51
|
Ruf W, Samad F. Tissue factor pathways linking obesity and inflammation. Hamostaseologie 2015; 35:279-83. [PMID: 25623940 DOI: 10.5482/hamo-14-11-0068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/13/2015] [Indexed: 01/26/2023] Open
Abstract
Obesity is a major cause for a spectrum of metabolic syndrome-related diseases that include insulin resistance, type 2 diabetes, and steatosis of the liver. Inflammation elicited by macrophages and other immune cells contributes to the metabolic abnormalities in obesity. In addition, coagulation activation following tissue factor (TF) upregulation in adipose tissue is frequently found in obese patients and particularly associated with diabetic complications. Genetic and pharmacological evidence indicates that TF makes significant contributions to the development of the metabolic syndrome by signaling through G protein-coupled protease activated receptors (PARs). Adipocyte TF-PAR2 signaling contributes to diet-induced obesity by decreasing metabolism and energy expenditure, whereas hematopoietic TF-PAR2 signaling is a major cause for adipose tissue inflammation, hepatic steatosis and inflammation, as well as insulin resistance. In the liver of mice on a high fat diet, PAR2 signaling increases transcripts of key regulators of gluconeogenesis, lipogenesis and inflammatory cytokines. Increased markers of hepatic gluconeogenesis correlate with decreased activation of AMP-activated protein kinase (AMPK), a known regulator of these pathways and a target for PAR2 signaling. Clinical markers of a TF-induced prothrombotic state may thus indicate a risk in obese patient for developing complications of the metabolic syndrome.
Collapse
Affiliation(s)
- W Ruf
- Wolfram Ruf, M.D., Professor, Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, Mail stop: SP258, Tel. 858/784-2748, Fax -8480, E-mail: ,
| | | |
Collapse
|
52
|
Koizume S, Miyagi Y. Breast cancer phenotypes regulated by tissue factor-factor VII pathway: Possible therapeutic targets. World J Clin Oncol 2014; 5:908-920. [PMID: 25493229 PMCID: PMC4259953 DOI: 10.5306/wjco.v5.i5.908] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/31/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a leading cause of cancer death in women, worldwide. Fortunately, breast cancer is relatively chemosensitive, with recent advances leading to the development of effective therapeutic strategies, significantly increasing disease cure rate. However, disease recurrence and treatment of cases lacking therapeutic molecular targets, such as epidermal growth factor receptor 2 and hormone receptors, referred to as triple-negative breast cancers, still pose major hurdles in the treatment of breast cancer. Thus, novel therapeutic approaches to treat aggressive breast cancers are essential. Blood coagulation factor VII (fVII) is produced in the liver and secreted into the blood stream. Tissue factor (TF), the cellular receptor for fVII, is an integral membrane protein that plays key roles in the extrinsic coagulation cascade. TF is overexpressed in breast cancer tissues. The TF-fVII complex may be formed in the absence of injury, because fVII potentially exists in the tissue fluid within cancer tissues. The active form of this complex (TF-fVIIa) may stimulate the expression of numerous malignant phenotypes in breast cancer cells. Thus, the TF-fVII pathway is a potentially attractive target for breast cancer treatment. To date, a number of studies investigating the mechanisms by which TF-fVII signaling contributes to breast cancer progression, have been conducted. In this review, we summarize the mechanisms controlling TF and fVII synthesis and regulation in breast cancer cells. Our current understanding of the TF-fVII pathway as a mediator of breast cancer progression will be also described. Finally, we will discuss how this knowledge can be applied to the design of future therapeutic strategies.
Collapse
|
53
|
Tinholt M, Viken MK, Dahm AE, Vollan HKM, Sahlberg KK, Garred O, Børresen-Dale AL, Jacobsen AF, Kristensen V, Bukholm I, Kåresen R, Schlichting E, Skretting G, Lie BA, Sandset PM, Iversen N. Increased coagulation activity and genetic polymorphisms in the F5, F10 and EPCR genes are associated with breast cancer: a case-control study. BMC Cancer 2014; 14:845. [PMID: 25407022 PMCID: PMC4251949 DOI: 10.1186/1471-2407-14-845] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022] Open
Abstract
Background The procoagulant state in cancer increases the thrombotic risk, but also supports tumor progression. To investigate the molecular mechanisms controlling cancer and hemostasis, we conducted a case-control study of genotypic and phenotypic variables of the tissue factor (TF) pathway of coagulation in breast cancer. Methods 366 breast cancer patients and 307 controls were genotyped for SNPs (n = 41) in the F2, F3 (TF), F5, F7, F10, TFPI and EPCR genes, and assayed for plasma coagulation markers (thrombin generation, activated protein C (APC) resistance, D-dimer, antithrombin, protein C, protein S, and TF pathway inhibitor (TFPI)). Associations with breast cancer were evaluated using logistic regression to obtain odds ratios (ORs) and 95% confidence intervals (CIs), or the chi-square test. Results Four SNPs in F5 (rs12120605, rs6427202, rs9332542 and rs6427199), one in F10 (rs3093261), and one in EPCR (rs2069948) were associated with breast cancer. EPCR rs2069948 was associated with estrogen receptor (ER) and progesterone receptor (PR) positivity, while the SNPs in F5 appeared to follow hormone receptor negative and triple negative patients. The prothrombotic polymorphisms factor V Leiden (rs6025) and prothrombin G20210A (rs1799963) were not associated with breast cancer. High APC resistance was associated with breast cancer in both factor V Leiden non-carriers (OR 6.5, 95% CI 4.1-10.4) and carriers (OR 38.3, 95% CI 6.2-236.6). The thrombin parameters short lag times (OR 5.8, 95% CI 3.7-9.2), short times to peak thrombin (OR 7.1, 95% CI 4.4-11.3), and high thrombin peak (OR 6.1, 95% CI 3.9-9.5) predicted presence of breast cancer, and high D-dimer also associated with breast cancer (OR 2.0, 95% CI 1.3-3.3). Among the coagulation inhibitors, low levels of antithrombin associated with breast cancer (OR 5.7, 95% CI 3.6-9.0). The increased coagulability was not explained by the breast cancer associated SNPs, and was unaffected by ER, PR and triple negative status. Conclusions A procoagulant phenotype was found in the breast cancer patients. Novel associations with SNPs in F5, F10 and EPCR to breast cancer susceptibility were demonstrated, and the SNPs in F5 were confined to hormone receptor negative and triple negative patients. The study supports the importance of developing new therapeutic strategies targeting coagulation processes in cancer. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-845) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
54
|
Lin ZM, Zhao JX, Duan XN, Zhang LB, Ye JM, Xu L, Liu YH. Effects of tissue factor, PAR-2 and MMP-9 expression on human breast cancer cell line MCF-7 invasion. Asian Pac J Cancer Prev 2014; 15:643-6. [PMID: 24568471 DOI: 10.7314/apjcp.2014.15.2.643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE This study aimed to explore the expression of tissue factor (TF), protease activated receptor-2 (PAR-2), and matrix metalloproteinase-9 (MMP-9) in the MCF-7 breast cancer cell line and influence on invasiveness. METHODS Stable MCF-7 cells transfected with TF cDNA and with TF ShRNA were established. TF, PAR-2, and MMP-9 protein expression was analyzed using indirect immunofluorescence and invasiveness was evaluated using a cell invasion test. Effects of an exogenous PAR-2 agonist were also examined. RESULTS TF protein expression significantly differed between the TF cDNA and TF ShRNA groups. MMP-9 protein expression was significantly correlated with TF protein expression, but PAR-2 protein expression was unaffected. The PAR- 2 agonist significantly enhanced MMP-9 expression and slightly increased TF and PAR-2 expression in the TF ShRNA group, but did not significantly affect protein expression in MCF-7 cells transfected with TF cDNA. TF and MMP-9 expression was positively correlated with the invasiveness of tumor cells. CONCLUSION TF, PAR-2, and MMP-9 affect invasiveness of MCF-7 cells. TF may increase MMP-9 expression by activating PAR-2.
