51
|
Echarri A, Lai MJ, Robinson MR, Pendergast AM. Abl interactor 1 (Abi-1) wave-binding and SNARE domains regulate its nucleocytoplasmic shuttling, lamellipodium localization, and wave-1 levels. Mol Cell Biol 2004; 24:4979-93. [PMID: 15143189 PMCID: PMC416433 DOI: 10.1128/mcb.24.11.4979-4993.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Abl interactor 1 (Abi-1) protein has been implicated in the regulation of actin dynamics and localizes to the tips of lamellipodia and filopodia. Here, we show that Abi-1 binds the actin nucleator protein Wave-1 through an amino-terminal Wave-binding (WAB) domain and that disruption of the Abi-1-Wave-1 interaction prevents Abi-1 from reaching the tip of the lamellipodium. Abi-1 binds to the Wave homology domain of Wave-1, a region that is required for translocation of Wave-1 to the lamellipodium. Mouse embryo fibroblasts that lack one allele of Abi-1 and are homozygous null for the related Abi-2 protein exhibit decreased Wave-1 protein levels. This phenotype is rescued by Abi-1 proteins that retain Wave-1 binding but not by Abi-1 mutants that cannot bind to Wave-1. Moreover, we uncovered an overlapping SNARE domain in the amino terminus of Abi-1 that interacts with Syntaxin-1, a SNARE family member. Further, we demonstrated that Abi-1 shuttles in and out of the nucleus in a leptomycin B (LMB)-dependent manner and that complete nuclear translocation of Abi-1 in the absence of LMB requires the combined inactivation of the SNARE, WAB, and SH3 domains of Abi-1. Thus, Abi-1 undergoes nucleocytoplasmic shuttling and functions at the leading edge to regulate Wave-1 localization and protein levels.
Collapse
Affiliation(s)
- Asier Echarri
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Box 3813, Duke University, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
52
|
Gautreau A, Ho HYH, Li J, Steen H, Gygi SP, Kirschner MW. Purification and architecture of the ubiquitous Wave complex. Proc Natl Acad Sci U S A 2004; 101:4379-83. [PMID: 15070726 PMCID: PMC384755 DOI: 10.1073/pnas.0400628101] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Wave proteins are major activators of the Arp2/3 complex. The ubiquitous Wave-2 is required for actin polymerization at the leading edge of migrating cells. Here we purify Wave-2 from HeLa cells. Five proteins, Sra, Nap, Wave-2, Abi, and Hspc, are copurified, indicating that they form a tight complex. These proteins are only present in the complexed form, with the exception of Hspc, which displays a free pool. We reconstitute the Wave-2 complex by cotranslating in vitro the five subunits and use this system together with specific immunoprecipitations to study the molecular architecture of the complex. The complex is organized around a core of Nap and Abi. Sra is a peripheral subunit recruited on the Nap side, whereas the Wave and Hspc subunits are recruited on the Abi side of the core.
Collapse
Affiliation(s)
- Alexis Gautreau
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
53
|
Lu D, Yan H, Othman T, Turner CP, Woolf T, Rivkees SA. Cytoskeletal protein 4.1G binds to the third intracellular loop of the A1 adenosine receptor and inhibits receptor action. Biochem J 2004; 377:51-9. [PMID: 12974671 PMCID: PMC1223836 DOI: 10.1042/bj20030952] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 09/08/2003] [Accepted: 09/16/2003] [Indexed: 01/24/2023]
Abstract
To identify binding partners of the A1AR (A1 adenosine receptor), yeast two-hybrid screening of a rat embryonic cDNA library was performed. This procedure led to the identification of erythrocyte membrane cytoskeletal protein (represented as 4.1G) as an A1AR-binding partner. Truncation studies revealed that the C-terminal domain of 4.1G was essential for binding to A1ARs and that the C-terminal domain of 4.1G and the third intracellular loop of A1ARs interacted. A1AR-4.1G interaction was also confirmed in studies using brain tissue. Studies in HEK-293 (human embryonic kidney 293) cells and Chinese-hamster ovary cells showed that 4.1G interfered with A1AR signal transduction, as 4.1G reduced A1AR-mediated inhibition of cAMP accumulation and intracellular calcium release. 4.1G also altered cell-surface A1AR expression. These observations identify 4.1G as a novel A1AR-binding partner that can regulate adenosine action.
