51
|
Douhan GW, Vincenot L, Gryta H, Selosse MA. Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 2011; 115:569-97. [PMID: 21724164 DOI: 10.1016/j.funbio.2011.03.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 03/06/2011] [Accepted: 03/12/2011] [Indexed: 11/25/2022]
Abstract
Ectomycorrhizal (EM) fungi are major microbial components of boreal, temperate and Mediterranean forests, as well as some tropical forest ecosystems. Nearly two decades of studies have clarified many aspects of their population biology, based on several model species from diverse lineages of fungi where the EM symbiosis evolved, i.e. among Hymenomycetes and, to a lesser extent, among Ascomycetes. In this review, we show how tools for individual recognition have changed, shifting from the use of somatic incompatibility reactions to dominant and non-specific markers (such as random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP)) and, more recently, to co-dominant and specific markers (such as microsatellites and single nucleotide polymorphisms (SNPs)). At the same time, the theoretical focus has also changed. In earlier studies, a major aim was the description of genet size and popul/ation strategy. For example, we show how some studies supported or challenged the simple, classical model of colonization of new forest stands by ruderal (R) species, propagating by spores and forming small genets, progressively replaced in older forests by more competitive (C) species, propagating by mycelial growth and forming larger genets. By contrast, more recent studies give insights into some genetic traits, such as partners' assortment (allo- versus autogamy), genetic structure of populations and gene flow that turn out to depend both on distance and on whether spores are animal- or wind-dispersed. We discuss the rising awareness that (i) many morphospecies contain cryptic biological species (often sympatric) and (ii) trans- and inter-continental species may often contain several biological species isolated by distance. Finally, we show the emergence of biogeographic approaches and call for some aspects to be developed, such as fine-scale and long-term population monitoring, analyses of subterranean populations of extra-radical mycelia, or more model species from the tropics, as well as from the Ascomycetes (whose genetic idiosyncrasies are discussed). With the rise of the '-omics' sciences, analysis of population structure for non-neutral genes is expected to develop, and forest management and conservation biology will probably profit from published and expected work.
Collapse
Affiliation(s)
- Greg W Douhan
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
52
|
A single mating-type locus composed of homeodomain genes promotes nuclear migration and heterokaryosis in the white-rot fungus Phanerochaete chrysosporium. EUKARYOTIC CELL 2010; 10:249-61. [PMID: 21131435 DOI: 10.1128/ec.00212-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The white-rot basidiomycete fungus Phanerochaete chrysosporium (Agaricomycetes) is a model species that produces potent wood-degrading enzymes. The mating system of the species has been difficult to characterize due to its cryptic fruiting habit and lack of clamp connections in the heterokaryotic phase. By exploiting the draft genome sequence, we reevaluated the mating system of P. chrysosporium by studying the inheritance and segregation of putative mating-type gene homologues, the homeodomain transcription factor genes (MAT-A) and the pheromone receptors (MAT-B). A pattern of mating incompatibility and fructification consistent with a bipolar system with a single MAT locus was observed, but the rejection response was much weaker than that seen in other agaricomycete species, leading to stable heterokaryons with identical MAT alleles. The homeodomain genes appear to comprise the single MAT locus because they are heterozygous in wild strains and hyperpolymorphic at the DNA sequence level and promote aspects of sexual reproduction, such as nuclear migration, heterokaryon stability, and basidiospore formation. The pheromone receptor loci that might constitute a MAT-B locus, as in many other Agaricomycetes, are not linked to the MAT-A locus and display low levels of polymorphism. This observation is inconsistent with a bipolar mating system that includes pheromones and pheromone receptors as mating-type determinants. The partial uncoupling of nuclear migration and mating incompatibility in this species may be predicted to lead to parasexual recombination and may have contributed to the homothallic behavior observed in previous studies.
Collapse
|
53
|
Billiard S, López-Villavicencio M, Devier B, Hood ME, Fairhead C, Giraud T. Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol Rev Camb Philos Soc 2010; 86:421-42. [PMID: 21489122 DOI: 10.1111/j.1469-185x.2010.00153.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The advantage of sex has been among the most debated issues in biology. Surprisingly, the question of why sexual reproduction generally requires the combination of distinct gamete classes, such as small and large gametes, or gametes with different mating types, has been much less investigated. Why do systems with alternative gamete classes (i.e. systems with either anisogamy or mating types or both) appear even though they restrict the probability of finding a compatible mating partner? Why does the number of gamete classes vary from zero to thousands, with most often only two classes? We review here the hypotheses proposed to explain the origin, maintenance, number, and loss of gamete classes. We argue that fungi represent highly suitable models to help resolve issues related to the evolution of distinct gamete classes, because the number of mating types vary from zero to thousands across taxa, anisogamy is present or not, and because there are frequent transitions between these conditions. We review the nature and number of gamete classes in fungi, and we attempt to draw inferences from these data on the evolutionary forces responsible for their appearance, loss or maintenance, and number.
Collapse
Affiliation(s)
- Sylvain Billiard
- Université Lille Nord de France, USTL, GEPV, CNRS, FRE 3268, Villeneuve d'Ascq, France.
| | | | | | | | | | | |
Collapse
|
54
|
Engh IB, Skrede I, Sætre GP, Kauserud H. High variability in a mating type linked region in the dry rot fungus Serpula lacrymans caused by frequency-dependent selection? BMC Genet 2010; 11:64. [PMID: 20624315 PMCID: PMC2909151 DOI: 10.1186/1471-2156-11-64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/12/2010] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The mating type loci that govern the mating process in fungi are thought to be influenced by negative frequency-dependent selection due to rare allele advantage. In this study we used a mating type linked DNA marker as a proxy to indirectly study the allelic richness and geographic distribution of mating types of one mating type locus (MAT A) in worldwide populations of the dry rot fungus Serpula lacrymans. This fungus, which causes serious destruction to wooden constructions in temperate regions worldwide, has recently expanded its geographic range with a concomitant genetic bottleneck. RESULTS High allelic richness and molecular variation was detected in the mating type linked marker as compared to other presumably neutral markers. Comparable amounts of genetic variation appeared in the mating type linked marker in populations from nature and buildings, which contrast the pattern observed with neutral genetic markers where natural populations were far more variable. Some geographic structuring of the allelic variation in the mating type linked marker appeared, but far less than that observed with neutral markers. In founder populations of S. lacrymans, alleles co-occurring in heterokaryotic individuals were more divergent than expected by chance, which agrees with the expectation for populations where few mating alleles exists. The analyzed DNA marker displays trans-species polymorphism wherein some alleles from the closely related species S. himantoides are more similar to those of S. lacrymans than other alleles from S. himantoides. CONCLUSIONS Our results support the idea that strong negative frequency-dependent selection maintains high levels of genetic variation in MAT-linked genomic regions, even in recently bottlenecked populations of S. lacrymans.
Collapse
Affiliation(s)
- Ingeborg Bjorvand Engh
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| | - Inger Skrede
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| | - Glenn-Peter Sætre
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| | - Håvard Kauserud
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
| |
Collapse
|
55
|
Lee SC, Corradi N, Doan S, Dietrich FS, Keeling PJ, Heitman J. Evolution of the sex-related locus and genomic features shared in microsporidia and fungi. PLoS One 2010; 5:e10539. [PMID: 20479876 PMCID: PMC2866331 DOI: 10.1371/journal.pone.0010539] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/15/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Microsporidia are obligate intracellular, eukaryotic pathogens that infect a wide range of animals from nematodes to humans, and in some cases, protists. The preponderance of evidence as to the origin of the microsporidia reveals a close relationship with the fungi, either within the kingdom or as a sister group to it. Recent phylogenetic studies and gene order analysis suggest that microsporidia share a particularly close evolutionary relationship with the zygomycetes. METHODOLOGY/PRINCIPAL FINDINGS Here we expanded this analysis and also examined a putative sex-locus for variability between microsporidian populations. Whole genome inspection reveals a unique syntenic gene pair (RPS9-RPL21) present in the vast majority of fungi and the microsporidians but not in other eukaryotic lineages. Two other unique gene fusions (glutamyl-prolyl tRNA synthetase and ubiquitin-ribosomal subunit S30) that are present in metazoans, choanoflagellates, and filasterean opisthokonts are unfused in the fungi and microsporidians. One locus previously found to be conserved in many microsporidian genomes is similar to the sex locus of zygomycetes in gene order and architecture. Both sex-related and sex loci harbor TPT, HMG, and RNA helicase genes forming a syntenic gene cluster. We sequenced and analyzed the sex-related locus in 11 different Encephalitozoon cuniculi isolates and the sibling species E. intestinalis (3 isolates) and E. hellem (1 isolate). There was no evidence for an idiomorphic sex-related locus in this Encephalitozoon species sample. According to sequence-based phylogenetic analyses, the TPT and RNA helicase genes flanking the HMG genes are paralogous rather than orthologous between zygomycetes and microsporidians. CONCLUSION/SIGNIFICANCE The unique genomic hallmarks between microsporidia and fungi are independent of sequence based phylogenetic comparisons and further contribute to define the borders of the fungal kingdom and support the classification of microsporidia as unusual derived fungi. And the sex/sex-related loci appear to have been subject to frequent gene conversion and translocations in microsporidia and zygomycetes.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nicolas Corradi
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Sylvia Doan
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Patrick J. Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, Canada
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
56
|
Abstract
Darwin's theory of natural selection lacked an adequate account of inheritance, making it logically incomplete. We review the interaction between evolution and genetics, showing how, unlike Mendel, Darwin's lack of a model of the mechanism of inheritance left him unable to interpret his own data that showed Mendelian ratios, even though he shared with Mendel a more mathematical and probabilistic outlook than most biologists of his time. Darwin's own "pangenesis" model provided a mechanism for generating ample variability on which selection could act. It involved, however, the inheritance of characters acquired during an organism's life, which Darwin himself knew could not explain some evolutionary situations. Once the particulate basis of genetics was understood, it was seen to allow variation to be passed intact to new generations, and evolution could then be understood as a process of changes in the frequencies of stable variants. Evolutionary genetics subsequently developed as a central part of biology. Darwinian principles now play a greater role in biology than ever before, which we illustrate with some examples of studies of natural selection that use DNA sequence data and with some recent advances in answering questions first asked by Darwin.