Collapse
Affiliation(s)
- Zeng-Mao Lin
- Breast Disease Center, Peking University First Hospital, Beijing, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
55
|
D'Asti E, Kool M, Pfister SM, Rak J. Coagulation and angiogenic gene expression profiles are defined by molecular subgroups of medulloblastoma: evidence for growth factor-thrombin cross-talk. J Thromb Haemost 2014; 12:1838-49. [PMID: 25163932 DOI: 10.1111/jth.12715] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND The coagulation system becomes activated during progression and therapy of high-grade brain tumors. Triggering tissue factor (F3/TF) and thrombin receptors (F2R/PAR-1) may influence the vascular tumor microenvironment and angiogenesis irrespective of clinically apparent thrombosis. These processes are poorly understood in medulloblastoma (MB), in which diverse oncogenic pathways define at least four molecular disease subtypes (WNT, SHH, Group 3 and Group 4). We asked whether there is a link between molecular subtype and the network of vascular regulators expressed in MB. METHODS Using R2 microarray analysis and visualization platform, we mined MB datasets for differential expression of vascular (coagulation and angiogenesis)-related genes, and explored their link to known oncogenic drivers. We evaluated the functional significance of this link in DAOY cells in vitro following growth factor and thrombin stimulation. RESULTS The coagulome and angiome differ across MB subtypes. F3/TF and F2R/PAR-1 mRNA expression are upregulated in SHH tumors and correlate with higher levels of hepatocyte growth factor receptor (MET). Cultured DAOY (MB) cells exhibit an up-regulation of F3/TF and F2R/PAR-1 following combined SHH and MET ligand (HGF) treatment. These factors cooperate with thrombin, impacting the profile of vascular regulators, including interleukin 1β (IL1B) and chondromodulin 1 (LECT1). CONCLUSIONS Coagulation pathway sensors (F3/TF, F2R/PAR-1) are expressed in MB in a subtype-specific manner, and may be functionally linked to SHH and MET circuitry. Thus coagulation system perturbations may elicit subtype/context-specific changes in vascular and cellular responses in MB.
Collapse
Affiliation(s)
- E D'Asti
- Cancer and Angiogenesis Laboratory, Montreal Children's Hospital, McGill University, Montreal, QC, Canada
| | | | | | | |
Collapse
|
56
|
Mohan Rao LV, Esmon CT, Pendurthi UR. Endothelial cell protein C receptor: a multiliganded and multifunctional receptor. Blood 2014; 124:1553-62. [PMID: 25049281 PMCID: PMC4155268 DOI: 10.1182/blood-2014-05-578328] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023] Open
Abstract
Endothelial cell protein C receptor (EPCR) was first identified and isolated as a cellular receptor for protein C on endothelial cells. EPCR plays a crucial role in the protein C anticoagulant pathway by promoting protein C activation. In the last decade, EPCR has received wide attention after it was discovered to play a key role in mediating activated protein C (APC)-induced cytoprotective effects, including antiapoptotic, anti-inflammatory, and barrier stabilization. APC elicits cytoprotective signaling through activation of protease activated receptor-1 (PAR1). Understanding how EPCR-APC induces cytoprotective effects through activation of PAR1, whose activation by thrombin is known to induce a proinflammatory response, has become a major research focus in the field. Recent studies also discovered additional ligands for EPCR, which include factor VIIa, Plasmodium falciparum erythrocyte membrane protein, and a specific variant of the T-cell receptor. These observations open unsuspected new roles for EPCR in hemostasis, malaria pathogenesis, innate immunity, and cancer. Future research on these new discoveries will undoubtedly expand our understanding of the role of EPCR in normal physiology and disease, as well as provide novel insights into mechanisms for EPCR multifunctionality. Comprehensive understanding of EPCR may lead to development of novel therapeutic modalities in treating hemophilia, inflammation, cerebral malaria, and cancer.
Collapse
Affiliation(s)
- L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center, Tyler, TX; and
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center, Tyler, TX; and
| |
Collapse
|
57
|
The endothelial protein C receptor enhances hemostasis of FVIIa administration in hemophilic mice in vivo. Blood 2014; 124:1157-65. [PMID: 24957146 DOI: 10.1182/blood-2014-04-567297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recombinant activated human factor VII (rhFVIIa) is an established hemostatic agent in hemophilia, but its mechanism of action remains unclear. Although tissue factor (TF) is its natural receptor, rhFVIIa also interacts with the endothelial protein C receptor (EPCR) through its γ-carboxyglutamic acid (Gla) domain, with unknown hemostatic consequences in vivo. Here, we study whether EPCR facilitates rhFVIIa hemostasis in hemophilia using a mouse model system. Mouse activated FVII (mFVIIa) is functionally homologous to rhFVIIa, but binds poorly to mouse EPCR (mEPCR). We modified mFVIIa to gain mEPCR binding using 3 amino acid changes in its Gla domain (L4F/L8M/W9R). The resulting molecule mFVIIa-FMR specifically bound mEPCR in vitro and in vivo and was identical to mFVIIa with respect to TF affinity and procoagulant functions. In macrovascular injury models, hemophilic mice administered mFVIIa-FMR exhibited superior hemostatic activity compared with mFVIIa. This was abolished by blocking mEPCR and was absent in ex vivo whole blood coagulation assays, implicating a specific mFVIIa-FMR and endothelial mEPCR interaction. Because mFVIIa-FMR models the TF-dependent and EPCR binding properties of rhFVIIa, our data unmask a novel contribution of EPCR on the action of rhFVIIa administration in hemophilia, prompting the rational design of improved and safer rhFVIIa therapeutics.
