51
|
Beyer C, Schett G, Gay S, Distler O, Distler JHW. Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis. Arthritis Res Ther 2009; 11:220. [PMID: 19473554 PMCID: PMC2688169 DOI: 10.1186/ar2598] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autoimmunity, microangiopathy and tissue fibrosis are hallmarks of systemic sclerosis (SSc). Vascular alterations and reduced capillary density decrease blood flow and impair tissue oxygenation in SSc. Oxygen supply is further reduced by accumulation of extracellular matrix (ECM), which increases diffusion distances from blood vessels to cells. Therefore, severe hypoxia is a characteristic feature of SSc and might contribute directly to the progression of the disease. Hypoxia stimulates the production of ECM proteins by SSc fibroblasts in a transforming growth factor-β-dependent manner. The induction of ECM proteins by hypoxia is mediated via hypoxia-inducible factor-1α-dependent and -independent pathways. Hypoxia may also aggravate vascular disease in SSc by perturbing vascular endothelial growth factor (VEGF) receptor signalling. Hypoxia is a potent inducer of VEGF and may cause chronic VEGF over-expression in SSc. Uncontrolled over-expression of VEGF has been shown to have deleterious effects on angiogenesis because it leads to the formation of chaotic vessels with decreased blood flow. Altogether, hypoxia might play a central role in pathogenesis of SSc by augmenting vascular disease and tissue fibrosis.
Collapse
Affiliation(s)
- Christian Beyer
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
52
|
Role of aryl hydrocarbon receptor in modulation of the expression of the hypoxia marker carbonic anhydrase IX. Biochem J 2009; 419:419-25. [PMID: 19154183 DOI: 10.1042/bj20080952] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tumour-associated expression of CA IX (carbonic anhydrase IX) is to a major extent regulated by HIF-1 (hypoxia-inducible factor-1) which is important for transcriptional activation and consists of the oxygen-regulated subunit HIF-1alpha and the partner factor ARNT [AhR (aryl hydrocarbon receptor) nuclear translocator]. We have previously observed that HIF-1alpha competes with the AhR for interaction with ARNT under conditions when both conditionally regulated factors are activated. We have therefore investigated whether TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)-induced activation of the AhR pathway might interfere with CA IX expression. The results from the present study suggest that TCDD treatment reduces hypoxic induction of both CA IX mRNA and protein expression. Moreover, the transcriptional activity of the CA9 promoter was significantly reduced by expression of CAAhR (constitutively active AhR), which activates transcription in a ligand-independent manner. Finally, we found that ARNT is critical for both hypoxic induction and the TCDD-mediated inhibition of CA9 expression.
Collapse
|
53
|
García-Maceira P, Mateo J. Silibinin inhibits hypoxia-inducible factor-1alpha and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: implications for anticancer therapy. Oncogene 2009; 28:313-24. [PMID: 18978810 DOI: 10.1038/onc.2008.398] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 09/08/2008] [Accepted: 09/30/2008] [Indexed: 12/22/2022]
Abstract
The hypoxia-inducible factor 1 (HIF-1) plays a critical role for tumour adaptation to microenvironmental hypoxia, and represents an appealing chemotherapeutic target. Silibinin is a nontoxic flavonoid reported to exhibit anticancer properties. However, the mechanisms by which silibinin inhibits tumour growth are not fully understood. In this study, silibinin was found to inhibit hypoxia-induced HIF-1alpha accumulation and HIF-1 transcriptional activity in human cervical (HeLa) and hepatoma (Hep3B) cells. Neither HIF-1alpha protein degradation rate nor HIF-1alpha steady-state mRNA level was affected by silibinin. Rather, we found that suppression of HIF-1alpha accumulation by silibinin correlated with strong dephosphorylation of mammalian target of rapamycin (mTOR) and its effectors ribosomal protein S6 kinase (p70S6K) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1), a pathway known to regulate HIF-1alpha expression at the translational level. Silibinin also activated Akt, a mechanistic feature exhibited by established mTOR inhibitors in many tumour cells. Moreover, silibinin reduced hypoxia-induced vascular endothelial growth factor (VEGF) release by HeLa and Hep3B cells, and this effect was potentiated by the PI3K/Akt inhibitor LY294002. Finally, silibinin was found to be a potent inhibitor of cell proliferation. These results show that silibinin is an effective inhibitor of HIF-1 and provide new perspectives into the mechanism of its anticancer activity.
Collapse
Affiliation(s)
- P García-Maceira
- Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | |
Collapse
|
54
|
Gultice AD, Kulkarni-Datar K, Brown TL. Hypoxia-inducible factor 1alpha (HIF1A) mediates distinct steps of rat trophoblast differentiation in gradient oxygen. Biol Reprod 2008; 80:184-93. [PMID: 18815358 DOI: 10.1095/biolreprod.107.067488] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Defective differentiation of invasive, placental trophoblast cells has been associated with several pregnancy-related disorders. This study examines the molecular, functional, and morphological differentiation of lineage-specific, trophoblast giant cells under a gradient of oxygen concentrations. Low oxygen (3%) inhibited differentiation, but this inhibition was relieved in a stepwise fashion with increasing levels of oxygen. The oxygen-sensitive hypoxia-inducible factor 1alpha (HIF1A) is a major transcriptional regulator of the cellular response to low oxygen, and increased HIF1A protein levels and activity corresponded with the maintenance of the stem cell-like state and inhibition of trophoblast differentiation in low oxygen. Furthermore, constitutive expression of an oxygen-insensitive, active form of HIF1A protein mimicked the effects of low oxygen, inhibiting the differentiation of trophoblast giant cells. This study is the first to delineate the stepwise effects of oxygen on the activation of the trophoblast giant cell differentiation process and establishes a new paradigm from which to investigate trophoblast differentiation. In addition, this is the first reported study to demonstrate that constitutive HIF1A activity mediates oxygen's inhibition of differentiation. These results suggest that a dysregulation of HIF1A could contribute to impaired placental development.
Collapse
Affiliation(s)
- Amy D Gultice
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435, USA
| | | | | |
Collapse
|
55
|
Samoylenko A, Dimova EY, Horbach T, Teplyuk N, Immenschuh S, Kietzmann T. Opposite expression of the antioxidant heme oxygenase-1 in primary cells and tumor cells: regulation by interaction of USF-2 and Fra-1. Antioxid Redox Signal 2008; 10:1163-74. [PMID: 18331200 DOI: 10.1089/ars.2007.1968] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heme oxygenase-1 is the rate-limiting enzyme for the degradation of the prooxidant heme. Previously, we showed that an E-box within the HO-1 promoter is crucial for the regulation of HO-1 expression in primary hepatocytes. Further to investigate the importance of this E-box, we determined the regulatory capacity of the E-box-binding factor USF-2 in primary cells in comparison with transformed cell lines. We found that HO-1 expression was inhibited by USF-2 in primary cells, whereas it was induced in tumor cell lines. Mutation of either the E-box or the AP-1 site within the HO-1 promoter only partially affected the USF-dependent regulation. However, this regulation was dramatically reduced in tumor cells and completely abolished in primary cells transfected with an HO-1 promoter construct containing mutations in both the E-box and the AP-1 site, suggesting that AP-1 factors and USF-2 may act in a cooperative manner. Indeed, protein-protein interaction studies revealed that USF proteins interacted with Fra-1. Further, the USF-dependent HO-1 promoter activity was not detectable with an USF-2 mutant lacking residues of the USF-specific region (USR) or the transactivation domain encoded by exon 4. Together, these data suggest that USF-2 has opposite regulatory roles for HO-1 gene expression in primary cells and tumor cell lines.
Collapse
Affiliation(s)
- Anatoly Samoylenko
- Department of Biochemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
56
|
Kaluz S, Kaluzová M, Stanbridge EJ. Rational design of minimal hypoxia-inducible enhancers. Biochem Biophys Res Commun 2008; 370:613-8. [PMID: 18402769 PMCID: PMC2647722 DOI: 10.1016/j.bbrc.2008.03.147] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 03/30/2008] [Indexed: 01/13/2023]
Abstract
The hypoxia-inducible factor (HIF) activates transcription via binding to the highly variable hypoxia-responsive elements (HREs). All hypoxia-inducible constructs described to date utilize multimers of naturally occurring HREs. Here, we describe the rational design of minimal hypoxia-inducible enhancers, conceptually equivalent to using an optimized HIF-binding site (HBS) as the building block. Optimizations of the HBS, spacing between HBSs, the distance from the minimal promoter, and orientation of HBSs allowed us to design constructs with high hypoxic activity. Activation of the 4xopt HBS (36bp) construct by hypoxia or HIF-1alpha and HIF-2alpha was comparable with that of the 4xEPO HRE (208bp) construct. The strong synergism between the properly arranged optimized HBSs was due to stimulation of high affinity HIF binding. Our data prove, for the first time, that it is possible to assemble artificial hypoxia-inducible enhancers from a single type of regulatory element-optimized HBS.
Collapse
Affiliation(s)
- Stefan Kaluz
- Department of Microbiology and Molecular Genetics, Medical Science I, B210, University of California at Irvine, College of Medicine, CA 92697-4025, USA.
| | | | | |
Collapse
|
57
|
Xu X, Sutak R, Richardson DR. Iron chelation by clinically relevant anthracyclines: alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking. Mol Pharmacol 2008; 73:833-44. [PMID: 18029550 DOI: 10.1124/mol.107.041335] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anthracyclines are effective anticancer agents. However, their use is limited by cardiotoxicity, an effect linked to their ability to chelate iron and to perturb iron metabolism (Mol Pharmacol 68:261-271, 2005). These effects on iron-trafficking remain poorly understood, but they are important to decipher because treatment for anthracycline cardiotoxicity uses the chelator, dexrazoxane. Incubation of cells with doxorubicin (DOX) up-regulated mRNA levels of the iron-regulated genes transferrin receptor-1 (TfR1) and N-myc downstream-regulated gene-1 (Ndrg1). This effect was mediated by iron depletion, because it was reversed by adding iron and it was prevented by saturating the anthracycline metal binding site with iron. However, DOX did not act like a typical chelator, because it did not induce cellular iron mobilization. In the presence of DOX and (59)Fe-transferrin, iron-trafficking studies demonstrated ferritin-(59)Fe accumulation and decreased cytosolic-(59)Fe incorporation. This could induce cytosolic iron deficiency and increase TfR1 and Ndrg1 mRNA. Up-regulation of TfR1 and Ndrg1 by DOX was independent of anthracycline-mediated radical generation and occurred via hypoxia-inducible factor-1alpha-independent mechanisms. Despite increased TfR1 and Ndrg1 mRNA after DOX treatment, this agent decreased TfR1 and Ndrg1 protein expression. Hence, the effects of DOX on iron metabolism were complex because of its multiple effector mechanisms.