Collapse
Affiliation(s)
- Dongcheng Lu
- Department of Pediatrics, Yale Child Health Research Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
54
|
Canizalez-Roman A, Navarro-García F. Fodrin CaM-binding domain cleavage by Pet from enteroaggregative Escherichia coli leads to actin cytoskeletal disruption. Mol Microbiol 2003; 48:947-58. [PMID: 12753188 DOI: 10.1046/j.1365-2958.2003.03492.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that the plasmid-encoded toxin (Pet) of enteroaggregative Escherichia coli produces cytotoxic and enterotoxic effects. Pet-intoxicated epithelial cells reveal contraction of the cytoskeleton and loss of actin stress fibres. Pet effects require its internalization into epithelial cells. We have also shown that Pet degrades erythroid spectrin. Pet delivery within the intestine suggests that Pet may degrade epithelial fodrin (non-erythroid spectrin). Here we demonstrate that Pet has affinity for alpha-fodrin (formally named alphaII spectrin) in vitro and in vivo and cleaves epithelial fodrin, causing its redistribution within the cells. When Pet has produced its cytoskeletal effects, fodrin is found in intracellular aggregates as membrane blebs. Pet cleaves recombinant GST-fodrin, generating two breakdown products of 37 and 72 kDa. Sequencing of the 37 kDa fragment demonstrated that the cleavage site occurred within fodrin's 11th repetitive unit between M1198 and V1199, in the calmodulin binding domain. Site-directed mutagenesis of these amino acids prevented fodrin degradation by Pet. Pet also cleaves epithelial fodrin from cultured Pet-treated cells. A mutant in the Pet serine protease motif was unable to cause fodrin redistribution or to cleave GST-fodrin. This is the first report showing cleavage of alpha-fodrin by a bacterial protease. Cleavage occurs in the middle of the calmodulin binding domain, which leads to cytoskeleton disruption.
Collapse
|
55
|
Tang Y, Katuri V, Iqbal S, Narayan T, Wang Z, Lu RS, Mishra L, Mishra B. ELF a beta-spectrin is a neuronal precursor cell marker in developing mammalian brain; structure and organization of the elf/beta-G spectrin gene. Oncogene 2002; 21:5255-67. [PMID: 12149647 DOI: 10.1038/sj.onc.1205548] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2001] [Revised: 03/20/2002] [Accepted: 03/27/2002] [Indexed: 11/09/2022]
Abstract
Spectrins play a pivotal role in axonal transport, neurite extension, the organization of synaptic vesicles, as well as for protein sorting in the Golgi apparatus and cell membrane. Among spectrins there is great variability in sequence composition, tissue distribution, and function, with two known genes encoding the alpha-chain, and at least five encoding the beta-chain. It remains unclear as to whether novel beta-spectrins such as elf1-4 are distinct genes or beta-G-spectrin isoforms. The role for ELF in the developing nervous system has not been identified to date. In this study we demonstrate the genomic structure of elf-3, as well as the expression of ELF in the developing mouse brain using a peptide specific antibody against its distinctive amino-terminal end. Full genomic structural analyses reveal that elf-3 is composed of 31 exons spanning approximately 67 kb, and confirm that elf and mouse brain beta-G-spectrin share multiple exons, with a complex form of exon/intron usage. In embryonic stages, E9-12, anti-ELF localized to the primary brain vesicular cells that also labeled strongly with anti-nestin but not anti-vimentin. At E12-14, anti-ELF localized to axonal sprouts in the developing neuroblasts of cortex and purkinje cell layer of the cerebellum, as well as in cell bodies in the diencephalon and metencephalon. Double labeling identified significant co-localization of anti-ELF, nestin and dystrophin in sub ventricular zone cells and in stellate-like cells of the developing forebrain. These studies define clearly the expression of ELF, a new isoform of beta-G-spectrin in the developing brain. Based on its expression pattern, ELF may have a role in neural stem cell development and is a marker of axonal sprouting in mid stages of embryonic development.
Collapse
Affiliation(s)
- Yi Tang
- Laboratory of Development Molecular Biology, DVAMC, Washington, District of Columbia, DC 20422, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Nicolas G, Fournier CM, Galand C, Malbert-Colas L, Bournier O, Kroviarski Y, Bourgeois M, Camonis JH, Dhermy D, Grandchamp B, Lecomte MC. Tyrosine phosphorylation regulates alpha II spectrin cleavage by calpain. Mol Cell Biol 2002; 22:3527-36. [PMID: 11971983 PMCID: PMC133798 DOI: 10.1128/mcb.22.10.3527-3536.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spectrins, components of the membrane skeleton, are implicated in various cellular functions. Understanding the diversity of these functions requires better characterization of the interacting domains of spectrins, such as the SH3 domain. Yeast two-hybrid screening of a kidney cDNA library revealed that the SH3 domain of alpha II-spectrin binds specifically isoform A of low-molecular-weight phosphotyrosine phosphatase (LMW-PTP). The alpha II-spectrin SH3 domain does not interact with LMW-PTP B or C nor does LMW-PTP A interact with the alpha I-spectrin SH3 domain. The interaction of spectrin with LMW-PTP A led us to look for a tyrosine-phosphorylated residue in alpha II-spectrin. Western blotting showed that alpha II-spectrin is tyrosine phosphorylated in vivo. Using mutagenesis on recombinant peptides, we identified the residue Y1176 located in the calpain cleavage site of alpha II-spectrin, near the SH3 domain, as an in vitro substrate for Src kinase and LMW-PTP A. This Y1176 residue is also an in vivo target for kinases and phosphatases in COS cells. Phosphorylation of this residue decreases spectrin sensitivity to calpain in vitro. Similarly, the presence of phosphatase inhibitors in cell culture is associated with the absence of spectrin cleavage products. This suggests that the Y1176 phosphorylation state could modulate spectrin cleavage by calpain and may play an important role during membrane skeleton remodeling.
