51
|
Kim DH, Park KW, Chae IG, Kundu J, Kim EH, Kundu JK, Chun KS. Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Mol Carcinog 2015; 55:1096-110. [PMID: 26152521 DOI: 10.1002/mc.22353] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 05/04/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Carnosic acid (CA), the main antioxidant compound of Rosmarinus officinalis L., has been reported to possess anticancer activity. However, the molecular mechanisms underlying the anticancer effects of CA remain poorly understood. Our study revealed that CA treatment significantly reduced the viability of human colon cancer HCT116, SW480, and HT-29 cells. Treatment with CA induced apoptosis, which was associated with the induction of p53 and Bax, inhibition of Mdm2, Bcl-2, and Bcl-xl expression, activation of caspase-9, and -3, and the cleavage of PARP in HCT116 cells. CA inhibited the constitutive phosphorylation, the DNA binding and the reporter gene activity of STAT3 in HCT116 cells by blocking the phosphorylation of upstream JAK2 and Src kinases. Moreover, CA attenuated the expression of STAT3 target gene products, such as survivin, cyclin D1, D2, and D3. In STAT3-overexpressed HCT116 cells, CA inhibited cell viability and the expression of cyclin D1 and survivin. Furthermore, CA treatment induced the generation of ROS in these colon cancer cells. Pretreatment of cells with ROS scavenger N-acetyl cysteine abrogated the inhibitory effect of CA on the JAK2-STAT3/Src-STAT3 signaling and rescued cells from CA-induced apoptosis by blocking the induction of p53 and the cleavage of caspase-3 and PARP in HCT116 cells. However, L-buthionine-sulfoximine, a pharmacological inhibitor of GSH synthesis, increased CA-induced ROS production, thereby potentiating apoptotic effect of CA. In conclusion, our study provides the first report that CA induced apoptosis in HCT116 cells via generation of ROS, induction of p53, activation of caspases, and inhibition of STAT3 signaling pathway. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Do-Hee Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ki-Woong Park
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - In Gyeong Chae
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Juthika Kundu
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Eun-Hee Kim
- CHA Cancer Institute, CHA University, Seoul, South Korea
| | | | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, South Korea
| |
Collapse
|
52
|
Garcia-Belinchón M, Sánchez-Osuna M, Martínez-Escardó L, Granados-Colomina C, Pascual-Guiral S, Iglesias-Guimarais V, Casanelles E, Ribas J, Yuste VJ. An Early and Robust Activation of Caspases Heads Cells for a Regulated Form of Necrotic-like Cell Death. J Biol Chem 2015; 290:20841-20855. [PMID: 26124276 DOI: 10.1074/jbc.m115.644179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as "apoptosis-necrosis continuum." To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death.
Collapse
Affiliation(s)
- Mercè Garcia-Belinchón
- Cell Death, Senescence and Survival group, Departament de Bioquímica i Biologia Molecular-Unitat de Medicina and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - María Sánchez-Osuna
- Cell Death, Senescence and Survival group, Departament de Bioquímica i Biologia Molecular-Unitat de Medicina and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Laura Martínez-Escardó
- Cell Death, Senescence and Survival group, Departament de Bioquímica i Biologia Molecular-Unitat de Medicina and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Carla Granados-Colomina
- Cell Death, Senescence and Survival group, Departament de Bioquímica i Biologia Molecular-Unitat de Medicina and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Sònia Pascual-Guiral
- Cell Death, Senescence and Survival group, Departament de Bioquímica i Biologia Molecular-Unitat de Medicina and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Victoria Iglesias-Guimarais
- Cell Death, Senescence and Survival group, Departament de Bioquímica i Biologia Molecular-Unitat de Medicina and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Elisenda Casanelles
- Cell Death, Senescence and Survival group, Departament de Bioquímica i Biologia Molecular-Unitat de Medicina and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Judit Ribas
- Cell death regulation by non-coding RNA group, Pharmacology Unit, Departament de Medicina Experimental, Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Avinguda Rovira Roure 80, 25198 Lleida, Spain
| | - Victor J Yuste
- Cell Death, Senescence and Survival group, Departament de Bioquímica i Biologia Molecular-Unitat de Medicina and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
53
|
Lu FT, Ma DC, Yan W, Guo J, Bai LH. Antitumour activity of 3-nitropropionic acid from Phomopsis sp. and optimization of fermentation conditions. Lett Appl Microbiol 2015; 61:165-70. [PMID: 25963711 DOI: 10.1111/lam.12437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/19/2015] [Accepted: 05/04/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED In this study, 3-nitropropionic acid (3-NPA) was separated and purified from endophytic fungi belonging to Phomopsis sp. and its cytotoxicity was determined by MTT assay. Treatment with 3-NPA for 24 h resulted in a dose-dependent apoptosis in MCF-7 cells. Through quantitative detection of the genes that are closely related to the Bcl-2 signalling pathway, there was an increased expression of p53 and Bax and a decreased expression of Bcl-2, which indicated apoptosis in these cells. Meanwhile, the overexpression of PARA (poly ADP-ribose polymerase) and apoptosis inducing factor (AIF) also suggested that 3-NPA induced cellular apoptosis through a caspase-3-independent pathway in caspase-3-deficient MCF-7 cells. The fermentation condition was also improved to produce more 3-NPA: glucose as a carbon source and yeast extract as a nitrogen source, fermentation for 8 days at 32°C and a solution environment of pH 5·0. Under these conditions, the yield of 3-NPA was increased to 529 mg l(-1) compared with 410 mg l(-1) under traditional fermentation conditions. SIGNIFICANCE AND IMPACT OF THE STUDY 3-Nitropropionic acid is a mitochondrial inhibitor and has some useful bioactivities such as antibacterial activity. In this paper we found that 3-NPA also has obvious cytotoxicity, so we studied its antitumour activity and tried to determine the antitumour molecular mechanism, opening a new perspective for potential antitumour prodrug development. As 3-NPA is often obtained from natural products with a low yield, in order to overcome the disadvantage of an endophytic fungi source of 3-NPA, we optimized the fermentation conditions for 3-NPA in Phomopsis sp. to obtain the maximum production of 3-NPA.
Collapse
Affiliation(s)
- F T Lu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - D C Ma
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - W Yan
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - J Guo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - L H Bai
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
54
|
Sexual Differences in Cell Loss during the Post-Hatch Development of Song Control Nuclei in the Bengalese Finch. PLoS One 2015; 10:e0125802. [PMID: 25938674 PMCID: PMC4418719 DOI: 10.1371/journal.pone.0125802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/26/2015] [Indexed: 11/21/2022] Open
Abstract
Birdsongs and the regions of their brain that control song exhibit obvious sexual differences. However, the mechanisms underlying these sexual dimorphisms remain unknown. To address this issue, we first examined apoptotic cells labeled with caspase-3 or TUNEL in Bengalese finch song control nuclei - the robust nucleus of the archopallium (RA), the lateral magnocellular nucleus of the anterior nidopallium (LMAN), the high vocal center (HVC) and Area X from post-hatch day (P) 15 to 120. Next, we investigated the expression dynamics of pro-apoptotic (Bid, Bad and Bax) and anti-apoptotic (Bcl-2 and Bcl-xL) genes in the aforementioned nuclei. Our results revealed that the female RA at P45 exhibited marked cell apoptosis, confirmed by low densities of Bcl-xL and Bcl-2. Both the male and female LMAN exhibited apoptotic peaks at P35 and P45, respectively, and the observed cell loss was more extensive in males. A corresponding sharp decrease in the density of Bcl-2 after P35 was observed in both sexes, and a greater density of Bid was noted at P45 in males. In addition, we observed that RA volume and the total number of BDNF-expressing cells decreased significantly after unilateral lesion of the LMAN or HVC (two areas that innervate the RA) and that greater numbers of RA-projecting cells were immunoreactive for BDNF in the LMAN than in the HVC. We reasoned that a decrease in the amount of BDNF transported via HVC afferent fibers might result in an increase in cell apoptosis in the female RA. Our data indicate that cell apoptosis resulting from different pro- and anti-apoptotic agents is involved in generating the differences between male and female song control nuclei.
Collapse
|
55
|
|
56
|
Leclere L, Fransolet M, Cote F, Cambier P, Arnould T, Van Cutsem P, Michiels C. Heat-modified citrus pectin induces apoptosis-like cell death and autophagy in HepG2 and A549 cancer cells. PLoS One 2015; 10:e0115831. [PMID: 25794149 PMCID: PMC4368604 DOI: 10.1371/journal.pone.0115831] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/02/2014] [Indexed: 12/12/2022] Open
Abstract
Cancer is still one of the leading causes of death worldwide, and finding new treatments remains a major challenge. Previous studies showed that modified forms of pectin, a complex polysaccharide present in the primary plant cell wall, possess anticancer properties. Nevertheless, the mechanism of action of modified pectin and the pathways involved are unclear. Here, we show that citrus pectin modified by heat treatment induced cell death in HepG2 and A549 cells. The induced cell death differs from classical apoptosis because no DNA cleavage was observed. In addition, Z-VAD-fmk, a pan-caspase inhibitor, did not influence the observed cell death in HepG2 cells but appeared to be partly protective in A549 cells, indicating that heat-modified citrus pectin might induce caspase-independent cell death. An increase in the abundance of the phosphatidylethanolamine-conjugated Light Chain 3 (LC3) protein and a decrease in p62 protein abundance were observed in both cell types when incubated in the presence of heat-modified citrus pectin. These results indicate the activation of autophagy. To our knowledge, this is the first time that autophagy has been revealed in cells incubated in the presence of a modified form of pectin. This autophagy activation appears to be protective, at least for A549 cells, because its inhibition with 3-methyladenine increased the observed modified pectin-induced cytotoxicity. This study confirms the potential of modified pectin to improve chemotherapeutic cancer treatments.
Collapse
Affiliation(s)
- Lionel Leclere
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Maude Fransolet
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Francois Cote
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Pierre Cambier
- Laboratory of Plant Cellular Biology-URBV, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Pierre Van Cutsem
- Laboratory of Plant Cellular Biology-URBV, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Carine Michiels
- Laboratory of Biochemistry and Cellular Biology-URBC, NARILIS, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| |
Collapse
|
57
|
Rahman M, Reyner K, Deleyrolle L, Millette S, Azari H, Day BW, Stringer BW, Boyd AW, Johns TG, Blot V, Duggal R, Reynolds BA. Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines. Anat Cell Biol 2015; 48:25-35. [PMID: 25806119 PMCID: PMC4371178 DOI: 10.5115/acb.2015.48.1.25] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
Abstract
Certain limitations of the neurosphere assay (NSA) have resulted in a search for alternative culture techniques for brain tumor-initiating cells (TICs). Recently, reports have described growing glioblastoma (GBM) TICs as a monolayer using laminin. We performed a side-by-side analysis of the NSA and laminin (adherent) culture conditions to compare the growth and expansion of GBM TICs. GBM cells were grown using the NSA and adherent culture conditions. Comparisons were made using growth in culture, apoptosis assays, protein expression, limiting dilution clonal frequency assay, genetic affymetrix analysis, and tumorigenicity in vivo. In vitro expansion curves for the NSA and adherent culture conditions were virtually identical (P=0.24) and the clonogenic frequencies (5.2% for NSA vs. 5.0% for laminin, P=0.9) were similar as well. Likewise, markers of differentiation (glial fibrillary acidic protein and beta tubulin III) and proliferation (Ki67 and MCM2) revealed no statistical difference between the sphere and attachment methods. Several different methods were used to determine the numbers of dead or dying cells (trypan blue, DiIC, caspase-3, and annexin V) with none of the assays noting a meaningful variance between the two methods. In addition, genetic expression analysis with microarrays revealed no significant differences between the two groups. Finally, glioma cells derived from both methods of expansion formed large invasive tumors exhibiting GBM features when implanted in immune-compromised animals. A detailed functional, protein and genetic characterization of human GBM cells cultured in serum-free defined conditions demonstrated no statistically meaningful differences when grown using sphere (NSA) or adherent conditions. Hence, both methods are functionally equivalent and remain suitable options for expanding primary high-grade gliomas in tissue culture.
