51
|
Ren C, Faas MM, de Vos P. Disease managing capacities and mechanisms of host effects of lactic acid bacteria. Crit Rev Food Sci Nutr 2020; 61:1365-1393. [PMID: 32366110 DOI: 10.1080/10408398.2020.1758625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Consumption of lactic acid bacteria (LAB) has been suggested to confer health-promoting effects on the host. However, effects of LABs have been reported to be species- and strain-specific and the mechanisms involved are subjects of discussion. Here, the possible mechanisms by which LABs induce antipathogenic, gut barrier enhancing and immune modulating effects in consumers are reviewed. Specific strains for which it has been proven that health is improved by these mechanisms are discussed. However, most strains probably act via several or combinations of mechanisms depending on which effector molecules they express. Current insight is that these effector molecules are either present on the cell wall of LAB or are excreted. These molecules are reviewed as well as the ligand binding receptors in the host. Also postbiotics are discussed. Finally, we provide an overview of the efficacy of LABs in combating infections caused by Helicobacter pylori, Salmonella, Escherichia coli, Streptococcus pneumoniae, and influenza virus, in controlling gut inflammatory diseases, in managing allergic disorders, and in alleviating cancer.
Collapse
Affiliation(s)
- Chengcheng Ren
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
52
|
London M, Gallo E. Epidermal growth factor receptor (EGFR) involvement in epithelial-derived cancers and its current antibody-based immunotherapies. Cell Biol Int 2020; 44:1267-1282. [PMID: 32162758 DOI: 10.1002/cbin.11340] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/08/2020] [Indexed: 12/17/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein that is part of the family of tyrosine kinase receptors. The binding of EGFR to its cognate ligands leads to its autophosphorylation and subsequent activation of the signal transduction pathways involved in regulating cellular proliferation, differentiation, and survival. Accordingly, this receptor carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues. Correspondingly, the loss of EGFR regulation results in many human diseases, with the most notable cancer. This receptor is overexpressed and/or mutated in multiple epithelial-derived tumors, and associated with poor prognosis and survival in cancer patients. Here, we discuss in detail the role of EGFR in specific epithelial-derived cancer pathologies; these include lung cancer, colorectal cancer, and squamous cell carcinomas. The development of multiple anticancer agents against EGFR diminished the progression and metastasis of tumors. Some of the most versatile therapeutic anti-EGFR agents include the monoclonal antibodies (mAbs), demonstrating success in clinical settings when used in combination with cytotoxic treatments, such as chemotherapy and/or radiation. We thus discuss the development and application of two of the most notable therapeutic mAbs, cetuximab, and panitumumab, currently utilized in various EGFR-related epithelial cancers.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| |
Collapse
|
53
|
Wang M, Wu H, Lu L, Jiang L, Yu Q. Lactobacillus reuteri Promotes Intestinal Development and Regulates Mucosal Immune Function in Newborn Piglets. Front Vet Sci 2020; 7:42. [PMID: 32118065 PMCID: PMC7018766 DOI: 10.3389/fvets.2020.00042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
Intestinal microbiota is necessary for the guarantee of intestinal mucosal barrier. However, the detailed effect of probiotics on porcine intestinal development, especially in the early life, is still unclear. In this study, we treated 3-day-old newborn piglets with Lactobacillus reuteri (L. reuteri) D8 and observed its beneficial effect on piglets. The body weights, villus height, and crypt depth of jejunum were all significantly increased after L. reuteri treatment in piglets. L. reuteri also significantly increased the proliferation index of PCNA+ cells in the crypt, as well as c-Myc and Tcf4 expressions. Furthermore, L. reuteri also enhanced intestinal mucosal barrier with the increase of goblet cells and antimicrobial peptides (AMPs) expressions of Muc2, Lyz1, and pBD1. The well development of Peyer's patches and increased number of CD3+ T cells, combined with increased expression of IL-4 and IFN-γ, also demonstrated the immune stimulation effect of L. reuteri D8. This study demonstrated that L. reuteri promotes the development of intestine mucosal system and maintains intestinal mucosal barrier in newborn piglets.