Collapse
|
57
|
Linde CC, Liles JA, Thrall PH. Expansion of genetic diversity in randomly mating founder populations of Alternaria brassicicola infecting Cakile maritima in Australia. Appl Environ Microbiol 2010; 76:1946-54. [PMID: 20097819 PMCID: PMC2837991 DOI: 10.1128/aem.01594-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 01/06/2010] [Indexed: 11/20/2022] Open
Abstract
Founder populations of fungal plant pathogens are expected to have low levels of genetic diversity coupled with further genetic drift due to, e.g., limited host availability, which should result in additional population bottlenecks. This study used microsatellite markers in the interaction between Cakile maritima and the fungal pathogen Alternaria brassicicola to explore genetic expectations associated with such situations. The host, C. maritima, was introduced into Australia approximately 100 years ago, but it is unknown whether the pathogen was already present in Australia, as it has a wide occurrence, or whether it was introduced to Australia on brassicaceous hosts. Eleven A. brassicicola populations were studied, and all showed moderate levels of gene and genotypic diversity. Chi-square tests of the frequencies of mating type alleles, a large number of genotypes, and linkage equilibrium among microsatellite loci all suggest A. brassicicola reproduces sexually. Significant genetic differentiation was found among populations, but there was no evidence for isolation by distance effects. Bayesian analyses identified eight clusters where the inferred clusters did not represent geographical populations but instead consisted of individuals admixed from all populations. Further analysis indicated that fungal populations were more likely to have experienced a recent population expansion than a population bottleneck. It is suggested that A. brassicicola has been introduced into Australia multiple times, potentially increasing the diversity and size of any A. brassicola populations already present there. Combined with its ability to reproduce sexually, such processes appear to have increased the evolutionary potential of the pathogen through recent population expansions.
Collapse
Affiliation(s)
- C C Linde
- Evolution, Ecology and Genetics, Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Building 116, Daley Road, Canberra, ACT 0200, Australia.
| | | | | |
Collapse
|
58
|
ENGH INGEBORGBJORVAND, CARLSEN TOR, SAETRE GLENNPETER, HÖGBERG NILS, DOI SHUICHI, KAUSERUD HÅVARD. Two invasive populations of the dry rot fungusSerpula lacrymansshow divergent population genetic structures. Mol Ecol 2010; 19:706-15. [DOI: 10.1111/j.1365-294x.2009.04505.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
59
|
Arzanlou M, Crous PW, Zwiers LH. Evolutionary dynamics of mating-type loci of Mycosphaerella spp. occurring on banana. EUKARYOTIC CELL 2010; 9:164-72. [PMID: 19915079 PMCID: PMC2805284 DOI: 10.1128/ec.00194-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/02/2009] [Indexed: 11/20/2022]
Abstract
The devastating Sigatoka disease complex of banana is primarily caused by three closely related heterothallic fungi belonging to the genus Mycosphaerella: M. fijiensis, M. musicola, and M. eumusae. Previous phylogenetic work showing common ancestry led us to analyze the mating-type loci of these Mycosphaerella species occurring on banana. We reasoned that this might provide better insight into the evolutionary history of these species. PCR and chromosome-walking approaches were used to clone the mating-type loci of M. musicola and M. eumusae. Sequences were compared to the published mating-type loci of M. fijiensis and other Mycosphaerella spp., and a novel organization of the MAT loci was found. The mating-type loci of the examined Mycosphaerella species are expanded, containing two additional Mycosphaerella-specific genes in a unique genomic organization. The proteins encoded by these novel genes show a higher interspecies than intraspecies homology. Moreover, M. fijiensis, M. musicola, and M. eumusae contain two additional mating-type-like loci, containing parts of both MAT1-1-1 and MAT1-2-1. The data indicate that M. fijiensis, M. musicola, and M. eumusae share an ancestor in which a fusion event occurred between MAT1-1-1 and MAT1-2-1 sequences and in which additional genes became incorporated into the idiomorph. The new genes incorporated have since then evolved independently in the MAT1-1 and MAT1-2 loci. Thus, these data are an example of the evolutionary dynamics of fungal MAT loci in general and show the great flexibility of the MAT loci of Mycosphaerella species in particular.
Collapse
Affiliation(s)
- Mahdi Arzanlou
- Evolutionary Phytopathology, CBS-KNAW Fungal Biodiversity Center, Utrecht 3508 AD, The Netherlands, Wageningen University and Research Center (WUR), Laboratory of Phytopathology, Wageningen 6708 PB, The Netherlands, Plant Protection Department, Agriculture Faculty, University of Tabriz, Tabriz, P.O. Box 5166614766, Iran
| | - Pedro W. Crous
- Evolutionary Phytopathology, CBS-KNAW Fungal Biodiversity Center, Utrecht 3508 AD, The Netherlands, Wageningen University and Research Center (WUR), Laboratory of Phytopathology, Wageningen 6708 PB, The Netherlands, Plant Protection Department, Agriculture Faculty, University of Tabriz, Tabriz, P.O. Box 5166614766, Iran
| | - Lute-Harm Zwiers
- Evolutionary Phytopathology, CBS-KNAW Fungal Biodiversity Center, Utrecht 3508 AD, The Netherlands, Wageningen University and Research Center (WUR), Laboratory of Phytopathology, Wageningen 6708 PB, The Netherlands, Plant Protection Department, Agriculture Faculty, University of Tabriz, Tabriz, P.O. Box 5166614766, Iran
| |
Collapse
|
60
|
Castric V, Bechsgaard JS, Grenier S, Noureddine R, Schierup MH, Vekemans X. Molecular Evolution within and between Self-Incompatibility Specificities. Mol Biol Evol 2009; 27:11-20. [DOI: 10.1093/molbev/msp224] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
61
|
van Oosterhout C. A new theory of MHC evolution: beyond selection on the immune genes. Proc Biol Sci 2009; 276:657-65. [PMID: 18986972 DOI: 10.1098/rspb.2008.1299] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The major histocompatibility complex (MHC) is a dense region of immune genes with high levels of polymorphism, which are arranged in haplotype blocks. Traditional models of balancing selection (i.e. overdominance and negative frequency dependence) were developed to study the population genetics of single genes. However, the MHC is a multigene family surrounded by linked (non-neutral) polymorphisms, and not all of its features are well explained by these models. For example, (i) the high levels of polymorphism in small populations, (ii) the unexpectedly large genetic differentiation between populations, (iii) the shape of the allelic genealogy associated with trans-species evolution, and (iv) the close associations between particular MHC (human leucocyte antigen, HLA) haplotypes and the approximately 100 pathologies in humans. Here, I propose a new model of MHC evolution named Associative Balancing Complex evolution that can explain these phenomena. The model proposes that recessive deleterious mutations accumulate as a 'sheltered load' nearby MHC genes. These mutations can accumulate because (i) they are rarely expressed as homozygotes given the high MHC gene diversity and (ii) purifying selection is inefficient with low recombination rates (cf. Muller's ratchet). Once fixed, these mutations add to balancing selection and further reinforce linkage through epistatic selection against recombinants.
Collapse
Affiliation(s)
- Cock van Oosterhout
- Evolutionary Biology Group, Biological Sciences, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
62
|
Kaneko I, Dementhon K, Xiang Q, Glass NL. Nonallelic interactions between het-c and a polymorphic locus, pin-c, are essential for nonself recognition and programmed cell death in Neurospora crassa. Genetics 2009; 172:1545-55. [PMID: 16554411 PMCID: PMC1456284 DOI: 10.1534/genetics.105.051490] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonself recognition in filamentous fungi is conferred by genetic differences at het (heterokaryon incompatibility) loci. When individuals that differ in het specificity undergo hyphal fusion, the heterokaryon undergoes a programmed cell death reaction or is highly unstable. In Neurospora crassa, three allelic specificities at the het-c locus are conferred by a highly polymorphic domain. This domain shows trans-species polymorphisms indicative of balancing selection, consistent with the role of het loci in nonself recognition. We determined that a locus closely linked to het-c, called pin-c (partner for incompatibility with het-c) was required for het-c nonself recognition and heterokaryon incompatibility (HI). The pin-c alleles in isolates that differ in het-c specificity were extremely polymorphic. Heterokaryon and transformation tests showed that nonself recognition was mediated by synergistic nonallelic interactions between het-c and pin-c, while allelic interactions at het-c increased the severity of the HI phenotype. The pin-c locus encodes a protein containing a HET domain; predicted proteins containing HET domains are frequent in filamentous ascomycete genomes. These data suggest that nonallelic interactions may be important in nonself recognition in filamentous fungi and that proteins containing a HET domain may be a key factor in these interactions.