Collapse
Affiliation(s)
- Maryam Rahman
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Karina Reyner
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Loic Deleyrolle
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | | | - Hassan Azari
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA. ; Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bryan W Day
- Brain Cancer Research Unit, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Brett W Stringer
- Brain Cancer Research Unit, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Andrew W Boyd
- Brain Cancer Research Unit, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Terrance G Johns
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Vincent Blot
- CovX Research, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | | | - Brent A Reynolds
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
58
|
Rice KM, Manne NDPK, Gadde MK, Paturi S, Arvapalli R, Blough E. Differential regulation of apoptosis in slow and fast twitch muscles of aged female F344BN rats. AGE (DORDRECHT, NETHERLANDS) 2015; 37:30. [PMID: 25813803 PMCID: PMC4375133 DOI: 10.1007/s11357-015-9767-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/09/2015] [Indexed: 05/13/2023]
Abstract
Age-related muscle atrophy is characterized by decreases in muscle mass and is thought be mediated, at least in part, by increases in myocyte apoptosis. Recent data has demonstrated that the degree of muscle loss with aging may differ between males and females while other work has suggested that apoptosis as indicated by DNA fragmentation may be regulated differently in fast- and slow-twitch muscles. Herein, we investigate how aging affects the regulation of muscle apoptosis in the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of young (6-month), aged (26-month), and very aged (30-month) female Fischer 344/NNiaHSD × Brown Norway/BiNia (F344BN) rats. Tissue sections were stained with hydroethidium for ROS and protein extract was subjected to immunoblotting for assessing apoptotic markers. Our data suggest that decreases in muscle mass were associated with increased DNA fragmentation (TUNEL positive) and increases in reactive oxygen species (ROS) as determined by hydroethidium staining in both the EDL and soleus. Similar to our previous work using aged male animals, we observed that the time course and magnitude of changes in Bax, Bcl-2, caspase-3, caspase-9, and cleavage of α-fodrin protein were regulated differently between muscles. These data suggest that aging in the female F344BN rat is associated with decreases in muscle mass, elevations in ROS level, increased muscle cell DNA fragmentation, and alterations in cell membrane integrity and that apoptotic mechanisms may differ between fiber types.
Collapse
Affiliation(s)
- Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Room 241D, Robert C. Byrd Biotechnology Science Center Building, 1700 3rd Ave., Huntington, WV, 25755-1090, USA,
| | | | | | | | | | | |
Collapse
|
59
|
Hirata R, Hojo T, Sano M, Hayashi N, Okuda K. Potential role of hCG in apoptosis of human luteinized granulosa cells. J Reprod Dev 2014; 61:67-73. [PMID: 25451535 PMCID: PMC4354233 DOI: 10.1262/jrd.2014-115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The corpus luteum (CL) forms after ovulation and acts as a temporary endocrine gland that produces progesterone (P4), a hormone that is essential for implantation and maintenance of pregnancy in mammals. In pregnant women, human chorionic gonadotropin (hCG) secreted by the conceptus prevents luteolysis. hCG also increases the survival of cultured human luteinized granulosa cells (hLGCs). To clarify the maintenance mechanism of the human CL, we investigated the effects of hCG and P4 receptor antagonists, onapristone (OP) and RU486, on the viability of hLGCs. With the patients’ consent, hLGCs were isolated from follicular aspirates for in vitro fertilization. The cells were cultured with hCG (0.1, 1, 10, 100 IU/ml), OP (10, 25, 50, 100 μM), RU486 (100 μM), P4 (1, 10, 25, 50 μM) or some combination of the four for 24 h. Cell viability was significantly increased by hCG (100 IU/ml) and significantly decreased by OP (100 μM) compared with the control. Cells
treated with hCG and OP together were significantly less viable than the control and OP-treated cells. The combined treatment also significantly increased CASP3 activity and cleaved CASP3 protein expression. Furthermore, P4 addition reversed the reduction in cell viability caused by the combination of hCG and OP treatment. The overall findings suggest that hCG cooperates with P4 to increase survival of hLGCs and to induce apoptosis when P4 action supported by hCG is attenuated in the human CL.
Collapse
Affiliation(s)
- Rei Hirata
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University 700-8530; Okayama Couple's Clinic 701-1152, Japan
| | | | | | | | | |
Collapse
|
60
|
Kim BM, Kim DH, Park JH, Na HK, Surh YJ. Ginsenoside Rg3 Induces Apoptosis of Human Breast Cancer (MDA-MB-231) Cells. J Cancer Prev 2014; 18:177-85. [PMID: 25337544 PMCID: PMC4189457 DOI: 10.15430/jcp.2013.18.2.177] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 11/23/2022] Open
Abstract
Background: Rg3, a major ginsenoside derived from heat-processed ginseng, has been reported to have anti-inflammatory and anti-proliferative activities. In our previous studies, Rg3 inhibited phorbol ester-induced cyclooxygenase-2 expression and NF-κB activation in cultured human mammary epithelial (MCF-10A) cells and in mouse skin in vivo. In this study, we investigated Rg3-induced apoptosis in human breast cancer (MDA-MB-231) cells and underlying molecular mechanisms. Methods: After Rg3 treatment, apoptotic cell death of MDA-MB-231 cell was investigated by the MTT reduction assay and measurement of the mitochondrial membrane depolarization. Flow cytometry was used for cell cycle analysis and detection of apoptotic cells as well as measurement of reactive oxygen species. Expression of apoptotic-related proteins was determined by immunoblot analysis. Results: MDA-MB-231 cells treated with Rg3 (30μM) exhibited the increased proportion of hypodiploid or apoptotic cells. Rg3 treatment resulted in an increase in the ratio of proapoptotic Bax to antiapoptotic Bcl-2, depolarization of the mitochondria membrane potential and the release of cytochrome c from mitochondria. Rg3 also induced the proteolytic cleavage of caspase-3 and poly (ADP-ribose) polymerase, which was attenuated by a caspase-3 inhibitor, z-VAD-fmk. Conclusions: Based on these findings, it is likely that Rg3 induces apoptosis in MDA-MB-231 cells via classical mitochondria-dependent caspase activation. These data suggest that Rg3 might be a potential candidate as a breast cancer chemopreventive agent.
Collapse
Affiliation(s)
- Bo-Min Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University
| | - Do-Hee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University
| | - Jeong-Hill Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University
| | - Hye-Kyung Na
- Department of Food and Nutrition, Sungshin Women's University, Seoul, Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University
| |
Collapse
|
61
|
Wahab R, Dwivedi S, Khan F, Mishra YK, Hwang IH, Shin HS, Musarrat J, Al-Khedhairy AA. Statistical analysis of gold nanoparticle-induced oxidative stress and apoptosis in myoblast (C2C12) cells. Colloids Surf B Biointerfaces 2014; 123:664-72. [PMID: 25456994 DOI: 10.1016/j.colsurfb.2014.10.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/29/2014] [Accepted: 10/04/2014] [Indexed: 11/16/2022]
Abstract
Nanoscale gold particles (Au-NPs) with a diameter below 20nm are notably important candidates for various important applications because of their extraordinary quantum size effects. Their high surface area-to-volume ratio facilitates their very high reactivities; therefore, they can be utilised in different ways in biomedical applications. For example, these nanoparticles can penetrate into cells and bind with proteins or DNA and are therefore potential nanostructures employed for sensing and detecting various biological identities. In the present work, we synthesised Au-NPs via a colloidal process using chloroauric acid (HAuCl4·4H2O) and trisodium citrate dihydrate (N3C6H5O7) as a reducing agent. The shape evolution and the structural properties of these NPs were investigated in detail using TEM and high resolution HR-TEM investigations. Different doses of Au NPs have been applied to treat C2C12 myoblast cells in a 24-h incubation period, and a dose-dependent study has also been performed. The cells were cultivated in DMEM with FBS and antibiotics (strepto-penicillin) at 37°C in a 5% humidified environment of CO2 and 95% air. Cell viability analysis using MTT assays revealed that increased concentration of Au NPs (100-1000 ng/mL) resulted in a decreased density of cells. The amount of reactive oxygen species (ROS) in C2C12 cells analysed with Au-NPs (in a dose-dependent manner), and the RT-PCR data demonstrated the up-regulation of caspase-3 and caspase-7 genes in C2C12 cells after treatment with Au-NPs. These results have been confirmed by detailed confocal microscopy (CLSM) studies. In addition, the quantitative analysis of the Au-NPs was also confirmed by statistical analytical parameters, such as precision, accuracy, linearity, limits of detection (LOD) and limit of quantitation (LOQ), quantitative recoveries and relative standard deviation (RSD), and the analyses again exhibited a significant and large effect of Au NPs on C2C12 cells.
Collapse
Affiliation(s)
- Rizwan Wahab
- A.R.Al-Jeraisy, Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sourabh Dwivedi
- A.R.Al-Jeraisy, Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Farheen Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Yogendra K Mishra
- Functional Nanomaterials, Institute for Materials Science, University of Kiel, Kaiser Str. 2, 24143 Kiel, Germany
| | - I H Hwang
- Department of Animal Sciences and Biotechnology, Chonbuk National University Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Hyung-Shik Shin
- Energy Materials and Surface Science Laboratory, Solar Energy Research Centre, School of Chemical Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Abdulaziz A Al-Khedhairy
- A.R.Al-Jeraisy, Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
62
|
Deoxyelephantopin impairs growth of cervical carcinoma SiHa cells and induces apoptosis by targeting multiple molecular signaling pathways. Cell Biol Toxicol 2014; 30:331-43. [PMID: 25260383 DOI: 10.1007/s10565-014-9288-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/18/2014] [Indexed: 02/07/2023]
Abstract
Deoxyelephantopin, a sesquiterpene lactone extracted and purified from Elephantopus scaber, has been shown to exhibit antitumor and hepatoprotective activities. The purpose of this study was to investigate the antiproliferative and apoptosis-inducing properties of deoxyelephantopin in SiHa cells and to elucidate the underlying molecular mechanisms. Deoxyelephantopin inhibited growth of SiHa cells and triggered apoptosis. Apoptosis was accompanied by sequential activation of caspases (8, 9, 3, and 7) and reactive oxygen species (ROS) production. Downregulation of antiapoptotic proteins (Bcl2 and Bcl-xL) and upregulation of apoptotic protein (bax) were also detected. Our results demonstrated that deoxyelephantopin-induced G2/M phase arrest was associated with a marked increase in the levels of p53 and p21 and a decrease in phospho-signal transducer and activator of transcription 3 (pSTAT3-Tyr705), cyclin-dependent kinase 1 (cdc2), and cyclin B1. The expression of p-Akt and p-mTOR was downregulated. p-ERK was inhibited while p-JNK and p-p38 was activated on deoxyelephantopin treatment. Our findings provided the first evidence that STAT3/p53/p21 signaling, MAPK pathway, PI3k/Akt/mTOR pathway, caspase cascades, and ROS play critical roles in deoxyelephantopin-induced G2/M phase arrest and apoptosis of SiHa cells.
