51
|
Del Mar C, Greenbaum EA, Mayne L, Englander SW, Woods VL. Structure and properties of alpha-synuclein and other amyloids determined at the amino acid level. Proc Natl Acad Sci U S A 2005; 102:15477-82. [PMID: 16223878 PMCID: PMC1266128 DOI: 10.1073/pnas.0507405102] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of alpha-synuclein (alpha-syn) amyloid was studied by hydrogen-deuterium exchange by using a fragment separation-MS analysis. The conditions used made it possible to distinguish the exchange of unprotected and protected amide hydrogens and to define the order/disorder boundaries at close to amino acid resolution. The soluble alpha-syn monomer exchanges its amide hydrogens with water hydrogens at random coil rates, consistent with its natively unstructured condition. In assembled amyloid, long N-terminal and C-terminal segments remain unprotected (residues 1- approximately 38 and 102-140), although the N-terminal segment shows some heterogeneity. A continuous middle segment (residues approximately 39-101) is strongly protected by systematically H-bonded cross-beta structure. This segment is much too long to fit the amyloid ribbon width, but non-H-bonded amides expected for direction-changing loops are not apparent. These results and other known constraints specify that alpha-syn amyloid adopts a chain fold like that suggested before for amyloid-beta [Petkova et al. (2002) Proc. Natl. Acad Sci. USA 99, 16742-16747] but with a short, H-bonded interlamina turn. More generally, we suggest that the prevalence of accidental amyloid formation derives mainly from the exceptional ability of the main chain in a structurally relaxed beta-conformation to adapt to and energy-minimize side-chain mismatching. Seeding specificity, strain variability, and species barriers then arise because newly added parallel in-register chains must faithfully reproduce the same set of adaptations.
Collapse
Affiliation(s)
- Charyl Del Mar
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
52
|
Weinkam P, Zong C, Wolynes PG. A funneled energy landscape for cytochrome c directly predicts the sequential folding route inferred from hydrogen exchange experiments. Proc Natl Acad Sci U S A 2005; 102:12401-6. [PMID: 16116080 PMCID: PMC1194935 DOI: 10.1073/pnas.0505274102] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteins fold through a variety of mechanisms. For a given protein, folding routes largely depend on the protein's stability and its native-state geometry, because the landscape is funneled. These ideas are corroborated for cytochrome c by using a coarse-grained topology-based model with a perfect funnel landscape that includes explicit modeling of the heme. The results show the importance of the heme as a nucleation site and explain the observed hydrogen exchange patterns of cytochrome c within the context of energy landscape theory.
Collapse
Affiliation(s)
- Patrick Weinkam
- Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
53
|
Jiménez HR, Ruiz de Sola E, Moratal JM, Arbona M. Protein Unfolding:1H-NMR Studies of Paramagnetic Ferricytochrome c-550 from Horse Heart. Z Anorg Allg Chem 2005. [DOI: 10.1002/zaac.200570009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
54
|
Moroder L. Isosteric replacement of sulfur with other chalcogens in peptides and proteins. J Pept Sci 2005; 11:187-214. [PMID: 15782428 DOI: 10.1002/psc.654] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The review addresses the functional and structural properties of the two series of chalcogen analogues of amino acids in peptides and proteins, the methionine and the serine/cysteine series, and discusses the synthesis of the related selenium/tellurium analogues as well as their use in peptide synthesis and protein expression. Advances in synthetic methodologies and recombinant technologies and their combined applications in native and expressed protein ligation allows the isomorphous character of selenium- and tellurium-containing amino acids to be exploited for production of heavy metal mutants of proteins and thus to facilitate the phasing problem in x-ray crystallography. In addition, selenocysteine has been recognized as an ideal tool for the production of selenoenzymes with new catalytic activities. Moreover, the fully isomorphous character of disulfide replacement with diselenide is well suited to increase the robustness of cystine frameworks in cystine-rich peptides and proteins and for the de novo design of even non-native cystine frameworks by exploiting the highly negative redox potential of selenols.
Collapse
Affiliation(s)
- Luis Moroder
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany.
| |
Collapse
|
55
|
Kataeva IA, Brewer JM, Uversky VN, Ljungdahl LG. Domain coupling in a multimodular cellobiohydrolase CbhA fromClostridium thermocellum. FEBS Lett 2005; 579:4367-73. [PMID: 16054142 DOI: 10.1016/j.febslet.2005.06.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 06/30/2005] [Accepted: 06/30/2005] [Indexed: 11/22/2022]
Abstract
Cellobiohydrolase A (CbhA) from Clostridium thermocellum is composed of an N-terminal carbohydrate-binding domain 4 (CBD4), an immunoglobulin-like domain (Ig), a glycoside hydrolase 9 (GH9), X1(1) and X1(2) domains, a CBD3, and a dockerin domain. All domains, except the Ig, bind Ca2+. The following constructs were made: X1(2), X1(1)X1(2), CBD3, X1(1)X1(2)-CBD3, Ig, GH9, Ig-GH9, Ig-GH9-X1(1)X1(2), and Ig-GH9-X1(1)X1(2)-CBD3. Interactions between domains in (1) buffer, (2) with Ca2+, or (3) ethylenediaminetetraacetic acid (EDTA) were studied by differential scanning calorimetry. Thermal unfoldings of all constructs were irreversible. Calcium increased T(d) and cooperativity of unfolding. Multi-domain constructs exhibited more cooperative unfolding in buffer and in the presence of EDTA than did individual domains. They denatured by mechanism simpler than expected from their modular architecture. The results indicate that domain coupling in thermophilic proteins constitutes a significant stabilizing factor.
Collapse
Affiliation(s)
- Irina A Kataeva
- Department of Biochemistry and Molecular Biology, A216 Fred Davison Life Sciences Complex, University of Georgia, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
56
|
Abstract
Evidence from proteins and peptides supports the conclusion that intrapeptide hydrogen bonds stabilize the folded form of proteins. Paradoxically, evidence from small molecules supports the opposite conclusion, that intrapeptide hydrogen bonds are less favorable than peptide-water hydrogen bonds. A related issue-often lost in this debate about comparing peptide-peptide to peptide- water hydrogen bonds-involves the energetic cost of an unsatisfied hydrogen bond. Here, experiment and theory agree that breaking a hydrogen bond costs between 5 and 6 kcal/mol. Accordingly, the likelihood of finding an unsatisfied hydrogen bond in a protein is insignificant. This realization establishes a powerful rule for evaluating protein conformations.
Collapse
Affiliation(s)
- Patrick J Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
57
|
Lu JR, Perumal S, Zhao X, Miano F, Enea V, Heenan RR, Penfold J. Surface-induced unfolding of human lactoferrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:3354-3361. [PMID: 15807574 DOI: 10.1021/la047162j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have determined the structural conformations of human lactoferrin adsorbed at the air/water interface by neutron reflectivity (NR) and its solution structure by small angle neutron scattering (SANS). The neutron reflectivity measurements revealed a strong structural unfolding of the molecule when adsorbed at the interface from a pH 7 phosphate buffer solution (PBS with a total ionic strength at 4.5 mM) over a wide concentration range. Two distinct regions, a top dense layer of 15-20 angstroms on the air side and a bottom diffuse layer of some 50 angstroms into the aqueous subphase, characterized the unfolded interfacial layer. At a concentration around 1 g dm(-3), close to the physiological concentration of lactoferrin in biological fluids, the adsorbed amount was 5.5 x 10(-8) mol m(-2) in the absence of NaCl, but the addition of 0.3 M NaCl reduced protein adsorption to 3.5 x 10(-8) mol m(-2). Although the polypeptide distributions at the interface remained similar, quantitative analysis showed that the addition of NaCl reduced the layer thickness. Parallel measurements of lactoferrin adsorption in D2O instead of null reflecting water confirmed the unfolded structure at the interface. Furthermore, the D2O data indicated that the polypeptide in the top layer was predominantly protruded out of water, consistent with it being hydrophobic. In contrast, the scattering intensity profiles from SANS were well described by a cylindrical model with a diameter of 47 angstroms and a length of 105 angstroms in the presence of 0.3 M NaCl, indicating a retention of the globular framework in the bulk solution. In the absence of NaCl but with the same amount of phosphate buffer, the length of the cylinder increased to some 190 angstroms and the diameter remained constant. The length increase is indicative of changes in distance and orientation between the bilobal monomers due to the change in charge interactions. The results thus demonstrate that the surface structural unfolding was caused by the exposure of the protein molecule to the unsymmetrical energetic balance following surface adsorption.
