51
|
Flasza M, Nguyen Huu NS, Mazaleyrat S, Clémence S, Villemant C, Clarke R, Baron M. Regulation of the nuclear localization of the human Nedd4-related WWP1 protein by Notch. Mol Membr Biol 2009; 23:269-76. [PMID: 16785210 DOI: 10.1080/09687860600665010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nedd4 family ubiquitin ligases regulate trafficking and degradation of numerous target substrates in different cellular compartments, including at the plasma membrane, in endosomes, in the secretory pathway and in the nucleus. WWP1 is a Nedd4 family protein closely related to mouse Itch and Drosophila Su(dx), both of which have been shown to regulate the Notch receptor. To investigate the possibility that WWP1 is also associated with Notch signalling we coexpressed human Notch1 and WWP1 in mouse myoblast cells. We found that WWP1 could localize to both the nucleus and cytoplasm in a context dependent manner. Coexpression of human Notch1 (hN1) depleted WWP1 from the nucleus to colocalise with hN1 in early endosomes, dependent on the presence of the C-terminal HECT domain. Furthermore we found that full-length expressed WWP1 could interact in vitro with the cytoplasmic domain of human Notch1. The Notch receptor has multiple roles in development, mediating a short-range signal that controls cell fate and pattern formation. The canonical Notch signal involves proteolytic release of the soluble Notch intracellular domain and the activation by the latter of the transcription factor Suppressor of Hairless/CBF-1 in the nucleus. This pathway does not however account for all of the activity of Notch. The ability of Notch to regulate the nuclear localization of WWP1 suggests a possible alternative mechanism by which Notch may communicate a signal to the nucleus. Drosophila Notch similarly regulated the nuclear localization of the Drosophila Nedd4 family protein, Suppressor of deltex, implying conservation of this mechanism during evolution.
Collapse
Affiliation(s)
- Marzena Flasza
- University of Manchester, Faculty of Life Sciences, Michael Smith Building, Manchester
| | | | | | | | | | | | | |
Collapse
|
52
|
WWP2 promotes degradation of transcription factor OCT4 in human embryonic stem cells. Cell Res 2009; 19:561-73. [PMID: 19274063 DOI: 10.1038/cr.2009.31] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
POU transcription factor OCT4 not only plays an essential role in maintaining the pluripotent and self-renewing state of embryonic stem (ES) cells but also acts as a cell fate determinant through a gene dosage effect. However, the molecular mechanisms that control the intracellular OCT4 protein level remain elusive. Here, we report that human WWP2, an E3 ubiquitin (Ub)-protein ligase, interacts with OCT4 specifically through its WW domain and enhances Ub modification of OCT4 both in vitro and in vivo. We first demonstrated that endogenous OCT4 in human ES cells can be post-translationally modified by Ub. Furthermore, we found that WWP2 promoted degradation of OCT4 through the 26S proteasome in a dosage-dependent manner, and the active site cysteine residue of WWP2 was required for both its enzymatic activity and proteolytic effect on OCT4. Remarkably, our data show that the endogenous OCT4 protein level was significantly elevated when WWP2 expression was downregulated by specific RNA interference (RNAi), suggesting that WWP2 is an important regulator for maintaining a proper OCT4 protein level in human ES cells. Moreover, northern blot analysis showed that the WWP2 transcript was widely present in diverse human tissues/organs and highly expressed in undifferentiated human ES cells. However, its expression level was quickly decreased after human ES cells differentiated, indicating that WWP2 expression might be developmentally regulated. Our findings demonstrate that WWP2 is an important regulator of the OCT4 protein level in human ES cells.
Collapse
|
53
|
Carrano AC, Liu Z, Dillin A, Hunter T. A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature 2009; 460:396-9. [PMID: 19553937 DOI: 10.1038/nature08130] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 05/11/2009] [Indexed: 12/26/2022]
Abstract
Dietary restriction extends longevity in diverse species, suggesting that there is a conserved mechanism for nutrient regulation and prosurvival responses. Here we show a role for the HECT (homologous to E6AP carboxy terminus) E3 ubiquitin ligase WWP-1 as a positive regulator of lifespan in Caenorhabditis elegans in response to dietary restriction. We find that overexpression of wwp-1 in worms extends lifespan by up to 20% under conditions of ad libitum feeding. This extension is dependent on the FOXA transcription factor pha-4, and independent of the FOXO transcription factor daf-16. Reduction of wwp-1 completely suppresses the extended longevity of diet-restricted animals. However, the loss of wwp-1 does not affect the long lifespan of animals with compromised mitochondrial function or reduced insulin/IGF-1 signalling. Overexpression of a mutant form of WWP-1 lacking catalytic activity suppresses the increased lifespan of diet-restricted animals, indicating that WWP-1 ubiquitin ligase activity is essential for longevity. Furthermore, we find that the E2 ubiquitin conjugating enzyme, UBC-18, is essential and specific for diet-restriction-induced longevity. UBC-18 interacts with WWP-1 and is required for the ubiquitin ligase activity of WWP-1 and the extended longevity of worms overexpressing wwp-1. Taken together, our results indicate that WWP-1 and UBC-18 function to ubiquitinate substrates that regulate diet-restriction-induced longevity.
Collapse
Affiliation(s)
- Andrea C Carrano
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
54
|
|
55
|
Putz U, Howitt J, Lackovic J, Foot N, Kumar S, Silke J, Tan SS. Nedd4 Family-interacting Protein 1 (Ndfip1) Is Required for the Exosomal Secretion of Nedd4 Family Proteins. J Biol Chem 2008; 283:32621-7. [DOI: 10.1074/jbc.m804120200] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
56
|
Physiological roles of CLC Cl−/H+ exchangers in renal proximal tubules. Pflugers Arch 2008; 458:23-37. [DOI: 10.1007/s00424-008-0597-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/22/2008] [Accepted: 09/26/2008] [Indexed: 12/19/2022]
|
57
|
Matsumoto H, Maruse H, Inaba Y, Yoshizawa K, Sasazaki S, Fujiwara A, Nishibori M, Nakamura A, Takeda S, Ichihara N, Kikuchi T, Mukai F, Mannen H. The ubiquitin ligase gene (WWP1) is responsible for the chicken muscular dystrophy. FEBS Lett 2008; 582:2212-8. [DOI: 10.1016/j.febslet.2008.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/07/2008] [Accepted: 05/09/2008] [Indexed: 11/25/2022]
|
58
|
Jentsch TJ. CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit Rev Biochem Mol Biol 2008; 43:3-36. [PMID: 18307107 DOI: 10.1080/10409230701829110] [Citation(s) in RCA: 297] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CLC genes are expressed in species from bacteria to human and encode Cl(-)-channels or Cl(-)/H(+)-exchangers. CLC proteins assemble to dimers, with each monomer containing an ion translocation pathway. Some mammalian isoforms need essential beta -subunits (barttin and Ostm1). Crystal structures of bacterial CLC Cl(-)/H(+)-exchangers, combined with transport analysis of mammalian and bacterial CLCs, yielded surprising insights into their structure and function. The large cytosolic carboxy-termini of eukaryotic CLCs contain CBS domains, which may modulate transport activity. Some of these have been crystallized. Mammals express nine CLC isoforms that differ in tissue distribution and subcellular localization. Some of these are plasma membrane Cl(-) channels, which play important roles in transepithelial transport and in dampening muscle excitability. Other CLC proteins localize mainly to the endosomal-lysosomal system where they may facilitate luminal acidification or regulate luminal chloride concentration. All vesicular CLCs may be Cl(-)/H(+)-exchangers, as shown for the endosomal ClC-4 and -5 proteins. Human diseases and knockout mouse models have yielded important insights into their physiology and pathology. Phenotypes and diseases include myotonia, renal salt wasting, kidney stones, deafness, blindness, male infertility, leukodystrophy, osteopetrosis, lysosomal storage disease and defective endocytosis, demonstrating the broad physiological role of CLC-mediated anion transport.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany.