Collapse
|
63
|
Fettucciari K, Ponsini P, Palumbo C, Rosati E, Mannucci R, Bianchini R, Modesti A, Marconi P. Macrophage induced gelsolin in response to Group BStreptococcus(GBS) infection. Cell Microbiol 2014; 17:79-104. [DOI: 10.1111/cmi.12338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/04/2014] [Accepted: 07/31/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Katia Fettucciari
- Department of Experimental Medicine; Perugia University; Perugia Italy
| | - Pamela Ponsini
- Department of Experimental Medicine; Perugia University; Perugia Italy
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine; Tor Vergata University; Rome Italy
| | - Emanuela Rosati
- Department of Experimental Medicine; Perugia University; Perugia Italy
| | - Roberta Mannucci
- Department of Medicine, Laboratory of Image Analysis; Perugia University; Perugia Italy
| | - Rodolfo Bianchini
- Research Program for Receptor Biochemistry and Tumor Metabolism; Laura Bassi Centre of Expertise Therapep; Salzburg University Clinic; Salzburg Austria
- Department of Pediatrics; Paracelsus Medical University; Muellner Hauptstrasse Salzburg Austria
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine; Tor Vergata University; Rome Italy
| | | |
Collapse
|
64
|
Vetrugno C, Muscella A, Fanizzi FP, Cossa LG, Migoni D, De Pascali SA, Marsigliante S. Different apoptotic effects of [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin on normal and cancerous human epithelial breast cells in primary culture. Br J Pharmacol 2014; 171:5139-53. [PMID: 24990093 DOI: 10.1111/bph.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to determine whether [platinum (Pt)(O,O'-acetylacetonate (acac))(γ-acac)(dimethylsulphide (DMS))] is differentially cytotoxic in normal and cancer cells, and to measure comparative levels of cytotoxicity compared with cisplatin in the same cells. EXPERIMENTAL APPROACH We performed experiments on cancerous and normal epithelial breast cells in primary culture obtained from the same patients. The apoptotic effects [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin in cancerous and normal breast cells were compared. KEY RESULTS Cancer cells were more sensitive to [Pt(O,O'-acac)(γ-acac)(DMS)] (IC50 = 5.22 ± 1.2 μmol·L(-1)) than normal cells (IC50 = 116.9 ± 8.8 μmol·L(-1)). However, the difference was less strong when cisplatin was used (IC50 = 96.0 ± 6.9 and 61.9 ± 6.1 μmol·L(-1) for cancer and normal cells respectively). Both compounds caused reactive oxygen species (ROS) production with different mechanisms: [Pt(O,O'-acac)(γ-acac)(DMS)] quickly activated NAD(P)H oxidase while cisplatin caused a slower formation of mitochondrial ROS. Cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)] caused activation of caspases, proteolysis of PARP and modulation of Bcl-2, Bax and Bid. [Pt(O,O'-acac)(γ-acac)(DMS)] also caused leakage of cytochrome c from the mitochondria. Overall, these processes proceeded more quickly in cells treated with [Pt(O,O'-acac)(γ-acac)(DMS)] compared with cisplatin. [Pt(O,O'-acac)(γ-acac)(DMS)] effects were faster and quantitatively greater in cancer than in normal cells. [Pt(O,O'-acac)(γ-acac)(DMS)] caused a fast decrease of mitochondrial membrane potential, especially in cancer cells. CONCLUSIONS AND IMPLICATIONS [Pt(O,O'-acac)(γ-acac)(DMS)] was specific to breast cancer cells in primary culture, and this observation makes this compound potentially more interesting than cisplatin.
Collapse
Affiliation(s)
- Carla Vetrugno
- Cell Physiology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Universita' del Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
65
|
Chae IG, Kim DH, Kundu J, Jeong CH, Kundu JK, Chun KS. Generation of ROS by CAY10598 leads to inactivation of STAT3 signaling and induction of apoptosis in human colon cancer HCT116 cells. Free Radic Res 2014; 48:1311-21. [PMID: 25096910 DOI: 10.3109/10715762.2014.951838] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prostaglandin E2 (PGE2) has been reported to play critical roles in cell fate decision by interacting with four types of prostanoid receptors such as EP1, EP2, EP3 and EP4. The present study was aimed at investigating the effect of the EP4-specific agonist CAY10598 in human colon cancer HCT116 cells. Our study revealed that treatment with CAY10598 significantly reduced the cell viability and induced apoptosis in HCT116 cells, as evidenced by the induction of p53 and Bax, release of cytochrome c, cleavage of caspase-9, -7, and -3, and PARP, and the inhibition of Bcl-2, Bcl-xL and survivin expression. Moreover, treatment with CAY10598 diminished the phosphorylation of JAK2, leading to the attenuation of STAT3 activation in HCT116 cells. CAY10598-induced apoptosis in cells which were transiently transfected with EP4 siRNA or treated with an EP4 antagonist prior to incubation with the compound remained unaffected, suggesting an EP4-independent mechanism of apoptosis induction by CAY10598. We found that treatment with CAY10598 generated reactive oxygen species (ROS) and pretreatment of cells with N-acetyl cysteine rescued cells from apoptosis by abrogating the inhibitory effect of CAY10598 on the activation of JAK2/STAT3 signaling. In conclusion, CAY10598 induced apoptosis in HCT116 cells in an EP4-independent manner, but through the generation of ROS and inactivation of JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- I G Chae
- College of Pharmacy, Keimyung University , Daegu , South Korea
| | | | | | | | | | | |
Collapse
|
66
|
Sigurðsson HH, Olesen CW, Dybboe R, Lauritzen G, Pedersen SF. Constitutively active ErbB2 regulates cisplatin-induced cell death in breast cancer cells via pro- and antiapoptotic mechanisms. Mol Cancer Res 2014; 13:63-77. [PMID: 25143433 DOI: 10.1158/1541-7786.mcr-14-0011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Despite the frequent expression of N-terminally truncated ErbB2 (ΔNErbB2/p95HER2) in breast cancer and its association with Herceptin resistance and poor prognosis, it remains poorly understood how ΔNErbB2 affects chemotherapy-induced cell death. Previously it was shown that ΔNErbB2 upregulates acid extrusion from MCF-7 breast cancer cells and that inhibition of the Na(+)/H(+) exchanger (SLC9A1/NHE1) strongly sensitizes ΔNErbB2-expressing MCF-7 cells to cisplatin chemotherapy. The aim of this study was to identify the mechanism through which ΔNErbB2 regulates cisplatin-induced breast cancer cell death, and determine how NHE1 regulates this process. Cisplatin treatment elicited apoptosis, ATM phosphorylation, upregulation of p53, Noxa (PMAIP1), and PUMA (BBC3), and cleavage of caspase-9, -7, fodrin, and PARP-1 in MCF-7 cells. Inducible ΔNErbB2 expression strongly reduced cisplatin-induced ATM- and p53-phosphorylation, augmented Noxa upregulation and caspase-9 and -7 cleavage, doubled p21(WAF1/Cip1) (CDKN1A) expression, and nearly abolished Bcl-2 expression. LC3-GFP analysis demonstrated that autophagic flux was reduced by cisplatin in a manner augmented by ΔNErbB2, yet did not contribute to cisplatin-induced death. Using knockdown approaches, it was shown that cisplatin-induced caspase-7 cleavage in ΔNErbB2-MCF-7 cells was Noxa- and caspase-9 dependent. This pathway was augmented by NHE1 inhibition, while the Na(+)/HCO3 (-) cotransporter (SLC4A7/NBCn1) was internalized following cisplatin exposure. IMPLICATIONS This work reveals that ΔNErbB2 strongly affects several major pro- and antiapoptotic pathways and provides mechanistic insight into the role of NHE1 in chemotherapy resistance. These findings have relevance for defining therapy regimens in breast cancers with ΔNErbB2 and/or NHE1 overexpression.
Collapse
Affiliation(s)
- Haraldur H Sigurðsson
- Department of Biology, Section for Cell and Developmental Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christina W Olesen
- Department of Biology, Section for Cell and Developmental Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rie Dybboe
- Department of Biology, Section for Cell and Developmental Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Lauritzen
- Department of Biology, Section for Cell and Developmental Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Department of Biology, Section for Cell and Developmental Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
67
|
Sánchez-Osuna M, Garcia-Belinchón M, Iglesias-Guimarais V, Gil-Guiñón E, Casanelles E, Yuste VJ. Caspase-activated DNase is necessary and sufficient for oligonucleosomal DNA breakdown, but not for chromatin disassembly during caspase-dependent apoptosis of LN-18 glioblastoma cells. J Biol Chem 2014; 289:18752-69. [PMID: 24838313 DOI: 10.1074/jbc.m114.550020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspase-dependent apoptosis is a controlled type of cell death characterized by oligonucleosomal DNA breakdown and major nuclear morphological alterations. Other kinds of cell death do not share these highly distinctive traits because caspase-activated DNase (DFF40/CAD) remains inactive. Here, we report that human glioblastoma multiforme-derived LN-18 cells do not hydrolyze DNA into oligonucleosomal fragments after apoptotic insult. Furthermore, their chromatin remains packaged into a single mass, with no signs of nuclear fragmentation. However, ultrastructural analysis reveals that nuclear disassembly occurs, although compacted chromatin does not localize into apoptotic nuclear bodies. Caspases become properly activated, and ICAD, the inhibitor of DFF40/CAD, is correctly processed. Using cell-free in vitro assays, we show that chromatin from isolated nuclei of LN-18 cells is suitable for hydrolysis into oligonuclesomal fragments by staurosporine-pretreated SH-SY5Y cytoplasms. However, staurosporine-pretreated LN-18 cytoplasms do not induce DNA laddering in isolated nuclei from either LN-18 or SH-SY5Y cells because LN-18 cells express lower amounts of DFF40/CAD. DFF40/CAD overexpression makes LN-18 cells fully competent to degrade their DNA into oligonucleosome-sized fragments, and yet they remain unable to arrange their chromatin into nuclear clumps after apoptotic insult. Indeed, isolated nuclei from LN-18 cells were resistant to undergoing apoptotic nuclear morphology in vitro. The use of LN-18 cells has uncovered a previously unsuspected cellular model, whereby a caspase-dependent chromatin package is DFF40/CAD-independent, and DFF40/CAD-mediated double-strand DNA fragmentation does not warrant the distribution of the chromatin into apoptotic nuclear bodies. The studies highlight a not-yet reported DFF40/CAD-independent mechanism driving conformational nuclear changes during caspase-dependent cell death.
Collapse
Affiliation(s)
- María Sánchez-Osuna
- From the Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Mercè Garcia-Belinchón
- From the Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Victoria Iglesias-Guimarais
- From the Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Estel Gil-Guiñón
- From the Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Elisenda Casanelles
- From the Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Victor J Yuste
- From the Cell Death, Senescence, and Survival Group, Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallés, and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193 Cerdanyola del Vallés, Barcelona, Spain
| |
Collapse
|
68
|
Chin MS, Hooper LC, Hooks JJ, Detrick B. Identification of α-fodrin as an autoantigen in experimental coronavirus retinopathy (ECOR). J Neuroimmunol 2014; 272:42-50. [PMID: 24864013 PMCID: PMC7112846 DOI: 10.1016/j.jneuroim.2014.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/19/2014] [Accepted: 05/04/2014] [Indexed: 11/29/2022]
Abstract
The coronavirus, mouse hepatitis virus (MHV), JHM strain induces a biphasic disease in BALB/c mice that consists of an acute retinitis followed by progression to a chronic retinal degeneration with autoimmune reactivity. Retinal degeneration resistant CD-1 mice do not develop either the late phase or autoimmune reactivity. A mouse RPE/choroid DNA expression library was screened using sera from virus infected BALB/c mice. Two clones were identified, villin-2 protein and α-fodrin protein. α-Fodrin protein was used for further analysis and western blot reactivity was seen only in sera from virus infected BALB/c mice. CD4 T cells were shown to specifically react with MHV antigens and with α-fodrin protein. These studies clearly identified both antibody and CD4 T cell reactivities to α-fodrin in sera from virus infected, retinal degenerative susceptible BALB/c mice.