Collapse
Affiliation(s)
- Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, the University of Manchester, Sackville Street Building, Sackville Street, Manchester M60 1QD, UK.
| | | | | | | | | | | | | |
Collapse
|
58
|
Maity H, Maity M, Krishna MMG, Mayne L, Englander SW. Protein folding: the stepwise assembly of foldon units. Proc Natl Acad Sci U S A 2005; 102:4741-6. [PMID: 15774579 PMCID: PMC555724 DOI: 10.1073/pnas.0501043102] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equilibrium and kinetic hydrogen exchange experiments show that cytochrome c is composed of five foldon units that continually unfold and refold even under native conditions. Folding proceeds by the stepwise assembly of the foldon units rather than one amino acid at a time. The folding pathway is determined by a sequential stabilization process; previously formed foldons guide and stabilize subsequent foldons to progressively build the native protein. Four other proteins have been found to show similar behavior. These results support stepwise protein folding pathways through discrete intermediates.
Collapse
Affiliation(s)
- Haripada Maity
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA.
| | | | | | | | | |
Collapse
|
59
|
Cooper HJ, Håkansson K, Marshall AG. The role of electron capture dissociation in biomolecular analysis. MASS SPECTROMETRY REVIEWS 2005; 24:201-22. [PMID: 15389856 DOI: 10.1002/mas.20014] [Citation(s) in RCA: 399] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The introduction of electron capture dissociation (ECD) to electrospray (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) constitutes a significant advance in the structural analysis of biomolecules. The fundamental features and benefits of ECD are discussed in this review. ECD is currently unique to FT-ICR MS and the fundamentals of that technique are outlined. The advantages and complementarity of ECD in relation to other tandem mass spectrometry (MS/MS) techniques, such as infrared multiphoton dissociation (IRMPD) and sustained off-resonance collision-induced dissociation (SORI-CID), are discussed. The instrumental considerations associated with implementation of ECD, including activated ion techniques and coupling to on-line separation techniques, are covered, as are the allied processes electronic excitation dissociation (EED), electron detachment dissociation (EDD), and hot electron capture (HECD). A major theme of this review is the role of ECD in proteomics, particularly for characterization of post-translational modifications (phosphorylation, glycosylation, carboxyglutamic acid, sulfation, acylation, and methionine oxidation) and the top-down approach to protein identification. The application of ECD to the analysis of polymers, peptide nucleic acids, and oligonucleotides is also discussed.
Collapse
Affiliation(s)
- Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | |
Collapse
|
60
|
Stizza A, Capriotti E, Compiani M. A Minimal Model of Three-State Folding Dynamics of Helical Proteins. J Phys Chem B 2005; 109:4215-26. [PMID: 16851484 DOI: 10.1021/jp045228d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A diffusion-collision-like model is proposed for helical proteins with three-state folding dynamics. The model generalizes a previous scheme based on the dynamics of putatively essential parts of the protein (foldons) that was successfully tested on proteins with two-state folding. We show that the extended model, unlike the original one, allows satisfactory calculation of the folding rate and reconstruction of the salient steps of the folding pathway of two proteins with three-state folding (Im7 and p16). The dramatic reduction of variables achieved by focusing on the foldons makes our model a good candidate for a minimal description of the folding process also for three-state folders. Finally, the applicability of the foldon diffusion-collision model to two-state and three-state folders suggests that different folding mechanisms are amenable to conceptually homogeneous descriptions. The implications for a unification of the variety of folding theories so far proposed for helical proteins are discussed in the final discussion.
Collapse
Affiliation(s)
- Alberto Stizza
- Department of Mathematics and Physics, Catholic University, Brescia, Italy
| | | | | |
Collapse
|
61
|
Naeem A, Khan RH. Characterization of molten globule state of cytochrome c at alkaline, native and acidic pH induced by butanol and SDS. Int J Biochem Cell Biol 2005; 36:2281-92. [PMID: 15313473 DOI: 10.1016/j.biocel.2004.04.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/26/2004] [Accepted: 04/14/2004] [Indexed: 11/23/2022]
Abstract
In our earlier communications, we had studied the acid induced unfolding of stem bromelain, glucose oxidase and fetuin [Eur. J. Biochem. 269 (2002) 47; Biochem. Biophys. Res. Comm. 303 (2003) 685; Biochim. Biophys. Acta 1649 (2003) 164] and effect of salts and alcohols on the acid unfolded state of alpha-chymotrypsinogen and stem bromelain [Biochim. Biophy. Acta 1481 (2000) 229; Arch. Biochem. Biophys. 413 (2) (2003) 199]. Here, we report the presence of molten globule like equilibrium intermediate state under alkaline, native and acid conditions in the presence of SDS and butanol. A systematic investigation of sodium dodecyl sulphate and butanol induced conformational alterations in alkaline (U(1)) and acidic (U(2)) unfolded states of horse heart ferricytochrome c was examined by circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding. The cytochrome c (cyt c) at pH 9 and 2 shows the loss of approximately 61% and 65% helical secondary structure. Addition of increasing concentrations of butanol (0-7.2 M) and sodium dodecyl sulphate (0-5 mM) led to an increase in ellipticity value at 208 and 222 nm, which is the characteristic of formation of alpha-helical structure. Cyt c is a heme protein in which the tryptophan fluorescence is quenched in the native state by resonance energy transfer to the heme group attached to cystines at positions 14 and 17. At alkaline and acidic pH protein shows enhancement in tryptophan fluorescence and quenched ANS fluorescence. Addition of increasing concentration of butanol and SDS to alkaline or acid unfolded state leads to decrease in tryptophan and increase in ANS fluorescence with a blue shift in lambda(max), respectively. In the presence of 7.2 M butanol and 5 mM SDS two different intermediate states I(1) and I(2) were obtained at alkaline and acidic pH, respectively. States I(1) and I(2) have native like secondary structure with disordered side chains (loss of tertiary structure) as predicted from tryptophan fluorescence and high ANS binding. These results altogether imply that the butanol and SDS induced intermediate states at alkaline and acid pH lies between the unfolded and native state. At pH 6, in the presence of 7.2 M butanol or 5 mM SDS leads to the loss of CD bands at 208 and 222 nm with the appearance of trough at 228 nm also with increase in tryptophan and ANS fluorescence in contrast to native protein. This partially unfolded intermediate state obtained represents the folding pathway from native to unfolded structure. To summarize; the 7.2 M butanol and 5 mM SDS stabilizes the intermediate state (I(1) and I(2)) obtained at low and alkaline pH. While the same destabilizes the native structure of protein at pH 6, suggesting a difference in the mechanism of conformational stability.
Collapse
Affiliation(s)
- Aabgeena Naeem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
62
|
Krishna MMG, Englander SW. The N-terminal to C-terminal motif in protein folding and function. Proc Natl Acad Sci U S A 2005; 102:1053-8. [PMID: 15657118 PMCID: PMC545867 DOI: 10.1073/pnas.0409114102] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Essentially all proteins known to fold kinetically in a two-state manner have their N- and C-terminal secondary structural elements in contact, and the terminal elements often dock as part of the experimentally measurable initial folding step. Conversely, all N-C no-contact proteins studied so far fold by non-two-state kinetics. By comparison, about half of the single domain proteins in the Protein Data Bank have their N- and C-terminal elements in contact, more than expected on a random probability basis but not nearly enough to account for the bias in protein folding. Possible reasons for this bias relate to the mechanisms for initial protein folding, native state stability, and final turnover.
Collapse
Affiliation(s)
- Mallela M G Krishna
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA.
| | | |
Collapse
|
63
|
Protein misfolding: optional barriers, misfolded intermediates, and pathway heterogeneity. J Mol Biol 2004; 343:1095-109. [PMID: 15476824 DOI: 10.1016/j.jmb.2004.08.098] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 08/20/2004] [Accepted: 08/26/2004] [Indexed: 10/26/2022]
Abstract
To investigate the character and role of misfolded intermediates in protein folding, a recombinant cytochrome c without the normally blocking histidine to heme misligation was studied. Folding remains heterogeneous as in the wild-type protein. Half of the population folds relatively rapidly to the native state in a two-state manner. The other half collapses (fluorescence quenching) and forms a full complement of helix (CD) with the same rate and denaturant dependence as the fast folding fraction but then is blocked and reaches the native structure (695nm absorbance) much more slowly. The factors that transiently block folding are not intrinsic to the folding process but depend on ambient conditions, including protein aggregation (f(concentration)), N terminus to heme misligation (f(pH)), and proline mis-isomerization (f(U state equilibration time)). The misfolded intermediate populated by the slowly folding fraction was characterized by hydrogen exchange pulse labeling. It is very advanced with all of the native-like elements fairly stably formed but not the final Met80-S to heme iron ligation, similar to a previously studied molten globule form induced by low pH. To complete final native state acquisition, some small back unfolding is required (error repair) but the misfolded intermediate does not revisit the U state before proceeding to N. These properties show that the intermediate is a normal on-pathway form that contains, in addition, adventitious misfolding errors that transiently block its forward progress. Related observations for other proteins (partially misfolded intermediates, pathway heterogeneity) might be similarly explained in terms of the optional insertion of error-dependent barriers into a classical folding pathway.