Collapse
Affiliation(s)
- Gaël Nicolas
- INSERM U409, Faculté de Médecine Xavier Bichat-Association Claude Bernard, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Shibuya N, Taki T, Mugishima H, Chin M, Tsuchida M, Sako M, Kawa K, Ishii E, Miura I, Yanagisawa M, Hayashi Y. t(10;11)-acute leukemias with MLL-AF10 and MLL-ABI1 chimeric transcripts: specific expression patterns of ABI1 gene in leukemia and solid tumor cell lines. Genes Chromosomes Cancer 2001; 32:1-10. [PMID: 11477655 DOI: 10.1002/gcc.1160] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recurrent translocation t(10;11) is associated with acute myeloid leukemia (AML). The AF10 gene on chromosome 10 at band p12 and MLL at 11q23 fuse in the t(10;11)(p12;q23). Recently, we have identified ABI1 as a new partner gene for MLL in an AML patient with a t(10;11)(p11.2;q23). The ABI1 is a human homologue of the mouse Abl-interactor 1 (Abi1), encoding an Abl-binding protein. The ABI1 protein exhibits sequence similarity to homeotic genes, and contains several polyproline stretches and a src homology 3 (SH3) domain. To clarify the clinical features of t(10;11)-leukemias, we investigated 6 samples from acute leukemia patients with t(10;11) and MLL rearrangement and detected MLL-AF10 chimeric transcripts in 5 samples and MLL-ABI1 in one. The patient with MLL-ABI1 chimeric transcript is the second case described, thus confirming that the fusion of the MLL and ABI1 genes is a recurring abnormality. Both of the patients with MLL-ABI1 chimeric transcript are surviving, suggesting that these patients have a better prognosis than the patients with MLL-AF10. To investigate the roles of AF10 and ABI1 further, we examined the expression of these genes in various cell lines and fresh tumor samples using the reverse transcriptase-polymerase chain reaction method. Although AF10 was expressed in almost all cell lines similarly, the expression patterns of ABI1 were different between leukemia and solid tumor cell lines, suggesting the distinctive role of each isoform of ABI1 in these cell lines. We also determined the complete mouse Abi1 sequence and found that the sequence matched with human ABI1 better than the originally reported Abi1 sequence. Further functional analysis of the MLL-AF10 and MLL-ABI1 fusion proteins will provide new insights into the leukemogenesis of t(10;11)-AML.
Collapse
Affiliation(s)
- N Shibuya
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Dai Z, Kerzic P, Schroeder WG, McNiece IK. Deletion of the Src homology 3 domain and C-terminal proline-rich sequences in Bcr-Abl prevents Abl interactor 2 degradation and spontaneous cell migration and impairs leukemogenesis. J Biol Chem 2001; 276:28954-60. [PMID: 11387320 DOI: 10.1074/jbc.m101170200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The hematopoietic cells from patients with Bcr-Abl-positive chronic myelogenous leukemia exhibit multiple abnormalities of cytoskeletal function. The molecular events leading to these abnormalities are not fully understood. Previously we showed that Bcr-Abl elicits ubiquitin-dependent degradation of Abl interactor proteins. Because recent studies have suggested a role of Abl interactor proteins in the pathway that regulates cytoskeletal function, we investigated whether mutations in Bcr-Abl that interfere with the signaling to Abl interactor proteins affect its leukemogenic activity. We report here that the Src homology 3 domain and C-terminal proline-rich sequences of Bcr-Abl are required for its binding to Abl interactor 2 as well as for the induction of Abl interactor 2 degradation. Although the deletion of these regions did not affect the ability of the mutant Bcr-Abl to transform hematopoietic cells to growth factor independence, it abrogated its ability to stimulate spontaneous cell migration on fibronectin-coated surfaces. Furthermore, the mutant Bcr-Abl, defective in binding to Abl interactor 2 and inducing its degradation, failed to induce chronic myelogenous leukemia-like disease in mouse. These results are consistent with a role of Abl interactor proteins in the regulation of cytoskeletal function as well as in the pathogenesis of Bcr-Abl-induced leukemogenesis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Bone Marrow Transplantation/pathology
- Cell Line
- Chemotaxis
- Fibronectins/physiology
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Mutagenesis
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Proline
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Retroviridae/genetics
- Sequence Deletion
- Transfection
- Tumor Cells, Cultured
- Ubiquitins/metabolism
- src Homology Domains
Collapse
Affiliation(s)
- Z Dai
- Experimental Hematology Laboratory, Bone Marrow Transplant Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
59
|