Collapse
Affiliation(s)
- Marian S Chin
- Immunology and Virology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Laura C Hooper
- Immunology and Virology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - John J Hooks
- Immunology and Virology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Barbara Detrick
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| |
Collapse
|
69
|
Mishra A, Gauri SS, Mukhopadhyay SK, Chatterjee S, Das SS, Mandal SM, Dey S. Identification and structural characterization of a new pro-apoptotic cyclic octapeptide cyclosaplin from somatic seedlings of Santalum album L. Peptides 2014; 54:148-58. [PMID: 24503375 DOI: 10.1016/j.peptides.2014.01.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 11/30/2022]
Abstract
Small cyclic peptides exhibiting potent biological activity have great potential for anticancer therapy. An antiproliferative cyclic octapeptide, cyclosaplin was purified from somatic seedlings of Santalum album L. (sandalwood) using gel filtration and RP-HPLC separation process. The molecular mass of purified peptide was found to be 858 Da and the sequence was determined by MALDI-ToF-PSD-MS as 'RLGDGCTR' (cyclic). The cytotoxic activity of the peptide was tested against human breast cancer (MDA-MB-231) cell line in a dose and time-dependent manner. The purified peptide exhibited significant antiproliferative activity with an IC50 2.06 μg/mL. In a mechanistic approach, apoptosis was observed in differential microscopic studies for peptide treated MDA-MB-231 cells, which was further confirmed by mitochondrial membrane potential, DNA fragmentation assay, cell cycle analysis and caspase 3 activities. The modeling and docking experiments revealed strong affinity (kcal/mol) of peptide toward EGFR and procaspase 3. The co-localization studies revealed that the peptide sensitizes MDA-MB-231 cells by possibly binding to EGFR and induces apoptosis. This unique cyclic octapeptide revealed to be a favorable candidate for development of anticancer agents.
Collapse
Affiliation(s)
- Abheepsa Mishra
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Samiran S Gauri
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Sourav K Mukhopadhyay
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Soumya Chatterjee
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Shibendu S Das
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Satyahari Dey
- Plant Biotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
70
|
Chang YC, Liu CL, Chen MJ, Hsu YW, Chen SN, Lin CH, Chen CM, Yang FM, Hu MC. Local Anesthetics Induce Apoptosis in Human Breast Tumor Cells. Anesth Analg 2014; 118:116-124. [DOI: 10.1213/ane.0b013e3182a94479] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
71
|
Yang J, Weimer RM, Kallop D, Olsen O, Wu Z, Renier N, Uryu K, Tessier-Lavigne M. Regulation of axon degeneration after injury and in development by the endogenous calpain inhibitor calpastatin. Neuron 2013; 80:1175-89. [PMID: 24210906 DOI: 10.1016/j.neuron.2013.08.034] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2013] [Indexed: 01/30/2023]
Abstract
Axon degeneration is widespread both in neurodegenerative disease and in normal neural development, but the molecular pathways regulating these degenerative processes and the extent to which they are distinct or overlapping remain incompletely understood. We report that calpastatin, an inhibitor of calcium-activated proteases of the calpain family, functions as a key endogenous regulator of axon degeneration. Calpastatin depletion was observed in degenerating axons after physical injury, and maintaining calpastatin inhibited degeneration of transected axons in vitro and in the optic nerve in vivo. Calpastatin depletion also occurred in a caspase-dependent manner in trophic factor-deprived sensory axons and was required for this in vitro model of developmental degeneration. In vivo, calpastatin regulated the normal pruning of retinal ganglion cell axons in their target field. These findings identify calpastatin as a key checkpoint for axonal survival after injury and during development, and demonstrate downstream convergence of these distinct pathways of axon degeneration.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Armadillo Domain Proteins/genetics
- Armadillo Domain Proteins/metabolism
- Axotomy
- Brain/cytology
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Calpain/metabolism
- Cell Survival/genetics
- Cells, Cultured
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Disease Models, Animal
- Embryo, Mammalian
- Enzyme Inhibitors/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/ultrastructure
- Gene Expression Regulation/physiology
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Humans
- In Vitro Techniques
- Mice
- Microscopy, Electron, Transmission
- Nerve Degeneration/etiology
- Nerve Degeneration/metabolism
- Nerve Growth Factor/metabolism
- Nerve Tissue Proteins/metabolism
- Neurons/pathology
- Neurons/ultrastructure
- Nicotinamide-Nucleotide Adenylyltransferase/genetics
- Nicotinamide-Nucleotide Adenylyltransferase/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Sciatic Neuropathy/complications
- Sciatic Neuropathy/metabolism
- Time Factors
- Transduction, Genetic
- Wallerian Degeneration/pathology
- Wallerian Degeneration/physiopathology
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY 10065, USA; Research and Early Development, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Hassel C, Zhang B, Dixon M, Calvi BR. Induction of endocycles represses apoptosis independently of differentiation and predisposes cells to genome instability. Development 2013; 141:112-23. [PMID: 24284207 DOI: 10.1242/dev.098871] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endocycle is a common developmental cell cycle variation wherein cells become polyploid through repeated genome duplication without mitosis. We previously showed that Drosophila endocycling cells repress the apoptotic cell death response to genotoxic stress. Here, we investigate whether it is differentiation or endocycle remodeling that promotes apoptotic repression. We find that when nurse and follicle cells switch into endocycles during oogenesis they repress the apoptotic response to DNA damage caused by ionizing radiation, and that this repression has been conserved in the genus Drosophila over 40 million years of evolution. Follicle cells defective for Notch signaling failed to switch into endocycles or differentiate and remained apoptotic competent. However, genetic ablation of mitosis by knockdown of Cyclin A or overexpression of fzr/Cdh1 induced follicle cell endocycles and repressed apoptosis independently of Notch signaling and differentiation. Cells recovering from these induced endocycles regained apoptotic competence, showing that repression is reversible. Recovery from fzr/Cdh1 overexpression also resulted in an error-prone mitosis with amplified centrosomes and high levels of chromosome loss and fragmentation. Our results reveal an unanticipated link between endocycles and the repression of apoptosis, with broader implications for how endocycles may contribute to genome instability and oncogenesis.
Collapse
Affiliation(s)
- Christiane Hassel
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
73
|
Makovitzki-Avraham E, Daniel-Carmi V, Alteber Z, Farago M, Tzehoval E, Eisenbach L. The human ISG12a gene is a novel caspase dependent and p53 independent pro-apoptotic gene, that is overexpressed in breast cancer. CELL BIOLOGY INTERNATIONAL REPORTS 2013. [DOI: 10.1002/cbi3.10009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Vered Daniel-Carmi
- Department of Immunology; The Weizmann Institute of Science; Rehovot 76100 Israel
| | - Zoya Alteber
- Department of Immunology; The Weizmann Institute of Science; Rehovot 76100 Israel
| | - Marganit Farago
- Department of Immunology; The Weizmann Institute of Science; Rehovot 76100 Israel
| | - Esther Tzehoval
- Department of Immunology; The Weizmann Institute of Science; Rehovot 76100 Israel
| | - Lea Eisenbach
- Department of Immunology; The Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
74
|
Marchal JA, Carrasco E, Ramirez A, Jiménez G, Olmedo C, Peran M, Agil A, Conejo-García A, Cruz-López O, Campos JM, García MÁ. Bozepinib, a novel small antitumor agent, induces PKR-mediated apoptosis and synergizes with IFNα triggering apoptosis, autophagy and senescence. Drug Des Devel Ther 2013; 7:1301-13. [PMID: 24194639 PMCID: PMC3815003 DOI: 10.2147/dddt.s51354] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bozepinib [(RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl]-9H-purine] is a potent antitumor compound that is able to induce apoptosis in breast cancer cells. In the present study, we show that bozepinib also has antitumor activity in colon cancer cells, showing 50% inhibitory concentration (IC50) values lower than those described for breast cancer cells and suggesting great potential of this synthetic drug in the treatment of cancer. We identified that the double-stranded RNA-dependent protein kinase (PKR) is a target of bozepinib, being upregulated and activated by the drug. However, p53 was not affected by bozepinib, and was not necessary for induction of apoptosis in either breast or colon cancer cells. In addition, the efficacy of bozepinib was improved when combined with the interferon-alpha (IFNα) cytokine, which enhanced bozepinib-induced apoptosis with involvement of protein kinase PKR. Moreover, we report here, for the first time, that in combined therapy, IFNα induces a clear process of autophagosome formation, and prior treatment with chloroquine, an autophagy inhibitor, is able to significantly reduce IFNα/bozepinib-induced cell death. Finally, we observed that a minor population of caspase 3-deficient MCF-7 cells persisted during long-term treatment with lower doses of bozepinib and the bozepinib/IFNα combination. Curiously, this population showed β-galactosidase activity and a percentage of cells arrested in S phase, that was more evident in cells treated with the bozepinib/IFNα combination than in cells treated with bozepinib or IFNα alone. Considering the resistance of some cancer cells to conventional chemotherapy, combinations enhancing the diversity of the cell death outcome might succeed in delivering more effective and less toxic chemotherapy.
Collapse
Affiliation(s)
- Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute, Centre for Biomedical Research, Spain ; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Witek MA, Fung LWM. Quantitative studies of caspase-3 catalyzed αII-spectrin breakdown. Brain Res 2013; 1533:1-15. [PMID: 23948103 PMCID: PMC3786445 DOI: 10.1016/j.brainres.2013.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/27/2013] [Accepted: 08/02/2013] [Indexed: 11/29/2022]
Abstract
Under various physiological and patho-physiological conditions, spectrin breakdown reactions generate several spectrin breakdown products (SBDPs)-in particular SBDPs of 150 kDa (SBDP150) and 120 kDa (SBDP120). Recently, numerous studies have shown that reactions leading to SBDPs are physiologically relevant, well regulated, and complex. Yet molecular studies on the mechanism of the SBDP formation are comparatively scarce. We have designed basic systems to allow us to follow the breakdown of αII-spectrin model proteins by caspase-3 in detail with gel electrophoresis, fluorescence and mass spectrometry methods. Amongst the predicted and reported sites, our results show that caspase-3 cleaves after residues D1185 and D1478, but not after residues D888, D1340 and D1475. We also found that the cleavage at these two sites is independent of each other. It may be possible to inhibit one site without affecting the other site. Cleavage after residue D1185 in intact αII-spectrin leads to SBDP150, and cleavage after D1478 site leads to SBDP120. Our results also show that the cleavage after the D1185 residue is unusually efficient, with a kcat/KM value of 40,000 M(-1) s(-1), and the cleavage after the D1478 site is more similar to most of the other reported caspase-3 substrates, with a kcat/KM value of 3000 M(-1) s(-1). We believe that this study lays out a methodology and foundation to study caspase-3 catalyzed spectrin breakdown to provide quantitative information. Molecular understanding may lead to better understanding of brain injuries and more precise and specific biomarker development.
Collapse
Affiliation(s)
- Marta A. Witek
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607
| | - L. W.-M. Fung
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607
| |
Collapse
|
76
|
Maurya SK, Tewari M, Sharma B, Shukla HS. Expression of procaspase 3 and activated caspase 3 and its relevance in hormone-responsive gallbladder carcinoma chemotherapy. Korean J Intern Med 2013; 28:573-8. [PMID: 24009453 PMCID: PMC3759763 DOI: 10.3904/kjim.2013.28.5.573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/14/2013] [Accepted: 05/27/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND/AIMS The higher incidence of gallbladder cancer (GBC) in females has been accredited to the involvement of hormones. The clinical implications of sex hormone receptors in GBC are well established. Cysteine proteases (such as caspase-3-9, etc.) are known to play a central role in the apoptotic pathway. Of these, the downstream enzyme caspase-3 is often activated in the apoptotic pathway. The aim of this work was to examine the status of apoptosis (which directly correlated with the level of active caspase-3) in hormone-responsive GBC. METHODS We used 10 androgen receptor (AR)-positive, 14 estrogen receptor (ER)-positive, 12 HER/neu-positive, eight triple positive, and 10 triple negative malignant GBC human tissue samples. We isolated the total cellular protein from tumor tissues and carried out Western blotting using antipro-caspase-3 and anti-activated caspase-3 antibodies. RESULTS ER and HER/neu-positive GBC exhibited high caspase-3 activity and low procaspase-3 activity, whereas AR-positive GBC showed no significant level of apoptosis. We also evaluated the apoptosis status of triple positive GBC and triple negative GBC, and found significant apoptosis in triple positive GBC. CONCLUSIONS The results indicate that ER and HER/neu-positive GBCs had active apoptosis, whereas AR-positive GBC was highly resistant to apoptosis.