Collapse
|
64
|
Maity H, Eftink MR. Perchlorate-induced conformational transition of Staphylococcal nuclease: evidence for an equilibrium unfolding intermediate. Arch Biochem Biophys 2004; 431:119-23. [PMID: 15464733 DOI: 10.1016/j.abb.2004.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Indexed: 11/17/2022]
Abstract
The sodium perchlorate-induced conformational transition of Staphylococcal nuclease has been monitored by both circular dichroism (CD) and fluorescence spectroscopy. The perchlorate-induced transition is cooperative as observed by both spectroscopic signals. However, the protein loses only about one-third of its native far-UV CD signal at high perchlorate concentrations, indicating that a significant amount of secondary structure remains in the post-transition state. The remaining CD signal can be further diminished in a cooperative manner by the addition of the strong denaturant, urea. Near-UV CD spectra clearly show that the protein loses its tertiary structure in the perchlorate-induced denatured state. The perchlorate-induced transition curves were fit to the standard two-state model and the standard free energy change and m value of the transition are 2.3kcal/mol and 1.8kcal/(molM), respectively. By comparison, the urea-induced unfolding of Staphylococcal nuclease (in the absence of perchlorate) yields an unfolding free energy change, DeltaG(0,un), of 5.6kcal/mol and an m value of 2.3kcal/(molM). Thus, the thermodynamic state obtained in the post-transition region of perchlorate-induced conformation transition has a significantly lower free energy change, a high content of secondary structure, and diminished tertiary structure. These results suggest that the perchlorate-induced denatured state is a partially folded equilibrium state. Whether this intermediate is relevant to the folding/unfolding path under standard conditions is unknown at this time.
Collapse
Affiliation(s)
- Haripada Maity
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | | |
Collapse
|
65
|
Meisner WK, Sosnick TR. Barrier-limited, microsecond folding of a stable protein measured with hydrogen exchange: Implications for downhill folding. Proc Natl Acad Sci U S A 2004; 101:15639-44. [PMID: 15505204 PMCID: PMC524831 DOI: 10.1073/pnas.0404895101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Folding experiments are conducted to test whether a covalently cross-linked coiled-coil folds so quickly that the process is no longer limited by a free-energy barrier. This protein is very stable and topologically simple, needing merely to "zipper up," while having an extrapolated folding rate of k(f) = 2 x 10(5) s(-1). These properties make it likely to attain the elusive "downhill folding" limit, at which a series of intermediates can be characterized. To measure the ultra-fast kinetics in the absence of denaturant, we apply NMR and hydrogen-exchange methods. The stability and its denaturant dependence for the hydrogen bonds in the central part of protein equal the values calculated for whole-molecule unfolding. Like-wise, their closing and opening rates indicate that these hydrogen bonds are broken and reformed in a single cooperative event representing the folding transition from the fully unfolded state to the native state. Additionally, closing rates for these hydrogen bonds agree with the extrapolated barrier-limited folding rate observed near the melting transition. Therefore, even in the absence of denaturant, where DeltaG(eq) approximately -6 kcal.mol(-1) (1 cal = 4.18 J) and tau(f) approximately 6 mus, folding remains cooperative and barrier-limited. Given that this prime candidate for downhill folding fails to do so, we propose that protein folding will remain barrier-limited for proteins that fold cooperatively.
Collapse
Affiliation(s)
- W Kevin Meisner
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
66
|
Kaya H, Chan HS. Explicit-chain model of native-state hydrogen exchange: Implications for event ordering and cooperativity in protein folding. Proteins 2004; 58:31-44. [PMID: 15468168 DOI: 10.1002/prot.20286] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Native-state hydrogen exchange experiments on several proteins have revealed partially unfolded conformations with diverse stabilities. These equilibrium observations have been used to support kinetic arguments that folding proceeds via a sequential "pathway." This interpretative logic is evaluated here by analyzing the relationship between thermodynamic behavior and folding kinetics in a class of simplified lattice protein models. The chain models studied have varying degrees of cooperative interplay (coupling) between local helical conformational preference and favorable nonlocal interactions. When model cooperativity is high, as native conditions are weakened, "isotherms" of free energy of exchange for residues belonging to the same helix merge together before global unfolding. The point of merger depends on the model energetic favorability of the helix. This trend is similar to the corresponding experimental observations. Kinetically, we find that the ordering of helix formation in the very last stage of native core assembly tends to follow the stabilities of their converged isotherms. In a majority (but not all) of folding trajectories, the final assembly of helices that are thermodynamically more stable against exchange precedes that of helices that are less stable against exchange. These model features are in partial agreement with common experimental interpretations. However, the model results also underscore the ensemble nature of the folding process: the kinetics of helix formation is not a discrete, strictly "all-or-none" process as that envisioned by certain non-explicit-chain models. Helices generally undergo many cycles of partial formation and dissolution before their conformations are fixed in the final assembly stage of folding, a kinetic stage that takes up only approximately 2% of the average folding time in the present model; and the ordering of the helices' final assembly in some trajectories can be different from the dominant ordering stipulated by the exchange isotherms.
Collapse
Affiliation(s)
- Hüseyin Kaya
- Department of Biochemistry, Faculty of Medicine, Protein Engineering Network of Centres of Excellence, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
67
|
Maity H, Maity M, Englander SW. How Cytochrome c Folds, and Why: Submolecular Foldon Units and their Stepwise Sequential Stabilization. J Mol Biol 2004; 343:223-33. [PMID: 15381432 DOI: 10.1016/j.jmb.2004.08.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 07/15/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
Native state hydrogen exchange experiments have shown that the cytochrome c (Cyt c) protein consists of five cooperative folding-unfolding units, called foldons. These are named, in the order of increasing unfolding free energy, the nested-Yellow, Red, Yellow, Green, and Blue foldons. Previous results suggest that these units unfold in a stepwise sequential way so that each higher energy partially unfolded form includes all of the previously unfolded lower free energy units. If this is so, then selectively destabilizing any given foldon should equally destabilize each subsequent unfolding step above it in the unfolding ladder but leave the lower ones before it unaffected. To perform this test, we introduced the mutation Glu62Gly, which deletes a salt link in the Yellow unit and destabilizes the protein by 0.8 kcal/mol. Native state hydrogen exchange and other experiments show that the stability of the Yellow unit and the states above it in the free energy ladder are destabilized by about the same amount while the lower lying states are unaffected. These results help to confirm the sequential stepwise nature of the Cyt c unfolding pathway and therefore a similar refolding pathway. The steps in the pathway are dictated by the concerted folding-unfolding property of the individual unit foldons; the order of steps is determined by the sequential stabilization of progressively added foldons in the native context. Much related information for Cyt c strongly conforms with this mechanism. Its generality is supported by available information for other proteins.
Collapse
Affiliation(s)
- Haripada Maity
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
68
|
Felts AK, Harano Y, Gallicchio E, Levy RM. Free energy surfaces of β-hairpin and α-helical peptides generated by replica exchange molecular dynamics with the AGBNP implicit solvent model. Proteins 2004; 56:310-21. [PMID: 15211514 DOI: 10.1002/prot.20104] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have studied the potential of mean force of two peptides, one known to adopt a beta-hairpin and the other an alpha-helical conformation in solution. These peptides are, respectively, residues 41-56 of the C-terminus (GEWTYDDATKTFTVTE) of the B1 domain of protein G and the 13 residue C-peptide (KETAAAKFERQHM) of ribonuclease A. Extensive canonical ensemble sampling has been performed using a parallel replica exchange method. The effective potential employed in this work consists of the OPLS all-atom force field (OPLS-AA) and an analytical generalized Born (AGB) implicit solvent model including a novel nonpolar solvation free energy estimator (NP). An additional dielectric screening parameter has been incorporated into the AGBNP model. In the case of the beta-hairpin, the nonpolar solvation free energy estimator provides the necessary effective interactions for the collapse of the hydrophobic core (W43, Y45, F52, and V54), which the more commonly used surface-area-dependent nonpolar model does not provide. For both the beta-hairpin and the alpha-helix, increased dielectric screening reduces the stability of incorrectly formed salt bridges, which tend to disrupt the formation of the hairpin and helix, respectively. The fraction of beta-hairpin and alpha-helix content we obtained using the AGBNP model agrees well with experimental results. The thermodynamic stability of the beta-hairpin from protein G and the alpha-helical C-peptide from ribonuclease A as modeled with the OPLS-AA/AGBNP effective potential reflects the balance between the nonpolar effective potential terms, which drive compaction, and the polar and hydrogen bonding terms, which promote secondary structure formation.
