson PK. The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol Cell 2008; 31:544-556. [PMID: 18722180 PMCID: PMC2813190 DOI: 10.1016/j.molcel.2008.07.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 04/09/2008] [Accepted: 07/01/2008] [Indexed: 01/06/2023]
Abstract
In vitro, the anaphase-promoting complex (APC) E3 ligase functions with E2 ubiquitin-conjugating enzymes of the E2-C and Ubc4/5 families to ubiquitinate substrates. However, only the use of the E2-C family, notably UbcH10, is genetically well validated. Here, we biochemically demonstrate preferential use of UbcH10 by the APC, specified by the E2 core domain. Importantly, an additional E2-E3 interaction mediated by the N-terminal extension of UbcH10 regulates APC activity. Mutating the highly conserved N terminus increases substrate ubiquitination and the number of substrate lysines targeted, allows ubiquitination of APC substrates lacking their destruction boxes, increases resistance to the APC inhibitors Emi1 and BubR1 in vitro, and bypasses the spindle checkpoint in vivo. Fusion of the UbcH10 N terminus to UbcH5 restricts ubiquitination activity but does not direct specific interactions with the APC. Thus, UbcH10 combines a specific E2-E3 interface and regulation via its N-terminal extension to limit APC activity for substrate selection and checkpoint control.
Collapse
Affiliation(s)
- Matthew K Summers
- Department of Cellular Regulation, Genentech Inc., South San Francisco, CA 94080, USA
| | - Borlan Pan
- Department of Protein Engineering, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kiran Mukhyala
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Peter K Jackson
- Department of Cellular Regulation, Genentech Inc., South San Francisco, CA 94080, USA; Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94308, USA.
| |
Collapse
|
92
|
Stoddard FR, Brooks AD, Eskin BA, Johannes GJ. Iodine alters gene expression in the MCF7 breast cancer cell line: evidence for an anti-estrogen effect of iodine. Int J Med Sci 2008; 5:189-96. [PMID: 18645607 PMCID: PMC2452979 DOI: 10.7150/ijms.5.189] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 06/27/2008] [Indexed: 12/30/2022] Open
Abstract
The protective effects of iodine on breast cancer have been postulated from epidemiologic evidence and described in animal models. The molecular mechanisms responsible have not been identified but laboratory evidence suggests that iodine may inhibit cancer promotion through modulation of the estrogen pathway. To elucidate the role of iodine in breast cancer, the effect of Lugol's iodine solution (5% I(2), 10% KI) on gene expression was analyzed in the estrogen responsive MCF-7 breast cancer cell line. Microarray analysis identified 29 genes that were up-regulated and 14 genes that were down-regulated in response to iodine/iodide treatment. The altered genes included several involved in hormone metabolism as well as genes involved in the regulation of cell cycle progression, growth and differentiation. Quantitative RT-PCR confirmed the array data demonstrating that iodine/iodide treatment increased the mRNA levels of several genes involved in estrogen metabolism (CYP1A1, CYP1B1, and AKR1C1) while decreasing the levels of the estrogen responsive genes TFF1 and WISP2. This report presents the results of the first gene array profiling of the response of a breast cancer cell line to iodine treatment. In addition to elucidating our understanding of the effects of iodine/iodide on breast cancer, this work suggests that iodine/iodide may be useful as an adjuvant therapy in the pharmacologic manipulation of the estrogen pathway in women with breast cancer.