Collapse
|
58
|
Abstract
In this issue of Blood, Sparkenbaugh et al identify coagulation factor Xa (FXa), the target for new protease-selective oral anticoagulants, as a crucial mediator for both coagulation abnormalities and chronic vascular inflammation that characterize sickle cell disease.1
Collapse
|
59
|
Alberelli MA, De Candia E. Functional role of protease activated receptors in vascular biology. Vascul Pharmacol 2014; 62:72-81. [PMID: 24924409 DOI: 10.1016/j.vph.2014.06.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 01/22/2023]
Abstract
Protease activated receptors (PARs) are a small family of G protein-coupled receptors (GPCR) mediating the cellular effects of some proteases of the coagulation system, such as thrombin, or other proteases, such as trypsin or metalloproteinase 1. As the prototype of PARs, PAR1 is a seven transmembrane GPCR that, upon cleavage by thrombin, unmasks a new amino-terminus able to bind intramolecularly to PAR1 itself thus inducing signaling. In the vascular system, thrombin and other proteases of the coagulation-fibrinolysis system, such as plasmin, factor VIIa and factor Xa, activated protein C, are considered physiologically relevant agonists, and PARs appear to largely account for the cellular effects of these enzymes. In the vasculature, PARs are expressed on platelets, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). In the vessel wall, under physiological conditions, PARs are mainly expressed in ECs and participate in the regulation of vascular tone, by inducing endothelium-dependent relaxation. PAR activation on ECs promotes conversion of these cells into a proinflammatory phenotype, causes increase of vascular permeability, and the exposure/secretion of proteins and cytokines mediating the local accumulation of platelets and leukocytes. These effects contribute to the vascular consequences of sepsis and of diseases such as acute lung injury and acute respiratory distress syndrome. In normal arteries PARs are to a much lesser amount expressed on VSMCs. However, in conditions associated with endothelial dysfunction, PARs mediate contraction, proliferation, migration, hypertrophy of VSMCs and their production of extracellular matrix, thereby contributing to the pathophysiology of atherosclerosis and hypertension. Inhibition of protease-PAR interaction might thus become a potential therapeutic target in various vascular diseases.
Collapse
Affiliation(s)
- Maria Adele Alberelli
- Hemostasis and Thrombosis Unit, Department of Internal Medicine, Agostino Gemelli Hospital School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Erica De Candia
- Hemostasis and Thrombosis Unit, Department of Internal Medicine, Agostino Gemelli Hospital School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
60
|
Abstract
Trauma is a leading cause of death and disability. Hemorrhage is the major mechanism responsible for death during the first 24 hours following trauma. One quarter of severely injured patients present in the emergency room with acute coagulopathy of trauma and shock (ACOT). The drivers of ACOT are tissue hypoperfusion, inflammation, and activation of the neurohumoral system. ACOT is a result of protein C activation with cleavage of activated factor VIII and V and inhibition of plasminogen activator inhibitor-1 (PAI-1). The resuscitation-associated coagulopathy (RAC) is secondary to a combination of acidosis, hypothermia and dilution from intravenous blood and fluid therapy. RAC may further aggravate acidosis and hypoxia resulting in a vicious cycle. This review focuses on the biology of the trauma-associated coagulopathy, and reviews current therapeutic strategies.
Collapse
Affiliation(s)
- Pierre Noel
- Division of Hematology, Mayo College of Medicine, Phoenix, AZ 85054, USA.
| | | | | |
Collapse
|
61
|
Three polymorphisms in promoter of protein C gene with endothelial protein c receptor gene and risk of venous thrombosis. Blood Coagul Fibrinolysis 2013; 24:814-7. [PMID: 24158116 DOI: 10.1097/mbc.0b013e32836466cb] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The primary abnormalities that are associated with a risk of venous thrombosis are the deficiencies of protein C. Protein C (PROC), encoded by the PROC gene, acts through its affinity for binding to its transmembrane endothelial cell protein C receptor (EPCR) encoded by the EPCR gene. The objective of the study was to analyze the link between three polymorphisms in the promoter of PROC gene, the polymorphism in the EPCR gene and the occurrence of venous thrombosis. We genotyped 135 individuals - 51 cases with documented venous thrombosis and 84 healthy volunteers without a history of venous thrombosis. The occurrence of the TAA haplotype of PROC gene was significantly more frequent in the controls (N = 48; 57.1%), compared with the patients (N = 18; 35.3%), (P = 0.0206). The healthy individuals were also significantly often carriers of the TAA haplotype and the standard genotype AA of EPCR gene (50 vs. 25.5%) than the patients (P = 0.0066). The frequency of haplotypes CAA and CGT of PROC gene was insignificantly higher in the patients (15.7 and 21.6%, respectively) than in the control group (9.5 and 13.1%). The combination of haplotype CAA/CAA of PROC gene and variant genotype AG of EPCR gene was confirmed with a higher frequency in the group of patients (3.9 vs. 1.2%).This analysis showed that the PROC haplotype associated with a high protein C level (TAA) and the EPCR AA genotype was significantly more frequent in the healthy volunteers (P = 0.0066). Haplotypes associated with a low production of protein C (CAA or CGT) were more frequent in patients with venous thrombosis.
Collapse
|
62
|
Abstract
Clinical and epidemiological studies support a connection between obesity and thrombosis, involving elevated expression of the prothrombotic molecules plasminogen activator inhibitor-1 and tissue factor (TF) and increased platelet activation. Cardiovascular diseases and metabolic syndrome-associated disorders, including obesity, insulin resistance, type 2 diabetes, and hepatic steatosis, involve inflammation elicited by infiltration and activation of immune cells, particularly macrophages, into adipose tissue. Although TF has been clearly linked to a procoagulant state in obesity, emerging genetic and pharmacologic evidence indicate that TF signaling via G protein-coupled protease-activated receptors (PAR2, PAR1) additionally drives multiple aspects of the metabolic syndrome. TF-PAR2 signaling in adipocytes contributes to diet-induced obesity by decreasing metabolism and energy expenditure, whereas TF-PAR2 signaling in hematopoietic and myeloid cells drives adipose tissue inflammation, hepatic steatosis, and insulin resistance. TF-initiated coagulation leading to thrombin-PAR1 signaling also contributes to diet-induced hepatic steatosis and inflammation in certain models. Thus, in obese patients, clinical markers of a prothrombotic state may indicate a risk for the development of complications of the metabolic syndrome. Furthermore, TF-induced signaling could provide new therapeutic targets for drug development at the intersection between obesity, inflammation, and thrombosis.