| |
Collapse
|
59
|
Li H, Zhang Z, Wang B, Zhang J, Zhao Y, Jin Y. Wwp2-mediated ubiquitination of the RNA polymerase II large subunit in mouse embryonic pluripotent stem cells. Mol Cell Biol 2007; 27:5296-305. [PMID: 17526739 PMCID: PMC1952083 DOI: 10.1128/mcb.01667-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ubiquitination and the degradation of the large subunit of RNA polymerase II, Rpb1, is not only involved in DNA damage-induced arrest but also in other transcription-obstructing events. However, the ubiquitin ligases responsible for DNA damage-independent processes in mammalian cells remain to be identified. Here, we identified Wwp2, a mouse HECT domain ubiquitin E3 ligase, as a novel ubiquitin ligase of Rpb1. We found that Wwp2 specifically interacted with mouse Rpb1 and targeted it for ubiquitination both in vitro and in vivo. Interestingly, the interaction with and ubiquitination of Rpb1 was dependent neither on its phosphorylation state nor on DNA damage. However, the enzymatic activity of Wwp2 was absolutely required for its ubiquitin modification of Rpb1. Furthermore, our study indicates that the interaction between Wwp2 and Rpb1 was mediated through WW domain of Wwp2 and C-terminal domain of Rpb1, respectively. Strikingly, downregulation of Wwp2 expression compromised Rpb1 ubiquitination and elevated its intracellular steady-state protein level significantly. Importantly, we identified six lysine residues in the C-terminal domain of Rpb1 as ubiquitin acceptor sites mediated by Wwp2. These results indicate that Wwp2 plays an important role in regulating expression of Rpb1 in normal physiological conditions.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, 225 South Chongqing Road, Shanghai 200025, China
| | | | | | | | | | | |
Collapse
|
60
|
Zella LA, Chang CY, McDonnell DP, Pike JW. The vitamin D receptor interacts preferentially with DRIP205-like LxxLL motifs. Arch Biochem Biophys 2007; 460:206-12. [PMID: 17254542 PMCID: PMC1924797 DOI: 10.1016/j.abb.2006.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/11/2006] [Accepted: 12/15/2006] [Indexed: 10/23/2022]
Abstract
The vitamin D receptor (VDR) mediates the biological actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) through its capacity to recruit coregulatory proteins. This interaction is mediated via a coregulatory LxxLL motif. We screened a combinatorial (x)7LxxLL(x)7 phage library with purified VDR to identify peptides that displayed high affinity and selectivity for VDR. These peptides contained the consensus sequence Lx E/H x H/F P L/M/I LxxLL and exhibited significant sequence similarity to the active LxxLL box found in DRIP205. Nearly all LxxLL peptides interacted in a ligand-dependent manner directly with human VDR. However, a pattern of selectivity of the peptides for other members of the nuclear receptor family was also observed. Interestingly, the interaction between the VDR and many of the peptides was differentially sensitive to a broad assortment of VDR ligands. Finally, several of these peptides were shown to inhibit activation of a 1,25(OH)2D3-sensitive reporter gene. These studies suggest that the LxxLL motif can interact directly with the VDR and that this interaction is regulated by chemically diverse vitamin D ligands.
Collapse
Affiliation(s)
- Lee A Zella
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
61
|
Oliver PM, Cao X, Worthen GS, Shi P, Briones N, MacLeod M, White J, Kirby P, Kappler J, Marrack P, Yang B. Ndfip1 protein promotes the function of itch ubiquitin ligase to prevent T cell activation and T helper 2 cell-mediated inflammation. Immunity 2006; 25:929-40. [PMID: 17137798 PMCID: PMC2955961 DOI: 10.1016/j.immuni.2006.10.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 08/07/2006] [Accepted: 10/05/2006] [Indexed: 12/18/2022]
Abstract
Nedd4 family interacting protein-1 (Ndfip1) is a protein whose only known function is that it binds Nedd4, a HECT-type E3 ubiquitin ligase. Here we show that mice lacking Ndfip1 developed severe inflammation of the skin and lung and died prematurely. This condition was due to a defect in Ndfip1(-/-) T cells. Ndfip1(-/-) T cells were activated, and they proliferated and adopted a T helper 2 (Th2) phenotype more readily than did their Ndfip1(+/+) counterparts. This phenotype resembled that of Itchy mutant mice, suggesting that Ndfip1 might affect the function of Itch, an E3 ubiquitin ligase. We show that T cell activation promoted both Ndfip1 expression and its association with Itch. In the absence of Ndfip1, JunB half-life was prolonged after T cell activation. Thus, in the absence of Ndfip1, Itch is inactive and JunB accumulates. As a result, T cells produce Th2 cytokines and promote Th2-mediated inflammatory disease.
Collapse
Affiliation(s)
- Paula M. Oliver
- Howard Hughes Medical Institute, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, Colorado 80206
- Department of Immunology, University of Colorado Health Sciences Center, Denver, Colorado 80206
| | - Xiao Cao
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - George Scott Worthen
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80206
| | - Peijun Shi
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Natalie Briones
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80206
| | - Megan MacLeod
- Howard Hughes Medical Institute, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, Colorado 80206
- Department of Immunology, University of Colorado Health Sciences Center, Denver, Colorado 80206
| | - Janice White
- Howard Hughes Medical Institute, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, Colorado 80206
| | - Patricia Kirby
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - John Kappler
- Howard Hughes Medical Institute, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, Colorado 80206
- Department of Immunology, University of Colorado Health Sciences Center, Denver, Colorado 80206
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado 80206
| | - Philippa Marrack
- Howard Hughes Medical Institute, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, Colorado 80206
- Department of Immunology, University of Colorado Health Sciences Center, Denver, Colorado 80206
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80206
| | - Baoli Yang
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
- Correspondence:
| |
Collapse
|
62
|
Guggino WB, Stanton BA. New insights into cystic fibrosis: molecular switches that regulate CFTR. Nat Rev Mol Cell Biol 2006; 7:426-36. [PMID: 16723978 DOI: 10.1038/nrm1949] [Citation(s) in RCA: 332] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-)-selective ion channel, is a prototypic member of the ATP-binding cassette transporter superfamily that is expressed in several organs. In these organs, CFTR assembles into large, dynamic macromolecular complexes that contain signalling molecules, kinases, transport proteins, PDZ-domain-containing proteins, myosin motors, Rab GTPases, and SNAREs. Understanding how these complexes regulate the intracellular trafficking and activity of CFTR provides a unique insight into the aetiology of cystic fibrosis and other diseases.
Collapse
Affiliation(s)
- William B Guggino
- Department of Physiology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
63
|
Dhananjayan SC, Ramamoorthy S, Khan OY, Ismail A, Sun J, Slingerland J, O'Malley BW, Nawaz Z. WW domain binding protein-2, an E6-associated protein interacting protein, acts as a coactivator of estrogen and progesterone receptors. Mol Endocrinol 2006; 20:2343-54. [PMID: 16772533 DOI: 10.1210/me.2005-0533] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
WW domain binding protein-2 (WBP-2) was cloned as an E6-associated protein interacting protein, and its role in steroid hormone receptors functions was investigated. We show that WBP-2 specifically enhanced the transactivation functions of progesterone receptor (PR) and estrogen receptor (ER), whereas it did not have any significant effect on the androgen receptor, glucocorticoid receptor, or the activation functions of p53 and VP-16. Depletion of endogenous WBP-2 with small interfering RNAs indicated that WBP-2 was required for the proper functioning of PR and ER. We also demonstrated that WBP-2 contains an intrinsic activation domain. Moreover, chromatin immunoprecipitation assays demonstrate the hormone-dependent recruitment of WBP-2 onto an estrogen-responsive promoter. Mutational analysis suggests that one of three polyproline (PY) motifs of WBP-2 is essential for its coactivation and intrinsic activation functions. We show that WBP-2 and E6-associated protein each enhance PR function, and their effect on PR action are additive when coexpressed, suggesting a common signaling pathway. In this study, we also demonstrate that the WBP-2 binding protein, Yes kinase-associated protein (YAP) enhances PR transactivation, but YAP's coactivation function is absolutely dependent on WBP-2. Taken together, our data establish the role of WBP-2 and YAP as coactivators for ER and PR transactivation pathways.
Collapse
Affiliation(s)
- Sarath C Dhananjayan
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Chang CY, Abdo J, Hartney T, McDonnell DP. Development of Peptide Antagonists for the Androgen Receptor Using Combinatorial Peptide Phage Display. Mol Endocrinol 2005; 19:2478-90. [PMID: 16051662 DOI: 10.1210/me.2005-0072] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Under the auspices of the Nuclear Receptor Signaling Atlas (NURSA) , we have undertaken to evaluate the feasibility of targeting nuclear receptor-coactivator surfaces for new drug discovery. The underlying objective of this approach is to provide the research community with reagents that can be used to modulate the transcriptional activity of nuclear receptors. Using combinatorial peptide phage display, we have been able to develop peptide antagonists that target specific nuclear receptor (NR)-coactivator binding surfaces. It can be appreciated that reagents of this nature will be of use in the study of orphan nuclear receptors for whom classical ligands have not yet been identified. In addition, because the interaction of coactivators with the receptor is an obligate step for NR transcriptional activity, it is anticipated that peptides that block these interactions will enable the definition of the biological and pharmacological significance of individual NR-coactivator interactions. In this report, we describe the use of this approach to develop antagonists of the androgen receptor by targeting its coactivator-binding pocket and their use to study the coactivator-binding surface of this receptor. Based on our findings, we believe that molecules that function by disrupting the androgen receptor-cofactor interactions will have use in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
65
|
Jentsch TJ. Chloride transport in the kidney: lessons from human disease and knockout mice. J Am Soc Nephrol 2005; 16:1549-61. [PMID: 15829707 DOI: 10.1681/asn.2005020207] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Knockout mouse models and human inherited diseases have provided important new insights into the physiologic role of chloride transport by CLC Cl(-) channels and KCC K-Cl co-transporters. ClC-K/barrtin Cl(-) channels are important for renal salt reabsorption and possibly for acid secretion by intercalated cells. The endosomal ClC-5 protein is crucial for proximal tubular endocytosis. Its disruption in mice and patients with Dent's disease leads to hypercalciuria and kidney stones through a pathologic cascade that may be entirely explained by an impairment of endocytosis. KCC4 is important for recycling Cl(-) for the basolateral anion exchanger in intercalated cells, as is evident from the renal tubular acidosis resulting from its knockout. Finally, both KCC3 and KCC4 are crucial for proximal tubular cell volume regulation.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Zentrum für Molekulare Neurobiologie ZMNH, Universität Hamburg, Falkenried 94, D-20246 Hamburg, Germany.