Collapse
Affiliation(s)
- Isao Kaneko
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
63
|
Abstract
We present a Moran-model approach to modeling general multiallelic selection in a finite population and show how it may be used to develop theoretical models of biological systems of balancing selection such as plant gametophytic self-incompatibility loci. We propose new expressions for the stationary distribution of allele frequencies under selection and use them to show that the continuous-time Markov chain describing allele frequency change with exchangeable selection and Moran-model reproduction is reversible. We then use the reversibility property to derive the expected allele frequency spectrum in a finite population for several general models of multiallelic selection. Using simulations, we show that our approach is valid over a broader range of parameters than previous analyses of balancing selection based on diffusion approximations to the Wright-Fisher model of reproduction. Our results can be applied to any model of multiallelic selection in which fitness is solely a function of allele frequency.
Collapse
|
64
|
Abstract
In the majority of sexual organisms, reproduction occurs almost exclusively through the combination of distinct and alternate forms, called sexes or mating types. In some fungi, there can be dozens to hundreds of alternate alleles that determine compatible mating types. Such extensive polymorphism is expected to be maintained by balancing selection, and in extreme cases may give rise to trans-specific polymorphism. Here, we analyzed sequences of two pheromone receptors in the Microbotryum fungal species complex (Basidiomycota), which has only two alternate mating types. Several lines of evidence strongly suggest that the pheromone receptors are two allelic sequences acting to determine the alternate A1 and A2 mating types required for mating in Microbotryum. Phylogenetic trees of pheromone receptors in the Microbotryum species complex indicated a trans-specific polymorphism: the Microbotryum sequences from a given mating type were all more similar to the pheromone receptors of distantly related classes of fungi than to the alternate pheromone receptor in the Microbotryum species. A phylogenetic tree built using other known pheromone receptors from basidiomycetes showed that trans-specific polymorphism is widespread. The pheromone receptor alleles from Microbotryum appeared as the oldest, being at least 370 million years old. This represents the oldest known trans-specific polymorphism known in any organism so far, which may be due to the existence of sex chromosomes, obligate sexuality, mitochondrial inheritance linked to the mating type, and a highly selfing mating system in Microbotryum.
Collapse
|
65
|
Niculita-Hirzel H, Labbé J, Kohler A, Le Tacon F, Martin F, Sanders IR, Kües U. Gene organization of the mating type regions in the ectomycorrhizal fungus Laccaria bicolor reveals distinct evolution between the two mating type loci. THE NEW PHYTOLOGIST 2008; 180:329-342. [PMID: 18557817 DOI: 10.1111/j.1469-8137.2008.02525.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In natural conditions, basidiomycete ectomycorrhizal fungi such as Laccaria bicolor are typically in the dikaryotic state when forming symbioses with trees, meaning that two genetically different individuals have to fuse or 'mate'. Nevertheless, nothing is known about the molecular mechanisms of mating in these ecologically important fungi. Here, advantage was taken of the first sequenced genome of the ectomycorrhizal fungus, Laccaria bicolor, to determine the genes that govern the establishment of cell-type identity and orchestrate mating. The L. bicolor mating type loci were identified through genomic screening. The evolutionary history of the genomic regions that contained them was determined by genome-wide comparison of L. bicolor sequences with those of known tetrapolar and bipolar basidiomycete species, and by phylogenetic reconstruction of gene family history. It is shown that the genes of the two mating type loci, A and B, are conserved across the Agaricales, but they are contained in regions of the genome with different evolutionary histories. The A locus is in a region where the gene order is under strong selection across the Agaricales. By contrast, the B locus is in a region where the gene order is likely under a low selection pressure but where gene duplication, translocation and transposon insertion are frequent.
Collapse
Affiliation(s)
- Hélène Niculita-Hirzel
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jessy Labbé
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - Annegret Kohler
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - François Le Tacon
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - Francis Martin
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
66
|
van der Nest MA, Slippers B, Stenlid J, Wilken PM, Vasaitis R, Wingfield MJ, Wingfield BD. Characterization of the systems governing sexual and self-recognition in the white rot homobasidiomycete Amylostereum areolatum. Curr Genet 2008; 53:323-36. [DOI: 10.1007/s00294-008-0188-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
|
67
|
Clarke JA, Middleton KM. Mosaicism, Modules, and the Evolution of Birds: Results from a Bayesian Approach to the Study of Morphological Evolution Using Discrete Character Data. Syst Biol 2008; 57:185-201. [DOI: 10.1080/10635150802022231] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Julia A. Clarke
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University Campus Box 8208, Raleigh, NC 27695-8208, USA; E-mail:
| | - Kevin M. Middleton
- Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA; E-mail:
| |
Collapse
|
68
|
Mating system of the anther smut fungus Microbotryum violaceum: selfing under heterothallism. EUKARYOTIC CELL 2008; 7:765-75. [PMID: 18281603 DOI: 10.1128/ec.00440-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
69
|
Carbone I, Jakobek JL, Ramirez-Prado JH, Horn BW. Recombination, balancing selection and adaptive evolution in the aflatoxin gene cluster of Aspergillus parasiticus. Mol Ecol 2007; 16:4401-17. [PMID: 17725568 DOI: 10.1111/j.1365-294x.2007.03464.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aflatoxins are toxic and carcinogenic polyketides produced by several Aspergillus species that are known to contaminate agricultural commodities, posing a serious threat to animal and human health. Aflatoxin (AF) biosynthesis is almost fully characterized and involves the coordinated expression of approximately 25 genes clustered in a 70-kb DNA region. Aspergillus parasiticus is an economically important and common agent of AF contamination. Naturally occurring nonaflatoxigenic strains of A. parasiticus are rarely found and generally produce O-methylsterigmatocystin (OMST), the immediate precursor of AF. To elucidate the evolutionary forces acting to retain AF and OMST pathway extrolites (chemotypes), we sequenced 21 intergenic regions spanning the entire cluster in 24 A. parasiticus isolates chosen to represent the genetic diversity within a single Georgia field population. Linkage disequilibrium analyses revealed five distinct recombination blocks in the A. parasiticus cluster. Phylogenetic network analyses showed a history of recombination between chemotype-specific haplotypes, as well as evidence of contemporary recombination. We performed coalescent simulations of variation in recombination blocks and found an approximately twofold deeper coalescence for cluster genealogies compared to noncluster genealogies, our internal standard of neutral evolution. Significantly deeper cluster genealogies are indicative of balancing selection in the AF cluster of A. parasiticus and are further corroborated by the existence of trans-species polymorphisms and common haplotypes in the cluster for several closely related species. Estimates of Ka/Ks for representative cluster genes provide evidence of selection for OMST and AF chemotypes, and indicate a possible role of chemotypes in ecological adaptation and speciation.
Collapse
Affiliation(s)
- Ignazio Carbone
- Center for Integrated Fungal Research, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
70
|
Abstract
Low sequence divergence within functional alleles is predicted for the self-incompatibility locus because of strong negative frequency-dependent selection. Nevertheless, sequence variation within functional alleles is essential for current models of the evolution of new mating types. We genotyped the stylar self-incompatibility RNase of 20 Sorbus aucuparia from a population in the Pyrenees mountains of France in order to compare alleles found there to those previously sampled in a Belgian population. Both populations returned 20 different alleles from samples of 20 individuals, providing maximum-likelihood estimates of 24.4 (95% CI 20-34) alleles in each. Ten alleles occurred in both samples. The maximum likelihood (ML) estimate of the overlap in the alleles present in both populations was 16, meaning that an estimated eight alleles are private to each population, and a total of 32 alleles occur across the two populations examined. We used Fisher's (1961) missing plot method to estimate that 40 alleles occur in the species. In accord with population genetics theory, we observed at most one synonymous sequence difference between copies of alleles sampled from the different populations and no variation within populations. Phylogenetic analysis shows that nearly every allele in S. aucuparia arose prior to divergence of this species from members of three different genera of the Rosaceae subfamily, Maloideae. Lack of observable sequence variation within alleles, coupled with the slow pace of allelic relative to taxonomic diversification, implies that finding intermediate stages in the process of new allele creation will be difficult in this group.