Collapse
|
63
|
Bouwens EAM, Stavenuiter F, Mosnier LO. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost 2013; 11 Suppl 1:242-53. [PMID: 23809128 PMCID: PMC3713536 DOI: 10.1111/jth.12247] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protein C pathway provides multiple important functions to maintain a regulated balance between hemostasis and host defense systems in response to vascular and inflammatory injury. The anticoagulant protein C pathway is designed to regulate coagulation, maintain the fluidity of blood within the vasculature, and prevent thrombosis, whereas the cytoprotective protein C pathway prevents vascular damage and stress. The cytoprotective activities of activated protein C (APC) include anti-apoptotic activity, anti-inflammatory activity, beneficial alterations of gene expression profiles, and endothelial barrier stabilization. These cytoprotective activities of APC, which require the endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR1), have been a major research focus. Recent insights, such as non-canonical activation of PAR1 at Arg46 by APC and biased PAR1 signaling, provided better understanding of the molecular mechanisms by which APC elicits cytoprotective signaling through cleavage of PAR1. The discovery and development of anticoagulant-selective and cytoprotective-selective APC mutants provided unique opportunities for preclinical research that has been and may continue to be translated to clinical research. New mechanisms for the regulation of EPCR functionality, such as modulation of EPCR-bound lipids that affect APC's cytoprotective activities, may provide new research directions to improve the efficacy of APC to convey its cytoprotective activities to cells. Moreover, emerging novel functions for EPCR expand the roles of EPCR beyond mediating protein C activation and APC-induced PAR1 cleavage. These discoveries increasingly develop our understanding of the protein C pathway, which will conceivably expand its physiological implications to many areas in the future.
Collapse
Affiliation(s)
- E A M Bouwens
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
64
|
Schaffner F, Yokota N, Carneiro-Lobo T, Kitano M, Schaffer M, Anderson GM, Mueller BM, Esmon CT, Ruf W. Endothelial protein C receptor function in murine and human breast cancer development. PLoS One 2013; 8:e61071. [PMID: 23593394 PMCID: PMC3621887 DOI: 10.1371/journal.pone.0061071] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/05/2013] [Indexed: 01/07/2023] Open
Abstract
Several markers identify cancer stem cell-like populations, but little is known about the functional roles of stem cell surface receptors in tumor progression. Here, we show that the endothelial protein C receptor (EPCR), a stem cell marker in hematopoietic, neuronal and epithelial cells, is crucial for breast cancer growth in the orthotopic microenvironment of the mammary gland. Mice with a hypomorphic allele of EPCR show reduced tumor growth in the PyMT-model of spontaneous breast cancer development and deletion of EPCR in established PyMT tumor cells significantly attenuates transplanted tumor take and growth. We find expansion of EPCR+ cancer stem cell-like populations in aggressive, mammary fat pad-enhanced human triple negative breast cancer cells. In this model, EPCR-expressing cells have markedly increased mammosphere- and tumor-cell initiating activity compared to another stable progenitor-like subpopulation present at comparable frequency. We show that receptor blocking antibodies to EPCR specifically attenuate in vivo tumor growth initiated by either EPCR+ cells or the heterogenous mixture of EPCR+ and EPCR- cells. Furthermore, we have identified tumor associated macrophages as a major source for recognized ligands of EPCR, suggesting a novel mechanism by which cancer stem cell-like populations are regulated by innate immune cells in the tumor microenvironment.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cluster Analysis
- Disease Models, Animal
- Endothelial Protein C Receptor
- Female
- Gene Expression Profiling
- Glycoproteins/antagonists & inhibitors
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Humans
- Macrophages/metabolism
- Macrophages/pathology
- Mammary Glands, Animal/metabolism
- Mice
- Neoplastic Stem Cells/metabolism
- Receptors, Cell Surface/antagonists & inhibitors
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Transplantation, Heterologous
- Tumor Burden/genetics
Collapse
Affiliation(s)
- Florence Schaffner
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Naho Yokota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Tatiana Carneiro-Lobo
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Maki Kitano
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael Schaffer
- Biologics Research, Janssen Research and Development, Radnor, Pennsylvania, United States of America
| | - G. Mark Anderson
- Biologics Research, Janssen Research and Development, Radnor, Pennsylvania, United States of America
| | - Barbara M. Mueller
- Cancer Research, Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | - Charles T. Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation and Howard Hughes Medical Institute, Oklahoma City, Oklahoma, United States of America
| | - Wolfram Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
65
|
Keshava S, Sahoo S, Tucker TA, Idell S, Rao LVM, Pendurthi UR. Endothelial cell protein C receptor opposes mesothelioma growth driven by tissue factor. Cancer Res 2013; 73:3963-73. [PMID: 23539451 DOI: 10.1158/0008-5472.can-12-1690] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The procoagulant protein tissue factor (F3) is a powerful growth promoter in many tumors, but its mechanism of action is not well understood. More generally, it is unknown whether hemostatic factors expressed on tumor cells influence tissue factor-mediated effects on cancer progression. In this study, we investigated the influence of tissue factor, endothelial cell protein C receptor (EPCR, PROCR), and protease activated receptor-1 (PAR1, F2R) on the growth of malignant pleural mesothelioma (MPM), using human MPM cells that lack or express tissue factor, EPCR or PAR1, and an orthotopic nude mouse model of MPM. Intrapleural administration of MPM cells expressing tissue factor and PAR1 but lacking EPCR and PAR2 (F2RL1) generated large tumors in the pleural cavity. Suppression of tissue factor or PAR1 expression in these cells markedly reduced tumor growth. In contrast, tissue factor overexpression in nonaggressive MPM cells that expressed EPCR and PAR1 with minimal levels of tissue factor did not increase their limited tumorigenicity. More importantly, ectopic expression of EPCR in aggressive MPM cells attenuated their growth potential, whereas EPCR silencing in nonaggressive MPM cells engineered to overexpress tissue factor increased their tumorigenicity. Immunohistochemical analyses revealed that EPCR expression in tumor cells reduced tumor cell proliferation and enhanced apoptosis. Overall, our results enlighten the mechanism by which tissue factor promotes tumor growth through PAR1, and they show how EPCR can attenuate the growth of tissue factor-expressing tumor cells.