Collapse
Affiliation(s)
- Minjuan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Haiqin Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Linhao Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lan Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
54
|
Melatonin restores Muc2 depletion induced by V. vulnificus VvpM via melatonin receptor 2 coupling with Gαq. J Biomed Sci 2020; 27:21. [PMID: 31906951 PMCID: PMC6943958 DOI: 10.1186/s12929-019-0606-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Background Melatonin (5-methoxy-N-acetyltryptamine), a hormone produced in the pineal gland, has a variety of biological functions as an antioxidant, but a functional role of melatonin in the regulation of intestinal mucin (Muc) production during bacterial infection has yet to be described in detail. In this study, we investigate the effects of melatonin during Muc2 repression elicited by the Gram-negative bacterium V. vulnificus. Methods Mucus-secreting human HT29-MTX cells were used to study the functional role of melatonin during Muc2 depletion induced by the recombinant protein (r) VvpM produced by V. vulnificus. The regulatory effects of melatonin coupling with melatonin receptor 2 (MT2) on the production of reactive oxygen species (ROS), the activation of PKCδ and ERK, and the hypermethylation of the Muc2 promoter as induced by rVvpM were examined. Experimental mouse models of V. vulnificus infection were used to study the role of melatonin and how it neutralizes the bacterial toxin activity related to Muc2 repression. Results Recombinant protein (r) VvpM significantly reduced the level of Muc2 in HT29-MTX cells. The repression of Muc2 induced by rVvpM was significantly restored upon a treatment with melatonin (1 μM), which had been inhibited by the knockdown of MT2 coupling with Gαq and the NADPH oxidase subunit p47 phox. Melatonin inhibited the ROS-mediated phosphorylation of PKCδ and ERK responsible for region-specific hypermethylation in the Muc2 promoter in rVvpM-treated HT29-MTX cells. In the mouse models of V. vulnificus infection, treatment with melatonin maintained the level of Muc2 expression in the intestine. In addition, the mutation of the VvpM gene from V. vulnificus exhibited an effect similar to that of melatonin. Conclusions These results demonstrate that melatonin acting on MT2 inhibits the hypermethylation of the Muc2 promoter to restore the level of Muc2 production in intestinal epithelial cells infected with V. vulnificus.
Collapse
|
55
|
Thoo L, Noti M, Krebs P. Keep calm: the intestinal barrier at the interface of peace and war. Cell Death Dis 2019; 10:849. [PMID: 31699962 PMCID: PMC6838056 DOI: 10.1038/s41419-019-2086-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
Epithelial barriers have to constantly cope with both harmless and harmful stimuli. The epithelial barrier therefore serves as a dynamic and not static wall to safeguard its proper physiological function while ensuring protection. This is achieved through multiple defence mechanisms involving various cell types - epithelial and non-epithelial - that work in an integrated manner to build protective barriers at mucosal sites. Damage may nevertheless occur, due to pathogens, physical insults or dysregulated immune responses, which trigger a physiologic acute or a pathologic chronic inflammatory cascade. Inflammation is often viewed as a pathological condition, particularly due to the increasing prevalence of chronic inflammatory (intestinal) diseases. However, inflammation is also necessary for wound healing. The aetiology of chronic inflammatory diseases is incompletely understood and identification of the underlying mechanisms would reveal additional therapeutic approaches. Resolution is an active host response to end ongoing inflammation but its relevance is under-appreciated. Currently, most therapies aim at dampening inflammation at damaged mucosal sites, yet these approaches do not efficiently shut down the inflammation process nor repair the epithelial barrier. Therefore, future treatment strategies should also promote the resolution phase. Yet, the task of repairing the barrier can be an arduous endeavour considering its multiple integrated layers of defence - which is advantageous for damage prevention but becomes challenging to repair at multiple levels. In this review, using the intestines as a model epithelial organ and barrier paradigm, we describe the consequences of chronic inflammation and highlight the importance of the mucosae to engage resolving processes to restore epithelial barrier integrity and function. We further discuss the contribution of pre-mRNA alternative splicing to barrier integrity and intestinal homeostasis. Following discussions on current open questions and challenges, we propose a model in which resolution of inflammation represents a key mechanism for the restoration of epithelial integrity and function.