Bennett V, Baines AJ. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 2001; 81:1353-92. [PMID: 11427698 DOI: 10.1152/physrev.2001.81.3.1353] [Citation(s) in RCA: 720] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spectrin-based membrane skeleton of the humble mammalian erythrocyte has provided biologists with a set of interacting proteins with diverse roles in organization and survival of cells in metazoan organisms. This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1. The lack of essential functions for these proteins in generic cells grown in culture and the absence of their genes in the yeast genome have, until recently, limited advances in understanding their roles outside of erythrocytes. However, completion of the genomes of simple metazoans and application of homologous recombination in mice now are providing the first glimpses of the full scope of physiological roles for spectrin, ankyrin, and their associated proteins. These functions now include targeting of ion channels and cell adhesion molecules to specialized compartments within the plasma membrane and endoplasmic reticulum of striated muscle and the nervous system, mechanical stabilization at the tissue level based on transcellular protein assemblies, participation in epithelial morphogenesis, and orientation of mitotic spindles in asymmetric cell divisions. These studies, in addition to stretching the erythrocyte paradigm beyond recognition, also are revealing novel cellular pathways essential for metazoan life. Examples are ankyrin-dependent targeting of proteins to excitable membrane domains in the plasma membrane and the Ca(2+) homeostasis compartment of the endoplasmic reticulum. Exciting questions for the future relate to the molecular basis for these pathways and their roles in a clinical context, either as the basis for disease or more positively as therapeutic targets.
Collapse
Affiliation(s)
- V Bennett
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
60
|
Yamamoto A, Suzuki T, Sakaki Y. Isolation of hNap1BP which interacts with human Nap1 (NCKAP1) whose expression is down-regulated in Alzheimer's disease. Gene 2001; 271:159-69. [PMID: 11418237 DOI: 10.1016/s0378-1119(01)00521-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously reported the isolation of a novel apoptosis-related gene, human Nap1 (HGMW-approved symbol NCKAP1), the expression of which was strongly down-regulated in sporadic Alzheimer's disease (AD). Human Nap1 proved to be an orthologue of rat Nap1 which binds to the adaptor molecule Nck in signal transduction. In order to further elucidate the function of human Nap1, we performed yeast two-hybrid screening. As a result of screening, we discovered a protein designated hNap1BP (human Nap1 binding protein) which is a member of the tyrosine kinase-binding protein family. In addition, hNap1BP bound to the SH3 domain of c-Abl and Nck. hNap1BP is expressed ubiquitously in various tissues like human Nap1, and intriguingly these genes are co-expressed in hippocampus and cerebral cortex in mouse brain where AD pathological features are strongly evident. Further functional analysis of hNap1BP may clarify its contribution to AD pathology.
Collapse
Affiliation(s)
- A Yamamoto
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | |
Collapse
|
61
|
Xu J, Ziemnicka D, Scalia J, Kotula L. Monoclonal antibodies to alphaI spectrin Src homology 3 domain associate with macropinocytic vesicles in nonerythroid cells. Brain Res 2001; 898:171-7. [PMID: 11292462 PMCID: PMC4477523 DOI: 10.1016/s0006-8993(01)02156-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spectrins represent a family of membrane-associated proteins responsible for membrane flexibility and cell shape in erythrocytes, and probably in most nonerythroid cells. Spectrin functions as a tetramer consisting of two heterodimers each containing two subunits termed alpha and beta. In humans, alphaI and alphaII spectrins but not beta spectrins are characterized by the presence of an Src homology 3 (SH3) domain. As a tool to investigate the function of spectrin SH3 domains we derived several monoclonal antibodies (mAb) to the recombinant human alphaI or alphaII spectrin SH3 domain. Immunostaining using these monoclonal antibodies indicated expression of alphaI spectrin in cell bodies and alphaII spectrin in neurites of granule neurons in mouse primary cerebellar cultures. Monoclonal antibodies reactive to alphaI spectrin SH3 domain indicated expression of a protein(s) containing an alphaI-like SH3 domain in cytoplasmic vesicular-like structures in GFAP-positive cells in these cultures. In NIH 3T3 fibroblasts, these antibodies label macropinocytic vesicles. Together, these data and Western blotting results suggest expression of at least three spectrin-SH3 domain antibody-reactive proteins.