Collapse
Affiliation(s)
- Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Hemostasis encompasses the tightly regulated processes of blood clotting, platelet activation, and vascular repair. After wounding, the hemostatic system engages a plethora of vascular and extravascular receptors that act in concert with blood components to seal off the damage inflicted to the vasculature and the surrounding tissue. The first important component that contributes to hemostasis is the coagulation system, while the second important component starts with platelet activation, which not only contributes to the hemostatic plug, but also accelerates the coagulation system. Eventually, coagulation and platelet activation are switched off by blood-borne inhibitors and proteolytic feedback loops. This review summarizes new concepts of activation of proteases that regulate coagulation and anticoagulation, to give rise to transient thrombin generation and fibrin clot formation. It further speculates on the (patho)physiological roles of intra- and extravascular receptors that operate in response to these proteases. Furthermore, this review provides a new framework for understanding how signaling and adhesive interactions between endothelial cells, leukocytes, and platelets can regulate thrombus formation and modulate the coagulation process. Now that the key molecular players of coagulation and platelet activation have become clear, and their complex interactions with the vessel wall have been mapped out, we can also better speculate on the causes of thrombosis-related angiopathies.
Collapse
Affiliation(s)
- Henri H. Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Johan W. M. Heemskerk
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Marcel Levi
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Pieter H. Reitsma
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands; and Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
67
|
Liu Y, Xu L, Zeng Q, Wang J, Wang M, Xi D, Wang X, Yang D, Luo X, Ning Q. Downregulation of FGL2/prothrombinase delays HCCLM6 xenograft tumour growth and decreases tumour angiogenesis. Liver Int 2012; 32:1585-1595. [PMID: 22925132 DOI: 10.1111/j.1478-3231.2012.02865.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/22/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fibrinogen-like protein 2 (FGL2), which directly generates thrombin from prothrombin without activation of the conventional coagulation cascade, was shown to be overexpressed in various human malignant tumours. AIMS Herein, we aimed to investigate its expression pattern, biological function and mechanism of action in hepatocellular carcinoma (HCC). METHODS FGL2 expression and colocalization with fibrin was examined in 15 HCC tissues. FGL2 downregulation was performed by targeting microRNA in a HCCLM6 cell line in which FGL2 was highly expressed in xenografts of nude mice. The effects of FGL2 knockdown on tumour growth and angiogenesis were evaluated in vitro and in vivo. Cytometric bead arrays were employed to identify FGL2-regulated signalling pathways. RESULTS FGL2 was overexpressed in HCC tissues and colocalized with fibrin deposition. Knockdown of FGL2 expression in HCCLM6 cells (hFGL2(low) HCCLM6) resulted in delayed xenografts tumour growth within an observation period of 42 days and decreased vascularization, which was accompanied by decreased phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). In vitro hFGL2(low) HCCLM6 cells exhibited decreased proliferation without significant induction of apoptosis. Overexpression of FGL2 in HCCLM6 cells or addition of recombinant hFGL2 protein induced phosphorylation of p38-MAPK and ERK1/2 involving protease-activated receptors (PARs).activation. CONCLUSIONS FGL2 contributes to HCC tumour growth and angiogenesis in a thrombin-dependent manner, and downregulation of its expression might be of therapeutic significance in HCC.
Collapse
Affiliation(s)
- Yanling Liu
- Department and Institute of Infectious Disease, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Kurdi M, Cherel G, Lenting PJ, Denis CV, Christophe OD. Coagulation factor X interaction with macrophages through its N-glycans protects it from a rapid clearance. PLoS One 2012; 7:e45111. [PMID: 23049768 PMCID: PMC3458019 DOI: 10.1371/journal.pone.0045111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/15/2012] [Indexed: 11/24/2022] Open
Abstract
Factor X (FX), a plasma glycoprotein playing a central role in coagulation has a long circulatory half-life compared to closely related coagulation factors. The activation peptide of FX has been shown to influence its clearance with two N-glycans as key determinants of FX’s relatively long survival. To decipher FX clearance mechanism, organ biodistribution and cellular interactions of human plasma FX (pd-FX), recombinant FX (rFX), N-deglycosylated FX (N-degly-FX) and recombinant FX mutated at both N-glycosylation sites (rFXN181A–N191A) were evaluated. Biodistribution analysis of 125I-labelled FX proteins after administration to mice revealed liver as major target organ for all FX variants. Liver tissue sections analysis showed an interaction of pd-FX and N-degly-FX to different cell types. These findings were confirmed in cell binding studies revealing that FX and FX without N-glycans interact with macrophages and hepatocytes, respectively. N-degly-FX appeared to be degraded in hepatocytes while interestingly pd-FX was not by macrophages. Furthermore, the chemical inactivation of macrophages by gadolinium chloride resulted in a significant decrease of circulating pd-FX into mice and not of N-degly-FX. Altogether our data lead to the conclusion that FX interaction with macrophages through its N-glycans protects it from a rapid clearance explaining its relatively long circulatory half-life.
Collapse
Affiliation(s)
| | - Ghislaine Cherel
- INSERM Unit 770, Le Kremlin-Bicêtre, France
- UMR_S 770, Univ Paris-Sud, Le Kremlin-Bicêtre, France
| | - Peter J. Lenting
- INSERM Unit 770, Le Kremlin-Bicêtre, France
- UMR_S 770, Univ Paris-Sud, Le Kremlin-Bicêtre, France
| | - Cécile V. Denis
- INSERM Unit 770, Le Kremlin-Bicêtre, France
- UMR_S 770, Univ Paris-Sud, Le Kremlin-Bicêtre, France
| | - Olivier D. Christophe
- INSERM Unit 770, Le Kremlin-Bicêtre, France
- UMR_S 770, Univ Paris-Sud, Le Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
69
|
Carneiro-Lobo TC, Schaffner F, Disse J, Ostergaard H, Francischetti IMB, Monteiro RQ, Ruf W. The tick-derived inhibitor Ixolaris prevents tissue factor signaling on tumor cells. J Thromb Haemost 2012; 10:1849-58. [PMID: 22823596 PMCID: PMC3433625 DOI: 10.1111/j.1538-7836.2012.04864.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Tissue factor (TF) is frequently overexpressed in cancer cells and correlated with more aggressive tumor phenotypes and poor prognosis. In addition to promoting coagulation-dependent metastasis and cancer-associated thrombosis, tumor cell-expressed TF mediates direct cell signaling involving the protease-activated receptor (PAR) 2. Ixolaris is a tick-derived inhibitor of the TF-factor (F)VIIa-Xa coagulation initiation complex which blocks primary tumor growth and angiogenesis in glioblastoma and melanoma models. METHODS In this study we address the anti-tumor effects of Ixolaris in TF-VIIa-PAR2 signaling-dependent breast cancer models, a xenograft model of highly aggressive human MDA-MB-231 mfp cells and a syngeneic model of PAR2-deficient and replete PyMT mouse mammary carcinoma cells. RESULTS Ixolaris potently inhibited the procoagulant activity of human MDA-MB-231mfp or murine PyMT breast cancer cells. Ixolaris blocked signaling by the ternary TF-FVIIa-FXa complex, and, surprisingly, at higher concentrations also the binary TF-FVIIa complex on MDA-MB-231 cells. We show that Ixolaris interacts with certain residues in the human VIIa protease domain that are involved in PAR2 cleavage. In contrast to human VIIa, Ixolaris was a poor inhibitor of murine TF-FVIIa signaling and did not attenuate PAR2-dependent tumor growth in a syngeneic mouse model of breast cancer progression. CONCLUSION These data show that Ixolaris inhibits PAR2 cleavage specifically by human TF signaling complexes and suggest that Ixolaris may block tumor growth of human cell models with ectopic FVIIa expression through inhibition of direct TF-FVIIa-PAR2 signaling as well as its anticoagulant activity.