Collapse
Affiliation(s)
- Lester Thoo
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mario Noti
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.,Department of Gastro-Intestinal Health, Immunology, Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Philippe Krebs
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
56
|
Kim MW, Kang JH, Shin E, Shim KS, Kim MJ, Lee CK, Yoon YS, Oh SH. Processed Aloe vera gel attenuates non-steroidal anti-inflammatory drug (NSAID)-induced small intestinal injury by enhancing mucin expression. Food Funct 2019; 10:6088-6097. [PMID: 31490512 DOI: 10.1039/c9fo01307e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are well-known for exerting numerous adverse effects on the gastrointestinal tract such as bleeding, ulceration, and perforation, thereby limiting their use. Most previous studies have focused on NSAID-induced gastropathy. However, improved diagnostic techniques have recently highlighted NSAID-induced small intestinal ulcers, which have so far been underestimated. While proton pump inhibitors are prescribed to control NSAID-induced gastropathy, few preventive strategies are existent for NSAID-induced small intestinal injury, thus requiring new methods to treat these enteropathies. Numerous studies have reported the beneficial biological effects of Aloe vera, such as wound healing, anti-cancer, immune modulation, anti-oxidant, anti-microbial, and gastroprotective effects. A previous report on the effect of Aloe vera against NSAID-induced ulcers studied only gastric ulcers and elucidated the results as an anti-inflammatory effect of Aloe vera. However, ulcer prevention cannot be justified entirely to be due to the anti-inflammatory effects of Aloe vera, since NSAIDs themselves also exert an anti-inflammatory reaction. We therefore investigated the anti-ulcer effects of Aloe vera on the small intestine, especially focusing on mucin expression. Our results indicate that processed Aloe vera gel (PAG) treatment attenuates not only the severity of intestinal ulcers but also bacterial translocation, by enhancing the mucus layer in the indomethacin-induced small intestinal damage mouse model. We further confirmed that PAG positively regulates the mucin expression in the LS174T human cell line, mainly via the ERK-dependent pathway. We propose that PAG application is a potential strategy for the alleviation of NSAID-induced small intestinal ulcers.
Collapse
Affiliation(s)
- Min Woo Kim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Hee Kang
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea.
| | - Eunju Shin
- Univera Co., Ltd., Seoul 04782, Republic of Korea
| | - Kyu-Suk Shim
- Univera Co., Ltd., Seoul 04782, Republic of Korea
| | - Min Jung Kim
- Univera Co., Ltd., Seoul 04782, Republic of Korea
| | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yeo Sung Yoon
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun Oh
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea.
| |
Collapse
|
57
|
Kalampokini S, Becker A, Fassbender K, Lyros E, Unger MM. Nonpharmacological Modulation of Chronic Inflammation in Parkinson's Disease: Role of Diet Interventions. PARKINSON'S DISEASE 2019; 2019:7535472. [PMID: 31534664 PMCID: PMC6732577 DOI: 10.1155/2019/7535472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022]
Abstract
Neuroinflammation is increasingly recognized as an important pathophysiological feature of neurodegenerative diseases such as Parkinson's disease (PD). Recent evidence suggests that neuroinflammation in PD might originate in the intestine and the bidirectional communication between the central and enteric nervous system, the so-called "gut-brain axis," has received growing attention due to its contribution to the pathogenesis of neurological disorders. Diet targets mediators of inflammation with various mechanisms and combined with dopaminergic treatment can exert various beneficial effects in PD. Food-based therapies may favorably modulate gut microbiota composition and enhance the intestinal epithelial integrity or decrease the proinflammatory response by direct effects on immune cells. Diets rich in pre- and probiotics, polyunsaturated fatty acids, phenols including flavonoids, and vitamins, such as the Mediterranean diet or a plant-based diet, may attenuate chronic inflammation and positively influence PD symptoms and even progression of the disease. Dietary strategies should be encouraged in the context of a healthy lifestyle with physical activity, which also has neuroimmune-modifying properties. Thus, diet adaptation appears to be an effective additive, nonpharmacological therapeutic strategy that can attenuate the chronic inflammation implicated in PD, potentially slow down degeneration, and thereby modify the course of the disease. PD patients should be highly encouraged to adopt corresponding lifestyle modifications, in order to improve not only PD symptoms, but also general quality of life. Future research should focus on planning larger clinical trials with dietary interventions in PD in order to obtain hard evidence for the hypothesized beneficial effects.