Collapse
Affiliation(s)
- Frederick R Stoddard
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | |
Collapse
|
93
|
Jiang L, Huang CG, Lu YC, Luo C, Hu GH, Liu HM, Chen JX, Han HX. Expression of ubiquitin-conjugating enzyme E2C/UbcH10 in astrocytic tumors. Brain Res 2008; 1201:161-6. [PMID: 18331723 DOI: 10.1016/j.brainres.2008.01.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 12/15/2022]
Abstract
UbcH10 is one of the key regulators of cell cycle progression through the mitotic spindle assembly checkpoint pathway. Recently, aberrantly high UbcH10 expression has been demonstrated in a variety of malignancies. However, its role in astrocytic carcinogenesis is not well defined. This study investigated the splice pattern of the UbcH10 gene and its expression status in astrocytomas of different grades. Consequently, UbcH10 splice variant 1 (GenBank accession nos. NM_007019) was detected in astrocytomas and normal brain tissues by RT-PCR and sequence analysis. Expression levels of UbcH10 mRNA were elevated in high- versus low-grade astrocytomas (64.33+/-60.98 vs 8.36+/-8.15, respectively; p=0.000) or normal controls (64.33+/-60.98 vs 1.00+/-1.57, respectively; p=0.000), as determined by quantitative real time PCR analysis. Similarly, immunohistochemistry study showed increased UbcH10 labelling index in high-grade astrocytomas versus low-grade tumors (10.53+/-5.79% vs 4.23+/-2.85%, respectively; p=0.000) or normal controls (10.53+/-5.79% vs 0.0+/-0.0%, respectively; p=0.000) and, a positive correlation between UbcH10 immunoreactivity and Ki-67 immunostaining was also noted (Spearman r=0.63, p<0.001). These data suggest that overexpression of UbcH10 may serve as one important molecular mechanism that underlies the astrocytic carcinogenesis.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Upregulation of topoisomerase IIalpha expression in advanced gallbladder carcinoma: a potential chemotherapeutic target. J Cancer Res Clin Oncol 2008; 134:793-801. [PMID: 18204862 DOI: 10.1007/s00432-007-0348-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Accepted: 12/10/2007] [Indexed: 12/16/2022]
Abstract
PURPOSE The lack of treatment options other than surgical resection results in unfavourable prognosis of advanced gallbladder carcinoma. The aim of this study was to identify cancer-specific cellular targets that would form the basis for some therapeutic approaches for this disease. METHODS Twelve advanced gallbladder carcinoma tissue samples and three samples of normal gallbladder epithelium were screened to identify differentially expressed genes by DNA microarray analysis. The results obtained were validated in an independent sample set by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR). Among the genes picked-up, one molecule, topoisomerase IIalpha (TOPO IIalpha), was further assessed immunohistochemically as a potential chemotherapeutic target, and the growth inhibitory effects of etoposide, doxorubicin and idarubicin, representative TOPO IIalpha inhibitors, on two different gallbladder carcinoma cell lines were compared with that of gemcitabine and 5-fulorouracil. RESULTS Five upregulated genes were identified: four cell cycle-related genes (TOPO IIalpha, cyclin B2, CDC28 protein kinase regulatory subunit 2, ubiquitin-conjugating enzyme E2C) and a metabolism-related gene (gamma-glutamyl hydrolase). Immunohistochemically, TOPO IIalpha was expressed in gallbladder cancer cells, and 16 of 35 cases (46%) had strong TOPO IIalpha expression defined as having a labeling index of >50%. In in vitro growth inhibition assay, etoposide, as well as doxorubicin and idarubicin, was the most effective for OCUG-1 cells that had strong TOPO IIalpha expression, while gemicitabine was the most effective for NOZ cells with weak TOPO IIalpha expression. Etoposide induced apoptosis of OCUG-1 cells. CONCLUSIONS TOPO IIalpha might be an effective chemotherapeutic target in advanced gallbladder carcinoma, especially when it is expressed strongly.
Collapse
|
95
|
Rodrigo-Brenni MC, Morgan DO. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 2007; 130:127-39. [PMID: 17632060 DOI: 10.1016/j.cell.2007.05.027] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 04/09/2007] [Accepted: 05/04/2007] [Indexed: 11/22/2022]
Abstract
The anaphase-promoting complex (APC), or cyclosome, is an E3 ubiquitin-protein ligase that collaborates with E2 ubiquitin-conjugating enzymes to assemble polyubiquitin chains on proteins important for cell-cycle progression. It remains unclear how the APC - or many other E3s - promotes the multiple distinct reactions necessary for chain assembly. We addressed this problem by analyzing APC interactions with different E2s. We screened all budding yeast E2s as APC coenzymes in vitro and found that two, Ubc4 and Ubc1, are the key E2 partners for the APC. These proteins display strikingly different but complementary enzymatic behaviors: Ubc4 supports the rapid monoubiquitination of multiple lysines on APC targets, while Ubc1 catalyzes K48-linked polyubiquitin chain assembly on preattached ubiquitins. Mitotic APC function is lost in yeast strains lacking both Ubc1 and Ubc4. E2-25K, a human homolog of Ubc1, also promotes APC-dependent chain extension on preattached ubiquitins. We propose that sequential E2 proteins catalyze K48-linked polyubiquitination and thus proteasomal destruction of APC targets.