Collapse
Affiliation(s)
- X Xu
- Iron Metabolism and Chelation Program, Department of Pathology, University of Sydney, Sydney, New South Wales, 2006 Australia
| | | | | |
Collapse
|
58
|
Lyberopoulou A, Venieris E, Mylonis I, Chachami G, Pappas I, Simos G, Bonanou S, Georgatsou E. MgcRacGAP interacts with HIF-1alpha and regulates its transcriptional activity. Cell Physiol Biochem 2007; 20:995-1006. [PMID: 17982282 DOI: 10.1159/000110460] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2007] [Indexed: 01/07/2023] Open
Abstract
HIF-1alpha is the inducible subunit of the dimeric transcription factor HIF-1 (Hypoxia Inducible Factor 1). It is induced by hypoxia and hypoxia-mimetics in most cell types, as well as non-hypoxic signals such as growth factors, cytokines and oncogenes, often in a cell specific manner. HIF-1 is present in virtually all cells of higher eukaryotes and its function is of great biomedical relevance since it is highly involved in development, tumor progression and tissue ischemia. Intracellular signaling to HIF-1alpha, as well as its further action, involves its participation in numerous protein complexes. Using the yeast two-hybrid system we have identified MgcRacGAP (male germ cell Rac GTPase Activating Protein) as a HIF-1alpha interacting protein. The MgcRacGAP protein is a regulator of Rho proteins, which are principally involved in cytoskeletal organization. We have verified specific binding of HIF-1alpha and MgcRacGAP in vitro and in vivo in mammalian cells. We have additionally shown that MgcRacGAP overexpression inhibits HIF-1alpha transcriptional activity, without lowering HIF-1alpha protein levels, or altering its subcellular localization. Moreover, this inhibition is dependent on the MgcRacGAP domain that interacts with HIF-1alpha. In conclusion, our findings demonstrate that HIF-1alpha function is negatively affected by its interaction with MgcRacGAP.
Collapse
Affiliation(s)
- Aggeliki Lyberopoulou
- Laboratory of Biochemistry, Department of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Shan Y, Zheng J, Lambrecht RW, Bonkovsky HL. Reciprocal effects of micro-RNA-122 on expression of heme oxygenase-1 and hepatitis C virus genes in human hepatocytes. Gastroenterology 2007; 133:1166-74. [PMID: 17919492 PMCID: PMC2128739 DOI: 10.1053/j.gastro.2007.08.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 07/12/2007] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Heme oxygenase-1 (HO-1) is an antioxidant defense and key cytoprotective enzyme, which is repressed by Bach1. Micro-RNA-122 (miR-122) is specifically expressed and highly abundant in human liver and required for replication of hepatitis C virus (HCV) RNA. This study was to assess whether a specific miR-122 antagomir down-regulates HCV protein replication and up-regulates HO-1. METHODS We transfected antagomir of miR-122, 2'-O-methyl-mimic miR-122, or nonspecific control antagomir, into wild-type (WT) Huh-7 cells or Huh-7 stably replicating HCV subgenomic protein core through nonstructural protein 3 of HCV (NS3) (CNS3 replicon cells) or NS3-5B (9-13 replicon cells). RESULTS Antagomir of miR-122 reduced the abundance of HCV RNA by 64% in CNS3 and by 84% in 9-13 cells. Transfection with 2'-O-methlyl-mimic miR-122 increased HCV levels up to 2.5-fold. Antagomir of miR-122 also decreased Bach1 and increased HO-1 mRNA levels in CNS3, 9-13, and WT Huh-7 cells. Increasing HO-1 by silencing Bach1 with 50 nmol/L Bach1-short interfering RNA or by treatment with 5 mumol/L cobalt protoporphyrin or heme (known inducers of HO-1) decreased HCV RNA and protein by 50% in HCV replicon cells. CONCLUSIONS Down-regulation of HCV replication using an antagomir targeted to miR-122 is effective, specific, and selective. Increasing HO-1, by silencing the Bach1 gene or by treatment with cobalt protoporphyrin or heme, decreases HCV replication. Thus, miR-122 plays an important role in the regulation of HCV replication and HO-1/Bach1 expression in hepatocytes. Down-regulation of miR-122 and up-regulation of HO-1 may be new strategies for anti-HCV intervention and cytoprotection.
Collapse
Affiliation(s)
- Ying Shan
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut, USA.
| | | | | | | |
Collapse
|
60
|
Wincewicz A, Sulkowska M, Koda M, Sulkowski S. Cumulative expression of HIF-1-alpha, Bax, Bcl-xL and P53 in human colorectal cancer. Pathology 2007; 39:334-8. [PMID: 17558861 DOI: 10.1080/00313020701329765] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AIMS AND METHODS Hypoxia-inducible factor (HIF-1) which contains oxygen regulated HIF-1alpha subunit maintains cytoprotective defence against hypoxic injury by induction of numerous genes. However, apoptotic regulators such as Bcl-xL, Bax and P53 have not been associated with HIF-1 dependent regulation in immunohistochemical evaluation of human colorectal cancer tumours so far. Thus, we visualised these proteins immunohistochemically and using Spearman's test compared for the first time their expression in regard to different clinicopathological traits in 123 (113 for P53 evaluation) human colorectal cancers. RESULTS HIF-1alpha correlated with Bcl-xL or Bax in all patients and particularly in node negative and node positive cancers, deeper intramural tumours (pT3+pT4) and adenocarcinomas. There was no significance in a small group of tumours with lesser extent through intestinal walls (pT1+pT2). In addition HIF-1alpha associated with Bcl-xL in mucinous cancers. Moreover, HIF-1alpha correlated with Bcl-xL or Bax in moderately (G2) and poorly differentiated (G3) cancers, rectal and colonic tumours and in different sex and age groups. P53 correlated only with Bax exclusively in younger patients. CONCLUSIONS HIF-1alpha may influence expression of Bax or Bcl-xL, at least indirectly, as correlations between HIF-1alpha and Bax or Bcl-xL occur constantly.
Collapse
Affiliation(s)
- Andrzei Wincewicz
- Department of Pathology, Medical University of Bialystok, Bialystok, Poland.
| | | | | | | |
Collapse
|
61
|
Nguyen AD, McDonald JG, Bruick RK, DeBose-Boyd RA. Hypoxia Stimulates Degradation of 3-Hydroxy-3-methylglutaryl-coenzyme A Reductase through Accumulation of Lanosterol and Hypoxia-Inducible Factor-mediated Induction of Insigs. J Biol Chem 2007; 282:27436-27446. [PMID: 17635920 DOI: 10.1074/jbc.m704976200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endoplasmic reticulum-associated degradation of the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase represents one mechanism by which cholesterol synthesis is controlled in mammalian cells. The key reaction in this degradation is binding of reductase to Insig proteins in the endoplasmic reticulum, which is stimulated by the cholesterol precursor lanosterol. Conversion of lanosterol to cholesterol requires removal of three methyl groups, which consumes nine molecules of dioxygen. Here, we report that oxygen deprivation (hypoxia) slows demethylation of lanosterol and its metabolite 24,25-dihydrolanosterol, causing both sterols to accumulate in cells. In addition, hypoxia increases the amount of Insig-1 and Insig-2 in a response mediated by hypoxia-inducible factor (HIF)-1alpha. Accumulation of lanosterol together with increased Insigs accelerates degradation of reductase, which ultimately slows a rate-determining step in cholesterol synthesis. These results define a novel oxygen-sensing mechanism mediated by the combined actions of methylated intermediates in cholesterol synthesis and the hypoxia-activated transcription factor HIF-1alpha.
Collapse
Affiliation(s)
- Andrew D Nguyen
- Departments of Molecular Genetics and University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - Jeffrey G McDonald
- Departments of Molecular Genetics and University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - Richard K Bruick
- Departments of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| | - Russell A DeBose-Boyd
- Departments of Molecular Genetics and University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046.
| |
Collapse
|
62
|
Semenza GL. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 2007; 405:1-9. [PMID: 17555402 DOI: 10.1042/bj20070389] [Citation(s) in RCA: 405] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The survival of metazoan organisms is dependent upon the utilization of O2 as a substrate for COX (cytochrome c oxidase), which constitutes Complex IV of the mitochondrial respiratory chain. Premature transfer of electrons, either at Complex I or at Complex III, results in the increased generation of ROS (reactive oxygen species). Recent studies have identified two critical adaptations that may function to prevent excessive ROS production in hypoxic cells. First, expression of PDK1 [PDH (pyruvate dehydrogenase) kinase 1] is induced. PDK1 phosphorylates and inactivates PDH, the mitochondrial enzyme that converts pyruvate into acetyl-CoA. In combination with the hypoxia-induced expression of LDHA (lactate dehydrogenase A), which converts pyruvate into lactate, PDK1 reduces the delivery of acetyl-CoA to the tricarboxylic acid cycle, thus reducing the levels of NADH and FADH2 delivered to the electron-transport chain. Secondly, the subunit composition of COX is altered in hypoxic cells by increased expression of the COX4-2 subunit, which optimizes COX activity under hypoxic conditions, and increased degradation of the COX4-1 subunit, which optimizes COX activity under aerobic conditions. Hypoxia-inducible factor 1 controls the metabolic adaptation of mammalian cells to hypoxia by activating transcription of the genes encoding PDK1, LDHA, COX4-2 and LON, a mitochondrial protease that is required for the degradation of COX4-1. COX subunit switching occurs in yeast, but by a completely different regulatory mechanism, suggesting that selection for O2-dependent homoeostatic regulation of mitochondrial respiration is ancient and likely to be shared by all eukaryotic organisms.