Collapse
MESH Headings
- Antineoplastic Agents, Hormonal/therapeutic use
- Apoptosis/drug effects
- Biomarkers, Tumor/analysis
- Blotting, Western
- Carcinoma/drug therapy
- Carcinoma/enzymology
- Carcinoma/pathology
- Caspase 3/analysis
- Drug Resistance, Neoplasm
- Enzyme Activation
- Gallbladder Neoplasms/drug therapy
- Gallbladder Neoplasms/enzymology
- Gallbladder Neoplasms/pathology
- Humans
- Neoplasms, Hormone-Dependent/drug therapy
- Neoplasms, Hormone-Dependent/enzymology
- Neoplasms, Hormone-Dependent/pathology
- Receptor, ErbB-2/analysis
- Receptors, Androgen/analysis
- Receptors, Estrogen/analysis
Collapse
|
77
|
Milojkovic A, Hemmati PG, Müer A, Overkamp T, Chumduri C, Jänicke RU, Gillissen B, Daniel PT. p14ARF induces apoptosis via an entirely caspase-3-dependent mitochondrial amplification loop. Int J Cancer 2013; 133:2551-62. [PMID: 23686572 DOI: 10.1002/ijc.28279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 02/28/2013] [Indexed: 11/12/2022]
Abstract
The p14(ARF) tumor suppressor triggers cell death or cell cycle arrest upon oncogenic stress. In MCF-7 breast carcinoma cells, expression of the tumor suppressor gene p14(ARF) fails to trigger apoptosis but induces an arrest in the G1 and, to a lesser extent, in the G2 phase in the cell division cycle. Here, inhibition of cell cycle arrest resulted in apoptosis induction in caspase-3 proficient MCF-7 cells upon expression of p14(ARF) . This occurred in the absence of S-phase progression or mitotic entry. In contrast, syngeneic, caspase-3-deficient MCF-7 cells remained entirely resistant to p14(ARF) -induced apoptosis. Thus, cell cycle checkpoint abrogation overcomes resistance to p14(ARF) -induced cell death and promotes cell death via a caspase-3-dependent pathway. Cell death coincided with dissipation of the mitochondrial membrane potential, release of cytochrome c, and was inhibitable by pan-caspase inhibitors and the caspase-3/7 inhibitor zDEVD-fmk. Of note, mitochondrial events of apoptosis execution depended entirely on caspase-3 proficiency indicating that caspase-3 either acts "up-stream" of the mitochondria in a "non-canonical" pathway or mediates a mitochondrial feedback loop to amplify the apoptotic caspase signal in p14(ARF) -induced stress signaling.
Collapse
Affiliation(s)
- Ana Milojkovic
- Clinical and Molecular Oncology, Max Delbrück Centrum für Molekulare Medizin, Berlin-Buch, Germany
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Han C, Zhao R, Kroger J, Qu M, Wani AA, Wang QE. Caspase-2 short isoform interacts with membrane-associated cytoskeleton proteins to inhibit apoptosis. PLoS One 2013; 8:e67033. [PMID: 23840868 PMCID: PMC3698186 DOI: 10.1371/journal.pone.0067033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022] Open
Abstract
Caspase-2 (casp-2) is the most conserved caspase across species, and is one of the initiator caspases activated by various stimuli. The casp-2 gene produces several alternative splicing isoforms. It is believed that the long isoform, casp-2L, promotes apoptosis, whereas the short isoform, casp-2S, inhibits apoptosis. The actual effect of casp-2S on apoptosis is still controversial, however, and the underlying mechanism for casp-2S-mediated apoptosis inhibition is unclear. Here, we analyzed the effects of casp-2S on DNA damage induced apoptosis through "gain-of-function" and "loss-of-function" strategies in ovarian cancer cell lines. We clearly demonstrated that the over-expression of casp-2S inhibited, and the knockdown of casp-2S promoted, the cisplatin-induced apoptosis of ovarian cancer cells. To explore the mechanism by which casp-2S mediates apoptosis inhibition, we analyzed the proteins which interact with casp-2S in cells by using immunoprecipitation (IP) and mass spectrometry. We have identified two cytoskeleton proteins, Fodrin and α-Actinin 4, which interact with FLAG-tagged casp-2S in HeLa cells and confirmed this interaction through reciprocal IP. We further demonstrated that casp-2S (i) is responsible for inhibiting DNA damage-induced cytoplasmic Fodrin cleavage independent of cellular p53 status, and (ii) prevents cisplatin-induced membrane blebbing. Taken together, our data suggests that casp-2S affects cellular apoptosis through its interaction with membrane-associated cytoskeletal Fodrin protein.
Collapse
Affiliation(s)
- Chunhua Han
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Ran Zhao
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - John Kroger
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Meihua Qu
- Department of Pharmacology, Weifang Medical University, Weifang, China
| | - Altaf A. Wani
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Qi-En Wang
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
79
|
Hahne JC, Schmidt H, Meyer SR, Engel JB, Dietl J, Honig A. Anti-tumour activity of phosphoinositide-3-kinase antagonist AEZS 126 in models of triple-negative breast cancer. J Cancer Res Clin Oncol 2013; 139:905-14. [PMID: 23440492 DOI: 10.1007/s00432-013-1399-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/08/2013] [Indexed: 12/31/2022]
Abstract
PURPOSE Of more than one million global cases of breast cancer diagnosed each year, a high percentage are characterized as triple-negative, lacking the oestrogen, progesterone and Her2/neu receptors. The incidence exceeds the incidence of malignancies like CML by far. Lack of effective therapies, younger age at onset and early metastatic spread have contributed to the poor prognosis and outcomes associated with these malignancies. METHODS Here, we investigate the ability of the PI3K/AKT inhibitor AEZS 126 to selectively target the triple-negative breast cancer (TNBC) cell proliferation and survival in vitro by MTT-assays and FACS-based analysis. Furthermore, the mechanism of cytotoxicity is analysed by FACS-based assays and Western blots. RESULTS AEZS 126 showed good anti-tumour activity in in vitro models of TNBC as well as in MCF-7 cells. Main mechanism of cytotoxicity seems to be programmed cell death after an incubation time of 72 h, which could be abrogated by co-incubation with z-VAD-fmk in MCF-7 and MDA-MB468 cells. In HCC1806 cells, addition of necrostatin-1 has only slightly protective effects, but in HCC1937 cells, the addition of necrostatin-1 has the same protective effect as co-incubation with z-VAD-fmk, and this observation argues for cell death caused by apoptosis and necroptosis in this cell line. CONCLUSION We demonstrated the highly efficient anti-tumour activity of AEZS 126 in in vitro models of TNBC. Due to the good anti-tumour activity and the expected favourable toxicity profile, AEZS 126 in combination with chemotherapy seems to be a promising candidate for clinical testing in TNBC especially in the basal-like subgroup of TNBC.
Collapse
Affiliation(s)
- Jens C Hahne
- Department of Gynecology, Medical University of Würzburg, Josef-Schneider-Str. 4, 97080, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
80
|
Thayyullathil F, Pallichankandy S, Rahman A, Kizhakkayil J, Chathoth S, Patel M, Galadari S. Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosine-induced apoptosis in Jurkat cells. J Mol Signal 2013; 8:2. [PMID: 23442976 PMCID: PMC3599610 DOI: 10.1186/1750-2187-8-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/23/2013] [Indexed: 12/26/2022] Open
Abstract
Background Prostate apoptosis response-4 (Par-4) is a tumor-suppressor protein that selectively activates and induces apoptosis in cancer cells, but not in normal cells. The cancer specific pro-apoptotic function of Par-4 is encoded in its centrally located SAC (Selective for Apoptosis induction in Cancer cells) domain (amino acids 137–195). The SAC domain itself is capable of nuclear entry, caspase activation, inhibition of NF-κB activity, and induction of apoptosis in cancer cells. However, the precise mechanism(s) of how the SAC domain is released from Par-4, in response to apoptotic stimulation, is not well explored. Results In this study, we demonstrate for the first time that sphingosine (SPH), a member of the sphingolipid family, induces caspase-dependant cleavage of Par-4, leading to the release of SAC domain containing fragment from it. Par-4 is cleaved at the EEPD131G site on incubation with caspase-3 in vitro, and by treating cells with several anti-cancer agents. The caspase-3 mediated cleavage of Par-4 is blocked by addition of the pan-caspase inhibitor z-VAD-fmk, caspase-3 specific inhibitor Ac-DEVD-CHO, and by introduction of alanine substitution for D131 residue. Moreover, suppression of SPH-induced Akt dephosphorylation also abrogated the caspase dependant cleavage of Par-4. Conclusion Evidence provided here shows that Par-4 is cleaved by caspase-3 during SPH-induced apoptosis. Cleavage of Par-4 leads to the generation of SAC domain containing fragment which may possibly be essential and sufficient to induce or augment apoptosis in cancer cells.
Collapse
Affiliation(s)
- Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P,O, Box 17666, Al Ain, Abu Dhabi, UAE.
| | | | | | | | | | | | | |
Collapse
|
81
|
Pauley KM, Gauna AE, Grichtchenko II, Chan EKL, Cha S. A secretagogue-small interfering RNA conjugate confers resistance to cytotoxicity in a cell model of Sjögren's syndrome. ACTA ACUST UNITED AC 2013; 63:3116-25. [PMID: 21567383 DOI: 10.1002/art.30450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Sjögren's syndrome (SS) is characterized by xerophthalmia and xerostomia resulting from loss of secretory function due to immune cell infiltration in lacrimal and salivary glands. Current therapeutic strategies for SS use secretagogues to induce secretion via muscarinic receptor stimulation. The purpose of this study was to create a secretagogue-small interfering RNA (siRNA) conjugate to deliver siRNA into cells via receptor-mediated endocytosis, thereby altering epithelial cell responses to external cues, such as proinflammatory or death signals, while simultaneously stimulating secretion. METHODS Based on our expertise with type 3 muscarinic receptor (M3), we used carbachol, a ligand specific for muscarinic receptor, as the secretagogue. Carbachol was synthesized with an active choline group and was conjugated with an siRNA that targets caspase 3. A human salivary gland (HSG) cell line was used to test the efficacy of this secretagogue-siRNA conjugate. RESULTS Lipofectamine transfection of the conjugate into HSG cells resulted in a 78% reduction in the expression of the caspase 3 gene, while external conjugate treatment of HSG cells resulted in intracellular calcium release and induction of endocytosis at levels similar to those of carbachol stimulation, indicating that the siRNA and carbachol portions of the conjugate retained their function after conjugation. HSG cells treated with conjugate (without Lipofectamine transfection) exhibited a 50% reduction in caspase 3 gene and protein expression, indicating that our conjugate was effective in delivering functional siRNA into cells via receptor-mediated endocytosis. Furthermore, tumor necrosis factor α-induced apoptosis was significantly reduced in conjugate-treated cells. CONCLUSION Our secretagogue-siRNA conjugate prevented cytokine-induced apoptosis in salivary gland epithelial cells, which is critical to maintaining fluid secretion and potentially reversing the clinical hallmark of SS.