| |
Collapse
|
66
|
Jentsch TJ, Poët M, Fuhrmann JC, Zdebik AA. Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models. Annu Rev Physiol 2005; 67:779-807. [PMID: 15709978 DOI: 10.1146/annurev.physiol.67.032003.153245] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The CLC gene family encodes nine different Cl() channels in mammals. These channels perform their functions in the plasma membrane or in intracellular organelles such as vesicles of the endosomal/lysosomal pathway or in synaptic vesicles. The elucidation of their cellular roles and their importance for the organism were greatly facilitated by mouse models and by human diseases caused by mutations in their respective genes. Human mutations in CLC channels are known to cause diseases as diverse as myotonia (muscle stiffness), Bartter syndrome (renal salt loss) with or without deafness, Dent's disease (proteinuria and kidney stones), osteopetrosis and neurodegeneration, and possibly epilepsy. Mouse models revealed blindness and infertility as further consequences of CLC gene disruptions. These phenotypes firmly established the roles CLC channels play in stabilizing the plasma membrane voltage in muscle and possibly in neurons, in the transport of salt and fluid across epithelia, in the acidification of endosomes and synaptic vesicles, and in the degradation of bone by osteoclasts.
Collapse
Affiliation(s)
- Thomas J Jentsch
- Zentrum für Molekulare Neurobiologie Hamburg (ZMNH), Universität Hamburg, Falkenried 94, D-20251 Hamburg, Germany.
| | | | | | | |
Collapse
|
67
|
Bonilla Guerrero R, Roberts LR. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol 2005; 42:760-77. [PMID: 15826727 DOI: 10.1016/j.jhep.2005.02.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ruben Bonilla Guerrero
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology and Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
68
|
Malbert-Colas L, Nicolas G, Galand C, Lecomte MC, Dhermy D. Identification of new partners of the epithelial sodium channel alpha subunit. C R Biol 2004; 326:615-24. [PMID: 14556380 DOI: 10.1016/s1631-0691(03)00154-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A fine regulation of the amiloride-sensitive Epithelial Sodium Channel (ENaC), made of alpha, beta and gamma subunits, is crucial for maintenance of Na+ balance and blood pressure. Both beta- and gamma-ENaC participate in negative regulation by interacting with Nedd4-2, an E3 ubiquitin-ligase. Disruption of this interaction results in increased ENaC activity (Liddle syndrome). By two-hybrid screenings, we identified new potential partners of alpha-ENaC: WWP1 (E3 ubiquitin-ligase protein), UBC9 and TSG101 (E2 ubiquitin/SUMO-conjugating enzymes) and confirmed these interactions in GST pull-down assays. All these partners are implicated in protein trafficking and could be involved in the regulation of ENaC activity.
Collapse
Affiliation(s)
- Laurence Malbert-Colas
- Inserm U409 and IFR02, Institut Claude-Bernard, physiologie et pathologie, faculté de médecine Xavier-Bichat, BP 416, 75780 Paris, France
| | | | | | | | | |
Collapse
|
69
|
Abstract
Ubiquitin (Ub)-protein conjugation represents a novel means of posttranscriptional modification in a proteolysis-dependent or -independent manner. E3 Ub ligases play a key role in governing the cascade of Ub transfer reactions by recognizing and catalyzing Ub conjugation to specific protein substrates. The E3s, which can be generally classified into HECT-type and RING-type families, are involved in the regulation of many aspects of the immune system, including the development, activation, and differentiation of lymphocytes, T cell-tolerance induction, antigen presentation, immune evasion, and virus budding. E3-promoted ubiquitination affects a wide array of biological processes, such as receptor downmodulation, signal transduction, protein processing or translocation, protein-protein interaction, and gene transcription, in addition to proteasome-mediated degradation. Deficiency or mutation of some of the E3s like Cbl, Cbl-b, or Itch, causes abnormal immune responses such as autoimmunity, malignancy, and inflammation. This review discusses our current understanding of E3 Ub ligases in both innate and adaptive immunity. Such knowledge may facilitate the development of novel therapeutic approaches for immunological diseases.
Collapse
Affiliation(s)
- Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
| |
Collapse
|
70
|
Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K, Miyazawa K. Negative regulation of transforming growth factor-β (TGF-β) signaling by WW domain-containing protein 1 (WWP1). Oncogene 2004; 23:6914-23. [PMID: 15221015 DOI: 10.1038/sj.onc.1207885] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Smad7 negatively regulates transforming growth factor (TGF)-beta superfamily signaling by binding to activated type I receptors, thereby preventing the phosphorylation of receptor-regulated Smads (R-Smads), as well as by recruiting HECT-type E3 ubiquitin ligases to degrade type I receptors through a ubiquitin-dependent mechanism. To elucidate the regulatory mechanisms of TGF-beta signaling, we searched for novel members of proteins that interact with Smad7 using a yeast two-hybrid system. One of the proteins identified was the WW domain-containing protein 1 (WWP1) that is structurally related to Smad ubiquitin regulatory factors (Smurfs), E3 ubiquitin ligases for Smads and TGF-beta superfamily receptors. Using a TGF-beta-responsive reporter in mammalian cells, we found that WWP1 inhibited transcriptional activities induced by TGF-beta. Similar to Smurfs, WWP1 associated with Smad7 and induced its nuclear export, and enhanced binding of Smad7 to TGF-beta type I receptor to cause ubiquitination and degradation of the receptor. Consistent with these results, WWP1 inhibited phosphorylation of Smad2 induced by TGF-beta. WWP1 thus negatively regulates TGF-beta signaling in cooperation with Smad7. However, unlike Smurfs, WWP1 failed to ubiquitinate R-Smads and SnoN. Importantly, WWP1 and Smurfs were expressed in distinct patterns in human tissues and carcinoma cell lines, suggesting unique pathophysiological roles of WWP1 and Smurfs.
Collapse
Affiliation(s)
- Akiyoshi Komuro
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
71
|
Ahituv N, Erven A, Fuchs H, Guy K, Ashery-Padan R, Williams T, de Angelis MH, Avraham KB, Steel KP. An ENU-induced mutation in AP-2α leads to middle earand ocular defects in Doarad mice. Mamm Genome 2004; 15:424-32. [PMID: 15181535 DOI: 10.1007/s00335-004-2334-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 02/10/2004] [Indexed: 12/25/2022]
Abstract
One of the advantages of N-ethyl- N-nitrosourea (ENU)-induced mutagenesis is that, after randomly causing point mutations, a variety of alleles can be generated in genes leading to diverse phenotypes. For example, transcription factor AP-2alpha ( Tcfap2a) null homozygote mice show a large spectrum of developmental defects, among them missing middle ear bones and tympanic ring. This is the usual occurrence, where mutations causing middle ear anomalies usually coincide with other abnormalities. Using ENU-induced mutagenesis, we discovered a new dominant Tcfap2a mutant named Doarad ( Dor) that has a missense mutation in the PY motif of its transactivation domain, leading to a misshapen malleus, incus, and stapes without any other observable phenotype. Dor homozygous mice die perinatally, showing prominent abnormal facial structures and ocular defects. In vitro assays suggest that this mutation causes a "gain of function" in the transcriptional activation of AP-2alpha. These mice enable us to address more specifically the developmental role of Tcfap2a in the eye and middle ear and are the first report of a mutation in a gene specifically causing middle ear abnormalities, leading to conductive hearing loss.
Collapse
Affiliation(s)
- Nadav Ahituv
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Xu HM, Liao B, Zhang QJ, Wang BB, Li H, Zhong XM, Sheng HZ, Zhao YX, Zhao YM, Jin Y. Wwp2, an E3 Ubiquitin Ligase That Targets Transcription Factor Oct-4 for Ubiquitination. J Biol Chem 2004; 279:23495-503. [PMID: 15047715 DOI: 10.1074/jbc.m400516200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The POU transcription factor Oct-4 is a master regulator affecting the fate of pluripotent embryonic stem cells. However, the precise mechanisms by which the activation and expression of Oct-4 are regulated still remain to be elucidated. We describe here a novel murine ubiquitin ligase, Wwp2, that specifically interacts with Oct-4 and promotes its ubiquitination both in vivo and in vitro. Remarkably, the expression of a catalytically inactive point mutant of Wwp2 abolishes Oct-4 ubiquitination. Moreover, Wwp2 promotes Oct-4 degradation in the presence of overexpressed ubiquitin. The degradation is blocked by treatment with proteasome inhibitor. Fusion of a single ubiquitin to Oct-4 inactivates its transcriptional activity in a heterologous Oct-4-driven reporter system. Furthermore, overexpression of Wwp2 in embryonic stem cells significantly reduces the Oct-4-transcriptional activities. Collectively, we demonstrate for the first time that Oct-4 can be post-translationally modified by ubiquitination and that this modification dramatically suppresses its transcriptional activity. These results reveal that the functional status of Oct-4, in addition to its expression level, dictates its transcriptional activity, and the results open up a new avenue to understand how Oct-4 defines the fate of embryonic stem cells.