Collapse
Affiliation(s)
- Olivier Raspé
- National Botanic Garden of Belgium, Domein van Bouchout, B-1860 Meise, Belgium
| | | |
Collapse
|
71
|
Wang WK, Schaal BA, Chiou YM, Murakami N, Ge XJ, Huang CC, Chiang TY. Diverse selective modes among orthologs/paralogs of the chalcone synthase (Chs) gene family of Arabidopsis thaliana and its relative A. halleri ssp. gemmifera. Mol Phylogenet Evol 2007; 44:503-20. [PMID: 17611127 DOI: 10.1016/j.ympev.2007.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/11/2007] [Accepted: 05/07/2007] [Indexed: 11/16/2022]
Abstract
As a model system, Arabidopsis thaliana and its wild relatives have played an important role in the study of genomics and evolution in plants. In this study, we examined the genetic diversity of the chalcone synthase (Chs) gene, which encodes a key enzyme of the flavonoid pathway and is located on chromosome five, as well as two Chs-like genes on the first and fourth chromosomes of Arabidopsis. The objectives of the study are to determine if natural selection operates differentially on the paralogs of the Chs gene family in A. thaliana and Arabidopsis halleri ssp. gemmifera. The mode of selection was inferred from Tajima's D values from noncoding and coding regions, as well as from the ratio of nonsynonymous to synonymous substitutions. Both McDonald-Kreitman and HKA tests revealed the effects of selection on the allelic distribution, except for the chromosome 1 paralog in ssp. gemmifera. The Chs gene on chromosome 5 was under purifying selection in both species. Significant, negative Tajima's D values at synonymous sites and positive Fay and Wu's H values within coding region, plus reduced genetic variability in introns, indicated effects of background selection in shaping the evolution of this gene region in A. thaliana. The Chs paralog on chromosome 1 was under positive selection in A. thaliana, while interspecific introgression and balancing selection determined the fates of the paralog and resulted in high heterogeneity in ssp. gemmifera. Local adaptation differentiated populations of Japan and China at the locus. In contrast, the other Chs-paralog of chromosome 4 was shaped by purifying selection in A. thaliana, while under positive selection in ssp. gemmifera, as indicated by dn/ds>1. Moreover, these contrasting patterns of selection have likely resulted in functional divergence in Arabidopsis, as indicated by radical amino acid substitutions at the chalcone synthase/stilbene synthase motif of the Chs genes. Unlike previous studies of the evolutionary history of A. thaliana, the high levels of genetic diversity in most gene regions of Chs paralogs and nonsignificant Tajima's D in the intron sequences of the Chs gene family in A. thaliana did not reflect the effects of a recent demographic expansion.
Collapse
Affiliation(s)
- Wei-Kuang Wang
- Department of Life Sciences, Cheng-Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
72
|
Rau D, Attene G, Brown AHD, Nanni L, Maier FJ, Balmas V, Saba E, Schäfer W, Papa R. Phylogeny and evolution of mating-type genes from Pyrenophora teres, the causal agent of barley "net blotch" disease. Curr Genet 2007; 51:377-92. [PMID: 17426975 DOI: 10.1007/s00294-007-0126-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/02/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
The main aim of this study was to test the patterns of sequence divergence and haplotype structure at the MAT locus of Pyrenophora teres, the causal agent of barley 'net blotch' disease. P. teres is a heterothallic ascomycete that co-occurs in two symptomatological forms, the net form (NF) and the spot form (SF). The mating-type genes MAT1-1-1 and MAT1-2-1 were sequenced from 22 NF isolates (12 MAT1-1-1 and 10 MAT1-2-1 sequences) and 17 SF isolates (10 MAT1-1-1 and seven MAT1-2-1 sequences) collected from Sardinian barley landrace populations and worldwide. On the basis of a parsimony network analysis, the two forms of P. teres are phylogenetically separated. More than 85% of the total nucleotide variation was found between formae speciales. The two forms do not share any polymorphisms. Six diagnostic nucleotide polymorphisms were found in the MAT1-1-1 intron (1) and in the MAT1-1-1 (3) and MAT1-2-1 (2) exons. Three diagnostic non-synonymous mutations were found, one in MAT1-1-1 and two in MAT1-2-1. For comparison with P. teres sequence data, the mating-type genes from Pyrenophora graminea were also isolated and sequenced. Divergence between P. graminea and P. teres is of a similar magnitude to that between NF and SF of P. teres. The MAT genes of P. graminea were closer to those of SF than to NF, with the MAT1-2-1 SF peptide not different from the MAT1-2-1 peptide of P. graminea. Overall, these data suggest long genetic isolation between the two forms of P. teres and that hybridization is rare or absent under field conditions, with each form having some particular niche specialization. This indicates that research on resistance to P. teres should consider the two forms separately, as different species.
Collapse
Affiliation(s)
- D Rau
- Dipartimento di Scienze degli Alimenti, Facoltà di Agraria, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Newman RM, Hall L, Connole M, Chen GL, Sato S, Yuste E, Diehl W, Hunter E, Kaur A, Miller GM, Johnson WE. Balancing selection and the evolution of functional polymorphism in Old World monkey TRIM5alpha. Proc Natl Acad Sci U S A 2006; 103:19134-9. [PMID: 17142324 PMCID: PMC1679755 DOI: 10.1073/pnas.0605838103] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Retroviral restriction factor TRIM5alpha exhibits a high degree of sequence variation among primate species. It has been proposed that this diversity is the cumulative result of ancient, lineage-specific episodes of positive selection. Here, we describe the contribution of within-species variation to the evolution of TRIM5alpha. Sampling within two geographically distinct Old World monkey species revealed extensive polymorphism, including individual polymorphisms that predate speciation (shared polymorphism). In some instances, alleles were more closely related to orthologues of other species than to one another. Both silent and nonsynonymous changes clustered in two domains. Functional assays revealed consequences of polymorphism, including differential restriction of a small panel of retroviruses by very similar alleles. Together, these features indicate that the primate TRIM5alpha locus has evolved under balancing selection. Except for the MHC there are few, if any, examples of long-term balancing selection in primates. Our results suggest a complex evolutionary scenario, in which fixation of lineage-specific adaptations is superimposed on a subset of critical polymorphisms that predate speciation events and have been maintained by balancing selection for millions of years.
Collapse
Affiliation(s)
- Ruchi M. Newman
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, MA 01772
| | - Laura Hall
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, MA 01772
| | | | - Guo-Lin Chen
- Neurochemistry, New England Primate Research Center, Harvard Medical School, Southborough, MA 01772; and
| | - Shuji Sato
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, MA 01772
| | - Eloisa Yuste
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, MA 01772
| | - William Diehl
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, MA 01772
- Emory Vaccine Research Center, Emory University, Atlanta, GA 30329
| | - Eric Hunter
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, MA 01772
- Emory Vaccine Research Center, Emory University, Atlanta, GA 30329
| | | | - Gregory M. Miller
- Neurochemistry, New England Primate Research Center, Harvard Medical School, Southborough, MA 01772; and
| | - Welkin E. Johnson
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, MA 01772
- To whom correspondence should be addressed at:
New England Primate Research Center, One Pine Hill Drive, Box 9102, Southborough, MA 01772-9102. E-mail:
| |
Collapse
|
74
|
Cho S, Huang ZY, Green DR, Smith DR, Zhang J. Evolution of the complementary sex-determination gene of honey bees: balancing selection and trans-species polymorphisms. Genome Res 2006; 16:1366-75. [PMID: 17065615 PMCID: PMC1626638 DOI: 10.1101/gr.4695306] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mechanism of sex determination varies substantively among evolutionary lineages. One important mode of genetic sex determination is haplodiploidy, which is used by approximately 20% of all animal species, including >200,000 species of the entire insect order Hymenoptera. In the honey bee Apis mellifera, a hymenopteran model organism, females are heterozygous at the csd (complementary sex determination) locus, whereas males are hemizygous (from unfertilized eggs). Fertilized homozygotes develop into sterile males that are eaten before maturity. Because homozygotes have zero fitness and because common alleles are more likely than rare ones to form homozygotes, csd should be subject to strong overdominant selection and negative frequency-dependent selection. Under these selective forces, together known as balancing selection, csd is expected to exhibit a high degree of intraspecific polymorphism, with long-lived alleles that may be even older than the species. Here we sequence the csd genes as well as randomly selected neutral genomic regions from individuals of three closely related species, A. mellifera, Apis cerana, and Apis dorsata. The polymorphic level is approximately seven times higher in csd than in the neutral regions. Gene genealogies reveal trans-species polymorphisms at csd but not at any neutral regions. Consistent with the prediction of rare-allele advantage, nonsynonymous mutations are found to be positively selected in csd only in early stages after their appearances. Surprisingly, three different hypervariable repetitive regions in csd are present in the three species, suggesting variable mechanisms underlying allelic specificities. Our results provide a definitive demonstration of balancing selection acting at the honey bee csd gene, offer insights into the molecular determinants of csd allelic specificities, and help avoid homozygosity in bee breeding.
Collapse
Affiliation(s)
- Soochin Cho
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zachary Y. Huang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daniel R. Green
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Deborah R. Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA
- Corresponding author.