Collapse
Affiliation(s)
- Kaleb M Pauley
- Department of Oral Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
82
|
ROS-mediated activation of AKT induces apoptosis via pVHL in prostate cancer cells. Mol Cell Biochem 2013; 376:63-71. [PMID: 23315288 DOI: 10.1007/s11010-012-1549-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/14/2012] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species (ROS) play a central role in oxidative stress, which leads to the onset of diseases, such as cancer. Furthermore, ROS contributes to the delicate balance between tumor cell survival and death. However, the mechanisms by which tumor cells decide to elicit survival or death signals during oxidative stress are not completely understood. We have previously reported that ROS enhanced tumorigenic functions in prostate cancer cells, such as transendothelial migration and invasion, which depended on CXCR4 and AKT signaling. Here, we report a novel mechanism by which ROS facilitated cell death through activation of AKT. We initially observed that ROS enhanced the expression of phosphorylated AKT (p-AKT) in 22Rv1 human prostate cancer cells. The tumor suppressor PTEN, a negative regulator of AKT signaling, was rendered catalytically inactive through oxidation by ROS, although the expression levels remained consistent. Despite these events, cells still underwent apoptosis. Further investigation into apoptosis revealed that expression of the tumor suppressor pVHL increased, and contains a target site for p-AKT phosphorylation. pVHL and p-AKT associated in vitro, and knockdown of pVHL rescued HIF1α expression and the cells from apoptosis. Collectively, our study suggests that in the context of oxidative stress, p-AKT facilitated apoptosis by inducing pVHL function.
Collapse
|
83
|
Abstract
Sjögren's syndrome (SjS) is one of the most common autoimmune rheumatic diseases, clinically characterized by xerostomia and keratoconjunctivitis sicca. We investigated the following controversial topics: (i) Do we have reliable ways of assessing saliva production? (ii) How important are the quantity and quality of saliva? (iii) Are only anti-SSA/Ro and anti-SSB/La relevant for the diagnosis of SjS? (iv) Are the American-European Consensus criteria (AECC) the best way to diagnose SjS? Results from literature searches suggested the following: (i) Despite the fact that numerous tests are available to assess salivation rates, direct comparisons among them are scarce with little evidence to suggest one best test. (ii) Recent developments highlight the importance of investigating the composition of saliva. However, more research is needed to standardize the methods of analysis and collection and refine the quality of the accumulating data. (iii) In addition to anti-Ro/La autoantibodies, anti α-fodrin IgA and anti-MR3 autoantibodies seem to be promising diagnostic markers of SjS, but more studies are warranted to test their sensitivity and specificity. (iv) AECC are classification, not diagnostic criteria. Moreover, recent innovations have not been incorporated into these criteria. Consequently, treatment directed to patients diagnosed using the AECC might exclude a significant proportion of patients with SjS.
Collapse
Affiliation(s)
- D J Aframian
- Salivary Gland Clinic and Saliva Diagnostic Laboratory, Department of Oral Medicine, Faculty of Dental Medicine, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel.
| | | | | | | |
Collapse
|
84
|
Rodriguez-Rocha H, Garcia Garcia A, Zavala-Flores L, Li S, Madayiputhiya N, Franco R. Glutaredoxin 1 protects dopaminergic cells by increased protein glutathionylation in experimental Parkinson's disease. Antioxid Redox Signal 2012; 17:1676-93. [PMID: 22816731 PMCID: PMC3474191 DOI: 10.1089/ars.2011.4474] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Chronic exposure to environmental toxicants, such as paraquat, has been suggested as a risk factor for Parkinson's disease (PD). Although dopaminergic cell death in PD is associated with oxidative damage, the molecular mechanisms involved remain elusive. Glutaredoxins (GRXs) utilize the reducing power of glutathione to modulate redox-dependent signaling pathways by protein glutathionylation. We aimed to determine the role of GRX1 and protein glutathionylation in dopaminergic cell death. RESULTS In dopaminergic cells, toxicity induced by paraquat or 6-hydroxydopamine (6-OHDA) was inhibited by GRX1 overexpression, while its knock-down sensitized cells to paraquat-induced cell death. Dopaminergic cell death was paralleled by protein deglutathionylation, and this was reversed by GRX1. Mass spectrometry analysis of immunoprecipitated glutathionylated proteins identified the actin binding flightless-1 homolog protein (FLI-I) and the RalBP1-associated Eps domain-containing protein 2 (REPS2/POB1) as targets of glutathionylation in dopaminergic cells. Paraquat induced the degradation of FLI-I and REPS2 proteins, which corresponded with the activation of caspase 3 and cell death progression. GRX1 overexpression reduced both the degradation and deglutathionylation of FLI-I and REPS2, while stable overexpression of REPS2 reduced paraquat toxicity. A decrease in glutathionylated proteins and REPS2 levels was also observed in the substantia nigra of mice treated with paraquat. INNOVATION We have identified novel protein targets of glutathionylation in dopaminergic cells and demonstrated the protective role of GRX1-mediated protein glutathionylation against paraquat-induced toxicity. CONCLUSIONS These results demonstrate a protective role for GRX1 and increased protein glutathionylation in dopaminergic cell death induced by paraquat, and identify a novel protective role for REPS2.
Collapse
|
85
|
Caspase 3 cleavage of the inositol 1,4,5-trisphosphate receptor does not contribute to apoptotic calcium release. Cell Calcium 2012; 53:152-8. [PMID: 23122728 DOI: 10.1016/j.ceca.2012.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 01/26/2023]
Abstract
An important role in the regulation of apoptotic calcium release is played by the ubiquitously expressed family of inositol 1,4,5-trisphosphate receptor (IP(3)R) channels. One model for IP(3)R activation during apoptosis is cleavage by the apoptotic protease caspase 3. Here we show that early elevations in cytosolic calcium during apoptosis do not require caspase 3 activity. We detected a robust increase in calcium levels in response to staurosporine treatment in primary human fibroblasts and HeLa cells in the presence of the caspase inhibitor Z-VAD, indicating that calcium release during the initiation of apoptosis occurs independently of caspase 3. Similar results were obtained with MCF-7 cells which lack caspase 3 expression. Stable expression of caspase 3 in MCF-7 cells and TAT-based transduction of the active recombinant caspase 3 directly into living MCF-7 cells had marginal effects on the early events leading to cytosolic calcium elevations and irreversible commitment to apoptotic cell death. Significantly, blocking IP(3) binding to the IP(3)R with an IP(3) sponge resulted in suppression of staurosporine-induced calcium release and cell death. Collectively, our results suggest that generation of IP(3) is sufficient for the initiation of apoptotic calcium signaling, and caspase 3-mediated truncation of IP(3)R channel is a consequence, not causative, of apoptotic calcium release.
Collapse
|
86
|
Seo KW, Holt R, Jung YS, Rodriguez CO, Chen X, Rebhun RB. Fluoroquinolone-mediated inhibition of cell growth, S-G2/M cell cycle arrest, and apoptosis in canine osteosarcoma cell lines. PLoS One 2012; 7:e42960. [PMID: 22927942 PMCID: PMC3424257 DOI: 10.1371/journal.pone.0042960] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/16/2012] [Indexed: 01/19/2023] Open
Abstract
Despite significant advancements in osteosarcoma research, the overall survival of canine and human osteosarcoma patients has remained essentially static over the past 2 decades. Post-operative limb-spare infection has been associated with improved survival in both species, yet a mechanism for improved survival has not been clearly established. Given that the majority of canine osteosarcoma patients experiencing post-operative infections were treated with fluoroquinolone antibiotics, we hypothesized that fluoroquinolone antibiotics might directly inhibit the survival and proliferation of canine osteosarcoma cells. Ciprofloxacin or enrofloxacin were found to inhibit p21(WAF1) expression resulting in decreased proliferation and increased S-G(2)/M accumulation. Furthermore, fluoroquinolone exposure induced apoptosis of canine osteosarcoma cells as demonstrated by cleavage of caspase-3 and PARP, and activation of caspase-3/7. These results support further studies examining the potential impact of quinolones on survival and proliferation of osteosarcoma.
Collapse
Affiliation(s)
- Kyoung won Seo
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, California, United States of America
- Department of Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Roseline Holt
- Department of Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Sam Jung
- Department of Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Carlos O. Rodriguez
- Department of Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Xinbin Chen
- Department of Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Robert B. Rebhun
- Department of Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
87
|
Woods LT, Camden JM, Batek JM, Petris MJ, Erb L, Weisman GA. P2X7 receptor activation induces inflammatory responses in salivary gland epithelium. Am J Physiol Cell Physiol 2012; 303:C790-801. [PMID: 22875784 DOI: 10.1152/ajpcell.00072.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inflammation of the salivary gland is a well-documented aspect of salivary gland dysfunction that occurs in Sjogren's syndrome (SS), an autoimmune disease, and in γ-radiation-induced injury during treatment of head and neck cancers. Extracellular nucleotides have gained recognition as key modulators of inflammation through activation of cell surface ionotropic and metabotropic receptors, although the contribution of extracellular nucleotides to salivary gland inflammation is not well understood. In vitro studies using submandibular gland (SMG) cell aggregates isolated from wild-type C57BL/6 mice indicate that treatment with ATP or the high affinity P2X7R agonist 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) induces membrane blebbing and enhances caspase activity, responses that were absent in SMG cell aggregates isolated from mice lacking the P2X7R (P2X7R(-/-)). Additional studies with SMG cell aggregates indicate that activation of the P2X7R with ATP or BzATP stimulates the cleavage and release of α-fodrin, a cytoskeletal protein thought to act as an autoantigen in the development of SS. In vivo administration of BzATP to ligated SMG excretory ducts enhances immune cell infiltration into the gland and initiates apoptosis of salivary epithelial cells in wild-type, but not P2X7R(-/-), mice. These findings indicate that activation of the P2X7R contributes to salivary gland inflammation in vivo, suggesting that the P2X7R may represent a novel target for the treatment of salivary gland dysfunction.
Collapse
Affiliation(s)
- Lucas T Woods
- Dept. of Biochemistry, Univ. of Missouri, Columbia, MO 65211-7310, USA
| | | | | | | | | | | |
Collapse
|
88
|
Yang X, Qin L, Liu J, Tian L, Qian H. 17β-Estradiol protects the liver against cold ischemia/reperfusion injury through the Akt kinase pathway. J Surg Res 2012; 178:996-1002. [PMID: 22835949 DOI: 10.1016/j.jss.2012.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/22/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (IR) injury occurs during liver resection and transplantation. Recent studies have shown that 17β-estradiol (E2) can protect the heart and liver against warm IR. The present study focused on the cytoprotective effects of E2 on cold IR injury to the liver. MATERIALS AND METHODS Sprague-Dawley male rats were randomly divided into three groups: sham, IR, and IR plus E2. The model of rat orthotopic liver transplantation was used. The rats in the IR plus E2 group were intraperitoneally injected with E2 (100 μg/kg/d) for 7 d before surgery. The sham and IR group received the same quantity of saline. The donor livers were then orthotopically transplanted into rats after cold ischemia preservation for 4 h at 4°C lactated Ringer's solution. After 6 h reperfusion, liver function, bile flow volume, hepatocyte apoptosis, and activation of Akt, glycogen synthase kinase-3β, and Bcl-2-associated death promoter were assessed. The survival rate of the rats was also investigated. RESULTS The administration of E2 significantly prolonged the survival of liver grafts by improving liver function and decreasing hepatocyte apoptosis. Rats undergoing E2 demonstrated a greater level activation of Akt in the liver compared with the IR group. In addition, E2 also inhibited the activities of glycogen synthase kinase-3β, Bcl-2-associated death promoter, and caspase-3-induced by IR injury. CONCLUSIONS E2 pretreatment attenuated the hepatocellular damage caused by hepatic cold IR injury through the Akt pathway. Estrogen therapy might be important in clinical settings associated with cold IR injury during liver transplantation.