Collapse
Affiliation(s)
- Hui Ming Xu
- Developmental Biology Department, Health Science Center, Shanghai Second Medical University and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 411 He Fei Road, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Debonneville C, Staub O. Participation of the ubiquitin-conjugating enzyme UBE2E3 in Nedd4-2-dependent regulation of the epithelial Na+ channel. Mol Cell Biol 2004; 24:2397-409. [PMID: 14993279 PMCID: PMC355826 DOI: 10.1128/mcb.24.6.2397-2409.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epithelial Na+ channel (ENaC) is a heteromeric protein complex playing a fundamental role in Na+ homeostasis and blood pressure regulation. Specific mutations inactivating PY motifs in ENaC C termini cause Liddle's syndrome, an inherited form of hypertension. Previously we showed that these PY motifs serve as binding sites for the E3 enzyme Nedd4-2, implying ubiquitination as a regulatory mechanism of ENaC. Ubiquitination involves the sequential action of E1, E2, and E3 enzymes. Here we identify the E2 enzyme UBE2E3, which acts in concert with Nedd4-2, and show by coimmunoprecipitation that UBE2E3 and Nedd4-2 interact together. In Xenopus laevis oocytes, UBE2E3 reduces ENaC activity marginally, consistent with Nedd4-2 being the rate-limiting factor in this process, whereas a catalytically inactive mutant of UBE2E3 (UBE2E3-CS) causes elevated ENaC activity by increasing cell surface expression. No additive effect is observed when UBE2E3-CS is coexpressed with an inactive Nedd4-2 mutant, and the stimulatory role of UBE2E3-CS depends on the integrity of the PY motifs (Nedd4-2 binding sites) and the ubiquitination sites on ENaC. In renal mpkCCD(cl4) cells, displaying ENaC-dependent transepithelial Na+ transport, Nedd4-2 and UBE2E3 can be coimmunoprecipitated and overexpression of UBE2E3 affects Na+ transport, corroborating the concept of a concerted action of UBE2E3 and Nedd4-2 in ENaC regulation.
Collapse
Affiliation(s)
- Christophe Debonneville
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
74
|
Marchese A, Raiborg C, Santini F, Keen JH, Stenmark H, Benovic JL. The E3 ubiquitin ligase AIP4 mediates ubiquitination and sorting of the G protein-coupled receptor CXCR4. Dev Cell 2003; 5:709-22. [PMID: 14602072 DOI: 10.1016/s1534-5807(03)00321-6] [Citation(s) in RCA: 316] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ubiquitination of the chemokine receptor CXCR4 serves as a targeting signal for lysosomal degradation, but the mechanisms mediating ubiquitination and lysosomal sorting remain poorly understood. Here we report that the Nedd4-like E3 ubiquitin ligase AIP4 mediates ubiquitination of CXCR4 at the plasma membrane, and of the ubiquitin binding protein Hrs on endosomes. CXCR4 activation promotes CXCR4 colocalization with AIP4 and Hrs within the same region of endosomes. Endosomal sorting of CXCR4 is dependent on Hrs as well as the AAA ATPase Vps4, the latter involved in regulating the ubiquitination status of both CXCR4 and Hrs. We propose a model whereby AIP4, Hrs, and Vps4 coordinate a cascade of ubiquitination and deubiquitination events that sort CXCR4 to the degradative pathway.
Collapse
Affiliation(s)
- Adriano Marchese
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
75
|
Itani OA, Campbell JR, Herrero J, Snyder PM, Thomas CP. Alternate promoters and variable splicing lead to hNedd4-2 isoforms with a C2 domain and varying number of WW domains. Am J Physiol Renal Physiol 2003; 285:F916-29. [PMID: 12876068 DOI: 10.1152/ajprenal.00203.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations that disrupt a PY motif in epithelial Na+ channel (ENaC) subunits increase surface expression of Na+ channels in the collecting duct, resulting in greater Na+ reabsorption. Recently, Nedd4 and Nedd4-2 have been identified as ubiquitin ligases that can interact with ENaC via its PY motifs to regulate channel activity. To further understand the role of human Nedd4-2 (hNedd4-2), we cloned its cDNAs and determined its genomic organization using a bioinformatic approach. The gene is present as a single copy, spans at least 400 kb, and contains >40 exons. Multiple 5'-exons were identified by 5'-rapid amplification of cDNA ends, and tissue-specific expression of these transcripts was noted by RT-PCR and RNase protection assay. Alternate polyadenylation signal sequences led to varying lengths of the 3'-untranslated region. Alternate splicing events within internal exons were also noted. Open reading frame analysis indicates that hNedd4-2 encode multiple protein variants with and without a C2 domain, and with a variable number of WW domains. Coexpression, in Fischer rat thyroid epithelia, of ENaC and Nedd4-2 cDNAs leads to a significant reduction in amiloride-sensitive currents, confirming a role in Na+ transport regulation. In vitro binding studies demonstrated that individual PY motifs of alpha-, beta-, and gamma-ENaC have strong affinity for WW domains 3 and 4 but not 1 and 2. These studies indicate that alternate transcripts of Nedd4-2 may interact with ENaC differently. Understanding the function of variant proteins will increase our knowledge of the role of hNedd4-2 in the regulation of ENaC and define protein domains important for Nedd4-2 function.
Collapse
Affiliation(s)
- Omar A Itani
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, USA
| | | | | | | | | |
Collapse
|
76
|
Miyazaki K, Ozaki T, Kato C, Hanamoto T, Fujita T, Irino S, Watanabe KI, Nakagawa T, Nakagawara A. A novel HECT-type E3 ubiquitin ligase, NEDL2, stabilizes p73 and enhances its transcriptional activity. Biochem Biophys Res Commun 2003; 308:106-13. [PMID: 12890487 DOI: 10.1016/s0006-291x(03)01347-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Expression of p73, a p53 family member regulating cell growth and apoptosis, is maintained at low levels in mammalian cells, and cellular activation of p73 is usually controlled at the protein level. However, the precise molecular mechanisms by which p73 stability is regulated are unclear. During the search for interacting molecules with the COOH-terminal proline-rich region of p73, we identified a novel NEDD4-related protein (termed as NEDL2) which contains a C2 domain at its NH(2)-terminus, two WW domains, and a HECT domain at its COOH-terminus. As expected, NEDL2 catalyzed the ubiquitination of bacterial cellular proteins in vitro. Reciprocal co-immunoprecipitation experiments and in vitro pull-down assays revealed that NEDL2 bound to p73, which carries two putative PY motifs. p73 was efficiently ubiquitinated but stabilized in a NEDL2-dependent manner. Accordingly, p73 decayed at faster rates in the absence of NEDL2 than in its presence. Consistent with the NEDL2-mediated stabilization of p73, NEDL2 enhanced the p73-dependent transcriptional activation. Thus, our results suggest that NEDL2 activates the function of p73 by increasing its stability.
Collapse
Affiliation(s)
- Kou Miyazaki
- Division of Biochemistry, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, 260-8717, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Chroboczek J, Gout E, Favier AL, Galinier R. Novel partner proteins of adenovirus penton. Curr Top Microbiol Immunol 2003; 272:37-55. [PMID: 12747546 DOI: 10.1007/978-3-662-05597-7_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Each of the 12 vertices of the adenovirus virion is made of penton, the complex of two oligomeric proteins: a pentameric penton base anchored in the capsid and an antenna-like trimeric fiber extending outwards. Adenovirus penton plays an essential role in the infection of host cells because it is indispensable for virus attachment and internalization. The initial interactions of penton with the primary and secondary receptors are well described. In contrast with that, the role of the penton components downstream of the initial cell contact is not known. This work shows for the first time that two adenovirus structural proteins, fiber and base, are able to interact intimately with different classes of cellular targets. In the case of penton base, a protein responsible for virus internalization, the partners include three ubiquitin-protein ligases that are involved in protein turnover, cell cycle control and endocytosis. Another base protein partner, BAG3, is involved in controlling Hsc70 chaperone activity. Virus attachment protein, fiber, interacts with many different partners, some of them involved in signal transduction and cell growth. Further work will illustrate the implications of these interactions for both the viral and cellular life cycles.