Collapse
Affiliation(s)
- Anthony K Felts
- Department of Chemistry and Chemical Biology and BIOMAPS Institute for Quantitative Biology, Rutgers University, Wright-Rieman Laboratories, 610 Taylor Rd, Piscataway, New Jersey 08854-8087, USA
| | | | | | | |
Collapse
|
69
|
Yan S, Gawlak G, Smith J, Silver L, Koide A, Koide S. Conformational Heterogeneity of an Equilibrium Folding Intermediate Quantified and Mapped by Scanning Mutagenesis. J Mol Biol 2004; 338:811-25. [PMID: 15099747 DOI: 10.1016/j.jmb.2004.02.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2003] [Revised: 02/23/2004] [Accepted: 02/24/2004] [Indexed: 11/18/2022]
Abstract
It is challenging to experimentally define an energy landscape for protein folding that comprises multiple partially unfolded states. Experimental results are often ambiguous as to whether a non-native state is conformationally homogeneous. Here, we tested an approach combining systematic mutagenesis and a Brønsted-like analysis to reveal and quantify conformational heterogeneity of folding intermediate states. Using this method, we resolved an otherwise apparently homogeneous equilibrium folding intermediate of Borrelia burgdorferi OspA into two conformationally distinct species and determined their relative populations. Furthermore, we mapped the structural differences between these intermediate species, which are consistent with the non-native species that we previously proposed based on native-state hydrogen exchange studies. When treated as a single state, the intermediate ensemble exhibited fractional Phi-values for mutations and Hammond-type behaviors that are often observed for folding transition states. We found that a change in relative population of the two species within the intermediate ensemble explains these properties well, suggesting that fractional Phi-values and Hammond-type behaviors exhibited by folding intermediates and transition states may arise more often from conformational heterogeneity than from a single partial structure. Our results are consistent with the presence of multiple minima in a rugged energy landscape predicted from theoretical studies. The method described here provides a promising means to probe a complex folding energy landscape.
Collapse
Affiliation(s)
- Shude Yan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
70
|
Prabhu NP, Kumar R, Bhuyan AK. Folding barrier in horse cytochrome c: support for a classical folding pathway. J Mol Biol 2004; 337:195-208. [PMID: 15001362 DOI: 10.1016/j.jmb.2004.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 01/07/2004] [Accepted: 01/07/2004] [Indexed: 11/23/2022]
Abstract
Native-state structures and conformations of ferrocytochrome c, nitrosylcytochrome c, and carbonmonoxycytochrome c are very similar. They are, however, immensely different from each other in terms of thermodynamic stability. The dramatic destabilization of ferrocytochrome c to the extent of 12 kcal mol(-1) produces no effect on the folding rate, and this is so in spite of the fact that all three test-tube variants fold in an apparent two-state manner. For all three proteins the folding barrier is early in time, sizable in energy, and is of the same magnitude (approximately 6.5 kcal mol(-1)). These results raise some challenges to the "new view" of protein folding. An early transition state, the search for which consumes most of the observed folding time, is suggested.
Collapse
Affiliation(s)
- N Prakash Prabhu
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
71
|
Cliff MJ, Higgins LD, Sessions RB, Waltho JP, Clarke AR. Beyond the EX1 limit: probing the structure of high-energy states in protein unfolding. J Mol Biol 2004; 336:497-508. [PMID: 14757061 DOI: 10.1016/j.jmb.2003.12.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hydrogen exchange kinetics in native solvent conditions have been used to explore the conformational fluctuations of an immunoglobulin domain (CD2.domain1). The global folding/unfolding kinetics of the protein are unaltered between pH 4.5 and pH 9.5, allowing us to use the pH-dependence of amide hydrogen/deuterium exchange to characterise conformational states with energies up to 7.2kcal/mol higher than the folded ground state. The study was intended to search for discreet unfolding intermediates in this region of the energy spectrum, their presence being revealed by the concerted exchange behaviour of subsets of amide groups that become accessible at a given free energy, i.e. the spectrum would contain discreet groupings. Protection factors for 58 amide groups were measured across the pH range and the hydrogen-exchange energy profile is described. More interestingly, exchange behaviour could be grouped into three categories; the first two unremarkable, the third unexpected. (1) In 33 cases, amide exchange was dominated by rapid fluctuation, i.e. the free energy difference between the ground state and the rapidly accessed open state is sufficiently low that the contribution from crossing the unfolding barrier is negligible. (2) In 18 cases exchange is dominated by the global folding transition barrier across the whole pH range measured. The relationship between hydroxyl ion concentration and observed exchange rate is hyperbolic, with the limiting rate being that for global unfolding; the so-called EX1 limit. For these, the free energy difference between the folded ground state and any rapidly-accessed open state is too great for the proton to be exchanged through such fluctuations, even at the highest pH employed in this study. (3) For the third group, comprising five cases, we observe a behaviour that has not been described. In this group, as in category 2, the rate of exchange reaches a plateau; the EX1 limit. However, as the intrinsic exchange rate (k(int)) is increased, this limit is breached and the rate begins to rise again. This unintuitive behaviour does not result from pH instability, rather it is a consequence of amide groups experiencing two processes; rapid fluctuation of structure and crossing the global barrier for unfolding. The boundary at which the EX1 limit is overcome is determined by the equilibrium distribution of the fluctuating open and closed states (K(O/C)) and the rate constant for unfolding (k(u)). This critical boundary is reached when k(int)K(O/C)=k(u). Given that, in a simple transition state formalism: k(u)=K(#)k' (where K(#) describes the equilibrium distribution between the transition and ground state and k' describes the rate of a barrierless rearrangement), it follows that if the pH is raised to a level where k(int)=k', then the entire free energy spectrum from ground state to transition state could be sampled.
Collapse
Affiliation(s)
- Matthew J Cliff
- The Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, BS8 1TD, Bristol, UK.
| | | | | | | | | |
Collapse
|
72
|
Ozkan S, Dalgýn GS, Haliloglu T. Unfolding events of Chymotrypsin Inhibitor 2 (CI2) revealed by Monte Carlo (MC) simulations and their consistency from structure-based analysis of conformations. POLYMER 2004. [DOI: 10.1016/j.polymer.2003.10.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
73
|
Brunori M, Bigotti MG, Cutruzzolà F, Gianni S, Travaglini-Allocatelli C. Cytochrome c(551) as a model system for protein folding. Biophys Chem 2003; 100:409-19. [PMID: 12646380 DOI: 10.1016/s0301-4622(02)00295-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable progress was made over the last few years in understanding the mechanism of folding of cytochrome c(551), a small acidic hemeprotein from Pseudomonas aeruginosa. Comparison of our results with those obtained by others on horse heart cytochrome c allows to draw some general conclusions on the structural features that are common determinants in the folding of members of the cytochrome c family.