Collapse
Affiliation(s)
- T C Carneiro-Lobo
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla CA, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Godby RC, Van Den Berg YW, Srinivasan R, Sturm R, Hui DY, Konieczny SF, Aronow BJ, Ozhegov E, Ruf W, Versteeg HH, Bogdanov VY. Nonproteolytic properties of murine alternatively spliced tissue factor: implications for integrin-mediated signaling in murine models. Mol Med 2012; 18:771-9. [PMID: 22481268 DOI: 10.2119/molmed.2011.00416] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/29/2012] [Indexed: 11/06/2022] Open
Abstract
This study was performed to determine whether murine alternatively spliced tissue factor (masTF) acts analogously to human alternatively spliced tissue factor (hasTF) in promoting neovascularization via integrin ligation. Immunohistochemical evaluation of a spontaneous murine pancreatic ductal adenocarcinoma model revealed increased levels of masTF and murine full-length tissue factor (mflTF) in tumor lesions compared with benign pancreas; furthermore, masTF colocalized with mflTF in spontaneous aortic plaques of Ldlr(-/-) mice, indicating that masTF is likely involved in atherogenesis and tumorigenesis. Recombinant masTF was used to perform in vitro and ex vivo studies examining its integrin-mediated biologic activity. Murine endothelial cells (ECs) rapidly adhered to masTF in a β3-dependent fashion. Using adult and embryonic murine ECs, masTF potentiated cell migration in transwell assays. Scratch assays were performed using murine and primary human ECs; the effects of masTF and hasTF were comparable in murine ECs, but in human ECs, the effects of hasTF were more pronounced. In aortic sprouting assays, the potency of masTF-triggered vessel growth was undistinguishable from that observed with hasTF. The proangiogenic effects of masTF were found to be Ccl2-mediated, yet independent of vascular endothelial growth factor. In murine ECs, masTF and hasTF upregulated genes involved in inflammatory responses; murine and human ECs stimulated with masTF and hasTF exhibited increased interaction with murine monocytic cells under orbital shear. We propose that masTF is a functional homolog of hasTF, exerting some of its key effects via β3 integrins. Our findings have implications for the development of murine models to examine the interplay between blood coagulation, atherosclerosis and cancer.
Collapse
Affiliation(s)
- Richard C Godby
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Thrombomodulin as a regulator of the anticoagulant pathway: implication in the development of thrombosis. Blood Coagul Fibrinolysis 2012; 23:1-10. [PMID: 22036808 DOI: 10.1097/mbc.0b013e32834cb271] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Thrombomodulin is a cell surface-expressed glycoprotein that serves as a cofactor for thrombin-mediated activation of protein C (PC), an event further amplified by the endothelial cell PC receptor. The PC pathway is a major anticoagulant mechanism that downregulates thrombin formation and hedges thrombus formation. The objectives of this review were to review recent findings regarding thrombomodulin structure, its involvement in the regulation of hemostasis and further discuss the implication, if any, of the genetic polymorphisms in the thrombomodulin gene in the risk of development of thrombosis. We performed a literature search by using electronic bibliographic databases. Although the direct evaluation of risk situations associated with thrombomodulin mutations/polymorphisms could be of clinical significance, it appears that mutations that affect the function of thrombomodulin are rarely associated with venous thromboembolism. However, several polymorphisms are reported to be associated with increased risk for arterial thrombosis. Additionally studies on knock out mice as well studies on humans bearing rare mutations suggest that thrombomodulin dysfunction may be implicated in the pathogenesis of myocardial infraction.
Collapse
|
72
|
Sen P, Clark CA, Gopalakrishnan R, Hedner U, Esmon CT, Pendurthi UR, Rao LVM. Factor VIIa binding to endothelial cell protein C receptor: differences between mouse and human systems. Thromb Haemost 2012; 107:951-61. [PMID: 22370814 PMCID: PMC3883592 DOI: 10.1160/th11-09-0672] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/16/2012] [Indexed: 11/05/2022]
Abstract
Recent in vitro studies have shown that the zymogen and activated form of factor (F)VII bind to endothelial cell protein C receptor (EPCR). At present, there is no evidence that FVIIa binds to EPCR on vascular endothelium in vivo in the presence of circulating protein C, a primary ligand for EPCR. The present study was carried out to investigate the interaction of murine and human ligands with murine EPCR both in vivo and in vitro . Measurement of endogenous plasma levels of FVII in wild-type, EPCR-deficient and EPCR-over expressing mice showed slightly lower levels of FVII in EPCR-over expressing mice. However, infusion of high concentrations of competing ligands, either human APCi or FVIIai, to EPCR-over expressing mice failed to increase plasma levels of mouse FVII whereas they increased the plasma levels of protein C by two- to three-fold. Examining the association of exogenously administered mouse FVIIa or human FVIIa by immunohistochemistry revealed that human, but not murine FVIIa, binds to the murine endothelium in an EPCR-dependent manner. In vitro binding studies performed using surface plasmon resonance and endothelial cells revealed that murine FVIIa binds murine EPCR negligibly. Human FVIIa binding to EPCR, particularly to mouse EPCR, is markedly enhanced by availability of Mg2+ ions. In summary, our data show that murine FVIIa binds poorly to murine EPCR, whereas human FVIIa binds efficiently to both murine and human EPCR. Our data suggest that one should consider the use of human FVIIa in mouse models to investigate the significance of FVIIa and EPCR interaction.