E-mail ; fax (734) 763-0544
| |
Collapse
|
75
|
Zaffarano PL, McDonald BA, Zala M, Linde CC. Global Hierarchical Gene Diversity Analysis Suggests the Fertile Crescent Is Not the Center of Origin of the Barley Scald Pathogen Rhynchosporium secalis. PHYTOPATHOLOGY 2006; 96:941-950. [PMID: 18944049 DOI: 10.1094/phyto-96-0941] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A total of 1,366 Rhynchosporium secalis isolates causing scald on barley, rye, and wild barley (Hordeum spontaneum) were assayed for restriction fragment length polymorphism loci, DNA fingerprints, and mating type, to characterize global genetic structure. The isolates originated from 31 field populations on five continents. Hierarchical analysis revealed that more than 70% of the total genetic variation within regions was distributed within a barley field. At the global level, only 58% of the total genetic variation was distributed within fields, while 11% was distributed among fields within regions, and 31% was distributed among regions. A significant correlation was found between genetic and geographic distance. These findings suggest that gene flow is common at the local level while it is low between regions on the same continent, and rare between continents. Analyses of multilocus associations, genotype diversity, and mating type frequencies indicate that sexual recombination is occurring in most of the populations. We found the highest allele richness in Scandinavia followed by Switzerland. This suggests that R. secalis may not have originated at the center of origin of barley, the Fertile Crescent, nor in a secondary center of diversity of barley, Ethiopia.
Collapse
|
76
|
Abstract
Our understanding of balancing selection is currently becoming greatly clarified by new sequence data being gathered from genes in which polymorphisms are known to be maintained by selection. The data can be interpreted in conjunction with results from population genetics models that include recombination between selected sites and nearby neutral marker variants. This understanding is making possible tests for balancing selection using molecular evolutionary approaches. Such tests do not necessarily require knowledge of the functional types of the different alleles at a locus, but such information, as well as information about the geographic distribution of alleles and markers near the genes, can potentially help towards understanding what form of balancing selection is acting, and how long alleles have been maintained.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
77
|
Rau D, Maier FJ, Papa R, Brown AHD, Balmas V, Saba E, Schaefer W, Attene G. Isolation and characterization of the mating-type locus of the barley pathogen Pyrenophora teres and frequencies of mating-type idiomorphs within and among fungal populations collected from barley landraces. Genome 2006; 48:855-69. [PMID: 16391692 DOI: 10.1139/g05-046] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyrenophora teres f. sp. teres mating-type genes (MAT-1: 1190 bp; MAT-2: 1055 bp) have been identified. Their predicted proteins, measuring 379 and 333 amino acids, respectively, are similar to those of other Pleosporales, such as Pleospora sp., Cochliobolus sp., Alternaria alternata, Leptosphaeria maculans, and Phaeosphaeria nodorum. The structure of the MAT locus is discussed in comparison with those of other fungi. A mating-type PCR assay has also been developed; with this assay we have analyzed 150 isolates that were collected from 6 Sardinian barley landrace populations. Of these, 68 were P. teres f. sp. teres (net form; NF) and 82 were P. teres f. sp. maculata (spot form; SF). Within each mating type, the NF and SF amplification products were of the same length and were highly similar in sequence. The 2 mating types were present in both the NF and the SF populations at the field level, indicating that they have all maintained the potential for sexual reproduction. Despite the 2 forms being sympatric in 5 fields, no intermediate isolates were detected with amplified fragment length polymorphism (AFLP) analysis. These results suggest that the 2 forms are genetically isolated under the field conditions. In all of the samples of P. teres, the ratio of the 2 mating types was consistently in accord with the 1:1 null hypothesis. This ratio is expected when segregation distortion and clonal selection among mating types are absent or asexual reproduction is rare. Overall, sexual reproduction appears to be the major process that equalizes the frequencies of the 2 mating types within populations.
Collapse
Affiliation(s)
- Domenico Rau
- Dipartimento di Scienze degli Alimenti, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Wheat CW, Watt WB, Pollock DD, Schulte PM. From DNA to fitness differences: sequences and structures of adaptive variants of Colias phosphoglucose isomerase (PGI). Mol Biol Evol 2006; 23:499-512. [PMID: 16292000 PMCID: PMC2943955 DOI: 10.1093/molbev/msj062] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colias eurytheme butterflies display extensive allozyme polymorphism in the enzyme phosphoglucose isomerase (PGI). Earlier studies on biochemical and fitness effects of these genotypes found evidence of strong natural selection maintaining this polymorphism in the wild. Here we analyze the molecular features of this polymorphism by sequencing multiple alleles and modeling their structures. PGI is a dimer with rotational symmetry. Each monomer provides a critical residue to the other monomer's catalytic center. Sequenced alleles differ at multiple amino acid positions, including cryptic charge-neutral variation, but most consistent differences among the electromorph alleles are at the charge-changing amino acid sites. Principal candidate sites of selection, identified by structural and functional analyses and by their variants' population frequencies, occur in interpenetrating loops across the interface between monomers, where they may alter subunit interactions and catalytic center geometry. Comparison to a second (and basal) species, Colias meadii, also polymorphic for PGI under natural selection, reveals one fixed amino acid difference between their PGIs, which is located in the interpenetrating loop and accompanies functional differences among their variants. We also study nucleotide variability among the PGI alleles, comparing these data to similar data from another glycolytic enzyme gene, glyceraldehyde-3-phosphate dehydrogenase. Despite extensive nonsynonymous and synonymous polymorphism at PGI in each species, the only base changes fixed between species are the two causing the amino acid replacement; this absence of synonymous fixation yields a significant McDonald-Kreitman test. Analyses of these data suggest historical population expansion. Positive peaks of Tajima's D statistic, representing regions of neutral "hitchhiking," are found around the principal candidate sites of selection. This study provides novel views of molecular-structural mechanisms, and beginnings of historical evidence, for a long-persistent balanced enzyme polymorphism at PGI in these and perhaps other species.
Collapse
|
79
|
James TY, Srivilai P, Kües U, Vilgalys R. Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 2006; 172:1877-91. [PMID: 16461425 PMCID: PMC1456265 DOI: 10.1534/genetics.105.051128] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mating incompatibility in mushroom fungi is controlled by the mating-type loci. In tetrapolar species, two unlinked mating-type loci exist (A and B), whereas in bipolar species there is only one locus. The A and B mating-type loci encode homeodomain transcription factors and pheromones and pheromone receptors, respectively. Most mushroom species have a tetrapolar mating system, but numerous transitions to bipolar mating systems have occurred. Here we determined the genes controlling mating type in the bipolar mushroom Coprinellus disseminatus. Through positional cloning and degenerate PCR, we sequenced both the transcription factor and pheromone receptor mating-type gene homologs from C. disseminatus. Only the transcription factor genes segregate with mating type, discounting the hypothesis of genetic linkage between the A and B mating-type loci as the causal origin of bipolar mating behavior. The mating-type locus of C. disseminatus is similar to the A mating-type locus of the model species Coprinopsis cinerea and encodes two tightly linked pairs of homeodomain transcription factor genes. When transformed into C. cinerea, the C. disseminatus A and B homologs elicited sexual reactions like native mating-type genes. Although mating type in C. disseminatus is controlled by only the transcription factor genes, cellular functions appear to be conserved for both groups of genes.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | |
Collapse
|
80
|
Paoletti M, Rydholm C, Schwier EU, Anderson MJ, Szakacs G, Lutzoni F, Debeaupuis JP, Latgé JP, Denning DW, Dyer PS. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol 2005; 15:1242-8. [PMID: 16005299 DOI: 10.1016/j.cub.2005.05.045] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/13/2005] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
Aspergillus fumigatus is a medically important opportunistic pathogen and a major cause of respiratory allergy. The species has long been considered an asexual organism. However, genome analysis has revealed the presence of genes associated with sexual reproduction, including a MAT-2 high-mobility group mating-type gene and genes for pheromone production and detection (Galagan et al., personal communication; Nierman et al., personal communication). We now demonstrate that A. fumigatus has other key characteristics of a sexual species. We reveal the existence of isolates containing a complementary MAT-1 alpha box mating-type gene and show that the MAT locus has an idiomorph structure characteristic of heterothallic (obligate sexual outbreeding) fungi. Analysis of 290 worldwide clinical and environmental isolates with a multiplex-PCR assay revealed the presence of MAT1-1 and MAT1-2 genotypes in similar proportions (43% and 57%, respectively). Further population genetic analyses provided evidence of recombination across a global sampling and within North American and European subpopulations. We also show that mating-type, pheromone-precursor, and pheromone-receptor genes are expressed during mycelial growth. These results indicate that A. fumigatus has a recent evolutionary history of sexual recombination and might have the potential for sexual reproduction. The possible presence of a sexual cycle is highly significant for the population biology and disease management of the species.