Collapse
Affiliation(s)
- Maurizio Brunori
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Università di Roma La Sapienza, P. le A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | |
Collapse
|
74
|
Vendruscolo M, Paci E, Karplus M, Dobson CM. Structures and relative free energies of partially folded states of proteins. Proc Natl Acad Sci U S A 2003; 100:14817-21. [PMID: 14657374 PMCID: PMC299809 DOI: 10.1073/pnas.2036516100] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of proteins to fold to well defined compact structures is one of the most remarkable examples of the effect of natural selection on biological molecules. To understand their properties, including the stability, the mechanism of folding, and the possibilities of misfolding and association, it is necessary to know the protein free energy landscape. We use NMR data as restraints in a Monte Carlo sampling procedure to determine the ensemble of structures populated by human alpha-lactalbumin in the presence of increasing concentrations of urea. The ensembles of structures that represent the partially folded states of the protein show that two structural cores, corresponding to portions of the alpha and beta domains of the native protein, are preserved even when the native-like interactions that define their existence are substantially weakened. Analysis of the network of residual contacts reveals the presence of a complex interface region between the two structural cores and indicates that the development of specific interactions within this interface is the key step in achieving the native structure. The relative probabilities of the conformations determined from the NMR data are used to construct a coarse-grained free energy landscape for alpha-lactalbumin in the absence of urea. The form of the landscape, together with the existence of distinct cores, supports the concept that robustness and modularity are the properties that make possible the folding of complex proteins.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | |
Collapse
|
75
|
Krishna MMG, Lin Y, Mayne L, Englander SW. Intimate View of a Kinetic Protein Folding Intermediate: Residue-resolved Structure, Interactions, Stability, Folding and Unfolding Rates, Homogeneity. J Mol Biol 2003; 334:501-13. [PMID: 14623190 DOI: 10.1016/j.jmb.2003.09.070] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A cytochrome c kinetic folding intermediate was studied by hydrogen exchange (HX) pulse labeling. Advances in the technique and analysis made it possible to define the structured and unstructured regions, equilibrium stability, and kinetic opening and closing rates, all at an amino acid-resolved level. The entire N-terminal and C-terminal helices are formed and docked together at their normal native positions. They fray in both directions from the interaction region, due to a progression in both unfolding and refolding rates, leading to the surprising suggestion that helix propagation may proceed very slowly in the condensed milieu. Several native-like beta turns are formed. Some residues in the segment that will form the native 60s helix are protected but others are not, suggesting energy minimization to some locally non-native conformation in the transient intermediate. All other regions are unprotected, presumably dynamically disordered. The intermediate resembles a partially constructed native state. It is early, on-pathway, and all of the refolding molecules pass through it. These and related results consistently point to distinct, homogeneous, native-like intermediates in a stepwise sequential pathway, guided by the same factors that determine the native structure. Previous pulse labeling efforts have always assumed EX2 exchange during the labeling pulse, often leading to the suggestion of heterogeneous intermediates in alternative parallel pathways. The present work reveals a dominant role for EX1 exchange in the high pH labeling pulse, which will mimic heterogeneous behavior when EX2 exchange is assumed. The general problem of homogeneous versus heterogeneous intermediates and pathways is discussed.
Collapse
Affiliation(s)
- Mallela M G Krishna
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA.
| | | | | | | |
Collapse
|
76
|
Travaglini-Allocatelli C, Gianni S, Morea V, Tramontano A, Soulimane T, Brunori M. Exploring the cytochrome c folding mechanism: cytochrome c552 from thermus thermophilus folds through an on-pathway intermediate. J Biol Chem 2003; 278:41136-40. [PMID: 12842869 DOI: 10.1074/jbc.m303990200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the role of partially folded intermediate states in the folding mechanism of a protein is a crucial yet very difficult problem. We exploited a kinetic approach to demonstrate that a transient intermediate of a thermostable member of the widely studied cytochrome c family (cytochrome c552 from Thermus thermophilus) is indeed on-pathway. This is the first clear indication of an obligatory intermediate in the folding mechanism of a cytochrome c. The fluorescence properties of this intermediate demonstrate that the relative position of the heme and of the only tryptophan residue cannot correspond to their native orientation. Based on an analysis of the three-dimensional structure of cytochrome c552, we propose an interpretation of the data which explains the residual fluorescence of the intermediate and is consistent with the established role played by some conserved interhelical interactions in the folding of other members of this family. A limited set of topologically conserved contacts may guide the folding of evolutionary distant cytochromes c through the same partially structured state, which, however, can play different kinetic roles, acting either as an intermediate or a transition state.
Collapse
Affiliation(s)
- Carlo Travaglini-Allocatelli
- Istituto Pasteur-Fondazione Cenci Bolognetti e Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli," Università di Roma "La Sapienza," 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
77
|
Bhutani N, Udgaonkar JB. Folding subdomains of thioredoxin characterized by native-state hydrogen exchange. Protein Sci 2003; 12:1719-31. [PMID: 12876321 PMCID: PMC2323958 DOI: 10.1110/ps.0239503] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2002] [Revised: 05/02/2003] [Accepted: 05/02/2003] [Indexed: 10/26/2022]
Abstract
Native-state hydrogen exchange (HX) studies, used in conjunction with NMR spectroscopy, have been carried out on Escherichia coli thioredoxin (Trx) for characterizing two folding subdomains of the protein. The backbone amide protons of only the slowest-exchanging 24 amino acid residues, of a total of 108 amino acid residues, could be followed at pH 7. The free energy of the opening event that results in an amide hydrogen exchanging with solvent (DeltaG(op)) was determined at each of the 24 amide hydrogen sites. The values of DeltaG(op) for the amide hydrogens belonging to residues in the helices alpha(1), alpha(2), and alpha(4) are consistent with them exchanging with the solvent only when the fully unfolded state is sampled transiently under native conditions. The denaturant-dependences of the values of DeltaG(op) provide very little evidence that the protein samples partially unfolded forms, lower in energy than the unfolded state. The amide hydrogens belonging to the residues in the beta strands, which form the core of the protein, appear to have higher values of DeltaG(op) than amide hydrogens belonging to residues in the helices, suggesting that they might be more stable to exchange. This apparently higher stability to HX of the beta strands might be either because they exchange out their amide hydrogens in a high energy intermediate preceding the globally unfolded state, or, more likely, because they form residual structure in the globally unfolded state. In either case, the central beta strands-beta(3,) beta(2), and beta(4)-would appear to form a cooperatively folding subunit of the protein. The native-state HX methodology has made it possible to characterize the free energy landscape that Trx can sample under equilibrium native conditions.
Collapse
Affiliation(s)
- Nidhi Bhutani
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, University of Agricultural Sciences at the Gandhi Krishi Vigyan Kendra Campus, Bangalore 560065, India
| | | |
Collapse
|
78
|
Hoang L, Maity H, Krishna MMG, Lin Y, Englander SW. Folding units govern the cytochrome c alkaline transition. J Mol Biol 2003; 331:37-43. [PMID: 12875834 DOI: 10.1016/s0022-2836(03)00698-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.
Collapse
Affiliation(s)
- Linh Hoang
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA.
| | | | | | | | | |
Collapse
|
79
|
Krishna MMG, Lin Y, Rumbley JN, Englander SW. Cooperative omega loops in cytochrome c: role in folding and function. J Mol Biol 2003; 331:29-36. [PMID: 12875833 DOI: 10.1016/s0022-2836(03)00697-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydrogen exchange experiments under slow exchange conditions show that an omega loop in cytochrome c (residues 40-57) acts as a cooperative unfolding/refolding unit under native conditions. This unit behavior accounts for an initial step on the unfolding pathway, a final step in refolding, and a number of other structural, functional and evolutionary properties.
Collapse
Affiliation(s)
- Mallela M G Krishna
- Department of Biochemistry and Biophysics, Johnson Research Foundation, University of Pennsylvania School of Medicine, 422 Curie Blvd, 1007 Stellar Chance Bldg, Philadelphia, PA 19104-6059, USA.
| | | | | | | |
Collapse
|
80
|
Gianni S, Travaglini-Allocatelli C, Cutruzzolà F, Brunori M, Shastry MCR, Roder H. Parallel pathways in cytochrome c(551) folding. J Mol Biol 2003; 330:1145-52. [PMID: 12860134 DOI: 10.1016/s0022-2836(03)00689-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The folding of cytochrome c(551) from Pseudomonas aeruginosa was previously thought to follow a simple sequential mechanism, consistent with the lack of histidine residues, other than the native His16 heme ligand, that can give rise to mis-coordinated species. However, further kinetic analysis reveals complexities indicative of a folding mechanism involving parallel pathways. Double-jump interrupted refolding experiments at low pH indicate that approximately 50% of the unfolded cytochrome c(551) population can reach the native state via a fast (10 ms) folding track, while the rest follows a slower folding path with populated intermediates. Stopped-flow experiments using absorbance at 695 nm to monitor refolding confirm the presence of a rapidly folding species containing the native methionine-iron bond while measurements on carboxymethylated cytochrome c(551) (which lacks the Met-Fe coordination bond) indicate that methionine ligation occurs late during folding along the fast folding track, which appears to be dominant at physiological pH. Continuous-flow measurements of tryptophan-heme energy transfer, using a capillary mixer with a dead time of about 60 micros, show evidence for a rapid chain collapse within 100 micros preceding the rate-limiting folding phase on the milliseconds time scale. A third process with a time constant in the 10-50 ms time range is consistent with a minor population of molecules folding along a parallel channel, as confirmed by quantitative kinetic modeling. These findings indicate the presence of two or more slowly inter-converting ensembles of denatured states that give rise to pH-dependent partitioning among fast and slow-folding pathways.