Collapse
Affiliation(s)
- Stefania Kalampokini
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Anouck Becker
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Klaus Fassbender
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Epameinondas Lyros
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Marcus M. Unger
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| |
Collapse
|
58
|
Bäuerl C, Abitayeva G, Sosa-Carrillo S, Mencher-Beltrán A, Navarro-Lleó N, Coll-Marqués JM, Zúñiga-Cabrera M, Shaikhin S, Pérez-Martinez G. P40 and P75 Are Singular Functional Muramidases Present in the Lactobacillus casei /paracasei/rhamnosus Taxon. Front Microbiol 2019; 10:1420. [PMID: 31297099 PMCID: PMC6607858 DOI: 10.3389/fmicb.2019.01420] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/05/2019] [Indexed: 01/29/2023] Open
Abstract
Lactobacillus casei and Lactobacillus rhamnosus proteins P40 and P75 belong to a large family of secreted cell wall proteins that contain a carboxy(C)-terminal CHAP or NlpC/P60 superfamily domains. In addition to their peptidoglycan hydrolases activity, proteins in this family are specific antigens of pathogens, frequently responsible of interactions with the host. L. rhamnosus GG and L. casei BL23 purified P40 and P75 proteins have antiapoptotic activity by inducing the EGF/Akt pathway. The aim of this work was to study the genetics, phylogeny and dissemination of this family of proteins in the genus Lactobacillus as well as their characteristics and likely function. The scrutiny of their DNA encoding sequences revealed the presence of minisatellite DNA in the P75 encoding gene of L. casei/paracasei strains (cmuB) with intraspecific indels that gave raise to four different alleles (cmuB1-4), which are exclusive of this species. Phylogenic analyses suggest that both proteins are present mainly in the L. casei and Lactobacillus sakei phylogenomic groups. A P40 ancestral gene was possibly present in the common ancestor of Enterococcaceae, Lactobacillaceae and Streptococcaceae. P75 is also present in L. casei and L. sakei groups, but its evolution is difficult to explain only by vertical transmission. Antibodies raised against the N-terminal regions of P40 and P75 improved their immunological detection in culture supernatants as they recognized almost exclusively proteins of L. casei/paracasei/rhamnosus strains, highlighting their structural similarity, that allowed to detect them in different fermented dairy products that contained probiotic L. casei strains. Purified P40 and P75 proteins showed no evident lytic activity but they complemented L. casei BL23 cmuA and cmuB defective mutants, respectively, thus proving that they actively participate in cell division.
Collapse
Affiliation(s)
- Christine Bäuerl
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
| | - Gulyaim Abitayeva
- Department of Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan.,Laboratory of Genetics and Biochemistry of Microorganisms, Republican Collection of Microorganisms at Science Committee of Ministry of Education and Science RK, Astana, Kazakhstan
| | - Sebastián Sosa-Carrillo
- Computational Biology Department, Inria, Institut Pasteur and Université Paris Diderot, Paris, France
| | | | - Noemí Navarro-Lleó
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
| | - José M Coll-Marqués
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
| | - Manuel Zúñiga-Cabrera
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
| | - Serik Shaikhin
- Department of Microbiology, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan.,Laboratory of Genetics and Biochemistry of Microorganisms, Republican Collection of Microorganisms at Science Committee of Ministry of Education and Science RK, Astana, Kazakhstan
| | - Gaspar Pérez-Martinez
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (C.S.I.C.), Valencia, Spain
| |
Collapse
|
59
|
De Giani A, Bovio F, Forcella M, Fusi P, Sello G, Di Gennaro P. Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cells. AMB Express 2019; 9:88. [PMID: 31209580 PMCID: PMC6579796 DOI: 10.1186/s13568-019-0813-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/12/2019] [Indexed: 01/25/2023] Open
Abstract
In this paper, we demonstrate that the antimicrobial activity of L. plantarum PBS067 strain against antagonist microorganisms was mediated by the production of a bacteriocin-like compound secreted at the stationary phase of the growth. The novel bacteriocin-like compound, designed plantaricin P1053, was identified by using sorption–desorption method, butanol extraction and SEC-HPLC. The molecular mass of plantaricin P1053 was shown to be 1053 Da by ESI-MS analysis. Plantaricin P1053 exhibited a broad-spectrum antimicrobial activity against Gram-positive bacteria as S. aureus and Gram-negative bacteria as E. coli. In addition to the antimicrobial activity, the isolated bacteriocin-like compound showed effects on normal and cancerogenic epithelial intestinal cell lines through an enhancing of viability of healthy cells and a proliferation reduction of cancer cells. Moreover, in this paper we demonstrate that the isolated bacteriocin-like compound acts on healthy cells through the epidermal growth factor receptor (EGFR) pathways. In conclusion, plantaricin P1053 isolated from L. plantarum PBS067 strain could represent one of the first multifunctional bacteriocin-like compound acting on human epithelial intestinal cells.