Collapse
Affiliation(s)
- Xiaohua Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | |
Collapse
|
89
|
Haneef J, M P, Thankayyan R SK, Sithul H, Sreeharshan S. Bax translocation mediated mitochondrial apoptosis and caspase dependent photosensitizing effect of Ficus religiosa on cancer cells. PLoS One 2012; 7:e40055. [PMID: 22792212 PMCID: PMC3391225 DOI: 10.1371/journal.pone.0040055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 06/04/2012] [Indexed: 11/18/2022] Open
Abstract
The main aim of the present work was to investigate the potential effect of acetone extract of Ficus religosa leaf (FAE) in multiple apoptosis signalling in human breast cancer cells. FAE treatment significantly induced dose and time dependent, irreversible inhibition of breast cancer cell growth with moderate toxicity to normal breast epithelial cells. This observation was validated using Sulforhodamine B assay. Cell cycle analysis by Flow cytometry showed cell cycle arrest in G1 phase and induction of sub-G0 peak. FAE induced chromatin condensation and displayed an increase in apoptotic population in Annexin V-FITC/PI (Fluorescein isothiocyanate/Propidium iodide) double staining. FAE stimulated the loss of mitochondrial membrane potential in multiple breast cancer cell lines when compared to normal diploid cells. To understand the role of Bax in FAE induced apoptosis, we employed a sensitive cell based platform of MCF-7 cells expressing Bax-EGFP. Bax translocation to mitochondria was accompanied by the disruption of mitochondrial membrane potential and marked elevation in LEHDase activity (Caspase 9). Consistent with this data, FAE induced Caspase activation as evidenced by ratio change in FRET Caspase sensor expressing MCF-7 cell line and cleavage of prominent Caspases and PARP. Interestingly, FAE accelerated cell death in a mitochondrial dependent manner in continuous live cell imaging mode indicating its possible photosensitizing effect. Intracellular generation of reactive oxygen species (ROS) by FAE played a critical role in mediating apoptotic cell death and photosensitizing activity. FAE induced dose and time dependent inhibition of cancer cell growth which was associated with Bax translocation and mitochondria mediated apoptosis with the activation of Caspase 9 dependent Caspase cascade. FAE also possessed strong photosensitizing effect on cancer cell line that was mediated through rapid mitochondrial transmembrane potential loss and partial Caspase activation involving generation of intracellular ROS.
Collapse
Affiliation(s)
- Jazir Haneef
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Parvathy M
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Santhosh Kumar Thankayyan R
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- * E-mail: (SS); (SKTR)
| | - Hima Sithul
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sreeja Sreeharshan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- * E-mail: (SS); (SKTR)
| |
Collapse
|
90
|
Selcuklu SD, Donoghue MTA, Rehmet K, de Souza Gomes M, Fort A, Kovvuru P, Muniyappa MK, Kerin MJ, Enright AJ, Spillane C. MicroRNA-9 inhibition of cell proliferation and identification of novel miR-9 targets by transcriptome profiling in breast cancer cells. J Biol Chem 2012; 287:29516-28. [PMID: 22761433 DOI: 10.1074/jbc.m111.335943] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although underexpression of miR-9 in cancer cells is reported in many cancer types, it is currently difficult to classify miR-9 as a tumor suppressor or an oncomir. We demonstrate that miR-9 expression is down-regulated in MCF-7 and MDA-MB-231 breast cancer cells compared with MCF-10-2A normal breast cell line. Increasing miR-9 expression levels in breast cancer cells induced anti-proliferative, anti-invasive, and pro-apoptotic activity. In addition, microarray profiling of the transcriptome of MCF-7 cells overexpressing miR-9 identified six novel direct miR-9 targets (AP3B1, CCNG1, LARP1, MTHFD1L, MTHFD2, and SRPK1). Among these, MTHFD2 was identified as a miR-9 target gene that affects cell proliferation. Knockdown of MTHFD2 mimicked the effect observed when miR-9 was overexpressed by decreasing cell viability and increasing apoptotic activity. Despite variable effects on different cell lines, proliferative and anti-apoptotic activity of MTHFD2 was demonstrated whereby it could escape from miR-9-directed suppression (by overexpression of MTHFD2 with mutated miR-9 binding sites). Furthermore, endogenous expression levels of miR-9 and MTHFD2 displayed inverse expression profiles in primary breast tumor samples compared with normal breast samples; miR-9 was down-regulated, and MTHFD2 was up-regulated. These results indicate anti-proliferative and pro-apoptotic activity of miR-9 and that direct targeting of MTHFD2 can contribute to tumor suppressor-like activity of miR-9 in breast cancer cells.
Collapse
Affiliation(s)
- S Duygu Selcuklu
- Genetics and Biotechnology Laboratory, Centre for Chromosome Biology, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Syam S, Abdelwahab SI, Al-Mamary MA, Mohan S. Synthesis of chalcones with anticancer activities. Molecules 2012; 17:6179-95. [PMID: 22634834 PMCID: PMC6268294 DOI: 10.3390/molecules17066179] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 04/20/2012] [Accepted: 04/27/2012] [Indexed: 01/12/2023] Open
Abstract
Several chalcones were synthesized and their in vitro cytotoxicity against various human cell lines, including human breast adenocarcinoma cell line MCF-7, human lung adenocarcinoma cell line A549, human prostate cancer cell line PC3, human adenocarcinoma cell line HT-29 (colorectal cancer) and human normal liver cell line WRL-68 was evaluated. Most of the compounds being active cytotoxic agents, four of them with minimal IC50 values were chosen and studied in detail with MCF-7 cells. The compounds 1, 5, 23, and 25 were capable in eliciting apoptosis in MCF-7 cells as shown by multiparameter cytotoxicity assay and caspase-3/7, -8, and -9 activities (p < 0.05). The ROS level showed 1.3-fold increase (p < 0.05) at the low concentrations used and thus it was concluded that the compounds increased the ROS level eventually leading to apoptosis in MCF-7 cells through intrinsic as well as extrinsic pathways.
Collapse
Affiliation(s)
- Suvitha Syam
- UPM-MAKNA Cancer Research Lab, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia;
| | - Siddig Ibrahim Abdelwahab
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia;
- Author to whom correspondence should be addressed; ; Tel.: +603-7967-4909; Fax: +603-7967-4964
| | - Mohammed Ali Al-Mamary
- Department of Chemistry, Faculty of Science and Arts in Al-Mukhwah, Al-Baha University, Al-Baha 65431, Saudi Arabia;
| | - Syam Mohan
- Centre for Natural Products and Drug Discovery (CENAR), Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia;
| |
Collapse
|
92
|
Tseng LM, Liu CY, Chang KC, Chu PY, Shiau CW, Chen KF. CIP2A is a target of bortezomib in human triple negative breast cancer cells. Breast Cancer Res 2012; 14:R68. [PMID: 22537901 PMCID: PMC3446403 DOI: 10.1186/bcr3175] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 04/16/2012] [Accepted: 04/26/2012] [Indexed: 11/10/2022] Open
Abstract
Introduction Triple negative breast cancer (TNBC) is very aggressive and currently has no specific therapeutic targets, such as hormone receptors or human epidermal growth factor receptor type 2 (HER2); therefore, prognosis is poor. Bortezomib, a proteasome inhibitor, may exert efficacy in TNBC through its multiple cellular effects. Here, we tested the efficacy of bortezomib and examined the drug mechanism in breast cancer cells. Methods Five breast cancer cell lines: TNBC HCC-1937, MDA-MB-231, and MDA-MB-468; HER2-overexpressing MDA-MB-453; and estrogen receptor positive MCF-7 were used for in vitro studies. Apoptosis was examined by both flow cytometry and Western Blot. Signal transduction pathways in cells were assessed by Western Blot. Gene silencing was done by small interfering RNA (siRNA). In vivo efficacy of bortezomib was tested in nude mice with breast cancer xenografts. Immunohistochemical study was performed on tumor tissues from patients with TNBC. Results Bortezomib induced significant apoptosis, which was independent of its proteasome inhibition, in the three TNBC cell lines, but not in MDA-MB-453 or MCF-7 cells. Furthermore, cancerous inhibitor of protein phosphatase 2A (CIP2A), a cellular inhibitor of protein phosphatase 2A (PP2A), mediated the apoptotic effect of bortezomib. We showed that bortezomib inhibited CIP2A in association with p-Akt downregulation in a dose- and time-dependent manner in all sensitive TNBC cells, whereas no alterations in CIP2A expression and p-Akt were noted in bortezomib-resistant cells. Overexpression of CIP2A upregulated p-Akt and protected MDA-MB-231 and MDA-MB-468 cells from bortezomib-induced apoptosis, whereas silencing CIP2A by siRNA overcame the resistance to bortezomib-induced apoptosis in MCF-7 cells. In addition, bortezomib downregulated CIP2A mRNA but did not affect the degradation of CIP2A protein. Furthermore, bortezomib exerted in vivo antitumor activity in HCC-1937 xenografted tumors, but not in MCF-7 tumors. Bortezomib downregulated CIP2A expression in the HCC-1937 tumors but not in the MCF-7 tumors. Importantly, CIP2A expression is readily detectable in tumor samples from TNBC patients. Conclusions CIP2A is a major determinant mediating bortezomib-induced apoptosis in TNBC cells. CIP2A may thus be a potential therapeutic target in TNBC.
Collapse
Affiliation(s)
- Ling-Ming Tseng
- Department of Surgery, Taipei Veterans General Hospital, No. 201 Sec. 2 Shih-Pai Road, Taipei 112, Taiwan
| | | | | | | | | | | |
Collapse
|
93
|
Yoo CB, Yun SM, Jo C, Koh YH. γ-Secretase-dependent cleavage of E-cadherin by staurosporine in breast cancer cells. ACTA ACUST UNITED AC 2012; 19:11-6. [PMID: 22401168 DOI: 10.3109/15419061.2012.665969] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
E-cadherin is a transmembrane protein that serves as a cell adhesion molecule component of the adherens junction. We previously showed that cadmium induced γ-secretase-dependent E-cadherin cleavage via oxidative stress. In this study, we report that staurosporine (STS)-induced apoptosis induces caspase-2 and/or -8-dependent E-cadherin cleavage. STS increased γ-secretase-dependent cleavage of E-cadherin in breast cancer cells through caspase activation. The ability of the γ-secretase inhibitor DAPT and the caspase inhibitor zVAD-FMK to block E-cadherin cleavage provided support for these results. The cleavage of E-cadherin was blocked by caspase-2 and -8 inhibitors. Immunofluorescence analysis confirmed that, along with the disappearance of E-cadherin staining at the cell surface, the E-cadherin cytoplasmic domain accumulated in the cytosol. In the presence of an inhibitor of γ-secretase or caspase, the cleavage of E-cadherin was partially blocked. Our findings suggest that activation of caspase-2/-8 stimulated the disruption of cadherin-mediated cell-cell contacts in apoptotic cells via γ-secretase activation.
Collapse
Affiliation(s)
- Chul Bae Yoo
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Gangoe-myeon, Cheongwon-gun, Chungcheongbuk-do, Republic of Korea
| | | | | | | |
Collapse
|
94
|
Ajabnoor GMA, Crook T, Coley HM. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis 2012; 3:e260. [PMID: 22278287 PMCID: PMC3270273 DOI: 10.1038/cddis.2011.139] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Taxanes remain first line chemotherapy in management of metastatic breast cancer and have a key role in epithelial ovarian cancer, with increasingly common use of weekly paclitaxel dosing regimens. However, their clinical utility is limited by the development of chemoresistance. To address this, we modelled in vitro paclitaxel resistance in MCF-7 cells. We show that at clinically relevant drug doses, emerging paclitaxel resistance is associated with profound changes in cell death responses and a switch from apoptosis to autophagy as the principal mechanism of drug-induced cytotoxicity. This was characterised by a complete absence of caspase-mediated apoptotic cell death (using the pan-caspase-inhibitor Z-VAD) in paclitaxel-resistant MCF-7TaxR cells, compared with parent MCF-7 or MDA-MB-231 cell lines on paclitaxel challenge, downregulation of caspase-7, caspase-9 and BCl2-interacting mediator of cell death (BIM) expression. Silencing with small interfering RNA to BIM in MCF-7 parental cells was sufficient to confer paclitaxel resistance, inferring the significance in downregulation of this protein in contributing to the resistant phenotype of the MCF-7TaxR cell line. Conversely, there was an increased autophagic response in the MCF-7TaxR cell line with reduced phospho-mTOR and relative resistance to the mTOR inhibitors rapamycin and RAD001. In conclusion, we show for the first time that paclitaxel resistance is associated with profound changes in cell death response with deletion of multiple apoptotic factors balanced by upregulation of the autophagic pathway and collateral sensitivity to platinum.