Collapse
Affiliation(s)
- Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche e Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
81
|
Vendruscolo M, Zurdo J, MacPhee CE, Dobson CM. Protein folding and misfolding: a paradigm of self-assembly and regulation in complex biological systems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2003; 361:1205-1222. [PMID: 12816607 DOI: 10.1098/rsta.2003.1194] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Understanding biological complexity is one of the grand scientific challenges for the future. A living organism is a highly evolved system made up of a large number of interwoven molecular networks. These networks primarily involve proteins, the macromolecules that enable and control virtually every chemical process that takes place in the cell. Proteins are also key elements in the essential characteristic of living systems, their ability to function and replicate themselves through controlled molecular interactions. Recent progress in understanding the most fundamental aspect of polypeptide self-organization, the process by which proteins fold to attain their active conformations, provides a global platform to gain knowledge about the function of biological systems and the regulatory mechanisms that underpin their ability to adapt to changing conditions. In order to exploit such progress effectively, we are developing a variety of approaches, including procedures that use experimental data to restrain the properties of complex systems in computer simulations, to describe their behaviour under a wide variety of conditions. We believe that such approaches can lead to significant advances in understanding biological complexity, in general, and protein folding and misfolding in particular. These advances would contribute to: a more effective exploitation of the information from genome sequences; more rational therapeutic approaches to diseases, particularly those associated with ageing; the responsible control of our own evolution; and the development of new technologies based on mimicking the principles of biological self-assembly, for instance in nanotechnology. More fundamentally, we believe that this research will result in a more coherent understanding of the origin, evolution and functional properties of living systems.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
82
|
Abstract
The ability to perform enzymatic function by harnessing random molecular motion into self-organized protein structures is one of the most fascinating results of evolution. A close interplay between theory and experiment is driving the progress in understanding the principles that determine the behaviour of proteins. New techniques that significantly increase the amount of information obtainable from experimental data have been recently proposed; it is now becoming possible to describe at atomic resolution the events that take place during the folding process. Successful predictions of these events are being reported at an increasing rate and general principles are being outlined.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| | | |
Collapse
|
83
|
Grandori R. Origin of the conformation dependence of protein charge-state distributions in electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2003; 38:11-15. [PMID: 12526001 DOI: 10.1002/jms.390] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The influence of tertiary structure on the electrospray ionization mass spectra of proteins is a well known and broadly exploited phenomenon. However, the underlying mechanism is not well understood. This paper discusses the bases and the implications of the two current hypotheses (solvent accessibility and Coulombic repulsions), pointing out the remaining open questions. Evidence reported here supports a third hypothesis, i.e. that intramolecular interactions in folded proteins play a key role in determining the observed charge-state distributions. It is proposed that native protein structures stabilize to a large extent pre-existing charges of the opposite polarity to the net charge of the ion, preventing their neutralization during the electrospray process. Thus, the higher charge states of unfolded conformations, relative to the folded structure, would not derive from a more extensive ionization of the former, but rather from a higher content of neutralizing charges in the latter. This interpretation allows several other problematic observations to be explained, including the different shapes of the spectra of folded and unfolded proteins, the discrepancies between observed and predicted gas-phase reactivity of protein ions and the apparent inconsistency of positive- and negative-ion mode results.
Collapse
Affiliation(s)
- Rita Grandori
- Institute of Chemistry, Johannes Kepler University Altenbergerstrasse 69, A-4040 Linz, Austria.
| |
Collapse
|
84
|
Maity H, Lim WK, Rumbley JN, Englander SW. Protein hydrogen exchange mechanism: local fluctuations. Protein Sci 2003; 12:153-60. [PMID: 12493838 PMCID: PMC2312409 DOI: 10.1110/ps.0225803] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Revised: 10/01/2002] [Accepted: 10/03/2002] [Indexed: 10/27/2022]
Abstract
Experiments were done to study the dynamic structural motions that determine protein hydrogen exchange (HX) behavior. The replacement of a solvent-exposed lysine residue with glycine (Lys8Gly) in a helix of recombinant cytochrome c does not perturb the native structure, but it entropically potentiates main-chain flexibility and thus can promote local distortional motions and large-scale unfolding. The mutation accelerates amide hydrogen exchange of the mutated residue by about 50-fold, neighboring residues in the same helix by less, and residues elsewhere in the protein not at all, except for Leu98, which registers the change in global stability. The pattern of HX changes shows that the coupled structural distortions that dominate exchange can be several residues in extent, but they expose to exchange only one amide NH at a time. This "local fluctuation" mode of hydrogen exchange may be generally recognized by disparate near-neighbor rates and a low dependence on destabilants (denaturant, temperature, pressure). In contrast, concerted unfolding reactions expose multiple neighboring amide NHs with very similar computed protection factors, and they show marked destabilant sensitivity. In both modes, ionic hydrogen exchange catalysts attack from the bulk solvent without diffusing through the protein matrix.
Collapse
Affiliation(s)
- Haripada Maity
- The Johnson Research Foundation, Department of Biochemistry & Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
85
|
Liu J, Lu M. An alanine-zipper structure determined by long range intermolecular interactions. J Biol Chem 2002; 277:48708-13. [PMID: 12368282 DOI: 10.1074/jbc.m208773200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major challenge in protein folding is to identify and quantify specific structural determinants that allow native proteins to acquire their unique folded structures. Here we report the engineering of a 52-residue protein (Ala-14) that contains exclusively alanine residues at the hydrophobic a and d positions of a natural heptad-repeat sequence. Ala-14 is unfolded under normal solution conditions yet forms a parallel three-stranded alpha-helical coiled coil in crystals. Ala-14 trimers in the solid state associate with each other through the pairing of polar side chains and formation of an extended network of water-mediated hydrogen bonds. In contrast to the classical view that local intramolecular tertiary interactions dictate the three-dimensional structure of small single-domain proteins, Ala-14 shows that long range intermolecular interactions can be essential in determining the metastable alanine-zipper structure. A similar interplay between short range local and longer range global forces may underlie the conformational properties of the growing class of natively unstructured proteins in biological processes.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
86
|
Oh H, Breuker K, Sze SK, Ge Y, Carpenter BK, McLafferty FW. Secondary and tertiary structures of gaseous protein ions characterized by electron capture dissociation mass spectrometry and photofragment spectroscopy. Proc Natl Acad Sci U S A 2002; 99:15863-8. [PMID: 12444260 PMCID: PMC138529 DOI: 10.1073/pnas.212643599] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2002] [Indexed: 11/18/2022] Open
Abstract
Over the last decade a variety of MS measurements, such as HD exchange, collision cross sections, and electron capture dissociation (ECD), have been used to characterize protein folding in the gas phase, in the absence of solvent. To the extensive data already available on ubiquitin, here photofragmentation of its ECD-reduced (M + nH)(n-1)+* ions shows that only the 6+ to 9+, not the 10+ to 13+ ions, have tertiary noncovalent bonding; this is indicated as hydrogen bonding by the 3,050-3,775 cm(-1) photofragment spectrum. ECD spectra and HD exchange of the 13+ ions are consistent with an all alpha-helical secondary structure, with the 11+ and 10+ ions sufficiently destabilized to denature small bend regions near the helix termini. In the 8+ and 9+ ions these terminal helical regions are folded over to be antiparallel and noncovalently bonded to part of the central helix, whereas this overlap is extended in the 7+, 6+, and, presumably, 5+ ions to form a highly stable three-helix bundle. Thermal denaturing of the 7+ to 9+ conformers both peels and slides back the outer helices from the central one, but for the 6+ conformer, this instead extends the protein ends away to shrink the three-helix bundle. Thus removal of H2O from a native protein negates hydrophobic interactions, preferentially stabilizes the alpha-helical secondary structure with direct solvation of additional protons, and increases tertiary interhelix dipole-dipole and hydrogen bonding.
Collapse
Affiliation(s)
- HanBin Oh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 USA
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
An explosion of in vitro experimental data on the folding of proteins has revealed many examples of folding in the millisecond or faster timescale, often occurring in the absence of stable intermediate states. We review experimental methods for measuring fast protein folding kinetics, and then discuss various analytical models used to interpret these data. Finally, we classify general mechanisms that have been proposed to explain fast protein folding into two catagories, heterogeneous and homogeneous, reflecting the nature of the transition state. One heterogeneous mechanism, the diffusion-collision mechanism, can be used to interpret experimental data for a number of proteins.