Collapse
Affiliation(s)
- Prosenjit Sen
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Curtis A. Clark
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX
| | | | - Ulla Hedner
- Department of Medicine, Malmö University Hospital, University of Lund, Malmö, Sweden
| | - Charles T. Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, OK
| | - Usha R. Pendurthi
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - L. Vijaya Mohan Rao
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
73
|
Protein C anticoagulant and cytoprotective pathways. Int J Hematol 2012; 95:333-45. [PMID: 22477541 DOI: 10.1007/s12185-012-1059-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/09/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Plasma protein C is a serine protease zymogen that is transformed into the active, trypsin-like protease, activated protein C (APC), which can exert multiple activities. For its anticoagulant action, APC causes inactivation of the procoagulant cofactors, factors Va and VIIIa, by limited proteolysis, and APC's anticoagulant activity is promoted by protein S, various lipids, high-density lipoprotein, and factor V. Hereditary heterozygous deficiency of protein C or protein S is linked to moderately increased risk for venous thrombosis, while a severe or total deficiency of either protein is linked to neonatal purpura fulminans. In recent years, the beneficial direct effects of APC on cells which are mediated by several specific receptors have become the focus of much attention. APC-induced signaling can promote multiple cytoprotective actions which can minimize injuries in various preclinical animal injury models. Remarkably, pharmacologic therapy using APC demonstrates substantial neuroprotective effects in various murine injury models, including ischemic stroke. This review summarizes the molecules that are central to the protein C pathways, the relationship of pathway deficiencies to venous thrombosis risk, and mechanisms for the beneficial effects of APC.
Collapse
|
74
|
Manithody C, Yang L, Rezaie AR. Identification of exosite residues of factor Xa involved in recognition of PAR-2 on endothelial cells. Biochemistry 2012; 51:2551-7. [PMID: 22409427 DOI: 10.1021/bi300200p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent results have indicated that factor Xa (FXa) cleaves protease-activated receptor 2 (PAR-2) to elicit protective intracellular signaling responses in endothelial cells. In this study, we investigated the molecular determinants of the specificity of FXa interaction with PAR-2 by monitoring the cleavage of PAR-2 by FXa in endothelial cells transiently transfected with a PAR-2 cleavage reporter construct in which the extracellular domain of the receptor was fused to cDNA encoding for alkaline phosphatase. Comparison of the cleavage efficiency of PAR-2 by a series of FXa mutants containing mutations in different surface loops indicated that the acidic residues of 39-loop (Glu-36, Glu-37, and Glu-39) and the basic residues of 60-loop (Lys-62 and Arg-63), 148-loop (Arg-143, Arg-150, and Arg-154), and 162-helix (Arg-165 and Lys-169) contribute to the specificity of receptor recognition by FXa on endothelial cells. This was evidenced by significantly reduced activity of mutants toward PAR-2 expressed on transfected cells. The extent of loss in the PAR-2 cleavage activity of FXa mutants correlated with the extent of loss in their PAR-2-dependent intracellular signaling activity. Further characterization of FXa mutants indicated that, with the exception of basic residues of 162-helix, which play a role in the recognition specificity of the prothrombinase complex, none of the surface loop residues under study makes a significant contribution to the activity of FXa in the prothrombinase complex. These results provide new insight into mechanisms through which FXa specifically interacts with its macromolecular substrates in the clotting and signaling pathways.
Collapse
Affiliation(s)
- Chandrashekhara Manithody
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, United States
| | | | | |
Collapse
|
75
|
Gleeson EM, O’Donnell JS, Preston RJS. The endothelial cell protein C receptor: cell surface conductor of cytoprotective coagulation factor signaling. Cell Mol Life Sci 2012; 69:717-26. [PMID: 21968919 PMCID: PMC11115159 DOI: 10.1007/s00018-011-0825-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 12/27/2022]
Abstract
Increasing evidence links blood coagulation proteins with the regulation of acute and chronic inflammatory disease. Of particular interest are vitamin K-dependent proteases, which are generated as a hemostatic response to vascular injury, but can also initiate signal transduction via interactions with vascular receptors. The endothelial cell protein C receptor (EPCR) is a multi-ligand vitamin K-dependent protein receptor for zymogen and activated forms of plasma protein C and factor VII. Although the physiological role of the EPCR-FVII(a) interaction is not well-understood, protein C binding to EPCR facilitates rapid generation of APC in response to excessive thrombin generation, and is a central requirement for the multiple signal-transduction cascades initiated by APC on both vascular endothelial and innate immune cells. Exciting recent studies have highlighted the emerging role of EPCR in modulating the cytoprotective properties of APC in a number of diverse inflammatory disorders. In this review, we describe the structure-function relationships, signal transduction pathways, and cellular interactions that enable EPCR to modulate the anticoagulant and anti-inflammatory properties of its vitamin K-dependent protein ligands, and examine the relevance of EPCR to both thrombotic and inflammation-associated disease.
Collapse
Affiliation(s)
- Eimear M. Gleeson
- Haemostasis Research Group, Department of Haematology, Institute of Molecular Medicine, St James Hospital Campus, Trinity College Dublin, Dublin, Ireland
| | - James S. O’Donnell
- Haemostasis Research Group, Department of Haematology, Institute of Molecular Medicine, St James Hospital Campus, Trinity College Dublin, Dublin, Ireland
| | - Roger J. S. Preston
- Haemostasis Research Group, Department of Haematology, Institute of Molecular Medicine, St James Hospital Campus, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
76
|
Weiler H. Multiple receptor-mediated functions of activated protein C. Hamostaseologie 2012; 31:185-95. [PMID: 21826371 DOI: 10.5482/ha-1166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023] Open
Abstract
The central effector protease of the protein C pathway, activated protein C (APC), interacts with the endothelial cell protein C receptor, with protease activated receptors (PAR), the apolipoprotein E2 receptor, and integrins to exert multiple effects on haemostasis and immune cell function. Such receptor interactions modify the activation of PC and determine the biological response to endogenous and therapeutically administered APC. This review summarizes the current knowledge about interactions of APC with cell surface-associated receptors, novel substrates such as histones and tissue factor pathway inhibitor, and their implications for the biologic function of APC in the control of coagulation and inflammation.