Collapse
Affiliation(s)
- G M A Ajabnoor
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, P.O Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
95
|
Smith MK, Koch PJ, Reynolds SD. Direct and indirect roles for β-catenin in facultative basal progenitor cell differentiation. Am J Physiol Lung Cell Mol Physiol 2012; 302:L580-94. [PMID: 22227204 DOI: 10.1152/ajplung.00095.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The conducting airway epithelium is maintained and repaired by endogenous progenitor cells. Dysregulated progenitor cell proliferation and differentiation is thought to contribute to epithelial dysplasia in chronic lung disease. Thus modification of progenitor cell function is an attractive therapeutic goal and one that would be facilitated by knowledge of the molecular pathways that regulate their behavior. We modeled the human tracheobronchial epithelium using primary mouse tracheal epithelial cell cultures that were differentiated by exposure to the air-liquid-interface (ALI). A basal cell subset, termed facultative basal cell progenitors (FBP), initiate these cultures and are the progenitor for tracheal-specific secretory cells, the Clara-like cell, and ciliated cells. To test the hypothesis that β-catenin is necessary for FBP function, ALI cultures were generated from mice homozygous for the Ctnb(flox(E2-6)) allele. In this model, exons 2-6 of the β-catenin gene are flanked by LoxP sites, allowing conditional knockout of β-catenin. The β-catenin locus was modified through transduction with Adenovirus-5-encoding Cre recombinase. This approach generated a mosaic epithelium, comprised of β-catenin wild-type and β-catenin knockout cells. Dual immunostaining and quantitative histomorphometric analyses demonstrated that β-catenin played a direct role in FBP-to-ciliated cell differentiation and that it regulated cell-cell interactions that were necessary for FBP-to-Clara-like cell differentiation. β-catenin was also necessary for FBP proliferation and long-term FBP viability. We conclude that β-catenin is a critical determinant of FBP function and suggest that dysregulation of the β-catenin signaling pathway may contribute to disease pathology.
Collapse
|
96
|
Végran F, Boidot R, Solary E, Lizard-Nacol S. A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly. PLoS One 2011; 6:e29058. [PMID: 22216167 PMCID: PMC3245238 DOI: 10.1371/journal.pone.0029058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 11/20/2011] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing of caspase-3 produces a short isoform caspase-3s that antagonizes caspase-3 apoptotic activity. However, the mechanism of apoptosis inhibition by caspase-3s remains unknown. Here we show that exogenous caspase-3 sensitizes MCF-7 and HBL100 breast cancers cells to chemotherapeutic treatments such as etoposide and methotrexate whereas co-transfection with caspase-3s strongly inhibits etoposide and methotrexate-induced apoptosis underlying thus the anti-apoptotic role of caspase-3s. In caspase-3 transfected cells, lamin-A and α-fodrin were cleaved when caspase-3 was activated by etoposide or methotrexate. When caspase-3s was co-transfected, this cleavage was strongly reduced. Depletion of caspase-3 by RNA interference in HBL100 containing endogenous caspase-3s caused reduction in etoposide and methotrexate-induced apoptosis, whereas the depletion of caspase-3s sensitized cells to chemotherapy. In the presence of caspase-3s, a lack of interaction between caspase-3 and caspase-9 was observed. Immunoprecipitation assays showed that caspase-3s binds the pro-forms of caspase-3. This result suggested that the absence of interaction with caspase-9 when both variants of caspase-3 are present contribute to block the apoptosome assembly and inhibit apoptosis. These data support that caspases-3s negatively interferes with caspase-3 activation and apoptosis in breast cancer, and that it can play key roles in the modulation of response to chemotherapeutic treatments.
Collapse
Affiliation(s)
- Frédérique Végran
- Unit of Molecular Biology - Centre Georges François Leclerc, Dijon, France
- Federative Institute of Research IFR “Santé-STIC” - University of Burgundy, Dijon, France
- UMR-INSERM U-866, Dijon, France
| | - Romain Boidot
- Unit of Molecular Biology - Centre Georges François Leclerc, Dijon, France
- Federative Institute of Research IFR “Santé-STIC” - University of Burgundy, Dijon, France
| | - Eric Solary
- Federative Institute of Research IFR “Santé-STIC” - University of Burgundy, Dijon, France
- UMR-INSERM U-866, Dijon, France
| | - Sarab Lizard-Nacol
- Unit of Molecular Biology - Centre Georges François Leclerc, Dijon, France
- Federative Institute of Research IFR “Santé-STIC” - University of Burgundy, Dijon, France
| |
Collapse
|
97
|
Diaz R, Quiles MT, Guillem-Marti J, Lopez-Cano M, Huguet P, Ramon-Y-Cajal S, Reventos J, Armengol M, Arbos MA. Apoptosis-like cell death induction and aberrant fibroblast properties in human incisional hernia fascia. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2641-53. [PMID: 21641387 DOI: 10.1016/j.ajpath.2011.02.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 02/17/2011] [Accepted: 02/28/2011] [Indexed: 02/06/2023]
Abstract
Incisional hernia often occurs following laparotomy and can be a source of serious problems. Although there is evidence that a biological cause may underlie its development, the mechanistic link between the local tissue microenvironment and tissue rupture is lacking. In this study, we used matched tissue-based and in vitro primary cell culture systems to examine the possible involvement of fascia fibroblasts in incisional hernia pathogenesis. Fascia biopsies were collected at surgery from incisional hernia patients and non-incisional hernia controls. Tissue samples were analyzed by histology and immunoblotting methods. Fascia primary fibroblast cultures were assessed at morphological, ultrastructural, and functional levels. We document tissue and fibroblast loss coupled to caspase-3 activation and induction of apoptosis-like cell-death mechanisms in incisional hernia fascia. Alterations in cytoskeleton organization and solubility were also observed. Incisional hernia fibroblasts showed a consistent phenotype throughout early passages in vitro, which was characterized by significantly enhanced cell proliferation and migration, reduced adhesion, and altered cytoskeleton properties, as compared to non-incisional hernia fibroblasts. Moreover, incisional hernia fibroblasts displayed morphological and ultrastructural alterations compatible with autophagic processes or lysosomal dysfunction, together with enhanced sensitivity to proapoptotic challenges. Overall, these data suggest an ongoing complex interplay of cell death induction, aberrant fibroblast function, and tissue loss in incisional hernia fascia, which may significantly contribute to altered matrix maintenance and tissue rupture in vivo.
Collapse
Affiliation(s)
- Ramon Diaz
- Institut de Recerca, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Zhang Y, Johansson E, Miller ML, Jänicke RU, Ferguson DJ, Plas D, Meller J, Anderson MW. Identification of a conserved anti-apoptotic protein that modulates the mitochondrial apoptosis pathway. PLoS One 2011; 6:e25284. [PMID: 21980415 PMCID: PMC3184134 DOI: 10.1371/journal.pone.0025284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 08/31/2011] [Indexed: 11/18/2022] Open
Abstract
Here we identified an evolutionarily highly conserved and ubiquitously expressed protein (C9orf82) that shows structural similarities to the death effector domain of apoptosis-related proteins. RNAi knockdown of C9orf82 induced apoptosis in A-549 and MCF7/casp3-10b lung and breast carcinoma cells, respectively, but not in cells lacking caspase-3, caspase-10 or both. Apoptosis was associated with activated caspases-3, -8, -9 and -10, and inactivation of caspases 10 or 3 was sufficient to block apoptosis in this pathway. Apoptosis upon knockdown of C9orf82 was associated with increased caspase-10 expression and activation, which was required for the generation of an 11 kDa tBid fragment and activation of Caspase-9. These data suggest that C9orf82 functions as an anti-apoptotic protein that modulates a caspase-10 dependent mitochondrial caspase-3/9 feedback amplification loop. We designate this ubiquitously expressed and evolutionarily conserved anti-apoptotic protein Conserved Anti-Apoptotic Protein (CAAP). We also demonstrated that treatment of MCF7/casp3-10b cells with staurosporine and etoposides induced apoptosis and knockdown of CAAP expression. This implies that the CAAP protein could be a target for chemotherapeutic agents.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Elisabet Johansson
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Marian L. Miller
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Reiner U. Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Clinical Center of the University of Düsseldorf, Düsseldorf, Germany
| | - Donald J. Ferguson
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | - David Plas
- Department of Cancer and Cell Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jarek Meller
- Division of Biomedical Informatics, Departments of Environmental Health and Biomedical Engineering, University of Cincinnati, Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Marshall W. Anderson
- Department of Medicine, Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
99
|
Ulukaya E, Acilan C, Yilmaz Y. Apoptosis: why and how does it occur in biology? Cell Biochem Funct 2011; 29:468-80. [PMID: 21773978 DOI: 10.1002/cbf.1774] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/30/2011] [Accepted: 05/17/2011] [Indexed: 01/24/2023]
Abstract
The literature on apoptosis has grown tremendously in recent years, and the mechanisms that are involved in this programmed cell death pathway have been enlightened. It is now known that apoptosis takes place starting from early development to adult stage for the homeostasis of multicellular organisms, during disease development and in response to different stimuli in many different systems. In this review, we attempted to summarize the current knowledge on the circumstances and the mechanisms that lead to induction of apoptosis, while going over the molecular details of the modulator and mediators of apoptosis as well as drawing the lines between programmed and non-programmed cell death pathways. The review will particularly focus on Bcl-2 family proteins, the role of different caspases in the process of apoptosis, and their inhibitors as well as the importance of apoptosis during different disease states. Understanding the molecular mechanisms involved in apoptosis better will make a big impact on human diseases, particularly cancer, and its management in the clinics.
Collapse
Affiliation(s)
- Engin Ulukaya
- Medical School of Uludag University, Medical Biochemistry Department, Bursa, Turkey.
| | | | | |
Collapse
|
100
|
Węsierska-Gądek J, Hackl S, Zulehner N, Maurer M, Komina O. Reconstitution of human MCF-7 breast cancer cells with caspase-3 does not sensitize them to action of CDK inhibitors. J Cell Biochem 2011; 112:273-88. [PMID: 21080333 DOI: 10.1002/jcb.22918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human MCF-7 breast cancer cells are resistant to pro-apoptotic stimuli due to caspase-3 inactivation. On the other hand, they should be sensitive to agents like selective pharmacological inhibitors of cyclin-dependent kinases (CDKs) that (re)activate p53 tumor suppressor protein because they harbor intact p53 pathways. In this study we examined whether reconstitution of caspase-3 in MCF-7 cells sensitizes them to inhibitors of CDKs, by analyzing the effects of roscovitine (ROSC) and olomoucine (OLO), two closely related selective pharmacological CDK inhibitors, on both mother MCF-7 cells and a secondary mutant line, MCF-7.3.28 that stably expresses human caspase-3. The results show that ROSC is, as expected, much more potent than OLO. Surprisingly; however, ROSC and OLO reduced proliferation of parental MCF-7 cells more strongly than caspase-3-proficient counterparts. Both inhibitors arrest human breast cancer cells at the G(2)-phase of the cell cycle. Analysis of cell-cycle regulators by immunoblotting revealed that ROSC strongly induces p53 protein activity by inducing its phosphorylation at Ser46 in the MCF-7 cells lacking caspase-3, but not in caspase-3-proficient cells. Furthermore, reconstitution of caspase-3 in MCF-7 cells neither elevates the mitochondrial apoptosis rate nor significantly increases caspases activity upon ROSC treatment. However, the stabilization of p53 in response to DNA damaging agents is the same in both caspase negative and positive MCF-7 cells. Cytotoxic agents induce caspase-3-dependent apoptosis in caspase-3-proficient cells. These results indicate that reconstitution of MCF-7 cancer cells with caspase-3 sensitize them to the action of DNA damaging agents but not to ATP-like pharmacological inhibitors of CDKs.
Collapse
Affiliation(s)
- Józefa Węsierska-Gądek
- Dept. of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|