Collapse
Affiliation(s)
- Gregg L Semenza
- Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
63
|
Wang B, Wood IS, Trayhurn P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch 2007; 455:479-92. [PMID: 17609976 PMCID: PMC2040175 DOI: 10.1007/s00424-007-0301-8] [Citation(s) in RCA: 291] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/19/2007] [Accepted: 05/23/2007] [Indexed: 12/16/2022]
Abstract
The effect of hypoxia, induced by incubation under low (1%) oxygen tension or by exposure to CoCl2, on the expression and secretion of inflammation-related adipokines was examined in human adipocytes. Hypoxia led to a rapid and substantial increase (greater than sevenfold by 4 h of exposure to 1% O2) in the hypoxia-sensitive transcription factor, HIF-1α, in human adipocytes. This was accompanied by a major increase (up to 14-fold) in GLUT1 transporter mRNA level. Hypoxia (1% O2 or CoCl2) led to a reduction (up to threefold over 24 h) in adiponectin and haptoglobin mRNA levels; adiponectin secretion also decreased. No changes were observed in TNFα expression. In contrast, hypoxia resulted in substantial increases in FIAF/angiopoietin-like protein 4, IL-6, leptin, MIF, PAI-1 and vascular endothelial growth factor (VEGF) mRNA levels. The largest increases were with FIAF (maximum 210-fold), leptin (maximum 29-fold) and VEGF (maximum 23-fold); these were reversed on return to normoxia. The secretion of IL-6, leptin, MIF and VEGF from the adipocytes was also stimulated by exposure to 1% O2. These results demonstrate that hypoxia induces extensive changes in human adipocytes in the expression and release of inflammation-related adipokines. Hypoxia may underlie the development of the inflammatory response in adipocytes, leading to obesity-associated diseases.
Collapse
Affiliation(s)
- Bohan Wang
- Obesity Biology Unit (Liverpool Centre for Nutritional Genomics and Liverpool Obesity Research Network), School of Clinical Sciences, University Clinical Departments, University of Liverpool, Liverpool, L69 3GA UK
| | - I. Stuart Wood
- Obesity Biology Unit (Liverpool Centre for Nutritional Genomics and Liverpool Obesity Research Network), School of Clinical Sciences, University Clinical Departments, University of Liverpool, Liverpool, L69 3GA UK
| | - Paul Trayhurn
- Obesity Biology Unit (Liverpool Centre for Nutritional Genomics and Liverpool Obesity Research Network), School of Clinical Sciences, University Clinical Departments, University of Liverpool, Liverpool, L69 3GA UK
| |
Collapse
|
64
|
Wincewicz A, Sulkowska M, Koda M, Sulkowski S. Clinicopathological significance and linkage of the distribution of HIF-1alpha and GLUT-1 in human primary colorectal cancer. Pathol Oncol Res 2007; 13:15-20. [PMID: 17387384 DOI: 10.1007/bf02893436] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 01/10/2007] [Indexed: 11/29/2022]
Abstract
HIF-1alpha induces GLUT-1 expression, and their presence has been evaluated in colorectal cancer. However, the expressions of GLUT-1 and HIF-1alpha have not been investigated together with reference to clinicopathological characteristics in human colorectal cancer. The aim of our study was to compare the expression of HIF-1alpha and GLUT-1 with various clinicopathological features of colorectal cancer. The presence of HIF-1alpha and GLUT-1 was visualized immunohistochemically in 123 primary tumors. Membranous localization of GLUT-1 was found in multifocally necrotizing cancer samples, while pure cytoplasmic perinuclear, mostly supranuclear GLUT-1 accumulation was characteristic of cancer fields with lack of necrosis. HIF-1alpha was located in the cytoplasm and occasionally in the nuclei of cancer cells. Immunoreactivity to GLUT-1 was significantly higher in node-positive cancers compared with nodenegative ones (p=0.04), confirming our earlier results obtained on a larger number of patients. Non-mucinous adenocarcinomas expressed GLUT-1 and HIF-1alpha with significantly greater frequency than mucinous adenocarcinomas (p=0.002, p=0.0002, respectively). GLUT-1 and HIF-1alpha expression did not differ in relation to tumor stage, location, or patients' age or gender. In contrast to that of GLUT-1, expression of HIF-1alpha correlated with grade (p=0.00003) without difference with regard to pN status. HIF-1alpha expression correlated with GLUT-1 expression in the whole patient population, as well as in all clinicopathological groups except for the pT1+pT2 group. Although the coexpression of cytoplasmic HIF-1alpha and GLUT-1 does not directly prove the dependence between HIF-1 as a nuclear transcriptional factor and GLUT-1 as its downstream protein, it is evidence of their simultaneous upregulation. The extranuclear accumulation of HIF-1alpha and GLUT-1 requires further studies to explain its significance in colorectal cancer.
Collapse
Affiliation(s)
- Andrzej Wincewicz
- Department of Clinical Pathomorphology, Medical University of Bialystok, Bialystok 15-269, Poland
| | | | | | | |
Collapse
|
65
|
Bel Aiba RS, Dimova EY, Görlach A, Kietzmann T. The role of hypoxia inducible factor-1 in cell metabolism--a possible target in cancer therapy. Expert Opin Ther Targets 2007; 10:583-99. [PMID: 16848694 DOI: 10.1517/14728222.10.4.583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In many cancer types, intratumoural hypoxia is linked to increased expression and activity of the transcription factor hypoxia-inducible factor (HIF-1alpha), which is associated with poor patient prognosis. This increased the interest in HIF-1alpha as a cancer drug target. Further, HIF-1alpha has also a central role in the adaptive cellular programme responding to hypoxia in normal tissues. Many of the HIF-1alpha-regulated genes encode enzymes of metabolic pathways. Therefore, studying the link and the feedback mechanisms between metabolism and HIF-1alpha is of major importance to find new and specific therapeutic strategies.
Collapse
Affiliation(s)
- Rachida S Bel Aiba
- University of Kaiserslautern, Faculty of Chemistry, Department of Biochemistry, Erwin-Schrödinger Strasse 54, D-67663 Kaiserslautern, Germany
| | | | | | | |
Collapse
|
66
|
Harvey AJ, Navarrete Santos A, Kirstein M, Kind KL, Fischer B, Thompson JG. Differential expression of oxygen-regulated genes in bovine blastocysts. Mol Reprod Dev 2007; 74:290-9. [PMID: 16998843 DOI: 10.1002/mrd.20617] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Low oxygen conditions (2%) during post-compaction culture of bovine blastocysts improve embryo quality, which is associated with a small yet significant increase in the expression of glucose transporter 1 (GLUT-1), suggesting a role of oxygen in embryo development mediated through oxygen-sensitive gene expression. However, bovine embryos to at least the blastocyst stage lack a key regulator of oxygen-sensitive gene expression, hypoxia-inducible factor 1alpha (HIF1alpha). A second, less well-characterized protein (HIF2alpha) is, however, detectable from the 8-cell stage of development. Here we use differential display to determine additional gene targets in bovine embryos in response to low oxygen conditions. While development to the blastocyst stage was unaffected by the oxygen concentration used during post-compaction culture, differential display identified oxygen-regulation of myotrophin and anaphase promoting complex 1 expression, with significantly lower levels observed following culture under 20% oxygen than 2% oxygen. These results further support the hypothesis that the level of gene expression of specific transcripts by bovine embryos alters in response to changes in the oxygen environment post-compaction. Specifically, we have identified two oxygen-sensitive genes that are potentially regulated by HIF2 in the bovine blastocyst.
Collapse
Affiliation(s)
- A J Harvey
- Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, The University of Adelaide, The Queen Elizabeth Hospital, Woodville, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
67
|
Scheuermann TH, Yang J, Zhang L, Gardner KH, Bruick RK. Hypoxia-inducible factors Per/ARNT/Sim domains: structure and function. Methods Enzymol 2007; 435:3-24. [PMID: 17998046 DOI: 10.1016/s0076-6879(07)35001-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hypoxia-inducible factors (HIFs) are key transcriptional regulators of genes involved in cellular adaptation to reduced oxygen availability through effects on anaerobic metabolism, oxygen delivery, angiogenesis, and cellular survival and proliferation. As such, HIFs contribute to the pathogenesis of diseases in which oxygen availability is compromised, notably ischemia and tumorigenesis. Though tremendous progress has been made in elucidating the mechanisms underlying O(2)-dependent regulation of HIF by Fe(II)- and 2-oxoglutarate-dependent dioxygenases, HIF induction can be uncoupled from these modes of regulation in diseases such as cancer. Consequently, renewed interest has developed in understanding the structure/function relationships of individual P(er)/ARNT/S(im) (PAS) domains that are important for maintaining transcriptionally active HIF complexes, regardless of the manner by which HIF is induced. This review highlights strategies for the biophysical and biochemical characterization of the PAS domains found within both HIF subunits and provides a platform for future efforts to exploit these domains in therapeutic settings.