Collapse
Affiliation(s)
- Jiliu Xu
- Laboratory of Molecular Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Rd., Staten Island, NY 10314, USA
| | - Dorota Ziemnicka
- Laboratory of Molecular Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Rd., Staten Island, NY 10314, USA
| | - Jason Scalia
- Center for Developmental Neuroscience, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Leszek Kotula
- Laboratory of Molecular Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Rd., Staten Island, NY 10314, USA
- Corresponding author. Tel.: +1-718-494-5160; fax: +1-718-698-3803. (L. Kotula)
| |
Collapse
|
62
|
Macoska JA, Xu J, Ziemnicka D, Schwab TS, Rubin MA, Kotula L. Loss of expression of human spectrin src homology domain binding protein 1 is associated with 10p loss in human prostatic adenocarcinoma. Neoplasia 2001; 3:99-104. [PMID: 11420744 PMCID: PMC1505418 DOI: 10.1038/sj.neo.7900145] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2000] [Accepted: 11/06/2000] [Indexed: 11/08/2022] Open
Abstract
The gene encoding human spectrin Src homology domain binding protein 1, or Hssh3bp1, which is a marker of macropinocytic vesicles and a potential regulator of macropinocytosis, co-localizes to a YAC containing chromosome 10p sequences at loci D10S89 and D10S111 that are frequently deleted in prostate tumors. Expression of Hssh3bp1 was evaluated at the protein level in 17 paired normal and malignant prostate tumor samples using the monoclonal antibody 2G8 to Hssh3bp1. These experiments demonstrated that 4/6 tumors (67%) with 10p deletion failed to express Hssh3bp1 protein compared to 5/11 (46%) tumors with intact 10p. Thus, loss of Hssh3bp1 expression is concordant with allelic loss of adjacent 10p sequences in human prostate tumors. In addition, two prostate tumor cell lines contain an exon skipping mutation in the Hssh3bp1 gene that leads to the abnormal splicing of the mRNA and loss of a portion of Abl tyrosine kinase SH3 domain binding site in the protein. These data are consistent with a role for Hssh3bp1 as a candidate tumor suppressor gene inactivated during prostate tumorigenesis.
Collapse
Affiliation(s)
- Jill A Macoska
- Department of Surgery, The University of Michigan School of Medicine, Ann Arbor, MI 48109-0946
| | - Jiliu Xu
- Department of Pathology, The University of Michigan School of Medicine, Ann Arbor, MI 48109-0946
| | - Dorota Ziemnicka
- Department of Pathology, The University of Michigan School of Medicine, Ann Arbor, MI 48109-0946
| | - Tracy S Schwab
- Department of Surgery, The University of Michigan School of Medicine, Ann Arbor, MI 48109-0946
| | - Mark A Rubin
- Department of Surgery, The University of Michigan School of Medicine, Ann Arbor, MI 48109-0946
- Department of Pathological Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314
| | - Leszek Kotula
- Department of Pathology, The University of Michigan School of Medicine, Ann Arbor, MI 48109-0946
| |
Collapse
|
63
|
Xu J, Ziemnicka D, Merz GS, Kotula L. Human spectrin Src homology 3 domain binding protein 1 regulates macropinocytosis in NIH 3T3 cells. J Cell Sci 2000; 113 Pt 21:3805-14. [PMID: 11034908 PMCID: PMC4511602 DOI: 10.1242/jcs.113.21.3805] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macropinocytosis is an endocytic process that occurs through non-clathrin coated vesicles larger than 0.2 microm in diameter. Although macropinocytic vesicles are readily visualized in cultured cells by the introduction of fluorescent, water-soluble dyes into the culture medium, protein markers associated with this type of vesicles have not yet been well defined. Here, we report that human spectrin SH3 domain binding protein 1, or Hssh3bp1, associates with macropinosomes in NIH 3T3 fibroblasts. Hssh3bp1 macropinosomes are heterogeneous in morphology and size, do not endocytose transferrin and are resistant to brefeldin A treatment. Cytochalasin D, and wortmannin block endocytosis of fluorescent dyes into the Hssh3bp1 macropinosomes and dramatically affect their morphology. Overexpression of Hssh3bp1-green fluorescent protein abolished fusion of vesicles resulting in a decreased endocytosis of fluorescence dyes, thus suggesting a potential regulatory role of Hssh3bp1 in macropinocytosis. In the macropinosomes of NIH 3T3 cells, Hssh3bp1 associates with a 200-kDa protein that crossreacts with a monoclonal antibody to the erythroid alpha-spectrin SH3 domain. Thus macropinosomes in cells may contain a spectrin-like protein.