Collapse
Affiliation(s)
- Mathieu Paoletti
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Riquelme M, Challen MP, Casselton LA, Brown AJ. The origin of multiple B mating specificities in Coprinus cinereus. Genetics 2005; 170:1105-19. [PMID: 15879506 PMCID: PMC1451185 DOI: 10.1534/genetics.105.040774] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 03/17/2005] [Indexed: 11/18/2022] Open
Abstract
Mushrooms, such as Coprinus cinereus, possess large families of pheromones and G-protein-coupled receptors that are sequestered at the B mating-type locus and whose function is to confer vast numbers of different mating types. This ability results from complex patterns of cognate and noncognate pheromone/receptor pairings, which potentially offer a unique insight into the molecular interaction between receptor and ligand. In this study we have identified many more members of these families by molecular analysis of strains collected worldwide. There are three groups of genes at each B locus. We have identified two alleles of group 1, five alleles of group 2, and seven alleles of group 3, encoding in total 14 different receptors and 29 different pheromones. The specificity of many newly identified alleles was determined by transformation analysis. One striking finding was that receptors fall into groups based on sequence homology but these do not correspond to the groups defined by position, indicating that complex evolutionary processes gave rise to the B loci. While additional allelic versions may occur in nature, the number of B specificities possible by combination of the alleles that we describe is 70, close to previous estimates based on population analysis.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Michael P. Challen
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Lorna A. Casselton
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Andrew J. Brown
- Assay Development and Compound Profiling, Discovery Research, GlaxoSmithKline, New Frontiers Science Park, Harlow, Essex CM19 5AW, United Kingdom
| |
Collapse
|
82
|
Abstract
The outer surface protein C (ospC) locus of the Lyme disease bacterium, Borrelia burgdorferi, is at least an order of magnitude more variable than other genes in the species. This variation is classified into 22 ospC major groups, 15 of which are found in the northeastern United States. The frequency distributions of ospC within populations suggest that this locus is under balancing selection. In multiple-niche polymorphism, a type of balancing selection, diversity within a population can be maintained when the environment is heterogeneous and no one genotype has the highest fitness in all environments. Genetically different individuals within vertebrate species and different vertebrate species constitute diverse environments for B. burgdorferi. We examined four important host species of B. burgdorferi and found that the strains that infected each species had different sets of ospC major groups. We found no variation among conspecific hosts in the ospC major groups of their infecting strains. These results suggest multiple niches create balancing selection at the ospC locus.
Collapse
Affiliation(s)
- Dustin Brisson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794-5245, USA.
| | | |
Collapse
|
83
|
Takebayashi N, Newbigin E, Uyenoyama MK. Maximum-likelihood estimation of rates of recombination within mating-type regions. Genetics 2005; 167:2097-109. [PMID: 15342543 PMCID: PMC1471000 DOI: 10.1534/genetics.103.021535] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Features common to many mating-type regions include recombination suppression over large genomic tracts and cosegregation of genes of various functions, not necessarily related to reproduction. Model systems for homomorphic self-incompatibility (SI) in flowering plants share these characteristics. We introduce a method for the exact computation of the joint probability of numbers of neutral mutations segregating at the determinant of mating type and at a linked marker locus. The underlying Markov model incorporates strong balancing selection into a two-locus coalescent. We apply the method to obtain a maximum-likelihood estimate of the rate of recombination between a marker locus, 48A, and S-RNase, the determinant of SI specificity in pistils of Nicotiana alata. Even though the sampled haplotypes show complete allelic linkage disequilibrium and recombinants have never been detected, a highly significant deficiency of synonymous substitutions at 48A compared to S-RNase suggests a history of recombination. Our maximum-likelihood estimate indicates a rate of recombination of perhaps 3 orders of magnitude greater than the rate of synonymous mutation. This approach may facilitate the construction of genetic maps of regions tightly linked to targets of strong balancing selection.
Collapse
Affiliation(s)
- Naoki Takebayashi
- Department of Biology, Duke University, Durham, North Carolina 27708-0338, USA
| | | | | |
Collapse
|
84
|
Kauserud H, Schmidt O, Elfstrand M, Högberg N. Extremely low AFLP variation in the european dry rot fungus (Serpula lacrymans): implications for self/nonself-recognition. ACTA ACUST UNITED AC 2005; 108:1264-70. [PMID: 15587060 DOI: 10.1017/s095375620400108x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The devastating dry rot fungus, Serpula lacrymans, has a worldwide occurrence in buildings. We investigated the genetic variation in European isolates belonging to five vegetative compatibility groups (VCGs) by AFLP analysis. Our results indicate that S. lacrymans in Europe is genetically extremely homogenous; only five out of 308 scored AFLP fragments (1.6 %) were polymorphic. In contrast, S. himantioides, the closest relative of S. lacrymans, possessed 31.3 % polymorphic fragments (84 out of 268). AFLP polymorphisms observed in S. lacrymans were distributed independently of the VCG boundaries, indicating that the VCGs do not represent clones but that different genets of S. lacrymans frequently share similar vic alleles due to low genetic variation. Thus, although the European S. lacrymans is genetically extremely homogeneous, and our results suggest that the species reproduces and spreads mainly sexually and not by clones.
Collapse
Affiliation(s)
- Håvard Kauserud
- Department of Biology, University of Oslo, Blindern, N-0316 Oslo, Norway.
| | | | | | | |
Collapse
|
85
|
Abstract
The objective of this review is to provide a synthesis of speciation theory, of what is known about mechanisms of speciation in fungi and from this, what is expected, and of ideas on how speciation can be elucidated in more fungal systems. The emphasis is on process rather than pattern. Phylogeographic studies in some groups, such as the agarics, demonstrate predominantly allopatric speciation, often through vicariance, as seen in many plants and animals. The variety of life history factors in fungi suggests, however, a diversity in speciation mechanisms that is borne out in comparison of some key examples. Life history features in fungi with a bearing on speciation include genetic mechanisms for intra- and interspecies interactions, haploidy as monokaryons, dikaryons, or coenocytes, distinctive types of propagules with distinctive modes of dispersal, as well as characteristic relationships to the substrate or host as specialized or generalist saprotrophs, parasites or mutualists with associated opportunities and selective pressures for hybridization. Approaches are proposed for both retrospective, phylogeographic determination of speciation mechanisms, and experimental studies with the potential for genomic applications, particularly in examining the relationship between adaptation and reproductive isolation.
Collapse
Affiliation(s)
- Linda M Kohn
- Department of Botany, University of Toronto, Mississauga, Ontario, Canada L5L 1C6.
| |
Collapse
|
86
|
Abstract
Recent large-scale sequencing studies of mating type loci in a number of organisms offer insight into the origin and evolution of these genomic regions. Extensive tracts containing genes with a wide diversity of functions typically cosegregate with mating type. Cases in which mating type determination entails complementarity between distinct transcription units may descend from systems in which close physical linkage facilitated the coordinated expression and cosegregation of the interacting genes. In response to the particular selection pressures associated with the maintenance of more than one mating type, this nucleus of low recombination may expand over evolutionary time, engulfing neighboring tracts bearing genes with no direct role in reproduction. This scenario is consistent with the present-day structure of some mating type loci, including regulators of homomorphic self-incompatibility in angiosperms (S-loci). Recombination suppression and enforced S-locus heterozygosity accelerate the accumulation of genetic load and promote genetic associations between S-alleles and degenerating genes in cosegregating tracts. This S-allele-specific load may influence the evolution of self-incompatibility systems.
Collapse
Affiliation(s)
- Marcy K Uyenoyama
- Department of Biology, Box 90338, Duke University, Durham, NC 27708-0338, USA.
| |
Collapse
|
87
|
Castric V, Vekemans X. Plant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances. Mol Ecol 2004; 13:2873-89. [PMID: 15367105 DOI: 10.1111/j.1365-294x.2004.02267.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Self-incompatibility systems in plants are genetic systems that prevent self-fertilization in hermaphrodites through recognition and rejection of pollen expressing the same allelic specificity as that expressed in the pistils. The evolutionary properties of these self-recognition systems have been revealed through a fascinating interplay between empirical advances and theoretical developments. In 1939, Wright suggested that the main evolutionary force driving the genetic and molecular properties of these systems was strong negative frequency-dependent selection acting on pollination success. The empirical observation of high allelic diversity at the self-incompatibility locus in several species, followed by the discovery of very high molecular divergence among alleles in all plant families where the locus has been identified, supported Wright's initial theoretical predictions as well as many of its later developments. In the last decade, however, advances in the molecular characterization of the incompatibility reaction and in the analysis of allelic frequencies and allelic divergence from natural populations have stimulated new theoretical investigations that challenged some important assumptions of Wright's model of gametophytic self-incompatibility. We here review some of these recent empirical and theoretical advances that investigated: (i) the hypothesis that S-alleles are selectively equivalent, and the evolutionary consequences of genetic interactions between alleles; (ii) the occurrence of frequency-dependent selection in female fertility; (iii) the evolutionary genetics of self-incompatibility systems in subdivided populations; (iv) the evolutionary implications of the self-incompatibility locus's genetic architecture; and (v) of its interactions with the genomic environment.