Collapse
Affiliation(s)
- Thomas H Scheuermann
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | |
Collapse
|
68
|
Pan J, Mestas J, Burdick MD, Phillips RJ, Thomas GV, Reckamp K, Belperio JA, Strieter RM. Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol Cancer 2006; 5:56. [PMID: 17083723 PMCID: PMC1636662 DOI: 10.1186/1476-4598-5-56] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 11/03/2006] [Indexed: 12/31/2022] Open
Abstract
Renal cell carcinoma (RCC) is characterized by organ-specific metastases. The chemokine stromal derived factor-1 (SDF-1/CXCL12) and its receptor CXCR4 have been suggested to regulate organ-specific metastasis in various other cancers. On this basis, we hypothesized that the biological axis of CXCL12 via interaction with its receptor, CXCR4, is a major mechanism for RCC metastasis. We demonstrated that CXCR4 was significantly expressed on circulating cytokeratin+ RCC cells from patients with known metastatic RCC. We detected up-regulation of CXCR4 mRNA and protein levels on a human RCC cell line by either knockdown of the von Hippel-Lindau (VHL) tumor suppressor protein, or incubating the cells under hypoxic conditions. The enhanced CXCR4 expression was mediated through the interaction of the Hypoxia Inducible Factor-1α (HIF-1α) with the promoter region of the CXCR4 gene. Furthermore, the expression of CXCR4 on human RCC directly correlated with their metastatic ability in vivo in both heterotopic and orthotopic SCID mouse models of human RCC. Neutralization of CXCL12 in SCID mice abrogated metastasis of RCC to target organs expressing high levels of CXCL12; without altering tumor cell proliferation, apoptosis, or tumor-associated angiogenesis. Therefore, our data suggest that the CXCL12/CXCR4 biological axis plays an important role in regulating the organ-specific metastasis of RCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/secondary
- Cell Hypoxia
- Cell Line, Tumor
- Chemokine CXCL12
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/pharmacology
- Chemokines, CXC/physiology
- Chemotaxis/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Keratins/analysis
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, SCID
- Promoter Regions, Genetic
- RNA Interference
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Transcriptional Activation
- Von Hippel-Lindau Tumor Suppressor Protein/antagonists & inhibitors
- Von Hippel-Lindau Tumor Suppressor Protein/genetics
Collapse
Affiliation(s)
- Judong Pan
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - Javier Mestas
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - Marie D Burdick
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - Roderick J Phillips
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - George V Thomas
- Department of Pathology, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - Karen Reckamp
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - John A Belperio
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| | - Robert M Strieter
- Department of Medicine, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
- Department of Pathology, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
- Department of Pediatrics, David Geffen School of Medicine at UCLA, 900 Veteran Ave., Los Angeles, California, USA
| |
Collapse
|
69
|
Peters DG, Ning W, Chu TJ, Li CJ, Choi AMK. Comparative SAGE analysis of the response to hypoxia in human pulmonary and aortic endothelial cells. Physiol Genomics 2006; 26:99-108. [PMID: 16595741 DOI: 10.1152/physiolgenomics.00152.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We utilized serial analysis of gene expression (SAGE) to analyze the temporal response of human pulmonary artery endothelial cells (HPAECs) to short-term chronic hypoxia at the level of transcription. Primary cultures of HPAECs were exposed to 1% O2hypoxia for 8 and 24 h and compared with identical same-passage cells cultured under standard (5% CO2-95% air) conditions. Hierarchical clustering of significant hypoxia-responsive genes identified temporal changes in the expressions of a number of well-described gene families including those encoding proteins involved in thrombosis, stress response, apoptosis, angiogenesis, and cell proliferation. These experiments build on previously published data describing the transcriptomic response of human aortic endothelial cells (HAECs) obtained from the same donor and cultured under identical conditions, and we have thus taken advantage of the immortality of SAGE data to make direct comparisons between these two data sets. This approach revealed comprehensive information relating to the similarities and differences at the level of mRNA expression between HAECs and HPAECs. For example, we found differences in the cell type-specific response to hypoxia among genes encoding cytoskeletal factors, including paxillin, and proteins involved in metabolic energy production, the response to oxidative stress, and vasoreactivity (e.g., endothelin-1). These efforts contribute to the expanding collection of publicly available SAGE data and provide a foundation on which to base further efforts to understand the characteristics of the vascular response to hypoxia in the pulmonary circulation relative to systemic vasculature.
Collapse
Affiliation(s)
- D G Peters
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.
| | | | | | | | | |
Collapse
|
70
|
Okuyama H, Krishnamachary B, Zhou YF, Nagasawa H, Bosch-Marce M, Semenza GL. Expression of Vascular Endothelial Growth Factor Receptor 1 in Bone Marrow-derived Mesenchymal Cells Is Dependent on Hypoxia-inducible Factor 1. J Biol Chem 2006; 281:15554-63. [PMID: 16574650 DOI: 10.1074/jbc.m602003200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone marrow-derived cells are recruited to sites of ischemia, where they promote tissue vascularization. This response is dependent upon the expression of vascular endothelial growth factor (VEGF) receptor 1 (VEGFR1), which mediates cell migration in response to VEGF or placental growth factor (PLGF). In this study, we found that exposure of cultured mouse bone marrow-derived mesenchymal stromal cells (MSC) to hypoxia or an adenovirus encoding a constitutively active form of hypoxia-inducible factor 1 (HIF-1) induced VEGFR1 mRNA and protein expression and promoted ex vivo migration in response to VEGF or PLGF. MSC in which HIF-1 activity was inhibited by a dominant negative or RNA interference approach expressed markedly reduced levels of VEGFR1 and failed to migrate or activate AKT in response to VEGF or PLGF. Thus, loss-of-function and gain-of-function approaches demonstrated that HIF-1 activity is necessary and sufficient for basal and hypoxia-induced VEGFR1 expression in bone marrow-derived MSC.
Collapse
Affiliation(s)
- Hiroaki Okuyama
- Vascular Biology Program, Institute for Cell Engineeringe, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
71
|
Hirota K, Semenza GL. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 2006; 59:15-26. [PMID: 16716598 DOI: 10.1016/j.critrevonc.2005.12.003] [Citation(s) in RCA: 353] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 12/24/2005] [Accepted: 12/24/2005] [Indexed: 12/22/2022] Open
Abstract
Hypoxia is an imbalance between oxygen supply and demand that occurs in cancer and in ischemic cardiovascular disease. Hypoxia-inducible factor 1 (HIF-1) was originally identified as the transcription factor that mediates hypoxia-induced erythropoietin expression. More recently, the delineation of molecular mechanisms of angiogenesis has revealed a critical role for HIF-1 in the regulation of angiogenic growth factors. In this review, we discuss the role of HIF-1 in developmental, adaptive and pathological angiogenesis. In addition, potential therapeutic interventions involving modulation of HIF-1 activity in ischemic cardiovascular disease and cancer will be discussed.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Anesthesia, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | |
Collapse
|
72
|
Brown LM, Cowen RL, Debray C, Eustace A, Erler JT, Sheppard FCD, Parker CA, Stratford IJ, Williams KJ. Reversing hypoxic cell chemoresistance in vitro using genetic and small molecule approaches targeting hypoxia inducible factor-1. Mol Pharmacol 2006; 69:411-8. [PMID: 16254058 DOI: 10.1124/mol.105.015743] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The resistance of hypoxic cells to conventional chemotherapy is well documented. Using both adenovirus-mediated gene delivery and small molecules targeting hypoxia-inducible factor-1 (HIF-1), we evaluated the impact of HIF-1 inhibition on the sensitivity of hypoxic tumor cells to etoposide. The genetic therapy exploited a truncated HIF-1alpha protein that acts as a dominant-negative HIF-1alpha (HIF-1alpha-no-TAD). Its functionality was validated in six human tumor cell lines using HIF-1 reporter assays. An EGFP-fused protein demonstrated that the dominant-negative HIF-1alpha was nucleus-localized and constitutively expressed irrespective of oxygen tension. The small molecules studied were quinocarmycin monocitrate (KW2152), its analog 7-cyanoquinocarcinol (DX-52-1), and topotecan. DX-52-1 and topotecan have been previously established as HIF-1 inhibitors. HT1080 and HCT116 cells were treated with either AdHIF-1alpha-no-TAD or nontoxic concentrations (0.1 microM;
Collapse
Affiliation(s)
- Louisa M Brown
- Experimental Oncology, School of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Zatovicova M, Sedlakova O, Svastova E, Ohradanova A, Ciampor F, Arribas J, Pastorek J, Pastorekova S. Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is a metalloprotease-dependent process regulated by TACE/ADAM17. Br J Cancer 2006; 93:1267-76. [PMID: 16278664 PMCID: PMC2361518 DOI: 10.1038/sj.bjc.6602861] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Carbonic anhydrase IX (CA IX) is a transmembrane protein whose expression is strongly induced by hypoxia in a broad spectrum of human tumours. It is a highly active enzyme functionally involved in both pH control and cell adhesion. Its presence in tumours usually indicates poor prognosis. Ectodomain of CA IX is detectable in the culture medium and body fluids of cancer patients, but the mechanism of its shedding has not been thoroughly investigated. Here, we analysed several cell lines with natural and ectopic expression of CA IX to show that its ectodomain release is sensitive to metalloprotease inhibitor batimastat (BB-94) and that hypoxia maintains the normal rate of basal shedding, thus leading to concomitant increase in cell-associated and extracellular CA IX levels. Using CHO-M2 cells defective in shedding, we demonstrated that the basal CA IX ectodomain release does not require a functional TNFα-converting enzyme (TACE/ADAM17), whereas the activation of CA IX shedding by both phorbol-12-myristate-13-acetate and pervanadate is TACE-dependent. Our results suggest that the cleavage of CA IX ectodomain is a regulated process that responds to physiological factors and signal transduction stimuli and may therefore contribute to adaptive changes in the protein composition of tumour cells and their microenvironment.
Collapse
Affiliation(s)
- M Zatovicova
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - O Sedlakova
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - E Svastova
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - A Ohradanova
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - F Ciampor
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - J Arribas
- Medical Oncology Research Program, Vall d'Hebron University Hospital Research Institute, Barcelona 08035, Spain
| | - J Pastorek
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - S Pastorekova
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic. E-mail:
| |
Collapse
|
74
|
Pescador N, Cuevas Y, Naranjo S, Alcaide M, Villar D, Landázuri M, del Peso L. Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem J 2005; 390:189-97. [PMID: 15823097 PMCID: PMC1184574 DOI: 10.1042/bj20042121] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Low oxygen levels induce an adaptive response in cells through the activation of HIFs (hypoxia-inducible factors). These transcription factors are mainly regulated by a group of proline hydroxylases that, in the presence of oxygen, target HIF for degradation. The expression of two such enzymes, EGLN1 [EGL nine homologous protein 1, where EGL stands for egg laying defective (Caenorhabditis elegans gene)] and EGLN3, is induced by hypoxia through a negative feedback loop, and we have demonstrated recently that hypoxic induction of EGLN expression is HIF-dependent. In the present study, we have identified an HRE (hypoxia response element) in the region of the EGLN3 gene using a combination of bioinformatics and biological approaches. Initially, we isolated a number of HRE consensus sequences in a region of 40 kb around the human EGLN3 gene and studied their evolutionary conservation. Subsequently, we examined the functionality of the conserved HRE sequences in reporter and chromatin precipitation assays. One of the HREs, located within a conserved region of the first intron of the EGLN3 gene 12 kb downstream of the transcription initiation site, bound HIF in vivo. Furthermore, this sequence was able to drive reporter gene expression under conditions of hypoxia in an HRE-dependent manner. Indeed, we were able to demonstrate that HIF was necessary and sufficient to induce gene expression from this enhancer sequence.