Collapse
|
96
|
Ieta K, Ojima E, Tanaka F, Nakamura Y, Haraguchi N, Mimori K, Inoue H, Kuwano H, Mori M. Identification of overexpressed genes in hepatocellular carcinoma, with special reference toubiquitin-conjugating enzyme E2Cgene expression. Int J Cancer 2007; 121:33-8. [PMID: 17354233 DOI: 10.1002/ijc.22605] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study consisted of 2 aims: (i) to determine genes associated with hepatocellular carcinoma (HCC) by microarray analysis; and (ii) to evaluate the clinicopathological significance of human ubiquitin-conjugating enzyme E2C (Ube2c) found to be overexpressed in HCC from microarray analysis. Laser microdissection and cDNA-microarray were performed to identify genes associated with HCC. We then focused on the Ube2c gene. Using real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR), Ube2c expression status and clinicopathological significance were studied in 65 clinical HCC samples. A number of genes upregulated in HCC cells compared to noncancerous liver cells were identified, one of which was the Ube2c gene. Ube2c gene expression in the cancer tissue was higher than in the corresponding noncancerous tissue in 62 of the 65 cases (95.4%, p < 0.01). Tumors with high Ube2c expression showed higher frequencies of tumor invasion to capsular formation (fc-inf), invasion to portal vein (vp) and tumor de-differentiation (p < 0.05). Patients with high Ube2c expression also showed significantly worse disease-free survival rates than those with low Ube2c expression (p < 0.01). In addition, Ube2c expression was found to be an independent prognostic factor for disease-free survival rate in multivariate analysis. We identified differentially expressed genes between HCC and normal liver tissues. Of those, the Ube2c gene appeared to be associated with HCC progression, and may be useful as a prognostic indicator for HCC patients.
Collapse
Affiliation(s)
- Keisuke Ieta
- Department of Surgery and Molecular Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumihara, Beppu 874-0838, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St. Croix B. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 2007; 11:539-54. [PMID: 17560335 PMCID: PMC2039723 DOI: 10.1016/j.ccr.2007.04.017] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 03/23/2007] [Accepted: 04/24/2007] [Indexed: 01/13/2023]
Abstract
To unravel the normal vasculature transcriptome and determine how it is altered by neighboring malignant cells, we compared gene expression patterns of endothelial cells derived from the blood vessels of eight normal resting tissues, five tumors, and regenerating liver. Organ-specific endothelial genes were readily identified, including 27 from brain. We also identified 25 transcripts overexpressed in tumor versus normal endothelium, including 13 that were not found in the angiogenic endothelium of regenerating liver. Most of the shared angiogenesis genes have expected roles in cell-cycle control, but those specific for tumor endothelium were primarily cell surface molecules of uncertain function. These studies reveal striking differences between physiological and pathological angiogenesis potentially important for the development of tumor-specific, vascular-targeted therapies.
Collapse
Affiliation(s)
- Steven Seaman
- Tumor Angiogenesis Section, Mouse Cancer Genetics Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Janine Stevens
- Tumor Angiogenesis Section, Mouse Cancer Genetics Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Mi Young Yang
- Tumor Angiogenesis Section, Mouse Cancer Genetics Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Daniel Logsdon
- Basic Research Program, SAIC, NCI-Frederick, Frederick, MD 21702, USA
| | - Cari Graff-Cherry
- Basic Research Program, SAIC, NCI-Frederick, Frederick, MD 21702, USA
| | - Brad St. Croix
- Tumor Angiogenesis Section, Mouse Cancer Genetics Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
98
|
Kawata K, Yokoo H, Shimazaki R, Okabe S. Classification of heavy-metal toxicity by human DNA microarray analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:3769-74. [PMID: 17547211 DOI: 10.1021/es062717d] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Microarray technology is proving to be a useful tool to classify undefined environmental toxicants, to investigate underlying mechanisms of toxicity, and to identify candidate toxicant-specific genetic markers by examining global effects of putative toxicants on gene expression profiles. The aim of this study was to evaluate the toxicities of six heavy metals through the comparison with gene expression patterns induced by well-known chemicals. For this purpose, we first identified the genes altered specifically in HepG2 under the exposure of 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), phenol, and N-nitrosodimethylamine (DMN), which were selected as the model chemicals, using DNA microarray. On the basis of the expression profiles of these genes, toxicities of six heavy metals, arsenic, cadmium, nickel, antimony, mercury, and chromium, were evaluated. The specific gene alteration and hierarchical clustering revealed that biological action of six heavy metals was clearly related to that of DMNQ which has been reported to be a reactive oxygen species (ROS) generating chemical and which induced the genes associated with cell proliferative responses. These results suggest that cell proliferative responses which are probably caused by ROS are a major apparent biological action of high-dose heavy metals, supporting the previous reports. Overall, a mechanism-based classification by DNA microarray would be an efficient method for evaluation of toxicities of environmental samples.