Collapse
Affiliation(s)
- J Chroboczek
- Institut de Biologie Structurale, 41 rue Jules Horowitz, 38027 Grenoble, France.
| | | | | | | |
Collapse
|
78
|
Verdecia MA, Joazeiro CAP, Wells NJ, Ferrer JL, Bowman ME, Hunter T, Noel JP. Conformational flexibility underlies ubiquitin ligation mediated by the WWP1 HECT domain E3 ligase. Mol Cell 2003; 11:249-59. [PMID: 12535537 DOI: 10.1016/s1097-2765(02)00774-8] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ubiquitin ligases (E3) select proteins for ubiquitylation, a modification that directs altered subcellular trafficking and/or degradation of the target protein. HECT domain E3 ligases not only recognize, but also directly catalyze, ligation of ubiquitin to their protein substrates. The crystal structure of the HECT domain of the human ubiquitin ligase WWP1/AIP5 maintains a two-lobed structure like the HECT domain of the human ubiquitin ligase E6AP. While the individual N and C lobes of WWP1 possess very similar folds to those of E6AP, the organization of the two lobes relative to one another is different from E6AP due to a rotation about a polypeptide hinge linking the N and C lobes. Mutational analyses suggest that a range of conformations achieved by rotation about this hinge region is essential for catalytic activity.
Collapse
Affiliation(s)
- Mark A Verdecia
- Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Galinier R, Gout E, Lortat-Jacob H, Wood J, Chroboczek J. Adenovirus protein involved in virus internalization recruits ubiquitin-protein ligases. Biochemistry 2002; 41:14299-305. [PMID: 12450395 DOI: 10.1021/bi020125b] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenovirus penton base protein is involved in virus internalization. Searching for the cellular partners of this protein, we used dodecahedra, adenovirus subviral particles composed of 12 bases, for screening a human lung expression library. This screen yielded three ubiquitin-protein ligases, WWP1, WWP2, and AIP4, all of which belong to the HECT family and contain multiple WW domains. The xPPxY motif, known to interact with WW domains in partner proteins occurs twice in the N-terminal part of the base polypeptide chain. The recruitment of three ubiquitin-protein ligases was shown for two distinct virus serotypes, Ad2 and Ad3. The first N-terminal xPPxY motif in the base protein sequence is indispensable for the interaction. The association in vitro was shown by the protein overlay technique and in vivo by cotransfection followed by immunoprecipitation. The binding parameters studied by surface plasmon resonance confirmed the interaction of base protein with three ubiquitin-protein ligases. In case of WWP1 when the saturation of binding was achieved, the apparent dissociation constant of 65nM was calculated. This is the first demonstration of the interaction of nonenveloped viruses with ubiquitin-protein ligases of host cells.
Collapse
Affiliation(s)
- Richard Galinier
- Institut de Biologie Structurale, 41, rue Jules Horowitz, 38027 Grenoble, France
| | | | | | | | | |
Collapse
|
80
|
Purmonen S, Ahola TM, Pennanen P, Aksenov N, Zhuang YH, Tuohimaa P, Ylikomi T. HDLG5/KIAA0583, encoding a MAGUK-family protein, is a primary progesterone target gene in breast cancer cells. Int J Cancer 2002; 102:1-6. [PMID: 12353226 DOI: 10.1002/ijc.10665] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The steroid hormone progesterone is known to have profound effects on growth and differentiation of normal and malignant breast epithelial cells. The biologic actions of progesterone are exerted through the nuclear progesterone receptor-mediated control of target gene transcription. We utilized differential display polymerase chain reaction (DD-RT-PCR) to identify genes whose expression is altered in response to progestins in cultured breast cancer cells. Here we report identification of a gene encoding a member of the MAGUK protein family, hDlg5 (also known as KIAA0583 and P-dlg), as being the primary progestin target gene in MCF-7 breast cancer cells. Quantitative real-time RT-PCR analysis showed a rapid and strong upregulation of hDlg5 mRNA in cells treated with synthetic progestin medroxyprogesterone acetate (MPA) in the presence of estrogen in MCF-7, T47D and ZR-75-1 cells. The induction was abrogated by antiprogestin RU486. hDlg5 mRNA was also upregulated by progesterone, R5020 and dexamethasone. Protein synthesis inhibitor cycloheximide failed to block progestin-mediated induction of the hDlg5 gene. hDlg5 is a member of the growing family of MAGUKs (membrane-associated guanylate kinase homologs) and is to our knowledge the first member of the family reported to be hormonally regulated. hDlg5 is one of the human homologs of the Drosophila gene dlg [lethal(1)discs-large], which was initially identified as a tumor suppressor gene. The Dlg has a well-established role in cell growth control and maintenance of cell adhesion and cell polarity. Domain profile analysis revealed that hDlg5 has 2 additional PDZ domains than previously reported.
Collapse
Affiliation(s)
- Sami Purmonen
- Department of Cell Biology, Medical School, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
81
|
McDonald FJ, Western AH, McNeil JD, Thomas BC, Olson DR, Snyder PM. Ubiquitin-protein ligase WWP2 binds to and downregulates the epithelial Na(+) channel. Am J Physiol Renal Physiol 2002; 283:F431-6. [PMID: 12167593 DOI: 10.1152/ajprenal.00080.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is a critical component of the pathway maintaining salt and water balance. The channel is regulated by members of the Nedd4 family of ubiquitin-protein ligases, which bind to channel subunits and catalyze channel internalization and degradation. ENaC mutations that abolish this interaction cause Liddle's syndrome, a genetic form of hypertension. Here, we test the hypothesis that WW domain-containing protein 2 (WWP2), a member of the Nedd4 family of ubiquitin-protein ligases, is a candidate to regulate ENaC. Consistent with this hypothesis, we found that WWP2 is expressed in epithelial tissues that express ENaC, as well as in a wide variety of other tissues. WWP2 contains four WW domains, three of which bound differentially to ENaC subunits. In contrast, all four human Nedd4-2 WW domains bound to ENaC. WWP2 inhibited ENaC when coexpressed in epithelia, requiring a direct interaction between the proteins; mutation of the ENaC PY motifs abolished inhibition. Thus expression, binding, and functional data all suggest that WWP2 is a candidate to regulate ENaC-mediated Na(+) transport in epithelia.
Collapse
Affiliation(s)
- Fiona J McDonald
- Department of Physiology, University of Otago, Dunedin 9100, New Zealand.
| | | | | | | | | | | |
Collapse
|
82
|
Affiliation(s)
- H G Göttlinger
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Masachusetts, USA.
| |
Collapse
|
83
|
Abstract
The epithelial Na+ channel (ENaC) forms the pathway for Na+ absorption in the kidney collecting duct and other epithelia. Dominant gain-of-function mutations cause Liddle's syndrome, an inherited form of hypertension resulting from excessive renal Na+ absorption. Conversely, loss-of-function mutations cause pseudohypoaldosteronism type I, a disorder of salt wasting and hypotension. Thus, ENaC has a critical role in the maintenance of Na+ homeostasis and blood pressure control. Altered Na+ absorption in the lung may also contribute to the pathogenesis of cystic fibrosis. Epithelial Na+ absorption is regulated in large part by mechanisms that control the expression of ENaC at the cell surface. Nedd4, a ubiquitin protein ligase, binds to ENaC and targets the channel for endocytosis and degradation. Liddle's syndrome mutations disrupt the interaction between ENaC and Nedd4, resulting in an increase in the number of ENaC channels at the cell surface. Aldosterone and vasopressin also regulate Na+ absorption to defend against hypotension and hypovolemia. Both hormones increase the expression of ENaC at the cell surface. The goal of this review is to summarize recent data on the regulation of ENaC expression at the cell surface.
Collapse
Affiliation(s)
- Peter M Snyder
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, 52422.
| |
Collapse
|
84
|
Patnaik A, Wills JW. In vivo interference of Rous sarcoma virus budding by cis expression of a WW domain. J Virol 2002; 76:2789-95. [PMID: 11861846 PMCID: PMC135952 DOI: 10.1128/jvi.76.6.2789-2795.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2001] [Accepted: 12/22/2001] [Indexed: 11/20/2022] Open
Abstract
For all enveloped viruses, the actual mechanism by which nascent virus particles separate or "pinch off" from the cell surface is largely unknown. In the case of retroviruses, the Gag protein drives the budding process, and the virus release step is directed by the late (L) assembly domain within Gag. A PPPPY motif within the L domain of Rous sarcoma virus (RSV) was previously characterized as being critical for the release of virions and shown to interact in vitro with the WW domain of Yes-associated protein (Yap). To determine whether WW domain-L domain interactions can occur in vivo, we attempted to interfere with the host cell machinery normally recruited to the site of budding by inserting this WW domain in different locations within Gag. At a C-terminal location, the WW(Yap) domain had no effect on budding, suggesting that the intervening I domains (which provide the major region of Gag-Gag interaction) prevent its access to the L domain. When positioned on the other side of the I domains closer to the L domain, the WW(Yap) domain resulted in a dramatic interference of particle release, and confocal microscopy revealed a block to budding on the plasma membrane. Budding was restored by attachment of the heterologous L domain of human immunodeficiency virus type 1 Gag, which does not bind WW(Yap). These findings suggest that cis expression of WW domains can interfere with RSV particle release in vivo via specific, high-affinity interactions at the site of assembly on the plasma membrane, thus preventing host factor accessibility to the L domain and subsequent virus-cell separation. In addition, they suggest that L domain-specific host factors function after Gag proteins begin to interact.