Collapse
Affiliation(s)
- Nuria Pescador
- *Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | - Yolanda Cuevas
- *Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | - Salvador Naranjo
- *Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | - Marisa Alcaide
- *Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain
- †Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Diego de León 62, 28006 Madrid, Spain
| | - Diego Villar
- *Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | - Manuel O. Landázuri
- †Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Diego de León 62, 28006 Madrid, Spain
| | - Luis del Peso
- *Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain
- To whom correspondence should be addressed (email or )
| |
Collapse
|
75
|
Yang J, Zhang L, Erbel PJA, Gardner KH, Ding K, Garcia JA, Bruick RK. Functions of the Per/ARNT/Sim domains of the hypoxia-inducible factor. J Biol Chem 2005; 280:36047-54. [PMID: 16129688 DOI: 10.1074/jbc.m501755200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The heterodimeric transcription factor hypoxia-inducible factor (HIF) plays an important role in the progression of a number of processes in which O2 availability is compromised and, as such, has become an increasingly attractive therapeutic target. Although tremendous progress has been made in recent years in unraveling the mechanisms underlying O2-dependent regulation of HIF through its O2-dependent degradation domain and C-terminal transactivation domain, our understanding of the contributions of other structural elements, particularly the Per/ARNT/Sim (PAS)-A and PAS-B domains, to the activity of HIF is incomplete. Using insights derived from the recently determined solution structures of the HIF PAS-B domains as a starting point, we have explored the function(s) of the HIF-2alpha PAS domains via mutational analysis. In contrast to recent models, our data reveal that both PAS domains of the HIF-alpha subunit are necessary for heterodimer formation but are not required to mediate other HIF functions in which PAS domains have been implicated. Because disruption of individual PAS domains compromise HIF function independent of the mechanism of HIF induction, these data demonstrate the potential utility of targeting these domains for therapeutic applications.
Collapse
Affiliation(s)
- Jinsong Yang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Chachami G, Paraskeva E, Georgatsou E, Bonanou S, Simos G. Bacterially produced human HIF-1α is competent for heterodimerization and specific DNA-binding. Biochem Biophys Res Commun 2005; 331:464-70. [PMID: 15850782 DOI: 10.1016/j.bbrc.2005.03.193] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Indexed: 10/25/2022]
Abstract
Hypoxia-inducible factor 1alpha (HIF-1alpha) is the regulatory subunit of HIF-1, the transcriptional activator and key mediator of the cellular response to hypoxia. Regulation of HIF-1alpha occurs at multiple levels and involves several different post-translational modifications. In order to examine the importance of these modifications for the basic function of HIF-1alpha, we have produced in bacteria recombinant full-length human HIF-1alpha using different expression systems. We show that this unmodified form of HIF-1alpha is able to form a stable heterodimer with the second subunit of HIF-1 (HIF-1beta or ARNT) when both proteins are co-expressed in Escherichia coli. Furthermore, this bacterially reconstituted heterodimer exhibits specific DNA-binding activity. These data indicate that post-translational modification of HIF-1alpha is not essential for its interaction with ARNT and DNA, and provide an in vitro system for the characterization of the molecular properties of HIF-1alpha.
Collapse
Affiliation(s)
- Georgia Chachami
- Laboratory of Biochemistry, School of Medicine, University of Thessaly, Papakyriazi 22, 41222 Larissa, Greece
| | | | | | | | | |
Collapse
|
77
|
Covello KL, Simon MC, Keith B. Targeted replacement of hypoxia-inducible factor-1alpha by a hypoxia-inducible factor-2alpha knock-in allele promotes tumor growth. Cancer Res 2005; 65:2277-86. [PMID: 15781641 DOI: 10.1158/0008-5472.can-04-3246] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia-inducible factors (HIF) are essential transcriptional regulators that mediate adaptation to hypoxic stress in rapidly growing tissues such as tumors. HIF activity is regulated by hypoxic stabilization of the related HIF-1alpha and HIF-2alpha subunits, which are frequently overexpressed in cancer cells. To assess the relative tumor-promoting functions of HIF-1alpha and HIF-2alpha directly, we replaced HIF-1alpha expression with HIF-2alpha by creating a novel "knock-in" allele at the Hif-1alpha locus through homologous recombination in primary murine embryonic stem cells. Compared with controls, s.c. teratomas derived from knock-in embryonic stem cells were larger and more proliferative, had increased microvessel density, and exhibited increased expression of vascular endothelial growth factor, transforming growth factor-alpha, and cyclin D1. These and other data indicate that HIF-2alpha promotes tumor growth more effectively than HIF-1alpha in multiple contexts.
Collapse
Affiliation(s)
- Kelly L Covello
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
78
|
Wu G, Marín-García J, Rogers TB, Lakatta EG, Long X. Phosphorylation and hypoxia-induced heme oxygenase-1 gene expression in cardiomyocytes. J Card Fail 2005; 10:519-26. [PMID: 15599843 DOI: 10.1016/j.cardfail.2004.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Heme oxygenase-1 (HO-1) is a stress protein and the rate-limiting enzyme in heme degradation. We sought to examine the notion that protein kinases and phosphatases through phosphorylation and dephosphorylation modulate the HO-1 expression in cardiomyocytes under hypoxic conditions. METHODS AND RESULTS Exposure of neonatal rat cardiomyocytes to hypoxia markedly induced the HO-1 expression, as assessed by Northern blot, Western blot, and transfection assay. The hypoxia-induced HO-1 expression was blocked by the kinase inhibitors staurosporine and SB202190 in a dose-dependent manner. Hypoxia decreased the activity of phosphatase-1 (PP-1). To examine the effect of PP-1 inhibition on HO-1 expression we used the phosphatase inhibitor okadaic acid (OA) and an antisense vector. OA treatment or overexpression of the antisense PP-1 transcript markedly induced HO-1 expression. Furthermore, transfection assay using HO-1 promoter constructs revealed the involvement of the nuclear factor kB (NF-kB) and Activator protein-1 (AP-1) in the hypoxia-induced activation of the HO-1 gene. The HO-1 promoter activity was modulated by OA under normoxic conditions or staurosporine under hypoxia. CONCLUSIONS Our results suggest that activation of protein kinases and downregulation of PP-1 activity contribute to the hypoxia-induced HO-1 gene expression and that the proximal HO-1 promoter region containing NF-kB and AP-1 binding sites is likely to play a role in the transcriptional activation of the HO-1 gene in cardiomyocytes in response to hypoxic stress.
Collapse
Affiliation(s)
- Guimei Wu
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ 08904, USA
| | | | | | | | | |
Collapse
|
79
|
Phillips RJ, Mestas J, Gharaee-Kermani M, Burdick MD, Sica A, Belperio JA, Keane MP, Strieter RM. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem 2005; 280:22473-81. [PMID: 15802268 DOI: 10.1074/jbc.m500963200] [Citation(s) in RCA: 248] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) expresses a particularly aggressive metastatic phenotype, and patients with this disease have a poor prognosis. CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been shown to mediate the metastasis of many solid tumors including lung, breast, kidney, and prostate. In addition, overexpression of the epidermal growth factor receptor (EGFR) is associated with the majority of NSCLC and has been implicated in the process of malignant transformation by promoting cell proliferation, cell survival, and motility. Here we show for the first time that activation of the EGFR by EGF increases CXCR4 expression and the migratory capacity of NSCLC cells. Furthermore, many solid tumors are associated with low oxygen tension, and when NSCLC cells were cultured with EGF under hypoxic conditions, CXCR4 expression was dramatically enhanced. A molecular analysis of these events indicated that augmented CXCR4 expression was regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signal transduction pathway, activation of hypoxia inducible factor (HIF) 1alpha, and ultimately HIF-1-dependent transcription of the CXCR4 gene. Thus, a combination of low oxygen tension and overexpression of EGFR within the primary tumor of NSCLC may provide the microenvironmental signals necessary to upregulate CXCR4 expression and promote metastasis.
Collapse
MESH Headings
- Blotting, Western
- Carcinoma, Non-Small-Cell Lung/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cell Separation
- Cell Survival
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemotaxis
- Dose-Response Relationship, Drug
- Epidermal Growth Factor/metabolism
- Flow Cytometry
- Humans
- Hypoxia
- Hypoxia-Inducible Factor 1, alpha Subunit
- Lung Neoplasms/metabolism
- Neoplasm Metastasis
- Oxygen/metabolism
- PTEN Phosphohydrolase
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoric Monoester Hydrolases/metabolism
- Promoter Regions, Genetic
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- RNA, Messenger/metabolism
- Receptors, CXCR4/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Tumor Suppressor Proteins/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Roderick J Phillips
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, University of California-Los Angeles, 900 Veteran Avenue, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Kopacek J, Barathova M, Dequiedt F, Sepelakova J, Kettmann R, Pastorek J, Pastorekova S. MAPK pathway contributes to density- and hypoxia-induced expression of the tumor-associated carbonic anhydrase IX. ACTA ACUST UNITED AC 2005; 1729:41-9. [PMID: 15833446 DOI: 10.1016/j.bbaexp.2005.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/21/2005] [Accepted: 03/08/2005] [Indexed: 01/07/2023]
Abstract
Transcription of the CA9 gene coding for a tumor-associated carbonic anhydrase IX (CA IX) isoform is regulated by hypoxia via the hypoxia-inducible factor 1 (HIF-1) and by high cell density via the phosphatidylinositol-3-kinase (PI3K) pathway. We examined the role of the mitogen-activated protein kinase (MAPK) pathway in the control of CA9 gene expression. Inhibition of MAPK signaling by U0126 in HeLa cells led to reduced activity of the PR1-HRE-luc CA9 promoter construct and decreased CA IX protein levels in dense culture as well as in hypoxia. Similar reduction was obtained by expression of a dominant-negative ERK1 mutant and was also observed in U0126-treated HIF-1alpha-deficient Ka13 cells. Simultaneous treatment with the MAPK and PI3K inhibitors U0126 and LY 294002 had stronger effect than individual inhibition of these pathways. Taken together, our results suggest that besides the PI3K pathway, the MAPK cascade is involved in the regulation of CA9 gene expression under both hypoxia and high cell density.