Collapse
|
60
|
Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N, Blanquet-Diot S. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiol Rev 2019; 43:457-489. [DOI: 10.1093/femsre/fuz013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.
Collapse
Affiliation(s)
- Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303 , USA
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303 , USA
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Raphaële Gresse
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Thomas Sauvaitre
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
61
|
Production of a Functional Factor, p40, by Lactobacillus rhamnosus GG Is Promoted by Intestinal Epithelial Cell-Secreted Extracellular Vesicles. Infect Immun 2019; 87:IAI.00113-19. [PMID: 31010817 DOI: 10.1128/iai.00113-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
The symbiotic relationship between the gut microbiome and the host provides a nutrient-rich environment for gut microbes and has beneficial effects on host health. Although the composition of the gut microbiome is known to be influenced by both host genetics and environmental factors, host effects on the activities and functions of the gut microbial communities remain poorly understood. Intestinal epithelial cells exert front-line responses to gut microbes and contribute to maintaining a healthy intestinal homeostasis. Here, seeking to elucidate whether intestinal epithelial cells modulate Lactobacillus rhamnosus GG (LGG) functions, we examined the production of p40, an LGG-derived secretory protein that protects intestinal epithelial cells against inflammation. We found that growth medium conditioned with colonic epithelial cell-derived components promotes p40 protein synthesis and secretion by LGG and enhances LGG-stimulated protective responses in intestinal epithelial cells. Furthermore, when LGG was cultured with the colonic luminal contents from healthy mice, p40 production was upregulated but was attenuated with luminal contents from mice with intestinal inflammation. Importantly, the colonic epithelial cell-derived components potentiated LGG-produced p40 levels in a mouse model of colitis and enhanced LGG-mediated amelioration of intestinal inflammation in this model. Notably, we found that colonic epithelial cell-secreted extracellular vesicles participate in communicating with LGG and that heat shock protein 90 (HSP90) in these vesicles might mediate the promotion of p40 production. These results reveal a previously unrecognized mechanism by which the anti-inflammatory effect of LGG is reinforced by intestinal epithelial cells and thereby maintains intestinal health.
Collapse
|
62
|
Abstract
Technological developments, including massively parallel DNA sequencing, gnotobiotics, metabolomics, RNA sequencing and culturomics, have markedly propelled the field of microbiome research in recent years. These methodologies can be harnessed to improve our in-depth mechanistic understanding of basic concepts related to consumption of probiotics, including their rules of engagement with the indigenous microbiome and impacts on the human host. We have recently demonstrated that even during probiotic supplementation, resident gut bacteria in a subset of individuals resist the mucosal presence of probiotic strains, limiting their modulatory effect on the microbiome and on the host gut transcriptional landscape. Resistance is partly alleviated by antibiotics treatment, which enables probiotics to interact with the host at the gut mucosal interface, although rather than promoting reconstitution of the indigenous microbiome and of the host transcriptional profile, they inhibit these components from returning to their naïve pre-antibiotic configurations. In this commentary, we discuss our findings in the context of previous and recent works, and suggest that incorporating the state-of-the-art methods currently utilized in microbiome research into the field of probiotics may lead to improved understanding of their mechanisms of activity, as well as their efficacy and long-term safety.