Collapse
Affiliation(s)
- Akash Patnaik
- Department of Microbiology & Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
85
|
Abstract
The WW domain is one of the smallest yet most versatile protein-protein interaction modules. The ability of this simple domain to interact with a number of proline-containing ligands has resulted in a great deal of functional diversity. Most recently it has been shown that WW domain interactions can also be differentially regulated by tyrosine phosphorylation. Here we briefly review WW domain ligands and structure in comparison to SH3 domain ligands and structure and discuss recent findings with regard to the regulation of WW domain interactions by phosphorylation. In particular we describe the potential for differential binding of the b-dystroglycan WW domain ligand by dystrophin or caveolin-3 in skeletal muscle and show how this could act as a switch to alter the relative affinity of the muscle dystroglycan complex for caveolin-3 or dystrophin and utrophin.
Collapse
Affiliation(s)
- Jane L Ilsley
- IBLS, Glasgow Cell Biology Group, Division of Biochemistry and Molecular Biology, University of Glasgow, G12 8QQ, Glasgow, UK
| | | | | |
Collapse
|
86
|
Protein kinase modulation of a neuronal cation channel requires protein-protein interactions mediated by an Src homology 3 domain. J Neurosci 2002. [PMID: 11756482 DOI: 10.1523/jneurosci.22-01-00001.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulating evidence suggests that many ion channels reside within a multiprotein complex that contains kinases and other signaling molecules. The role of the adaptor proteins that physically link these complexes together for the purposes of ion channel modulation, however, has been little explored. Here, we examine the protein-protein interactions required for regulation of an Aplysia bag cell neuron cation channel by a closely associated protein kinase C (PKC). In inside-out patches, the PKC-dependent enhancement of cation channel open probability could be prevented by the src homology 3 (SH3) domain, presumably by disrupting a link between the channel and the kinase. SH3 and PDZ domains from other proteins were ineffective. Modulation was also prevented by an SH3 motif peptide that preferentially binds the SH3 domain of src. Furthermore, whole-cell depolarizations elicited by cation channel activation were decreased by the src SH3 domain. These data suggest that the cation channel-PKC association may require SH3 domain-mediated interactions to bring about modulation, promote membrane depolarization, and initiate prolonged changes in bag cell neuron excitability. In general, protein-protein interactions between ion channels and protein kinases may be a prominent mechanism underlying neuromodulation.
Collapse
|
87
|
Li F, Chen C, Puffer BA, Montelaro RC. Functional replacement and positional dependence of homologous and heterologous L domains in equine infectious anemia virus replication. J Virol 2002; 76:1569-77. [PMID: 11799151 PMCID: PMC135910 DOI: 10.1128/jvi.76.4.1569-1577.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously demonstrated by Gag polyprotein budding assays that the Gag p9 protein of equine infectious anemia virus (EIAV) utilizes a unique YPDL motif as a late assembly domain (L domain) to facilitate release of the budding virus particle from the host cell plasma membrane (B. A. Puffer, L. J. Parent, J. W. Wills, and R. C. Montelaro, J. Virol. 71:6541-6546, 1997). To characterize in more detail the role of the YPDL L domain in the EIAV life cycle, we have examined the replication properties of a series of EIAV proviral mutants in which the parental YPDL L domain was replaced by a human immunodeficiency virus type 1 (HIV-1) PTAP or Rous sarcoma virus (RSV) PPPY L domain in the p9 protein or by proviruses in which the parental YPDL or HIV-1 PTAP L domain was inserted in the viral matrix protein. The replication properties of these L-domain variants were examined with respect to Gag protein expression and processing, virus particle production, and virus infectivity. The data from these experiments indicate that (i) the YPDL L domain of p9 is required for replication competence (assembly and infectivity) in equine cell cultures, including the natural target equine macrophages; (ii) all of the functions of the YPDL L domain in the EIAV life cycle can be replaced by replacement of the parental YPDL sequence in p9 with the PTAP L-domain segment of HIV-1 p6 or the PPPY L domain of RSV p2b; and (iii) the assembly, but not infectivity, functions of the EIAV proviral YPDL substitution mutants can be partially rescued by inclusions of YPDL and PTAP L-domain sequences in the C-terminal region of the EIAV MA protein. Taken together, these data demonstrate that the EIAV YPDL L domain mediates distinct functions in viral budding and infectivity and that the HIV-1 PTAP and RSV PPPY L domains can effectively facilitate these dual replication functions in the context of the p9 protein. In light of the fact that YPDL, PTAP, and PPPY domains evidently have distinct characteristic binding specificities, these observations may indicate different portals into common cellular processes that mediate EIAV budding and infectivity, respectively.
Collapse
Affiliation(s)
- Feng Li
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
88
|
Flasza M, Gorman P, Roylance R, Canfield AE, Baron M. Alternative splicing determines the domain structure of WWP1, a Nedd4 family protein. Biochem Biophys Res Commun 2002; 290:431-7. [PMID: 11779188 DOI: 10.1006/bbrc.2001.6206] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nedd-4-like proteins are E3 ubiquitin-ligase molecules which regulate key trafficking decisions, including targeting of proteins to proteosomes or lysosomes. Here we show that a human Nedd4 family gene, WWP1, is localized on 8q21 and generates at least six isoforms through alternative splicing. We show that alternative splicing affects the domain structure of WWP1, with forms that contain or lack an N-terminal C2 domain. Interestingly, the relative ratio of these forms varies in a tissue-specific manner. Other splice forms were also identified which may disrupt the structure of the C2 domain by removing its predicted C-terminal beta-strands. One splice form generates, through the introduction of a reading frame shift, a C2 domain-only form of WWP1. We discuss the hypothesis that regulation of splice site usage may modulate the activity of WWP1 and possibly other Nedd4 family proteins.
Collapse
Affiliation(s)
- Marzena Flasza
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
89
|
Hendriks EF, Robinson DR, Hinkins M, Matthews KR. A novel CCCH protein which modulates differentiation of Trypanosoma brucei to its procyclic form. EMBO J 2001; 20:6700-11. [PMID: 11726506 PMCID: PMC125759 DOI: 10.1093/emboj/20.23.6700] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2001] [Revised: 10/05/2001] [Accepted: 10/11/2001] [Indexed: 12/23/2022] Open
Abstract
Cell differentiation in Trypanosoma brucei involves highly regulated changes in morphology, proliferation and metabolism. However, the controls of these developmental processes are unknown. We have identified two novel proteins from the rare CCCH zinc finger family, each <140 amino acids in length and implicated in life cycle regulation. TbZFP1 is transiently enriched during differentiation from the bloodstream to procyclic form, whereas tbZFP2, when ablated in bloodstream forms by RNA interference, inhibits this developmental step. Moreover, expressing an ectopic copy of tbZFP2 results in a dramatic procyclic stage-specific remodelling of the trypanosome cytoskeleton similar to the morphogenic events of differentiation. This phenotype, we term 'nozzle', involves polar extension of microtubules at the posterior end of the cell and is dependent upon a motif hitherto restricted to E3 ubiquitin ligases. TbZFP1 and tbZFP2 represent the first molecules implicated in the control of trypanosome differentiation to the procyclic form.
Collapse
Affiliation(s)
- Edward F. Hendriks
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK and Laboratoire de Parasitologie Moleculaire, Batiment 3A Premier Etage, UMR-CNRS 5016, Université Victor Ségalen–Bordeaux 2, 146, Rue Léo Saignat, 33076 Bordeaux Cedex, France Corresponding author e-mail:
| | - Derrick R. Robinson
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK and Laboratoire de Parasitologie Moleculaire, Batiment 3A Premier Etage, UMR-CNRS 5016, Université Victor Ségalen–Bordeaux 2, 146, Rue Léo Saignat, 33076 Bordeaux Cedex, France Corresponding author e-mail:
| | - Matthew Hinkins
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK and Laboratoire de Parasitologie Moleculaire, Batiment 3A Premier Etage, UMR-CNRS 5016, Université Victor Ségalen–Bordeaux 2, 146, Rue Léo Saignat, 33076 Bordeaux Cedex, France Corresponding author e-mail:
| | - Keith R. Matthews
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK and Laboratoire de Parasitologie Moleculaire, Batiment 3A Premier Etage, UMR-CNRS 5016, Université Victor Ségalen–Bordeaux 2, 146, Rue Léo Saignat, 33076 Bordeaux Cedex, France Corresponding author e-mail:
| |
Collapse
|
90
|
Kikonyogo A, Bouamr F, Vana ML, Xiang Y, Aiyar A, Carter C, Leis J. Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells. Proc Natl Acad Sci U S A 2001; 98:11199-204. [PMID: 11562473 PMCID: PMC58707 DOI: 10.1073/pnas.201268998] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The late assembly (L) domain of retrovirus Gag, required in the final steps of budding for efficient exit from the host cell, is thought to mediate its function through interaction with unknown cellular factors. Here, we report the identification of the Nedd4-like family of E3 ubiquitin protein ligases as proteins that specifically interact with the Rous sarcoma virus (RSV) L domain in vitro and in vivo. We screened a chicken embryo cDNA expression library by using a peptide derived from the RSV p2b sequence, isolating two unique partial cDNA clones. Neither clone interacted with a peptide containing mutations known to disrupt in vivo RSV L domain function or with human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV) L domain-derived peptides. The WW domain region of one of the clones, late domain-interacting protein 1 (LDI-1), but not the C2 domain, bound RSV Gag and inhibited RSV Gag budding from human 293 cells in a dominant-negative manner, functionally implicating LDI-1 in RSV particle budding from cells. RSV Gag can be coimmune precipitated from cell extracts with an antisera directed at an exogenously expressed hemagglutinin (HA)-tagged LDI-1 or endogenous Nedd4 proteins. These findings mechanistically link the cellular ubiquitination pathway to retrovirus budding.