Collapse
Affiliation(s)
- Juraj Kopacek
- Centre of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
81
|
Haddad JJ. Hypoxia and the regulation of mitogen-activated protein kinases: gene transcription and the assessment of potential pharmacologic therapeutic interventions. Int Immunopharmacol 2005; 4:1249-85. [PMID: 15313426 DOI: 10.1016/j.intimp.2004.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Revised: 06/09/2004] [Accepted: 06/15/2004] [Indexed: 12/20/2022]
Abstract
Oxygen is an environmental/developmental signal that regulates cellular energetics, growth, and differentiation processes. Despite its central role in nearly all higher life processes, the molecular mechanisms for sensing oxygen levels and the pathways involved in transducing this information are still being elucidated. Altering gene expression is the most fundamental and effective way for a cell to respond to extracellular signals and/or changes in its microenvironment. During development, the expression of specific sets of genes is regulated spatially (by position/morphogenetic gradients) and temporally, presumably via the sensing of molecular oxygen available within the microenvironment. Regulation of signaling responses is governed by transcription factors that bind to control regions (consensus sequences) of target genes and alter their expression in response to specific signals. Complex signal transduction during hypoxia (deficiency of oxygen in inspired gases or in arterial blood and/or in tissues) involves the coupling of ligand-receptor interactions to many intracellular events. These events basically include phosphorylations by tyrosine kinases and/or serine/threonine kinases, such as those of mitogen-activated protein kinases (MAPKs), a superfamily of kinases responsive to stress nonhomeostatic conditions. Protein phosphorylations imposed during hypoxia change enzyme activities and protein conformations, and the eventual outcome is rather complex, comprising of an alteration in cellular activity and changes in the programming of genes expressed within the responding cells. These molecular changes serve as signals that are crucial for cell survival under contingent conditions imposed during hypoxia. This review correlates current concepts of hypoxic sensing pathways with hypoxia-related phosphorylation mechanisms mediated by MAPKs via the genetic and pharmacologic regulation/manipulation of specific transcription factors and related cofactors.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, University of California, San Francisco, CA, USA.
| |
Collapse
|
82
|
Expression of vascular endothelial growth factor and its receptors in heart tissue following short-term swimming training. ACTA ACUST UNITED AC 2005. [DOI: 10.5432/ijshs.3.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
83
|
Ishikawa H, Sakurai H, Hasegawa M, Mitsuhashi N, Takahashi M, Masuda N, Nakajima M, Kitamoto Y, Saitoh JI, Nakano T. Expression of hypoxic-inducible factor 1α predicts metastasis-free survival after radiation therapy alone in stage IIIB cervical squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2004; 60:513-21. [PMID: 15380586 DOI: 10.1016/j.ijrobp.2004.03.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 02/04/2004] [Accepted: 03/09/2004] [Indexed: 01/24/2023]
Abstract
PURPOSE Hypoxia-inducible factor-1alpha (HIF-1alpha) is an intrinsic marker of tumor hypoxia. It has been considered that the hypoxic status reduces radiosensitivity, but the role of HIF-1alpha in advanced cervical carcinoma is still unclear. The objective of this study was to clarify the impact of HIF-1alpha, human papillomavirus (HPV), and other molecular factors, such as p53, bax, bcl-2, and their correlations on the outcome of patients with Stage IIIB cervical carcinoma in radiation therapy. METHODS AND MATERIALS We analyzed 38 patients with FIGO Stage IIIB squamous cell carcinoma of the cervix treated with radiation therapy alone. All patients received the combination therapy of external beam irradiation and low-dose-rate intracavity brachytherapy. The tumor expressions of HIF-1alpha, p53, bax, and bcl-2 were examined by immunohistochemical staining of the pretreatment paraffin embedded specimens. HPV infection was also detected by polymerase chain reaction. The effects of these parameters on clinical outcomes were analyzed by univariate analysis. RESULTS Of 38 patients, high expression of HIF-1alpha, p53, bax, and bcl-2 were seen in 17 (45%), 22 (58%), 15 (39%), and 15 (39%) patients, respectively, and 28 patients (74%) showed positive infection with HPV. There was a significant positive correlation between high HIF-1alpha expression and disease recurrence (p < 0.05). Furthermore, HIF-1alpha had a significant correlation with the recurrence-free survival rate (p = 0.04). No statistical correlation was noted between high HIF-1alpha expression and the local control rate (p = 0.17), whereas the HIF-1alpha status predicted distant metastasis with strong significance (p = 0.03). Conversely, other factors demonstrated no impact on the clinical outcome. CONCLUSIONS The present results suggest that HIF-1alpha is an important prognostic factor, especially for predicting future metastasis after radiation therapy for patients with Stage IIIB squamous cell carcinoma of the cervix.
Collapse
Affiliation(s)
- Hitoshi Ishikawa
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Blais JD, Filipenko V, Bi M, Harding HP, Ron D, Koumenis C, Wouters BG, Bell JC. Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 2004; 24:7469-82. [PMID: 15314157 PMCID: PMC506979 DOI: 10.1128/mcb.24.17.7469-7482.2004] [Citation(s) in RCA: 344] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypoxic stress results in a rapid and sustained inhibition of protein synthesis that is at least partially mediated by eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation by the endoplasmic reticulum (ER) kinase PERK. Here we show through microarray analysis of polysome-bound RNA in aerobic and hypoxic HeLa cells that a subset of transcripts are preferentially translated during hypoxia, including activating transcription factor 4 (ATF4), an important mediator of the unfolded protein response. Changes in mRNA translation during the unfolded protein response are mediated by PERK phosphorylation of the translation initiation factor eIF2alpha at Ser-51. Similarly, PERK is activated and is responsible for translational regulation under hypoxic conditions, while inducing the translation of ATF4. The overexpression of a C-terminal fragment of GADD34 that constitutively dephosphorylates eIF2alpha was able to attenuate the phosphorylation of eIF2alpha and severely inhibit the induction of ATF4 in response to hypoxic stress. These studies demonstrate the essential role of ATF4 in the response to hypoxic stress, define the pathway for its induction, and reveal that GADD34, a target of ATF4 activation, negatively regulates the eIF2alpha-mediated inhibition of translation. Taken with the concomitant induction of additional ER-resident proteins identified by our microarray analysis, this study suggests an important integrated response between ER signaling and the cellular adaptation to hypoxic stress.
Collapse
|
85
|
Pillet S, Le Guyader N, Hofer T, NguyenKhac F, Koken M, Aubin JT, Fichelson S, Gassmann M, Morinet F. Hypoxia enhances human B19 erythrovirus gene expression in primary erythroid cells. Virology 2004; 327:1-7. [PMID: 15327892 DOI: 10.1016/j.virol.2004.06.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 06/11/2004] [Indexed: 11/29/2022]
Abstract
Human B19 erythrovirus replicates in erythroid progenitors present in bone marrow and fetal tissues where partial oxygen tension is low. Here we show that infected human primary erythroid progenitor cells exposed to hypoxia (1% O2) in vitro increase viral capsid protein synthesis, virus replication, and virus production. Hypoxia-inducible factor-1 (HIF-1), the main transcription factor involved in the cellular response to reduced oxygenation, is shown to bind an HIF binding site (HBS) located in the distal part of the B19 promoter region, but the precise mechanism involved in the oxygen-sensitive upregulation of viral gene expression remains to be elucidated.
Collapse
Affiliation(s)
- Sylvie Pillet
- Hôpital Saint-Louis, AP-HP, Virologie and CNRS UPR 9051, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Warnecke C, Zaborowska Z, Kurreck J, Erdmann VA, Frei U, Wiesener M, Eckardt KU. Differentiating the functional role of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha (EPAS-1) by the use of RNA interference: erythropoietin is a HIF-2alpha target gene in Hep3B and Kelly cells. FASEB J 2004; 18:1462-4. [PMID: 15240563 DOI: 10.1096/fj.04-1640fje] [Citation(s) in RCA: 320] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of the hypoxia-inducible factor alpha-subunits, HIF-1alpha and HIF-2alpha, seems to be subject to similar regulatory mechanisms, and transgene approaches suggested partial functional redundancy. Here, we used RNA interference to determine the contribution of HIF-1alpha vs. HIF-2alpha to the hypoxic gene induction. Surprisingly, most genes tested were responsive only to the HIF-1alpha siRNA, showing no effect by HIF-2alpha knock-down. The same was found for the activation of reporter genes driven by hypoxia-responsive elements (HREs) from the erythropoietin (EPO), vascular endothelial growth factor, or phosphoglycerate kinase gene. Interestingly, EPO was the only gene investigated that showed responsiveness only to HIF-2alpha knock-down, as observed in Hep3B and Kelly cells. In contrast to the EPO-HRE reporter, the complete EPO enhancer displayed dependency on HIF-2alpha regulation, indicating that additional cis-acting elements confer HIF-2alpha specificity within this region. In 786-0 cells lacking HIF-1alpha protein, the identified HIF-1alpha target genes were regulated by HIF-2alpha. Overexpression of the HIFalpha subunits in different cell lines also led to a loss of target gene specificity. In conclusion, we found a remarkably restricted target gene specificity of the HIFalpha subunits, which can be overcome in cells with perturbations in the pVHL/HIF system and under forced expression.