Collapse
Affiliation(s)
- Vincent Castric
- Laboratoire de génétique et évolution des populations végétales, UMR CNRS 8016, Cité Scientifique, Bâtiment SN2, 59655 Villeneuve d'Ascq Cedex, France.
| | | |
Collapse
|
88
|
James TY, Liou SR, Vilgalys R. The genetic structure and diversity of the A and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet Biol 2004; 41:813-25. [PMID: 15219565 DOI: 10.1016/j.fgb.2004.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 04/26/2004] [Indexed: 11/23/2022]
Abstract
In most heterothallic mushroom species, inbreeding is avoided by an incompatibility system determined by two loci each with multiple alleles (the A and B mating-type loci). In this study we investigated the genetic structure of the mating-type loci in the tropical oyster mushroom Pleurotus djamor using both positional cloning and degenerate PCR methods. DNA sequences from genomic regions cosegregating with the mating-type loci of P. djamor revealed homeodomain transcription factors (A) and pheromone receptors (B), suggesting the genetic basis for mating-type determination in P. djamor is the same as in the model mushroom species. Three pheromone receptors were detected in a single homokaryotic isolate of P. djamor. Only one pair of homeodomain genes was detected in the A mating-type region. It is hypothesized that the A mating-type locus of P. djamor is comprised of only one homeodomain pair, which may explain the lower number of A mating-type alleles relative to other mushroom species.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
89
|
O'Donnell K, Ward TJ, Geiser DM, Corby Kistler H, Aoki T. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 2004; 41:600-23. [PMID: 15121083 DOI: 10.1016/j.fgb.2004.03.003] [Citation(s) in RCA: 434] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Accepted: 03/05/2004] [Indexed: 10/26/2022]
Abstract
Species limits were investigated within the Fusarium graminearum clade (Fg clade) through phylogenetic analyses of DNA sequences from portions of 11 nuclear genes including the mating-type (MAT) locus. Nine phylogenetically distinct species were resolved within the Fg clade, and they all possess contiguous MAT1-1 and MAT1-2 idiomorphs consistent with a homothallic reproductive mode. In contrast, only one of the two MAT idiomorphs was found in five other species, four of which were putatively asexual, and the other was heterothallic. Molecular evolutionary analyses indicate the MAT genes are under strong purifying selection and that they are functionally constrained, even in species for which a sexual state is unknown. The phylogeny supports a monophyletic and apomorphic origin of homothallism within this clade. Morphological analyses demonstrate that a combination of conidial characters could be used to differentiate three species and three species pairs. Species rank is formally proposed for the eight unnamed species within the Fg clade using fixed nucleotide characters.
Collapse
Affiliation(s)
- Kerry O'Donnell
- National Center for Agricultural Utilization Research, US Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, USA.
| | | | | | | | | |
Collapse
|
90
|
James TY, Kües U, Rehner SA, Vilgalys R. Evolution of the gene encoding mitochondrial intermediate peptidase and its cosegregation with the A mating-type locus of mushroom fungi. Fungal Genet Biol 2004; 41:381-90. [PMID: 14761798 DOI: 10.1016/j.fgb.2003.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 11/18/2003] [Indexed: 11/20/2022]
Abstract
The high level of DNA polymorphism at the mating-type loci of mushroom fungi has made the cloning of mating-type genes difficult. As an alternative to strategies that employ sequence conservation, an approach utilizing conserved gene order could facilitate the cloning of A mating-type genes from mushroom fungi. It has been shown that a gene encoding a mitochondrial intermediate peptidase (MIP) is very close ( < 1 kbp) to the A mating-type locus of two model mushroom species. In this study, the cosegregation of MIP and the A mating-type locus was studied by genotyping progeny of seven additional mushroom species using PCR and genetic crosses. No evidence of any recombination between MIP and the A mating-type locus was detected among all seven species. Phylogenetic analysis of MIP sequences from diverse mushroom species agrees with the current organismal phylogeny, suggesting the sequences are generally orthologous.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Biology, Box 90338, Duke University, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
91
|
Uyenoyama MK, Takebayashi N. A simple method for computing exact probabilities of mutation numbers. Theor Popul Biol 2004; 65:271-84. [PMID: 15066423 DOI: 10.1016/j.tpb.2003.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Indexed: 10/26/2022]
Abstract
We describe a method for the recursive computation of exact probability distributions for the number of neutral mutations segregating in samples of arbitrary size and configuration. Construction of the recursions requires only characterization of evolutionary changes as a Markov process and determination of one-step transition matrices. We address the pattern of nucleotide diversity at a neutral marker locus linked to a determinant of mating type. Under a reformulation of parameters, the method also applies directly to metapopulation models with island migration among demes. Characterization of complete probability distributions facilitates parameter estimation and hypothesis testing by likelihood- as well as moment-based approaches.
Collapse
Affiliation(s)
- Marcy K Uyenoyama
- Department of Biology, Box 90338, 107 Bio. Sci. Building, Duke University, Durham, NC 27708-0338, USA,
| | | |
Collapse
|
92
|
Hasselmann M, Beye M. Signatures of selection among sex-determining alleles of the honey bee. Proc Natl Acad Sci U S A 2004; 101:4888-93. [PMID: 15051879 PMCID: PMC387344 DOI: 10.1073/pnas.0307147101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patterns of DNA polymorphisms are a primary tool for dissecting signatures of selection; however, the underlying selective forces are poorly understood for most genes. A classical example of diversifying selection is the complementary sex-determining locus that is found in the very large insect order Hymenoptera (bees, wasps, ants, and sawflies). The gene responsible for sex determination, the complementary sex determiner (csd), has been most recently identified in the honey bee. Females are heterozygous at this locus. Males result when there is only one functional allele present, as a result of either homozygosity (fertilized eggs) or, more commonly, hemizygosity (unfertilized eggs). The homozygotes, diploid males, do not reproduce and have zero fitness, which implies positive selection in favor of rare alleles. Large differences in csd cDNA sequences within and between four populations were found that fall into two major groups, types I and II. Type I consists of several allelic lineages that were maintained over an extended period, an indication of balancing selection. Diversifying selection has operated on several confined parts of the protein, as shown by an excess of nonsynonymous differences. Elevated sequence differences indicate another selected part near a repeat region. These findings have general implications about the understanding of both the function of the multiallelic mechanism and the adaptive processes on the level of nucleotide sequences. Moreover, the first csd sequence data are a notable basis for the avoidance of diploid males in bee selection programs by allele-assisted breeding.
Collapse
Affiliation(s)
- Martin Hasselmann
- Institut für Zoologie, Biozentrum, Martin-Luther-Universität Halle/Wittenberg, Weinberg Weg 22, 06120 Halle, Germany.
| | | |
Collapse
|
93
|
Linde CC, Zala M, Ceccarelli S, McDonald BA. Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating-type alleles. Fungal Genet Biol 2004; 40:115-25. [PMID: 14516764 DOI: 10.1016/s1087-1845(03)00110-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rhynchosporium secalis, the causal agent of scald on barley, is thought to be exclusively asexual because no teleomorph has been found. Partial sequences of the HMG-box and alpha-domain of Rhynchosporium secalis isolates were identified and used to develop a PCR assay for the mating-type locus. PCR amplification of only one of these two domains was possible in each strain, suggesting that R. secalis has a MAT organization that is similar to other known heterothallic fungi. A multiplex PCR with primers amplifying either a MAT1-1- or MAT1-2-specific amplicon was used to determine the distribution of mating types in several R. secalis populations. In total, 1101 isolates from Australia, Switzerland, Ethiopia, Scandinavia, California, and South Africa were included in the analysis. Mating types occurred in equal frequencies for most of these populations, suggesting frequency-dependent selection consistent with sexual reproduction. In addition, both mating types were frequently found occupying the same lesion or leaf, providing opportunities for isolates of opposite mating type to interact and reproduce sexually. We propose that R. secalis should be considered a sexual pathogen, although the sexual cycle may occur infrequently in some populations.
Collapse
Affiliation(s)
- Celeste C Linde
- Institute of Plant Sciences, Plant Pathology Group, Federal Institute of Technology, ETH-Zentrum, LFW, CH-8092 Zürich, Switzerland.
| | | | | | | |
Collapse
|
94
|
Kothe E, Gola S, Wendland J. Evolution of multispecific mating-type alleles for pheromone perception in the homobasidiomycete fungi. Curr Genet 2003; 42:268-75. [PMID: 12589466 DOI: 10.1007/s00294-002-0352-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2002] [Revised: 10/14/2002] [Accepted: 11/05/2002] [Indexed: 10/25/2022]
Abstract
The evolution of multiple, independent and multispecific mating-type loci is a feature unique to homobasidiomycete fungi. To propose a model of evolution, data assembled for the wood-rotting fungus Schizophyllum commune were analyzed. In one mating-type locus, pheromone receptors and several pheromones are encoded which have been investigated in some detail and can be used to understand the ligand-receptor interactions and activation of signal transduction which are essential to sexual propagation. Previous models for the evolution of new alleles were complicated and involved three subsequent steps (without selectable phenotype) prior to the establishment of a new stable pheromone-receptor pair. This paper presents a model for the evolution of new specificities by recombination and selection that incorporates the multi-state receptor activation recently established for S. commune, explaining differential responses to different pheromones in one receptor molecule. The model takes into account the occurrence of multiple pheromone genes in each locus and unilateral nuclear donor/acceptor strains that may in nature act as steps in the evolution of new specificities. A second homobasidiomycete fungus, Coprinus cinereus, was similarly characterized at the molecular level. Data acquired in this system support the conclusion that the presented model can be generalized.