Collapse
Affiliation(s)
- H Weiler
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee WI 53226, USA.
| |
Collapse
|
77
|
Montes R, Puy C, Molina E, Hermida J. Is EPCR a multi-ligand receptor? Pros and cons. Thromb Haemost 2012; 107:815-26. [PMID: 22318610 DOI: 10.1160/th11-11-0766] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/05/2012] [Indexed: 02/06/2023]
Abstract
In the last decade, the endothelial cell protein C/activated protein C receptor (EPCR) has received considerable attention. The role initially attributed to EPCR, i.e. the enhancement of protein C (PC) activation by the thrombin-thrombomodulin complex on the surface of the large vessels, although important, did not go beyond the haemostasis scenario. However, the discovery of the cytoprotective, anti-inflammatory and anti-apoptotic features of the activated PC (APC) and the required involvement of EPCR for APC to exert such actions did place the receptor in a privileged position in the crosstalk between coagulation and inflammation. The last five years have shown that PC/APC are not the only molecules able to interact with EPCR. Factor VII/VIIa (FVII/VIIa) and factor Xa (FXa), two other serine proteases that play a central role in haemostasis and are also involved in signalling processes influencing wound healing, tissue remodelling, inflammation or metastasis, have been reported to bind to EPCR. These observations have paved the way for an exploration of unsuspected new roles for the receptor. This review aims to offer a new image of EPCR in the light of its extended panel of ligands. A brief update of what is known about the APC-evoked EPCR-dependent cell signalling mechanisms is provided, but special care has been taken to assemble all the information available about the interaction of EPCR with FVII/VIIa and FXa.
Collapse
Affiliation(s)
- Ramón Montes
- Division of Cardiovascular Sciences, Laboratory of Thrombosis and Haemostasis, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
78
|
Abstract
PURPOSE OF REVIEW The transmembrane protein tissue factor (TF), the initiator of the extrinsic coagulation cascade and a risk factor for thrombotic disease, largely resides on the cell surface in an inactive, encrypted conformation. Whereas TF procoagulant activation, or decryption, is closely associated with the exposure of procoagulant phosphatidylserine in the outer leaflet of cell membranes, thiol pathways and protein disulfide isomerase (PDI) play increasingly recognized roles in regulating TF prothrombotic pathways. RECENT FINDINGS TF contains a solvent-exposed allosteric disulfide bond that stabilizes the carboxyl-terminal domain involved in ligand interactions with coagulation factors VIIa and X. PDI is a prime candidate to modify the allosteric disulfide by reduction, S-nitrosylation and glutathionation, implicated as regulators of TF procoagulant activity. In-vivo studies localize PDI to sites of thrombus formation and inhibition of PDI attenuates arterial thrombosis. PDI also contributes to the biogenesis of procoagulant microparticles that are released in the context of TF decryption following ATP-mediated activation of the purinergic P2X7 receptor. Genetic deletion of P2X7 signaling attenuates TF and PDI-dependent thrombosis, identifying a new connection between prothrombotic and proinflammatory pathways. SUMMARY Although the precise biochemical events of TF encryption and decryption require further study, PDI and thiol pathways emerge as important regulators of vascular thrombotic diseases.
Collapse
|
79
|
Disse J, Ruf W. Endothelial protein C receptor is required for tissue factor ternary complex signaling in the mouse. J Thromb Haemost 2011; 9:2516-8. [PMID: 21951329 PMCID: PMC3228900 DOI: 10.1111/j.1538-7836.2011.04521.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jennifer Disse
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Wolfram Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
80
|
Factor X binding to endothelial cell protein C receptor: comparison with factor VIIa and activated protein C. Blood 2011; 118:2635-6. [PMID: 21885613 DOI: 10.1182/blood-2011-05-354571] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
81
|
Navarro S, Bonet E, Estellés A, Montes R, Hermida J, Martos L, España F, Medina P. The endothelial cell protein C receptor: Its role in thrombosis. Thromb Res 2011; 128:410-6. [DOI: 10.1016/j.thromres.2011.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/14/2011] [Accepted: 08/01/2011] [Indexed: 12/01/2022]
|
82
|
Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol 2011; 34:133-49. [PMID: 21971685 DOI: 10.1007/s00281-011-0289-1] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/05/2011] [Indexed: 12/17/2022]
Abstract
Protease-activated receptors (PARs) are G protein-coupled receptors that are activated by proteolytical cleavage of the amino-terminus and thereby act as sensors for extracellular proteases. While coagulation proteases activate PARs to regulate hemostasis, thrombosis, and cardiovascular function, PAR2 is also activated in extravascular locations by a broad array of serine proteases, including trypsin, tissue kallikreins, coagulation factors VIIa and Xa, mast cell tryptase, and transmembrane serine proteases. Administration of PAR2-specific agonistic and antagonistic peptides, as well as studies in PAR2 knockout mice, identified critical functions of PAR2 in development, inflammation, immunity, and angiogenesis. Here, we review these roles of PAR2 with an emphasis on the role of coagulation and other extracellular protease pathways that cleave PAR2 in epithelial, immune, and neuronal cells to regulate physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
83
|
Ruf W, Disse J, Carneiro-Lobo TC, Yokota N, Schaffner F. Tissue factor and cell signalling in cancer progression and thrombosis. J Thromb Haemost 2011; 9 Suppl 1:306-15. [PMID: 21781267 PMCID: PMC3151023 DOI: 10.1111/j.1538-7836.2011.04318.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The close link between coagulation activation and clinical cancer is well established and recent progress has defined underlying molecular pathways by which tumour cells interact with the haemostatic system to promote cancer progression. Tumour type-specific oncogenic transformations cause constitutive and hypoxia-dependent upregulation of tissue factor (TF) in cancer cells, but TF expressed by vascular, stromal and inflammatory cells also contributes to the procoagulant character of the tumour microenvironment. A growing body of genetic and pharmacological evidence implicates signalling by protease activated receptors (PARs) and specifically by tumour cell-expressed TF-VIIa-PAR2 in the induction of an array of proangiogenic and immune modulating cytokines, chemokines and growth factors. Specific inhibition of this pathway results in attenuated tumour growth and angiogenesis. PARs are increasingly recognised as targets for proteases outside the coagulation system and emerging evidence indicates that alternative protease signalling pathways synergise with the coagulation system to promote tumour growth, angiogenesis and metastasis. The elucidation of new therapeutic targets in tumour-promoting protease signalling pathways requires new diagnostic approaches to identify patients that will benefit from tailored therapy targeting procoagulant or signalling aspects of the TF pathway.
Collapse
Affiliation(s)
- W Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
84
|
Puy C, Hermida J, Montes R. Factor X and factor VII binding to endothelial protein C receptor differs between species. J Thromb Haemost 2011; 9:1255-7. [PMID: 21489130 DOI: 10.1111/j.1538-7836.2011.04295.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|