Collapse
Affiliation(s)
- Christina Warnecke
- Department of Nephrology and Medical Intensive Care, Virchow Clinic, Charité University Medicine, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
87
|
Ning W, Chu TJ, Li CJ, Choi AMK, Peters DG. Genome-wide analysis of the endothelial transcriptome under short-term chronic hypoxia. Physiol Genomics 2004; 18:70-8. [PMID: 15100389 DOI: 10.1152/physiolgenomics.00221.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have utilized serial analysis of gene expression (SAGE) to analyze the temporal response of human aortic endothelial cells (HAECs) to short-term chronic hypoxia at the level of transcription. Primary cultures of HAECs were exposed to 1% O2hypoxia for 8 and 24 h and compared with identical same passage cells cultured under standard (5% CO2-95% air) conditions. A total of 121,446 tags representing 37,096 unique tags were sequenced and genes whose expression levels were modulated by hypoxia identified by novel statistical analyses. Hierarchical clustering of genes displaying statistically significant hypoxia-responsive alterations in expression revealed temporal modulation of a number of major functional gene families including those encoding heat shock factors, glycolytic enzymes, extracellular matrix factors, cytoskeletal factors, apoptotic factors, cell cycle regulators and angiogenic factors. Within these families we documented the coordinated modulation of both previously known hypoxia-responsive genes, numerous genes whose expressions have not been previously shown to be altered by hypoxia, tags matching uncharacterized UniGene entries and entirely novel tags with no UniGene match. These preliminary data, which indicate a reduction in cell cycle progression, elevated metabolic stress and increased cytoskeletal remodeling under acute hypoxic stress, provide a foundation for further analyses of the molecular mechanisms underlying the endothelial response to short-term chronic hypoxia.
Collapse
Affiliation(s)
- W Ning
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
88
|
Lee MJ, Kim JY, Suk K, Park JH. Identification of the hypoxia-inducible factor 1 alpha-responsive HGTD-P gene as a mediator in the mitochondrial apoptotic pathway. Mol Cell Biol 2004; 24:3918-27. [PMID: 15082785 PMCID: PMC387743 DOI: 10.1128/mcb.24.9.3918-3927.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1 alpha) controls the cellular responses to hypoxia, activating transcription of a range of genes involved in adaptive processes such as increasing glycolysis and promoting angiogenesis. However, paradoxically, HIF-1 alpha also participates in hypoxic cell death. Several gene products, such as BNip3, RTP801, and Noxa, were identified as HIF-1 alpha-responsive proapoptotic proteins, but the complicated hypoxic cell death pathways could not be completely explained by the few known genes. Moreover, molecules linking the proapoptotic signals of HIF-1 alpha directly to mitochondrial permeability transition are missing. In this work, we report the identification of an HIF-1 alpha-responsive proapoptotic molecule, HGTD-P. Its expression was directly regulated by HIF-1 alpha through a hypoxia-responsive element on the HGTD-P promoter region. When overexpressed, HGTD-P was localized to mitochondria and facilitated apoptotic cell death via typical mitochondrial apoptotic cascades, including permeability transition, cytochrome c release, and caspase 9 activation. In the process of permeability transition induction, the death-inducing domain of HGTD-P physically interacted with the voltage-dependent anion channel. In addition, suppression of HGTD-P expression by small interfering RNA or antisense oligonucleotides protected against hypoxic cell death. Taken together, our data indicate that HGTD-P is a new HIF-1 alpha-responsive proapoptotic molecule that activates mitochondrial apoptotic cascades.
Collapse
Affiliation(s)
- Mi-Jung Lee
- Department of Pathology and Medical Research Center for Reactive Oxygen Species, College of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | |
Collapse
|
89
|
Haddad JJ. Oxygen sensing and oxidant/redox-related pathways. Biochem Biophys Res Commun 2004; 316:969-77. [PMID: 15044079 DOI: 10.1016/j.bbrc.2004.02.162] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 01/01/2023]
Abstract
What is the nature of the oxygen sensor(s) and how do organisms sense variations in oxygen? A progressive rise of oxidative stress due to the altered reduction-oxidation (redox) homeostasis appears to be one of the hallmarks of the processes that regulate gene transcription. Dynamic changes in oxygen homeostasis and its close association with redox equilibrium, therefore, constitute a signaling mechanism for the expression/activation of oxygenes. This variation subsequently regulates the compartmentalization and functioning of HIF-1alpha and NF-kappaB. In addition, oxygen-evoked regulation of HIF-1alpha and NF-kappaB is closely coupled with intracellular redox state, such that modulating redox equilibrium affects their responsiveness at the molecular level (expression/transactivation). Interestingly, are these particular transcription factors potential oxygen sensors? The basic components of the intracellular oxidative/redox machinery and its crucial regulation of oxygen- and redox-sensitive transcription factors may help understand the network of oxygen sensing mechanisms and redox-related pathways.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, University of California, San Francisco, CA, USA.
| |
Collapse
|
90
|
Erler JT, Cawthorne CJ, Williams KJ, Koritzinsky M, Wouters BG, Wilson C, Miller C, Demonacos C, Stratford IJ, Dive C. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol 2004; 24:2875-89. [PMID: 15024076 PMCID: PMC371100 DOI: 10.1128/mcb.24.7.2875-2889.2004] [Citation(s) in RCA: 304] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Solid tumors with disorganized, insufficient blood supply contain hypoxic cells that are resistant to radiotherapy and chemotherapy. Drug resistance, an obstacle to curative treatment of solid tumors, can occur via suppression of apoptosis, a process controlled by pro- and antiapoptotic members of the Bcl-2 protein family. Oxygen deprivation of human colon cancer cells in vitro provoked decreased mRNA and protein levels of proapoptotic Bid and Bad. Hypoxia-inducible factor 1 (HIF-1) was dispensable for the down-regulation of Bad but required for that of Bid, consistent with the binding of HIF-1alpha to a hypoxia-responsive element (positions -8484 to -8475) in the bid promoter. Oxygen deprivation resulted in proteosome-independent decreased expression of Bax in vitro, consistent with a reduction in global translation efficiency. The physiological relevance of Bid and Bax down-regulation was confirmed in tumors in vivo. Oxygen deprivation resulted in decreased drug-induced apoptosis and clonogenic resistance to agents with different mechanisms of action. The contribution of Bid and/or Bax down-regulation to drug responsiveness was demonstrated by the relative resistance of normoxic cells that had no or reduced expression of Bid and/or Bax and by the finding that forced expression of Bid in hypoxic cells resulted in increased sensitivity to the topoisomerase II inhibitor etoposide.
Collapse
Affiliation(s)
- Janine T Erler
- Cellular and Molecular Pharmacology Group, Bioinformatics Group, Paterson Institute for Cancer Research, Manchester M20 4BX, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Wykoff CC, Sotiriou C, Cockman ME, Ratcliffe PJ, Maxwell P, Liu E, Harris AL. Gene array of VHL mutation and hypoxia shows novel hypoxia-induced genes and that cyclin D1 is a VHL target gene. Br J Cancer 2004; 90:1235-43. [PMID: 15026807 PMCID: PMC2409644 DOI: 10.1038/sj.bjc.6601657] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gene expression analysis was performed on a human renal cancer cell line (786-0) with mutated VHL gene and a transfectant with wild-type VHL to analyse genes regulated by VHL and to compare with the gene programme regulated by hypoxia. There was a highly significant concordance of the global gene response to hypoxia and genes suppressed by VHL. Cyclin D1 was the most highly inducible transcript and 14-3-3 epsilon was downregulated. There were some genes regulated by VHL but not hypoxia in the renal cell line, suggesting a VHL role independent of hypoxia. However in nonrenal cell lines they were hypoxia regulated. These included several new pathways regulated by hypoxia, including RNase 6PL, collagen type 1 alpha 1, integrin alpha 5, ferritin light polypeptide, JM4 protein, transgelin and L1 cell adhesion molecule. These were not found in a recent SAGE analysis of the same cell line. Hypoxia induced downregulation of Cyclin D1 in nonrenal cells via an HIF independent pathway. The selective regulation of Cyclin D1 by hypoxia in renal cells may therefore contribute to the tissue selectivity of VHL mutation.
Collapse
Affiliation(s)
- C C Wykoff
- Molecular Oncology Laboratories, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, Cancer Research UK, Oxford OX3 9DS, UK
| | - C Sotiriou
- Division of Clinical Sciences, National Cancer Institute, USA
| | - M E Cockman
- Wellcome Trust Center for Human Genetics, Oxford OX3 7BN, UK
| | - P J Ratcliffe
- Wellcome Trust Center for Human Genetics, Oxford OX3 7BN, UK
| | - P Maxwell
- Wellcome Trust Center for Human Genetics, Oxford OX3 7BN, UK
| | - E Liu
- Division of Clinical Sciences, National Cancer Institute, USA
| | - A L Harris
- Molecular Oncology Laboratories, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, Cancer Research UK, Oxford OX3 9DS, UK
- Molecular Oncology Laboratories, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, Cancer Research UK, Oxford OX3 9DS, UK. E-mail:
| |
Collapse
|
92
|
Sikorski EM, Hock T, Hill-Kapturczak N, Agarwal A. The story so far: Molecular regulation of the heme oxygenase-1 gene in renal injury. Am J Physiol Renal Physiol 2004; 286:F425-41. [PMID: 14761930 DOI: 10.1152/ajprenal.00297.2003] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Heme oxygenases (HOs) catalyze the rate-limiting step in heme degradation, resulting in the formation of iron, carbon monoxide, and biliverdin, the latter of which is subsequently converted to bilirubin by biliverdin reductase. Recent attention has focused on the biological effects of product(s) of this enzymatic reaction, which have important antioxidant, anti-inflammatory, and cytoprotective functions. Two major isoforms of the HO enzyme have been described: an inducible isoform, HO-1, and a constitutively expressed isoform, HO-2. A third isoform, HO-3, closely related to HO-2, has also been described. Several stimuli implicated in the pathogenesis of renal injury, such as heme, nitric oxide, growth factors, angiotensin II, cytokines, and nephrotoxins, induce HO-1. Induction of HO-1 occurs as an adaptive and beneficial response to these stimuli, as demonstrated by studies in renal and non-renal disease states. This review will focus on the molecular regulation of the HO-1 gene in renal injury and will highlight the interspecies differences, predominantly between the rodent and human HO-1 genes.