Collapse
Affiliation(s)
- A Kikonyogo
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Ilsley JL, Sudol M, Winder SJ. The interaction of dystrophin with beta-dystroglycan is regulated by tyrosine phosphorylation. Cell Signal 2001; 13:625-32. [PMID: 11495720 DOI: 10.1016/s0898-6568(01)00188-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dystrophin and the dystrophin-associated protein complex (DAPC) have recently been implicated in cell signalling events. These proteins are ideally placed to transduce signals from the extracellular matrix (ECM) to the cytoskeleton. Here we show that beta-dystroglycan is tyrosine-phosphorylated in C2/C4 mouse myotubes. Tyrosine phosphorylation was detected by mobility shifts on SDS-polyacrylamide gels (SDS-PAGE) and confirmed by immunoprecipitation and two-dimensional gel electrophoresis. The potential functional significance of this tyrosine phosphorylation was investigated using peptide 'SPOTs' assays. Phosphorylation of tyrosine in the 15 most C-terminal amino acids of beta-dystroglycan disrupts its interaction with dystrophin. The tyrosine residue in beta-dystroglycan's WW-binding motif PPPY appears to be the most crucial in disrupting the beta-dystroglycan-dystrophin interaction. beta-dystroglycan forms the essential link between dystrophin and the rest of the DAPC. This regulation by tyrosine phosphorylation may have implications in the pathogenesis and treatment of Duchenne's muscular dystrophy (DMD).
Collapse
Affiliation(s)
- J L Ilsley
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, Scotland EH9 3JR, UK
| | | | | |
Collapse
|
92
|
Strochlic L, Cartaud A, Labas V, Hoch W, Rossier J, Cartaud J. MAGI-1c: a synaptic MAGUK interacting with muSK at the vertebrate neuromuscular junction. J Cell Biol 2001; 153:1127-32. [PMID: 11381096 PMCID: PMC2174332 DOI: 10.1083/jcb.153.5.1127] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The muscle-specific receptor tyrosine kinase (MuSK) forms part of a receptor complex, activated by nerve-derived agrin, that orchestrates the differentiation of the neuromuscular junction (NMJ). The molecular events linking MuSK activation with postsynaptic differentiation are not fully understood. In an attempt to identify partners and/or effectors of MuSK, cross-linking and immunopurification experiments were performed in purified postsynaptic membranes from the Torpedo electrocyte, a model system for the NMJ. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis was conducted on both cross-link products, and on the major peptide coimmunopurified with MuSK; this analysis identified a polypeptide corresponding to the COOH-terminal fragment of membrane-associated guanylate kinase (MAGUK) with inverted domain organization (MAGI)-1c. A bona fide MAGI-1c (150 kD) was detected by Western blotting in the postsynaptic membrane of Torpedo electrocytes, and in a high molecular mass cross-link product of MuSK. Immunofluorescence experiments showed that MAGI-1c is localized specifically at the adult rat NMJ, but is absent from agrin-induced acetylcholine receptor clusters in myotubes in vitro. In the central nervous system, MAGUKs play a primary role as scaffolding proteins that organize cytoskeletal signaling complexes at excitatory synapses. Our data suggest that a protein from the MAGUK family is involved in the MuSK signaling pathway at the vertebrate NMJ.
Collapse
Affiliation(s)
- Laure Strochlic
- Biologie Cellulaire des Membranes, Institut Jacques Monod, UMR 7592 CNRS, Universités Paris 6 et Paris 7, 75251 Paris, France
| | - Annie Cartaud
- Biologie Cellulaire des Membranes, Institut Jacques Monod, UMR 7592 CNRS, Universités Paris 6 et Paris 7, 75251 Paris, France
| | - Valérie Labas
- Neurobiologie et Diversité Cellulaire, UMR 7637 CNRS, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, 75005 Paris, France
| | - Werner Hoch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D 72076, Tübingen, Germany
| | - Jean Rossier
- Neurobiologie et Diversité Cellulaire, UMR 7637 CNRS, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, 75005 Paris, France
| | - Jean Cartaud
- Biologie Cellulaire des Membranes, Institut Jacques Monod, UMR 7592 CNRS, Universités Paris 6 et Paris 7, 75251 Paris, France
| |
Collapse
|
93
|
Conkright MD, Wani MA, Lingrel JB. Lung Krüppel-like factor contains an autoinhibitory domain that regulates its transcriptional activation by binding WWP1, an E3 ubiquitin ligase. J Biol Chem 2001; 276:29299-306. [PMID: 11375995 DOI: 10.1074/jbc.m103670200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lung Krüppel-like factor (LKLF/Krüppel-like factor 2), a member of the Krüppel-like factor family of transcription factors, is expressed predominantly in the lungs, with low levels of expression in other organs such as heart, spleen, skeletal muscle, and testis. LKLF is essential during pulmonary development and single-positive T-cell development and is indispensable during mouse embryogenesis. In this study, we performed a series of experiments to define the activation domain of LKLF as a means to further advance the understanding of the molecular mechanisms underlying transcriptional regulation by this transcription factor. Using deletion analysis, it is shown that LKLF contains a transcriptional activation domain as well as a strong autoinhibitory subdomain. The inhibitory subdomain is able to independently suppress transcriptional activation of other strong activators such as viral protein 16, VP16. This occurs either when the inhibitory domain is fused directly to VP16 or when the inhibitory domain is independently bound to DNA by GAL4 DNA-binding domain independent of the VP16 activator. Overexpression of the LKLF autoinhibitory domain alone potentiates transactivation by wild type LKLF, suggesting that the inhibitory domain binds a cofactor that prevents LKLF from transactivating. A yeast-two hybrid screen identified WWP1, an E3 ubiquitin ligase that binds specifically to the LKLF inhibitory domain but not to other transcription factors. In mammalian cells, WWP1 functions as a cofactor by binding LKLF and suppressing transactivation. These data demonstrate that LKLF contains multiple domains that either potentiate or inhibit the ability of this factor to function as an activator of transcription; moreover, regulation of LKLF transactivation is attenuated by an E3 ubiquitin ligase, WWP1.
Collapse
Affiliation(s)
- M D Conkright
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | |
Collapse
|
94
|
Espanel X, Sudol M. Yes-associated protein and p53-binding protein-2 interact through their WW and SH3 domains. J Biol Chem 2001; 276:14514-23. [PMID: 11278422 DOI: 10.1074/jbc.m008568200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the role of the Yes-associated protein (YAP), binding partners of its WW1 domain were isolated by a yeast two-hybrid screen. One of the interacting proteins was identified as p53-binding protein-2 (p53BP-2). YAP and p53BP-2 interacted in vitro and in vivo using their WW1 and SH3 domains, respectively. The YAP WW1 domain bound to the YPPPPY motif of p53BP-2, whereas the p53BP-2 SH3 domain interacted with the VPMRLR sequence of YAP, which is different from other known SH3 domain-binding motifs. By mutagenesis, we showed that this unusual SH3 domain interaction was due to the presence of three consecutive tryptophans located within the betaC strand of the SH3 domain. A point mutation within this triplet, W976R, restored the binding selectivity to the general consensus sequence for SH3 domains, the PXXP motif. A constitutively active form of c-Yes was observed to decrease the binding affinity between YAP and p53BP-2 using chloramphenicol acetyltransferase/enzyme-linked immunosorbent assay, whereas the overexpression of c-Yes did not modify this interaction. Since overexpression of an activated form of c-Yes resulted in tyrosine phosphorylation of p53BP-2, we propose that the p53BP-2 phosphorylation, possibly in the WW1 domain-binding motif, might negatively regulate the YAP.p53BP-2 complex.
Collapse
Affiliation(s)
- X Espanel
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| | | |
Collapse
|
95
|
Schwake M, Friedrich T, Jentsch TJ. An internalization signal in ClC-5, an endosomal Cl-channel mutated in dent's disease. J Biol Chem 2001; 276:12049-54. [PMID: 11116157 DOI: 10.1074/jbc.m010642200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ClC-5 chloride channel resides mainly in vesicles of the endocytotic pathway and contributes to their acidification. Its disruption in mice entails a broad defect in renal endocytosis and causes secondary changes in calciotropic hormone levels. Inactivating mutations in Dent's disease lead to proteinuria and kidney stones. Possibly by recycling, a small fraction of ClC-5 also reaches the plasma membrane. Here we identify a carboxyl-terminal internalization motif in ClC-5. It resembles the PY motif, which is crucial for the endocytosis and degradation of epithelial Na(+) channels. Mutating this motif increases surface expression and currents about 2-fold. This is probably because of interactions with WW domains, because dominant negative mutants of the ubiquitin-protein ligase WWP2 increased surface expression and currents of ClC-5 only when its PY motif was intact. Stimulating endocytosis by expressing rab5 or its GTPase-deficient Q79L mutant decreased WT ClC-5 currents but did not affect channels with mutated motifs. Similarly, decreasing endocytosis by expressing the inactive S34N mutant of rab5 increased ClC-5 currents only if its PY-like motif was intact. Thus, the endocytosis of ClC-5, which itself is crucial for the endocytosis of other proteins, depends on the interaction of a carboxyl-terminal internalization signal with ubiquitin-protein ligases containing WW domains.