Collapse
Affiliation(s)
- Koji Kawata
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo 060-8628, Japan
| | | | | | | |
Collapse
|
99
|
Banerjee S, Brooks WS, Crawford DF. Inactivation of the ubiquitin conjugating enzyme UBE2Q2 causes a prophase arrest and enhanced apoptosis in response to microtubule inhibiting agents. Oncogene 2007; 26:6509-17. [PMID: 17471241 DOI: 10.1038/sj.onc.1210471] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A putative ubiquitin conjugating enzyme known as UBE2Q2 was previously identified in a microarray screen for mitotic regulatory proteins. UBE2Q2 is very similar to another human protein, UBE2Q1 and orthologs from other higher eukaryotic species. In these studies, we demonstrate that UBE2Q2 can covalently bind ubiquitin on the active site cysteine in vitro and show that inhibition of this protein in vivo causes an early mitotic arrest and increased cytotoxicity when cells are treated with microtubule inhibiting agents (MIAs). Changes in cell cycle progression and viability are not observed in the absence of MIA treatment, indicating that UBE2Q2 is involved in the response to MIAs rather than performing a more general function in mitosis. Inhibition of the UBE2Q2 protein causes cells to undergo a prolonged prophase arrest suggesting that UBE2Q2 normally functions to antagonize an early mitotic checkpoint. Furthermore, UBE2Q2 inhibition sensitizes cells to the cytotoxic effects of MIAs through caspase-mediated apoptosis that is correlated with PARP-1 cleavage. These data provide insights into the cellular response to MIAs and demonstrate that inhibition of UBE2Q2 protein function may be useful in the treatment of malignancies.
Collapse
Affiliation(s)
- S Banerjee
- Department of Pediatrics, University of Alabama, Birmingham 35233, USA
| | | | | |
Collapse
|
100
|
Lin J, Raoof DA, Wang Z, Lin MY, Thomas DG, Greenson JK, Giordano TJ, Orringer MB, Chang AC, Beer DG, Lin L. Expression and effect of inhibition of the ubiquitin-conjugating enzyme E2C on esophageal adenocarcinoma. Neoplasia 2007; 8:1062-71. [PMID: 17217624 PMCID: PMC1783715 DOI: 10.1593/neo.05832] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin-dependent proteolysis of cyclins plays a critical role in cell cycle progression and tumorigenesis. We examined the expression of ubiquitin-conjugating enzyme E2C (UBE2C) during progression from Barrett's metaplasia to esophageal adenocarcinoma (EA) and the effects of targeting this enzyme on EA-derived cell lines. Using oligonucleotide microarrays UBE2C expression was elevated in 73% (11 of 15) of EAs relative to Barrett's metaplasia. Tissue microarray showed elevated UBE2C in 70% (7 of 10) of dysplastic samples and in 87% (58 of 67) of tumors relative to metaplastic samples. Transfection of dominant-negative UBE2C into Seg-1 cells decreased proliferation (P = .04) and increased mitotic arrest compared to vector controls (63.5% vs 6.8%; P < .001). Transfection of UBE2C small interfering RNA also caused inhibiton of cell proliferation and distortion of the cell cycle, with maximal increase of G(2) cells (155% of mock cells) at 72 hours and of S-phase cells (308% of mock cells) at 24 hours. Treatment of Seg-1 cells with the proteasome inhibitor MG-262 (1 nM-1 microM) showed decreased proliferation (P = .02). EA-derived cells expressing UBE2C are sensitive to treatment with MG-262 and to silencing of UBE2C, suggesting that patients with EAs overexpressing UBE2C may benefit from agents targeting this ubiquitin-conjugating enzyme.
Collapse
Affiliation(s)
- Jules Lin
- Section of General Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Duna A Raoof
- Section of General Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zhuwen Wang
- Section of General Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mu-Yen Lin
- Division of Thoracic Surgery, Department of Surgery and Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Dafydd G Thomas
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joel K Greenson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thomas J Giordano
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark B Orringer
- Section of General Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew C Chang
- Section of General Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David G Beer
- Section of General Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lin Lin
- Section of General Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|