Collapse
Affiliation(s)
- Eric M Sikorski
- Department of Medicine, Division of Nephrology, Hypertension and Transplantation, University of Florida, Gainesville, 32610, USA
| | | | | | | |
Collapse
|
93
|
Martín-Puig S, Temes E, Olmos G, Jones DR, Aragonés J, Landázuri MO. Role of Iron (II)-2-Oxoglutarate-dependent Dioxygenases in the Generation of Hypoxia-induced Phosphatidic Acid through HIF-1/2 and von Hippel-Lindau-independent Mechanisms. J Biol Chem 2004; 279:9504-11. [PMID: 14681229 DOI: 10.1074/jbc.m310658200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypoxia-inducible factors (HIF-1/HIF-2) govern the expression of critical genes for cellular adaptation to low oxygen tensions. We have previously reported that the intracellular level of phosphatidic acid (PA) rises in response to hypoxia (1% O(2)). In this report, we have explored whether components of the canonical HIF/von Hippel-Lindau (VHL) pathway are involved in the induction of PA. We found that hypoxia induces PA in a cell line constitutively expressing a stable version of HIF-1alpha. PA induction was also found in HIF-1alpha- and 2alpha-negative CHO Ka13 cells, as well as in HIF-beta-negative HepaC4 cells. These data indicate that HIF activity is neither sufficient nor necessary for oxygen-dependent PA accumulation. PA generation was also detected in cells deficient for the tumor suppressor VHL, indicating that the presence of VHL was not required for the induction of PA. Here we show that PA accumulation also occurs at moderate hypoxia (5% O(2)), although to a lesser extent to that seen at 1% O(2), revealing that PA is induced at the same hypoxia range required to activate HIF-1. Prolyl hydroxylases (PHD) and asparaginyl hydroxylase (FIH) belong to the iron (II) and 2-oxoglutarate-dependent dioxygenase family and have been proposed as oxygen sensors involved in the regulation of HIFs. Chemical inhibition of these activities by treatment with iron chelators or 2-oxoglutarate analogs also results in a marked PA accumulation similar to that observed in hypoxia. Together these data show that PA accumulation in response to hypoxia is both HIF-1/2- and VHL-independent and indicate a role of iron (II)-2-oxoglutarate-dependent dioxygenases in the oxygen-sensing mechanisms involved in hypoxia-driven phospholipid regulation.
Collapse
Affiliation(s)
- Silvia Martín-Puig
- Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Diego de León 62, 28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
94
|
Distler JHW, Wenger RH, Gassmann M, Kurowska M, Hirth A, Gay S, Distler O. Physiologic responses to hypoxia and implications for hypoxia-inducible factors in the pathogenesis of rheumatoid arthritis. ACTA ACUST UNITED AC 2004; 50:10-23. [PMID: 14730595 DOI: 10.1002/art.11425] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
95
|
Williams KJ, Cowen RL, Brown LM, Chinje EC, Jaffar M, Stratford IJ. Hypoxia in tumors: molecular targets for anti-cancer therapeutics. ACTA ACUST UNITED AC 2004; 44:93-108. [PMID: 15581485 DOI: 10.1016/j.advenzreg.2003.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kaye J Williams
- School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Manchester M13 9PL, UK
| | | | | | | | | | | |
Collapse
|
96
|
Abstract
Cellular oxygen (O2) concentrations are tightly regulated to maintain ATP levels required for metabolic reactions in the human body. Responses to changes in O2 concentrations are primarily regulated by the transcription factor hypoxia inducible factor (HIF). HIF activates transcription of genes that increase systemic O2 delivery or provide cellular metabolic adaptation under conditions of hypoxia. HIF activity is essential for embryogenesis and various processes in postnatal life, and therefore, HIF levels need to be precisely controlled. Abnormal HIF expression is related to numerous diseases of the vascular system, including heart disease, cancer, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Kelly L Covello
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
97
|
Erbel PJA, Card PB, Karakuzu O, Bruick RK, Gardner KH. Structural basis for PAS domain heterodimerization in the basic helix--loop--helix-PAS transcription factor hypoxia-inducible factor. Proc Natl Acad Sci U S A 2003; 100:15504-9. [PMID: 14668441 PMCID: PMC307597 DOI: 10.1073/pnas.2533374100] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Indexed: 12/17/2022] Open
Abstract
Biological responses to oxygen availability play important roles in development, physiological homeostasis, and many disease processes. In mammalian cells, this adaptation is mediated in part by a conserved pathway centered on the hypoxia-inducible factor (HIF). HIF is a heterodimeric protein complex composed of two members of the basic helix-loop-helix Per-ARNT-Sim (PAS) (ARNT, aryl hydrocarbon receptor nuclear translocator) domain family of transcriptional activators, HIFalpha and ARNT. Although this complex involves protein-protein interactions mediated by basic helix-loop-helix and PAS domains in both proteins, the role played by the PAS domains is poorly understood. To address this issue, we have studied the structure and interactions of the C-terminal PAS domain of human HIF-2alpha by NMR spectroscopy. We demonstrate that HIF-2alpha PAS-B binds the analogous ARNT domain in vitro, showing that residues involved in this interaction are located on the solvent-exposed side of the HIF-2alpha central beta-sheet. Mutating residues at this surface not only disrupts the interaction between isolated PAS domains in vitro but also interferes with the ability of full-length HIF to respond to hypoxia in living cells. Extending our findings to other PAS domains, we find that this beta-sheet interface is widely used for both intra- and intermolecular interactions, suggesting a basis of specificity and regulation of many types of PAS-containing signaling proteins.
Collapse
Affiliation(s)
- Paul J A Erbel
- Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
98
|
del Peso L, Castellanos MC, Temes E, Martin-Puig S, Cuevas Y, Olmos G, Landazuri MO. The von Hippel Lindau/Hypoxia-inducible Factor (HIF) Pathway Regulates the Transcription of the HIF-Proline Hydroxylase Genes in Response to Low Oxygen. J Biol Chem 2003; 278:48690-5. [PMID: 14506252 DOI: 10.1074/jbc.m308862200] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most of the genes induced by hypoxia are regulated by a family of transcription factors termed hypoxia-inducible factors (HIF). Under normoxic conditions, HIFalpha proteins are very unstable due to hydroxylation by a recently described family of proline hydroxylases termed EGL-Nine homologs (EGLN). Upon hydroxylation, HIFalpha is recognized by the product of the tumor suppressor vhl and targeted for proteosomal degradation. Since EGLNs require oxygen to catalyze HIF hydroxylation, this reaction does not efficiently occur under low oxygen tension. Thus, under hypoxia, HIFalpha escapes from degradation and transcribes target genes. The mRNA levels of two of the three EGLNs described to date are induced by hypoxia, suggesting that they might be novel HIF target genes; however, no proof for this hypothesis has been reported. Here we show that the induction of EGLN1 and -3 by hypoxia is found in a wide range of cell types. The basal levels of EGLN3 are always well below those of EGLN1 and EGLN2, and its induction by hypoxia is larger than that found for EGLN1. The inhibitor of transcription, actinomycin D, prevents the increase of EGLN3 mRNA induced by hypoxia, indicating that it is due to enhanced gene expression. Interestingly, EGLN1 and EGLN3 mRNAs were also triggered by EGLN inhibitors, suggesting the involvement of HIFalpha in the control of its transcription. In agreement with this possibility, pVHL-deficient cell lines, which present high HIF activity under normoxia, also showed dramatically increased normoxic levels of EGLN3. Moreover, the overexpression of an oxygen-insensitive mutant form of HIFalpha resulted in increased normoxic levels of EGLN3 mRNA. Finally, hypoxic induction of EGLNs was not observed in cells lacking functional HIFalpha.
Collapse
Affiliation(s)
- Luis del Peso
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo s/n, 28029 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
99
|
Scortegagna M, Ding K, Oktay Y, Gaur A, Thurmond F, Yan LJ, Marck BT, Matsumoto AM, Shelton JM, Richardson JA, Bennett MJ, Garcia JA. Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nat Genet 2003; 35:331-40. [PMID: 14608355 DOI: 10.1038/ng1266] [Citation(s) in RCA: 394] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Accepted: 10/22/2003] [Indexed: 12/14/2022]
Abstract
Hypoxia-inducible factor (HIF) transcription factors respond to multiple environmental stressors, including hypoxia and hypoglycemia. We report that mice lacking the HIF family member HIF-2alpha (encoded by Epas1) have a syndrome of multiple-organ pathology, biochemical abnormalities and altered gene expression patterns. Histological and ultrastructural analyses showed retinopathy, hepatic steatosis, cardiac hypertrophy, skeletal myopathy, hypocellular bone marrow, azoospermia and mitochondrial abnormalities in these mice. Serum and urine metabolite studies showed hypoglycemia, lactic acidosis, altered Krebs cycle function and dysregulated fatty acid oxidation. Biochemical assays showed enhanced generation of reactive oxygen species (ROS), whereas molecular analyses indicated reduced expression of genes encoding the primary antioxidant enzymes (AOEs). Transfection analyses showed that HIF-2alpha could efficiently transactivate the promoters of the primary AOEs. Prenatal or postnatal treatment of Epas1-/- mice with a superoxide dismutase (SOD) mimetic reversed several aspects of the null phenotype. We propose a rheostat role for HIF-2alpha that allows for the maintenance of ROS as well as mitochondrial homeostasis.
Collapse
Affiliation(s)
- Marzia Scortegagna
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-8573, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Heme and iron metabolism are of considerable interest and importance in normal brain function as well as in neurodegeneration and neuropathologically following traumatic injury and hemorrhagic stroke. After a cerebral hemorrhage, large numbers of hemoglobin-containing red blood cells are released into the brain's parenchyma and/or subarachnoid space. After hemolysis and the subsequent release of heme from hemoglobin, several pathways are employed to transport and metabolize this heme and its iron moiety to protect the brain from potential oxidative stress. Required for these processes are various extracellular and intracellular transporters and storage proteins, the heme oxygenase isozymes and metabolic proteins with differing localizations in the various brain-cell types. In the past several years, additional new genes and proteins have been discovered that are involved in the transport and metabolism of heme and iron in brain and other tissues. These discoveries may provide new insights into neurodegenerative diseases like Alzheimer's, Parkinson's, and Friedrich's ataxia that are associated with accumulation of iron in specific brain regions or in specific organelles. The present review will examine the uptake and metabolism of heme and iron in the brain and will relate these processes to blood removal and to the potential mechanisms underlying brain injury following cerebral hemorrhage.
Collapse
Affiliation(s)
- Kenneth R Wagner
- Departments of Neurology, Pediatrics and Neuroscience Programl, Unviersity of Cincinnati College of Medicine, Cincinnati, Ohio 45220, USA.
| | | | | | | | | |
Collapse
|