Collapse
Affiliation(s)
- Jeffrey K Myers
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
88
|
Yan S, Kennedy SD, Koide S. Thermodynamic and kinetic exploration of the energy landscape of Borrelia burgdorferi OspA by native-state hydrogen exchange. J Mol Biol 2002; 323:363-75. [PMID: 12381326 DOI: 10.1016/s0022-2836(02)00882-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report a native-state hydrogen-exchange (HX) method to simultaneously obtain both thermodynamic and kinetic information on the formation of multiple excited states in a folding energy landscape. Our method exploits the inherent dispersion and pH dependence of the intrinsic HX rates to cover both the EX2 (thermodynamic) and EX1 (kinetic) regimes. At each concentration of denaturant, HX measurements are performed over a range of pH values. Using this strategy, we dissected Borrelia burgdorferi OspA, a predominantly beta-sheet protein containing a unique single-layer beta-sheet, into five cooperative units and postulated excited states predominantly responsible for HX. More importantly, we determined the interconversion rates between these excited states and the native state. The use of both thermodynamic and kinetic information from native-state HX enabled us to construct a folding landscape of this 28kDa protein, including local minima and maxima, and to discriminate on-pathway and off-pathway intermediates. This method, which we term EX2/EX1 HX, should be a powerful tool for characterizing the complex folding mechanisms exhibited by the majority of proteins.
Collapse
Affiliation(s)
- Shude Yan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
89
|
Hoang L, Bedard S, Krishna MMG, Lin Y, Englander SW. Cytochrome c folding pathway: kinetic native-state hydrogen exchange. Proc Natl Acad Sci U S A 2002; 99:12173-8. [PMID: 12196629 PMCID: PMC129417 DOI: 10.1073/pnas.152439199] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Native-state hydrogen exchange experiments under EX1 conditions can distinguish partially unfolded intermediates by their formation rates and identify the amide hydrogens exposed and protected in each. Results obtained define a cytochrome c intermediate seen only poorly before and place it early on the major unfolding pathway. Four distinct unfolding steps are found to be kinetically ordered in the same pathway sequence inferred before.
Collapse
Affiliation(s)
- Linh Hoang
- The Johnson Research Foundation, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA.
| | | | | | | | | |
Collapse
|
90
|
Ozkan SB, Dill KA, Bahar I. Fast-folding protein kinetics, hidden intermediates, and the sequential stabilization model. Protein Sci 2002; 11:1958-70. [PMID: 12142450 PMCID: PMC2373683 DOI: 10.1110/ps.0207102] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Do two-state proteins fold by pathways or funnels? Native-state hydrogen exchange experiments show discrete nonnative structures in equilibrium with the native state. These could be called hidden intermediates (HI) because their populations are small at equilibrium, and they are not detected in kinetic experiments. HIs have been invoked as disproof of funnel models, because funnel pictures appear to indicate (1) no specific sequences of events in folding; (2) a continuum, rather than a discrete ladder, of structures; and (3) smooth landscapes. In the present study, we solve the exact dynamics of a simple model. We find, instead, that the present microscopic model is indeed consistent with HIs and transition states, but such states occur in parallel, rather than along the single pathway predicted by the sequential stabilization model. At the microscopic level, we observe a huge multiplicity of trajectories. But at the macroscopic level, we observe two pathways of specific sequences of events that are relatively traditional except that they are in parallel, so there is not a single reaction coordinate. Using singular value decomposition, we show an accurate representation of the shapes of the model energy landscapes. They are highly complex funnels.
Collapse
Affiliation(s)
- S Banu Ozkan
- Center for Computational Biology and Bioinformatics, and Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
91
|
Abstract
Achieving a thorough explanation of the behavior of metal sites in the formation of native metalloprotein structures is an exciting challenge in the biochemistry of metallobiomacromolecules. This study presents a personal insight into the subject. It is proposed that a metal center and its exogenous ligand compose a template. A template may impose a clear stereochemical preference on the loose peptide chains, and organize them into natural stereospecificity via the metal-ligand interaction, a long-range and strong interaction. Therefore, the stable peptide conformation induced by the template effect surrounding a template polyhedron could be called a template-mediated structural motif (TMSM).
Collapse
Affiliation(s)
- Changlin Liu
- Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | | |
Collapse
|
92
|
Kumar JK, Kremsdorf R, Tabor S, Richardson CC. A Mutation in the gene-encoding bacteriophage T7 DNA polymerase that renders the phage temperature-sensitive. J Biol Chem 2001; 276:46151-9. [PMID: 11551938 DOI: 10.1074/jbc.m106319200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene 5 of bacteriophage T7 encodes a DNA polymerase essential for phage replication. A single point mutation in gene 5 confers temperature sensitivity for phage growth. The mutation results in an alanine to valine substitution at residue 73 in the exonuclease domain. Upon infection of Escherichia coli by the temperature-sensitive phage at 42 degrees C, there is no detectable T7 DNA synthesis in vivo. DNA polymerase activity in these phage-infected cell extracts is undetectable at assay temperatures of 30 degrees C or 42 degrees C. Upon infection at 30 degrees C, both DNA synthesis in vivo and DNA polymerase activity in cell extracts assayed at 30 degrees C or 42 degrees C approach levels observed using wild-type T7 phage. The amount of soluble gene 5 protein produced at 42 degrees C is comparable to that produced at 30 degrees C, indicating that the temperature-sensitive phenotype is not due to reduced expression, stability, or solubility. Thus the polymerase induced at elevated temperatures by the temperature-sensitive phage is functionally inactive. Consistent with this observation, biochemical properties and heat inactivation profiles of the genetically altered enzyme over-produced at 30 degrees C closely resemble that of wild-type T7 DNA polymerase. It is likely that the polymerase produced at elevated temperatures is a misfolded intermediate in its folding pathway.
Collapse
Affiliation(s)
- J K Kumar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
93
|
Arcovito A, Gianni S, Brunori M, Travaglini-Allocatelli C, Bellelli A. Fast coordination changes in cytochrome c do not necessarily imply folding. J Biol Chem 2001; 276:41073-8. [PMID: 11487579 DOI: 10.1074/jbc.m105183200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Folding of globular proteins occurs with rates that range from microseconds to minutes; consequently, it has been necessary to develop new strategies to follow the faster processes that exceed stopped-flow capabilities. Rapid photochemical methods have been employed to study the rate of folding of reduced cytochrome c. In this protein, the iron of the covalently bound heme binds a His and a Met, proximal and distal. Unfolding by guanidine or urea weakens the Fe-Met bond, and the reduced unfolded cytochrome c easily binds CO and other heme ligands, which would react slowly or not at all with the native protein. Therefore in the presence of CO, reduced cytochrome c unfolds at lower denaturant concentrations than in the absence of this ligand, and rapid photochemical removal of CO from unfolded cytochrome c, is expected to trigger at least an incomplete refolding. This approach is complicated by the breakage of the proximal His-Fe bond that may occur as a consequence of CO photodissociation in the unfolded cytochrome c because of the so-called base elimination mechanism. Rebinding of CO to the four-coordinate heme yields kinetic intermediates unrelated to folding. Our hypothesis is supported by parallel observations carried out with protoheme and microperoxidase.
Collapse
Affiliation(s)
- A Arcovito
- Istituto Pasteur-Fondazione Cenci Bolognetti e Centro di Biologia Molecolare del Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Biochimiche Alessandro Rossi-Fanelli, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|
94
|
Horn DM, Breuker K, Frank AJ, McLafferty FW. Kinetic intermediates in the folding of gaseous protein ions characterized by electron capture dissociation mass spectrometry. J Am Chem Soc 2001; 123:9792-9. [PMID: 11583540 DOI: 10.1021/ja003143u] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alternative mechanisms propose that protein folding in solution proceeds either through specific obligate intermediates or by a multiplicity of routes in a "folding funnel". These questions are examined in the gas phase by using a new method that provides details of the noncovalent binding of solvent-free protein ions. Capture of an electron by a multiply charged cation causes immediate dissociation (ECD) of a backbone bond, but with negligible excitation of noncovalent bonds; thus ECD of a linear protein ion produces two measurable fragment ions only if these are not held together by noncovalent bonds. Thermal unfolding of 9+ ions of cytochrome c proceeds through the separate unfolding of up to 13 backbone regions (represented by 44 bond cleavages) with melting temperatures of <26 to 140 degrees C. An 0.25 s laser IR pulse induces unfolding of 9+ ions in <4 s in six of these regions, followed by their refolding in 2 min. However, for the 15+ ions a laser IR pulse causes slower unfolding through poorly defined intermediates that leads to far more ECD products (63% increase in bond cleavages) after 1 min, even more than heating to 140 degrees C, with refolding to a more compact conformation in 10 min. Random isomerization appears to produce a dynamic mixture of conformers that folds through a variety of pathways to the most stable conformer(s), consistent with a "folding funnel"; this might also be considered as an extension of the classical view to a system with a far smaller free energy change yielding multiple conformers. As cautions to inferring solution conformational structure from gas-phase data, no structural relationship between these gaseous folding intermediates and those in solution is apparent, consistent with reduced hydrophobic bonding and increased electrostatic repulsion. Further, equilibrium folding of gaseous ions can require minutes, and even momentary unfolding of an intermolecular complex during this time can be irreversible.