Collapse
Affiliation(s)
- Erika Kothe
- Friedrich-Schiller-Universität, Department of Microbiology, Microbial Phytopathology, Winzerlaer Strasse 10, 07745 Jena, Germany.
| | | | | |
Collapse
|
95
|
Sarkar S, Iyer G, Wu J, Glass N. Nonself recognition is mediated by HET-C heterocomplex formation during vegetative incompatibility. EMBO J 2002; 21:4841-50. [PMID: 12234924 PMCID: PMC126278 DOI: 10.1093/emboj/cdf479] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nonself recognition during vegetative growth in filamentous fungi is mediated by heterokaryon incompatibility (het) loci. In Neurospora crassa, het-c is one of 11 het loci. Three allelic specificity groups, termed het-c(OR), het-c(PA) and het-c(GR), exist in natural populations. Heterokaryons or partial diploids that contain het-c alleles of alternative specificity show severe growth inhibition, repression of conidiation and hyphal compartmentation and death (HCD). Using epitope-tagged HET-C, we show that nonself recognition is mediated by the presence of a heterocomplex composed of polypeptides encoded by het-c alleles of alternative specificity. The HET-C heterocomplex localized to the plasma membrane (PM); PM-bound HET-C heterocomplexes occurred in all three het-c incompatible allelic interactions. Strains containing het-c constructs deleted for a predicted signal peptide sequence formed HET-C heterocomplexes in the cytoplasm and showed a growth arrest phenotype. Our finding is a step towards understanding nonself recognition mechanisms that operate during vegetative growth in filamentous fungi, and provides a model for investigating relationships between recognition mechanisms and cell death.
Collapse
Affiliation(s)
- Sovan Sarkar
- Plant and Microbial Biology Department, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA and The Biotechnology Laboratory and the Botany Department, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Present address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Corresponding author e-mail: S.Sarkar and G.Iyer contributed equally to this work
| | - Gopal Iyer
- Plant and Microbial Biology Department, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA and The Biotechnology Laboratory and the Botany Department, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Present address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Corresponding author e-mail: S.Sarkar and G.Iyer contributed equally to this work
| | - Jennifer Wu
- Plant and Microbial Biology Department, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA and The Biotechnology Laboratory and the Botany Department, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Present address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Corresponding author e-mail: S.Sarkar and G.Iyer contributed equally to this work
| | - N.Louise Glass
- Plant and Microbial Biology Department, 111 Koshland Hall, University of California, Berkeley, CA 94720, USA and The Biotechnology Laboratory and the Botany Department, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Present address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA Corresponding author e-mail: S.Sarkar and G.Iyer contributed equally to this work
| |
Collapse
|
96
|
Zhan J, Kema GHJ, Waalwijk C, McDonald BA. Distribution of mating type alleles in the wheat pathogen Mycosphaerella graminicola over spatial scales from lesions to continents. Fungal Genet Biol 2002; 36:128-36. [PMID: 12081466 DOI: 10.1016/s1087-1845(02)00013-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A total of 2035 Mycosphaerella graminicola strains collected from 16 geographic locations on four continents were assayed for the mating type locus. RFLP fingerprints were used to identify clones in each population. At the smallest spatial scale analyzed, both mating types were found among fungal strains sampled from different lesions of the same leaf as well as from different pycnidia in the same lesion. At larger spatial scales, the two mating types were found at equal frequencies across spatial scales ranging from several square meters to several thousand square kilometers. Though the absolute frequencies of the two mating types sometimes varied for different sampling units within the same spatial scale in the hierarchy (plots within a field, fields within a country, or different continents of the world), none of the differences were statistically significant from the null hypothesis of equal frequencies for the two mating types. The evolutionary forces likely to maintain the even distribution of the two mating types in this pathogen were discussed.
Collapse
Affiliation(s)
- J Zhan
- ETH Zentrum/LFW, Phytopathology Group, Institute of Plant Sciences, Universitätstrasse 2, Zürich, CH-8092, Switzerland.
| | | | | | | |
Collapse
|
97
|
Small RL, Wendel JF. Differential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium). Mol Biol Evol 2002; 19:597-607. [PMID: 11961094 DOI: 10.1093/oxfordjournals.molbev.a004119] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Levels and patterns of nucleotide diversity vary widely among lineages. Because allopolyploid species contain duplicated (homoeologous) genes, studies of nucleotide diversity at homoeologous loci may facilitate insight into the evolutionary dynamics of duplicated loci. In this study, we describe patterns of sequence diversity from an alcohol dehydrogenase homoeologous locus pair (AdhC) in allotetraploid cotton (Gossypium, Malvaceae). These data are compared with equivalent information from another homoeologous alcohol dehydrogenase gene pair (AdhA, Small, Ryburn, and Wendel 1999. Mol. Biol. Evol. 16:491-501) which has an overall slower evolutionary rate than AdhC. As expected from the predicted correlation between nucleotide diversity and evolutionary rate, nucleotide diversity was higher for AdhC than for AdhA. In addition, nucleotide diversity is higher in the D-subgenome of allotetraploid cotton for AdhC, confirming earlier observations for AdhA. These observations indicate that for these two pairs of Adh loci, the null hypothesis of equivalent evolutionary dynamics for duplicated genes in allotetraploid cotton is rejected.
Collapse
Affiliation(s)
- Randall L Small
- Department of Botany, 437 Hesler Biology, The University of Tennessee, Knoxville, TN 37996-1100, USA.
| | | |
Collapse
|
98
|
Schierup MH, Mikkelsen AM, Hein J. Recombination, balancing selection and phylogenies in MHC and self-incompatibility genes. Genetics 2001; 159:1833-44. [PMID: 11779818 PMCID: PMC1461893 DOI: 10.1093/genetics/159.4.1833] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using a coalescent model of multiallelic balancing selection with recombination, the genealogical process as a function of recombinational distance from a site under selection is investigated. We find that the shape of the phylogenetic tree is independent of the distance to the site under selection. Only the timescale changes from the value predicted by Takahata's allelic genealogy at the site under selection, converging with increasing recombination to the timescale of the neutral coalescent. However, if nucleotide sequences are simulated over a recombining region containing a site under balancing selection, a phylogenetic tree constructed while ignoring such recombination is strongly affected. This is true even for small rates of recombination. Published studies of multiallelic balancing selection, i.e., the major histocompatibility complex (MHC) of vertebrates, gametophytic and sporophytic self-incompatibility of plants, and incompatibility of fungi, all observe allelic genealogies with unexpected shapes. We conclude that small absolute levels of recombination are compatible with these observed distortions of the shape of the allelic genealogy, suggesting a possible cause of these observations. Furthermore, we illustrate that the variance in the coalescent with recombination process makes it difficult to locate sites under selection and to estimate the selection coefficient from levels of variability.
Collapse
Affiliation(s)
- M H Schierup
- Bioinformatics Research Center (BiRC), Department of Ecology and Genetics, University of Aarhus, 8000 Aarhus C., Denmark.
| | | | | |
Collapse
|
99
|
Glass NL, Jacobson DJ, Shiu PK. The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet 2001; 34:165-186. [PMID: 11092825 DOI: 10.1146/annurev.genet.34.1.165] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Filamentous fungi grow as a multicellular, multinuclear network of filament-shaped cells called hyphae. A fungal individual can be viewed as a fluid, dynamic system that is characterized by hyphal tip growth, branching, and hyphal fusion (anastomosis). Hyphal anastomosis is especially important in such nonlinear systems for the purposes of communication and homeostasis. Filamentous fungi can also undergo hyphal fusion with different individuals to form heterokaryons. However, the viability of such heterokaryons is dependent upon genetic constitution at heterokaryon incompatibility (het) loci. If hyphal fusion occurs between strains that differ in allelic specificity at het loci, vegetative incompatibility, which is characterized by hyphal compartmentation and cell lysis, is induced. This review covers microscopic and genetic analysis of hyphal fusion and the molecular and genetic analysis of the consequence of hyphal fusion between individuals that differ in specificity at het loci in filamentous ascomycetes.
Collapse
Affiliation(s)
- N L Glass
- Plant and Microbial Biology Department, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
100
|
James TY, Moncalvo JM, Li S, Vilgalys R. Polymorphism at the ribosomal DNA spacers and its relation to breeding structure of the widespread mushroom Schizophyllum commune. Genetics 2001; 157:149-61. [PMID: 11139499 PMCID: PMC1461461 DOI: 10.1093/genetics/157.1.149] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The common split-gilled mushroom Schizophyllum commune is found throughout the world on woody substrates. This study addresses the dispersal and population structure of this fungal species by studying the phylogeny and evolutionary dynamics of ribosomal DNA (rDNA) spacer regions. Extensive sampling (n = 195) of sequences of the intergenic spacer region (IGS1) revealed a large number of unique haplotypes (n = 143). The phylogeny of these IGS1 sequences revealed strong geographic patterns and supported three evolutionarily distinct lineages within the global population. The same three geographic lineages were found in phylogenetic analysis of both other rDNA spacer regions (IGS2 and ITS). However, nested clade analysis of the IGS1 phylogeny suggested the population structure of S. commune has undergone recent changes, such as a long distance colonization of western North America from Europe as well as a recent range expansion in the Caribbean. Among all spacer regions, variation in length and nucleotide sequence was observed between but not within the tandem rDNA repeats (arrays). This pattern is consistent with strong within-array and weak among-array homogenizing forces. We present evidence for the suppression of recombination between rDNA arrays on homologous chromosomes that may account for this pattern of concerted evolution.
Collapse
Affiliation(s)
- T Y James
- Department of Botany, Duke University, Durham, North Carolina 27708-0338, USA.
| | | | | | | |
Collapse
|