Collapse
Affiliation(s)
- Jiliu Xu
- Laboratory of Molecular Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Dorota Ziemnicka
- Laboratory of Molecular Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - George S. Merz
- Laboratory of Digital Microscopy, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Leszek Kotula
- Laboratory of Molecular Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Author for correspondence ()
| |
Collapse
|
64
|
Fan PD, Goff SP. Abl interactor 1 binds to sos and inhibits epidermal growth factor- and v-Abl-induced activation of extracellular signal-regulated kinases. Mol Cell Biol 2000; 20:7591-601. [PMID: 11003655 PMCID: PMC86315 DOI: 10.1128/mcb.20.20.7591-7601.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recent studies have suggested that members of the Abl interactor (Abi) protein family negatively regulate cell growth and transformation. To date, however, no specific role in these cellular processes has been identified for the Abi family. Here we describe the inhibition by overexpressed Abi-1 of a mitogenic pathway activated by both growth factors and v-Abl. We have identified the guanine nucleotide exchange factors Sos1 and Sos2 as novel binding partners of Abi-1. A domain that is required for interaction with Sos in vivo has been mapped to the amino terminus of Abi-1. Overexpression of Abi-1 inhibits epidermal growth factor (EGF)-induced activation of extracellular signal-regulated kinases (Erks) but does not affect EGF-induced activation of c-Jun N-terminal kinase or Akt. In addition, overexpression of Abi-1 blocks Erk activation induced by v-Abl. In both cases, the maximal inhibitory effect requires an intact amino-terminal Sos-binding domain in Abi-1. Finally, we demonstrate that tyrosine phosphorylation of endogenous Abi-1 in fibroblasts is induced by both v-Abl and serum stimulation, further suggesting a role for Abi-1 in signal transduction initiated by v-Abl and growth factors. Taken together, these findings suggest that overexpressed Abi proteins negatively regulate cell growth and transformation by specifically targeting the Erk pathway.
Collapse
Affiliation(s)
- P D Fan
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University College of Physicians & Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
65
|
Courtney KD, Grove M, Vandongen H, Vandongen A, LaMantia AS, Pendergast AM. Localization and phosphorylation of Abl-interactor proteins, Abi-1 and Abi-2, in the developing nervous system. Mol Cell Neurosci 2000; 16:244-57. [PMID: 10995551 DOI: 10.1006/mcne.2000.0865] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abl-interactor (Abi) proteins are targets of Abl-family nonreceptor tyrosine kinases and are required for Rac-dependent cytoskeletal reorganization in response to growth factor stimulation. We asked if the expression, phosphorylation, and cellular localization of Abi-1 and Abi-2 supports a role for these proteins in Abl signaling in the developing and adult mouse nervous system. In mid- to late-gestation embryos, abi-2 message is elevated in the central and peripheral nervous systems (CNS and PNS). Abi-1 mRNA is present, but not enhanced, in the CNS, and is not observed in PNS structures. Abi proteins from brain lysates undergo changes in apparent molecular weight and phosphorylation with increasing age. In the postnatal brain, abi-1 and abi-2 are expressed most prominently in cortical layers populated by projection neurons. In cultured neurons, Abi-1 and Abi-2 are concentrated in puncta throughout the cell body and processes. Both Abi and Abl proteins are present in synaptosomes and growth cone particles. Therefore, the Abi adaptors exhibit proper expression patterns and subcellular localization to participate in Abl kinase signaling in the nervous system.
Collapse
Affiliation(s)
- K D Courtney
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
The paradox of how the Golgi and other organelles can sort a continuous flux of protein and lipid but maintain temporal and morphological stability remains unresolved. Recent discoveries highlight a role for the cytoskeleton in guiding the structure and dynamics of organelles. Perhaps one of the more striking, albeit less expected, of these discoveries is the recognition that a spectrin skeleton associates with many organelles and contributes to the maintenance of Golgi structure and the efficiency of protein trafficking in the early secretory pathway. Spectrin interacts directly with phosphoinositides and with membrane proteins. The small GTPase ARF, a key player in Golgi dynamics, regulates the assembly of the Golgi spectrin skeleton through its ability to control phosphoinositide levels in Golgi membranes, whereas adapter molecules such as ankyrin link spectrin to other membrane proteins. Direct interactions of spectrin with actin and centractin (ARP1) provide a link to dynein, myosin and presumably other motors involved with intracellular transport. Building on the recognized ability of spectrin to organize macromolecular complexes of membrane and cytosolic proteins into a multifaceted scaffold linked to filamentous structural elements (termed linked mosaics), recent evidence supports a similar role for spectrin in organelle function and the secretory pathway. Two working models accommodate much of the available data: the Golgi mesh hypothesis and the spectrin ankyrin adapter protein tethering system (SAATS) hypothesis.