Collapse
Affiliation(s)
- D M Horn
- Department of Chemistry and Chemical Biology, Cornell University, New York 14853-1301, USA
| | | | | | | |
Collapse
|
95
|
Baysal C, Atilgan AR. Coordination topology and stability for the native and binding conformers of chymotrypsin inhibitor 2. Proteins 2001; 45:62-70. [PMID: 11536361 DOI: 10.1002/prot.1124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We demonstrate that the stabilization of the binding region is accomplished at the expense of a loss in the stability of the rest of the protein. A novel molecular mechanics (MM) approach is introduced to distinguish residue stabilities of proteins in a given conformation. As an example, the relative stabilities of folded chymotrypsin inhibitor 2 (CI2) in unbound form, and CI2 in complex with subtilisin novo is investigated. The conformation of the molecule in the two states is almost identical, with an approximately 0.6-A root-mean-square deviation (RMSD) of the Calpha atoms. On binding, the packing density changes only at the binding loop. However, residue fluctuations in the rest of the protein are greatly altered solely due to those contacts, indicating the effective propagation of perturbation and the presence of remotely controlling residues. To quantify the interplay between packing density, packing order, residue fluctuations, and residue stability, we adopt an MM approach whereby small displacements are inserted at selected residues, followed by energy minimization; the displacement of each residue in response to such perturbations are organized in a perturbation-response matrix L. We define residue stability lambda(i) = summation operator((j)L(ij))/ summation operator((j) L(ji)) as the ratio of the amount of change to which the residue is amenable, to the ability of a given residue to induce change. We then define the free energy associated with residue stability, DeltaG(lambda) = -RT ln lambda. DeltaG(lambda) intrinsically selects the residues that are in the folding core. Upon complexation, the binding loop becomes more resistant to perturbation, in contrast to the alpha-helix that favors change. Although the two forms of CI2 are structurally similar, residue fluctuations differ vastly, and the stability of many residues is altered upon binding. The decrease in entropy introduced by binding is thus compensated by these changes.
Collapse
Affiliation(s)
- C Baysal
- Laboratory of Computational Biology, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, Istanbul, Turkey.
| | | |
Collapse
|
96
|
Bu Z, Cook J, Callaway DJ. Dynamic regimes and correlated structural dynamics in native and denatured alpha-lactalbumin. J Mol Biol 2001; 312:865-73. [PMID: 11575938 DOI: 10.1006/jmbi.2001.5006] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding the mechanisms of protein folding requires knowledge of both the energy landscape and the structural dynamics of a protein. We report a neutron-scattering study of the nanosecond and picosecond dynamics of native and the denatured alpha-lactalbumin. The quasielastic scattering intensity shows that there are alpha-helical structure and tertiary-like side-chain interactions fluctuating on sub-nanosecond time-scales under extremely denaturing conditions and even in the absence of disulfide bonds. Based on the length-scale dependence of the decay rate of the measured correlation functions, the nanosecond dynamics of the native and the variously denatured proteins have three dynamic regimes. When 0.05<Q<0.5 A(-1) (where the scattering vector, Q, is inversely proportional to the length-scale), the decay rate, Gamma, shows a power law relationship, Gamma proportional to Q(2.42+/-0.08), that is analogous to the dynamic behavior of a random coil. However, when 0.5<Q<1.0 A(-1), the decay rate exhibits a Gamma proportional to Q(1.0+/-0.2) relationship. The effective diffusion constant of the protein decreases with increasing Q, a striking dynamic behavior that is not found in any chain-like macromolecule. We suggest that this unusual dynamics is due to the presence of a strongly attractive force and collective conformational fluctuations in both the native and the denatured states of the protein. Above Q>1.0 A(-1) is a regime that displays the local dynamic behavior of individual residues, Gamma proportional to Q(1.8+/-0.3). The picosecond time-scale dynamics shows that the potential barrier to side-chain proton jump motion is reduced in the molten globule and in the denatured proteins when compared to that of the native protein. Our results provide a dynamic view of the native-like topology established in the early stages of protein folding.
Collapse
Affiliation(s)
- Z Bu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-8562, USA.
| | | | | |
Collapse
|
97
|
Tamm LK, Arora A, Kleinschmidt JH. Structure and assembly of beta-barrel membrane proteins. J Biol Chem 2001; 276:32399-402. [PMID: 11432877 DOI: 10.1074/jbc.r100021200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- L K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908-0736, USA.
| | | | | |
Collapse
|
98
|
D'Amico S, Gerday C, Feller G. Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 2001; 276:25791-6. [PMID: 11325973 DOI: 10.1074/jbc.m102741200] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heat-labile alpha-amylase from an antarctic bacterium is the largest known protein that unfolds reversibly according to a two-state transition as shown by differential scanning calorimetry. Mutants of this enzyme were produced, carrying additional weak interactions found in thermostable alpha-amylases. It is shown that single amino acid side chain substitutions can significantly modify the melting point T(m), the calorimetric enthalpy Delta H(cal), the cooperativity and reversibility of unfolding, the thermal inactivation rate constant, and the kinetic parameters k(cat) and K(m). The correlation between thermal inactivation and unfolding reversibility displayed by the mutants also shows that stabilizing interactions increase the frequency of side reactions during refolding, leading to intramolecular mismatches or aggregations typical of large proteins. Although all mutations were located far from the active site, their overall trend is to decrease both k(cat) and K(m) by rigidifying the molecule and to protect mutants against thermal inactivation. The effects of these mutations indicate that the cold-adapted alpha-amylase has lost a large number of weak interactions during evolution to reach the required conformational plasticity for catalysis at low temperatures, thereby producing an enzyme close to the lowest stability allowing maintenance of the native conformation.
Collapse
Affiliation(s)
- S D'Amico
- Laboratory of Biochemistry, Institute of Chemistry B6, University of Liège, B-4000 Liège, Belgium
| | | | | |
Collapse
|
99
|
Wu H, Lima WF, Crooke ST. Investigating the structure of human RNase H1 by site-directed mutagenesis. J Biol Chem 2001; 276:23547-53. [PMID: 11319219 DOI: 10.1074/jbc.m009676200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we examine for the first time the roles of the various domains of human RNase H1 by site-directed mutagenesis. The carboxyl terminus of human RNase H1 is highly conserved with Escherichia coli RNase H1 and contains the amino acid residues of the putative catalytic site and basic substrate-binding domain of the E. coli RNase enzyme. The amino terminus of human RNase H1 contains a structure consistent with a double-strand RNA (dsRNA) binding motif that is separated from the conserved E. coli RNase H1 region by a 62-amino acid sequence. These studies showed that although the conserved amino acid residues of the putative catalytic site and basic substrate-binding domain are required for RNase H activity, deletion of either the catalytic site or the basic substrate-binding domain did not ablate binding to the heteroduplex substrate. Deletion of the region between the dsRNA-binding domain and the conserved E. coli RNase H1 domain resulted in a significant loss in the RNase H activity. Furthermore, the binding affinity of this deletion mutant for the heteroduplex substrate was approximately 2-fold tighter than the wild-type enzyme suggesting that this central 62-amino acid region does not contribute to the binding affinity of the enzyme for the substrate. The dsRNA-binding domain was not required for RNase H activity, as the dsRNA-deletion mutants exhibited catalytic rates approximately 2-fold faster than the rate observed for wild-type enzyme. Comparison of the dissociation constant of human RNase H1 and the dsRNA-deletion mutant for the heteroduplex substrate indicates that the deletion of this region resulted in a 5-fold loss in binding affinity. Finally, comparison of the cleavage patterns exhibited by the mutant proteins with the cleavage pattern for the wild-type enzyme indicates that the dsRNA-binding domain is responsible for the observed strong positional preference for cleavage exhibited by human RNase H1.
Collapse
Affiliation(s)
- H Wu
- Department of Molecular and Structural Biology, Isis Pharmaceuticals, Carlsbad, California 92008, USA
| | | | | |
Collapse
|