Collapse
Affiliation(s)
- M Schwake
- Zentrum für Molekulare Neurobiologie Hamburg, Hamburg University, Falkenried 94, D-20246 Hamburg, Germany
| | | | | |
Collapse
|
96
|
Kasanov J, Pirozzi G, Uveges AJ, Kay BK. Characterizing Class I WW domains defines key specificity determinants and generates mutant domains with novel specificities. CHEMISTRY & BIOLOGY 2001; 8:231-41. [PMID: 11306348 DOI: 10.1016/s1074-5521(01)00005-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION WW domains are small protein interaction modules found in a wide range of eukaryotic signaling and structural proteins. Five classes of WW domains have been annotated to date, where each class is largely defined by the type of peptide ligand selected, rather than by similarities within WW domains. Class I WW domains bind Pro-Pro-Xxx-Tyr containing ligands, and it would be of interest to determine residues within the domains that determine this specificity. RESULTS Fourteen WW domains selected Leu/Pro-Pro-Xxx-Tyr containing peptides ligands via phage display and were thus designated as Class 1 WW domains. These domains include those present in human YAP (hYAP) and WWP3, as well as those found in ubiquitin protein ligases of the Nedd4 family, including mouse Nedd4 (mNedd4), WWP1, WWP2 and Rsp5. Comparing the primary structures of these WW domains highlighted a set of highly conserved residues, in addition to those originally noted to occur within WW domains. Substitutions at two of these conserved positions completely inhibited ligand binding, whereas substitution at a non-conserved position did not. Moreover, mutant WW domains containing substitutions at conserved positions bound novel peptide ligands. CONCLUSIONS Class I WW domains contain a highly conserved set of residues that are important in selecting Pro-Xxx-Tyr containing peptide ligands. The presence of these residues within an uncharacterized WW domain can be used to predict its ability to bind Pro-Xxx-Tyr containing peptide ligands.
Collapse
Affiliation(s)
- J Kasanov
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | | | | | |
Collapse
|
97
|
Zhang Y, Jones C, Dickman MB. Identification of differentially expressed genes following treatment of monkey kidney cells with the mycotoxin fumonisin B(1). Food Chem Toxicol 2001; 39:45-53. [PMID: 11259850 DOI: 10.1016/s0278-6915(00)00114-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fumonisin B(1) (FB(1)) is a mycotoxin produced by the phytopathogenic fungus Fusarium moniliforme, which structurally resembles sphingoid bases. FB(1) perturbs sphingolipid synthesis by inhibiting the activity of ceramide synthase. Depending on the host, ingestion of FB(1) causes equine leukoencephalomalacia or porcine pulmonary edema. It is also carcinogenic to rats and may play a role in certain human cancers. Previous studies showed that FB(1) repressed specific isoforms of protein kinase C and cyclin-dependent kinase 2 (CDK2) activity. Conversely, FB(1) induced expression of CDK inhibitors, p21(Waf1/Cip1), p27(Kip1), and p57(Kip2) in monkey kidney cells (CV-1). Consequently, FB(1) treatment of CV-1 cells leads to cell-cycle arrest and apoptosis. The baculovirus IAP gene (inhibitor of apoptosis), which blocks tumor necrosis factor (TNF)-induced apoptosis, protects several fibroblast cell types from apoptosis, suggesting the TNF pathway is important for FB(1)-induced apoptosis. To identify genes that are induced by FB(1), we used a PCR-based subtraction approach. Eight genes that showed high similarity (> 90%) to known mammalian genes were identified. These genes included: tumor necrosis factor type 1 receptor associated protein 2 (TRAP2), human leukemia virus receptor (GLVR1), human Scaffold attachment factor A (SAF-A) also called heterogeneous nuclear ribonucleoprotein U (hnRNP-U), human protein kinase C-binding protein (RACK7), human oligosaccharyl transferase STT3 subunit, mouse WW-domain binding protein 2 (WBP2), human fibronectin, and an unknown human clone. The ability of FB(1) to alter gene expression and signal transduction pathways may be necessary for its carcinogenic and toxic effects.
Collapse
Affiliation(s)
- Y Zhang
- Dept. of Plant Pathology, University of Nebraska, 68503, Lincoln, NE, USA
| | | | | |
Collapse
|
98
|
Scarafia LE, Winter A, Swinney DC. Quantitative expression analysis of the cellular specificity of HECT-domain ubiquitin E3 ligases. Physiol Genomics 2000; 4:147-153. [PMID: 11120875 DOI: 10.1152/physiolgenomics.2000.4.2.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We evaluated the expression of 28 gene sequences with homology to the carboxy terminal of HECT E3 ubiquitin ligases in nine human cell lines using RT-PCR, to determine whether gene expression could be associated with cell-specific functions (HECT is "homologous to E6AP C-terminus"). In general, HECT-domain E3 ligases are constitutively expressed at low levels with a broad range between cell types. hecth3, 21, and 23 had higher levels in three leukocytic lines (Jurkat, MM6, THP1); hecth11 was more abundant in HepG2 and A495; and hecth15 and hecth12 were differentially expressed in lung fibroblasts derived from normal and severe emphysema patients (CCD16 and CCD29, respectively). Absolute quantitation showed that most HECT E3s have about 20-100 copies of mRNA per Jurkat cell. By comparison, UBCH7 (an ubiquitin-conjugating E2) is 10-fold more abundant in Jurkat cells and 30-fold more abundant than E2 UBCH5A. We interpret the broad range of transcript levels to be consistent with the hypothesis that the concentrations of E3 are important for ubiquitination selectivity, leading us to conclude that substrate activation is necessary but not sufficient for selectivity.
Collapse
Affiliation(s)
- L E Scarafia
- Inflammatory Diseases Unit, Roche Bioscience, Palo Alto, California 94304, USA
| | | | | |
Collapse
|
99
|
McDonnell DP, Chang CY, Norris JD. Development of peptide antagonists that target estrogen receptor-cofactor interactions. J Steroid Biochem Mol Biol 2000; 74:327-35. [PMID: 11162941 DOI: 10.1016/s0960-0760(00)00109-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have developed a series of high-affinity peptide antagonists that inhibit the transcriptional activity of both subtypes of the human estrogen receptor (ERalpha and ERbeta). We believe that it will be possible to develop these peptides, or corresponding peptidomimetic derivatives, into pharmaceuticals for use in the treatment of breast cancer and other estrogenopathies. It is anticipated that drugs of this type could be used in combination with classical antiestrogens, such as tamoxifen, to achieve a complete blockage of ER-transcriptional activity. Although ER has been the primary target of our studies to date, it is likely that the insights gained from this work will apply to other nuclear receptors and transcription factors.
Collapse
Affiliation(s)
- D P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, 27710, Durham NC, USA.
| | | | | |
Collapse
|
100
|
Strack B, Calistri A, Accola MA, Palu G, Gottlinger HG. A role for ubiquitin ligase recruitment in retrovirus release. Proc Natl Acad Sci U S A 2000; 97:13063-8. [PMID: 11087860 PMCID: PMC27178 DOI: 10.1073/pnas.97.24.13063] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Retroviral Gag polyproteins have specific regions, commonly referred to as late assembly (L) domains, which are required for the efficient separation of assembled virions from the host cell. The L domain of HIV-1 is in the C-terminal p6(gag) domain and contains an essential P(T/S)AP core motif that is widely conserved among lentiviruses. In contrast, the L domains of oncoretroviruses such as Rous sarcoma virus (RSV) have a more N-terminal location and a PPxY core motif. In the present study, we used chimeric Gag constructs to probe for L domain activity, and observed that the unrelated L domains of RSV and HIV-1 both induced the appearance of Gag-ubiquitin conjugates in virus-like particles (VLP). Furthermore, a single-amino acid substitution that abolished the activity of the RSV L domain in VLP release also abrogated its ability to induce Gag ubiquitination. Particularly robust Gag ubiquitination and enhancement of VLP release were observed in the presence of the candidate L domain of Ebola virus, which contains overlapping P(T/S)AP and PPxY motifs. The release defect of a minimal Gag construct could also be corrected through the attachment of a peptide that serves as a physiological docking site for the ubiquitin ligase Nedd4. Furthermore, VLP formation by a full-length Gag polyprotein was sensitive to lactacystin, which depletes the levels of free ubiquitin through inhibition of the proteasome. Our findings suggest that the engagement of the ubiquitin conjugation machinery by L domains plays a crucial role in the release of a diverse group of enveloped viruses.
Collapse
Affiliation(s)
- B Strack
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|