Collapse
Affiliation(s)
- M A De Matteis
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy.
| | | |
Collapse
|
67
|
Brannetti B, Via A, Cestra G, Cesareni G, Helmer-Citterich M. SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family. J Mol Biol 2000; 298:313-28. [PMID: 10764600 DOI: 10.1006/jmbi.2000.3670] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed a procedure to predict the peptide binding specificity of an SH3 domain from its sequence. The procedure utilizes information extracted from position-specific contacts derived from six SH3/peptide or SH3/protein complexes of known structure. The framework of SH3/peptide contacts defined on the structure of the complexes is used to build a residue-residue interaction database derived from ligands obtained by panning peptide libraries displayed on filamentous phage. The SH3-specific interaction database is a multidimensional array containing frequencies of position-specific contacts. As input, SH3-SPOT requires the sequence of an SH3 domain and of a query decapeptide ligand. The array, that we call the SH3-specific matrix, is then used to evaluate the probability that the peptide would bind the given SH3 domain. This procedure is fast enough to be applied to the entire protein sequence database. Panning experiments were performed to search putative specific ligands of different SH3 domains in a database of decapeptides, or in a database of protein sequences. The procedure ranked some of the natural partners of interaction of a number of SH3 domains among the best ligands of the approximately 5. 6x10(9) different decapeptides in the SWISSPROT database. We expect the predictive power of the method to increase with the enrichment of the SH3-specific matrix by interaction data derived from new complex structures or from the characterization of new ligands. The procedure was developed using the SH3 domain family as test case but its application can easily be extended to other families of protein domains (such as, SH2, MHC, EH, PDZ, etc.).
Collapse
Affiliation(s)
- B Brannetti
- Department of Biology, Centro di Bioinformatica Molecolare, University of Rome, Tor Vergata, Rome, 00133, Italy
| | | | | | | | | |
Collapse
|
68
|
García-Cuéllar MP, Schreiner SA, Birke M, Hamacher M, Fey GH, Slany RK. ENL, the MLL fusion partner in t(11;19), binds to the c-Abl interactor protein 1 (ABI1) that is fused to MLL in t(10;11)+. Oncogene 2000; 19:1744-51. [PMID: 10777208 DOI: 10.1038/sj.onc.1203506] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Translocations of the chromosomal locus 11q23 that disrupt the MLL gene (alternatively ALL-1 or HRX) are frequently found in children's leukemias. These events fuse the MLL amino terminus in frame with a variety of unrelated proteins. Up to date, 16 different fusion partners have been characterized and more are likely to exist. No general unifying property could yet be detected amongst these proteins. We show here that the frequent MLL fusion partner ENL at 19p13.1 interacts with the human homologue of the mouse Abl-Interactor 1 (ABI1) protein. ABI1 in turn, is fused to MLL in the t(10;11)(p11.2;q23) translocation. ABI1 was identified as an ENL binding protein by a yeast two-hybrid screen. The interaction of ENL and ABI1 could be verified in vitro by far-Western blot assays and GST-pulldown studies as well as in vivo by co-immunoprecipitation experiments. A structure-function analysis identified an internal region of ENL and a composite motif of ABI1 including an SH3 domain as mutual binding partners. These data introduce novel aspects that might contribute to the understanding of the process of leukemogenesis by MLL fusion proteins.
Collapse
|
69
|
Abstract
This article presents new insights into potential roles that three erythrocyte cytoskeletal proteins, protein 4.1, ankyrin, and spectrin, may play in nonerythroid nucleated cells. Each of these proteins is encoded by several closely related genes characterized by complex alternative splicing of their pre-mRNA, thus resulting in the cellular expression of a broad repertoire of isoforms that can adopt tissue- and cell-specific distribution. This could account for the presence of skeletal networks in intracellular organelles such as lysosomes, the Golgi apparatus, or the nucleus. In addition to providing structural support to cell membranes, these cytoskeletal proteins regulate the functions of various transmembrane proteins they interact with, in particular ion channels, as well as the activity of membrane-bound enzymes. Thus, they appear to be key players in major unsuspected cell functions such as protein sorting, dynamics of nuclear architecture during mitosis, or regulation of signal transduction pathways.
Collapse
Affiliation(s)
- P Gascard
- Lawrence Berkeley National Laboratory, Department of Subcellular Structure, California 94720, USA
| | | |
Collapse
|
70
|
McMahon LW, Walsh CE, Lambert MW. Human alpha spectrin II and the Fanconi anemia proteins FANCA and FANCC interact to form a nuclear complex. J Biol Chem 1999; 274:32904-8. [PMID: 10551855 DOI: 10.1074/jbc.274.46.32904] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, congenital abnormalities, cancer susceptibility, and a marked cellular hypersensitivity to DNA interstrand cross-linking agents, which correlates with a defect in ability to repair this type of damage. We have previously identified an approximately 230-kDa protein present in a nuclear protein complex in normal human lymphoblastoid cells that is involved in repair of DNA interstrand cross-links and shows reduced levels in FA-A cell nuclei. The FANCA gene appears to play a role in the stability or expression of this protein. We now show that p230 is a well known structural protein, human alpha spectrin II (alphaSpIISigma*), and that levels of alphaSpIISigma* are not only significantly reduced in FA-A cells but also in FA-B, FA-C and FA-D cells (i.e. in all FA cell lines tested), suggesting a role for these FA proteins in the stability or expression of alphaSpIISigma*. These studies also show that alphaSpIISigma* forms a complex in the nucleus with the FANCA and FANCC proteins. alphaSpIISigma* may thus act as a scaffold to align or enhance interactions between FA proteins and proteins involved in DNA repair. These results suggest that FA represents a disorder in which there is a deficiency in alphaSpIISigma*.
Collapse
Affiliation(s)
- L W McMahon
- Department of Pathology, University of Medicine and Dentistry-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
71
|
Juang JL, Hoffmann FM. Drosophila abelson interacting protein (dAbi) is a positive regulator of abelson tyrosine kinase activity. Oncogene 1999; 18:5138-47. [PMID: 10498863 DOI: 10.1038/sj.onc.1202911] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human and mouse Abelson interacting proteins (Abi) are SH3-domain containing proteins that bind to the proline-rich motifs of the Abelson protein tyrosine kinase. We report a new member of this gene family, a Drosophila Abi (dAbi) that is a substrate for Abl kinase and that co-immunoprecipitates with Abl if the Abi SH3 domain is intact. We have identified a new function for both dAbi and human Abi-2 (hAbi-2). Both proteins activate the kinase activity of Abl as assayed by phosphorylation of the Drosophila Enabled (Ena) protein. Removal of the dAbi SH3 domain eliminates dAbi's activation of Abl kinase activity. dAbi is an unstable protein in cells and is present at low steady state levels but its protein level is increased coincident with phosphorylation by Abl kinase. Expression of the antisense strand of dAbi reduces dAbi protein levels and abolishes activation of Abl kinase activity. Modulation of Abi protein levels may be an important mechanism for regulating the level of Abl kinase activity in the cell.
Collapse
Affiliation(s)
- J L Juang
- National Health Research Institute, 128 Yen-Chiu-Yuan Road, Sec. 2, Taipei, Taiwan
| | | |
Collapse
|
72
|
Nagasaki K, Manabe T, Hanzawa H, Maass N, Tsukada T, Yamaguchi K. Identification of a novel gene, LDOC1, down-regulated in cancer cell lines. Cancer Lett 1999; 140:227-34. [PMID: 10403563 DOI: 10.1016/s0304-3835(99)00087-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
By screening for differentially expressed genes in cancer cells, using the RNA differential display (DD) technique, we identified a novel cDNA, LDOC1, that is down-regulated in some cancer cell lines. A Northern blot analysis revealed no expression in pancreatic and gastric cancer cell lines but ubiquitous expression in normal human tissues. This new gene was mapped on chromosome Xq27 and the predicted protein sequence showed no similarity to known sequences in the database except for a leucine zipper-like motif at the N-terminal region and a proline-rich region that shares marked similarity to an SH3-binding domain. In an enhanced green fluorescent protein (EGFP) assay, the EGFP-LDOC1 fusion protein was localized in the nucleus. Although the function of LDOC1 is still unknown, our results suggest that this novel gene codes for a nuclear protein, and down-regulation of LDOC1 may have an important role in the development and/or progression of some cancers.
Collapse
Affiliation(s)
- K Nagasaki
- Growth Factor Division, National Cancer Center Research Institute, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
c-Abl, the product of the cellular homologue of the transforming gene of Abelson murine leukaemia virus, has been a protein in search of a purpose for over two decades. Because c-Abl is implicated in the pathogenesis of several human leukaemias, understanding the functions of Abl is an important goal. Recently, biochemical and genetic approaches have converged to shed new light on the mechanism of regulation of c-Abl kinase activity and the multiple roles of c-Abl in cellular physiology. This review summarizes our current understanding of the many facets of c-Abl biology, emphasizing recent studies on Drosophila and mammalian Abl.
Collapse
Affiliation(s)
- R A Van Etten
- Center for Blood Research, Dept of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|