Collapse
Affiliation(s)
- Jotham Suez
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Niv Zmora
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel,Digestive Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel,Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel,Cancer-Microbiome Research Division, DKFZ, Heidelberg, Germany,CONTACT Eran Elinav Immunology Department, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| |
Collapse
|
63
|
Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, Gong Z, Zeng Q, Wei Y, Yang W, Zeng Z, He X, Huang SH, Cao H. A Novel Postbiotic From Lactobacillus rhamnosus GG With a Beneficial Effect on Intestinal Barrier Function. Front Microbiol 2019; 10:477. [PMID: 30923519 PMCID: PMC6426789 DOI: 10.3389/fmicb.2019.00477] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
It has long been known that probiotics can be used to maintain intestinal homeostasis and treat a number of gastrointestinal disorders, but the underlying mechanism has remained obscure. Recently, increasing evidence supports the notion that certain probiotic-derived components, such as bacteriocins, lipoteichoic acids, surface layer protein and secreted protein, have a similar protective role on intestinal barrier function as that of live probiotics. These bioactive components have been named 'postbiotics' in the most recent publications. We previously found that the Lactobacillus rhamnosus GG (LGG) culture supernatant is able to accelerate the maturation of neonatal intestinal defense and prevent neonatal rats from oral Escherichia coli K1 infection. However, the identity of the bioactive constituents has not yet been determined. In this study, using liquid chromatography-tandem mass spectrometry analysis, we identified a novel secreted protein (named HM0539 here) involved in the beneficial effect of LGG culture supernatant. HM0539 was recombinated, purified, and applied for exploring its potential bioactivity in vitro and in vivo. Our results showed that HM0539 exhibits a potent protective effect on the intestinal barrier, as reflected by enhancing intestinal mucin expression and preventing against lipopolysaccharide (LPS)- or tumor necrosis factor α (TNF-α)-induced intestinal barrier injury, including downregulation of intestinal mucin (MUC2), zonula occludens-1 (ZO-1) and disruption of the intestinal integrity. Using a neonatal rat model of E. coli K1 infection via the oral route, we verified that HM0539 is sufficient to promote development of neonatal intestinal defense and prevent against E. coli K1 pathogenesis. Moreover, we further extended the role of HM0539 and found it has potential to prevent dextran sulfate sodium (DSS)-induced colitis as well as LPS/D-galactosamine-induced bacterial translocation and liver injury. In conclusion, we identified a novel LGG postbiotic HM0539 which exerts a protective effect on intestinal barrier function. Our findings indicated that HM0539 has potential to become a useful agent for prevention and treatment of intestinal barrier dysfunction- related diseases.
Collapse
Affiliation(s)
- Jie Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yubin Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Tongtong Hu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liting Liu
- Department of Medical Microbiology and Immunology, Dali University, Dali, China
| | - Shaojie Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi Wei
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Weijun Yang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhijie Zeng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolong He
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Sheng-He Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
64
|
Lack of Benefit From Anti-EGFR Treatment in RAS and BRAF Wild-type Metastatic Colorectal Cancer With Mucinous Histology or Mucinous Component. Clin Colorectal Cancer 2019; 18:116-124. [PMID: 30952563 DOI: 10.1016/j.clcc.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Adenocarcinoma with mucinous histology or mucinous component are histologic subtypes of metastatic colorectal cancers (mCRCs) with limited benefit from cytotoxic agents. Their sensitivity to anti-epithelial growth factor receptors (EGFRs) is not clear. PATIENTS AND METHODS The activity and efficacy of anti-EGFRs was retrospectively evaluated among patients with RAS and BRAF wild-type mCRC with or without mucinous histology or mucinous component. Subgroup analyses according to primary tumor location were conducted. RESULTS Overall, the study population included 22 mucinous or with mucinous component tumors (11 right- and 11 left-sided tumors) and 83 not mucinous tumors. One patient experienced partial response among mucinous tumors, whereas in the not mucinous group, 42 patients experienced partial response, with an overall response rate of 4% and 51%, respectively (P = .003). The median progression-free survival was 2.8 versus 6.7 months (hazard ratio, 0.28; 95% confidence interval, 0.13-0.59; P < .001), and the median overall survival was 6.5 and 16.7 months (hazard ratio, 0.58; 95% confidence interval, 0.33-1.00; P = .022), for the mucinous and not mucinous groups, respectively. Similar results were observed in subgroup analysis according to primary tumor location. CONCLUSION Anti-EGFRs may not provide clinically meaningful benefit in mCRCs with mucinous histology or mucinous component compared with those without mucinous component, irrespective of sidedness.
Collapse
|
65
|
The Difference in the Mucus Organization Between the Small and Large Intestine and Its Protection of Selected Natural Substances. A Review. FOLIA VETERINARIA 2018. [DOI: 10.2478/fv-2018-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The mucus layer of the intestinal tract plays an important role of forming the front line of innate host defense. Recent studies have suggested that the involvement of feeding natural additives on protection/prevention/promotion of mucus production in the intestinal environment is beneficial. The goblet cells continually produce mucins for the retention of the mucus barrier under physiological conditions, but different factors (e. g. microorganisms, microbial toxins, viruses, cytokines, and enzymes) can have profound effects on the integrity of the intestinal epithelium covered by a protective mucus. The intestinal mucus forms enterocytes covered by transmembrane mucins and goblet cells produce by the secreted gel-forming mucins (MUC2). The mucus is organized in a single unattached mucus layer in the small intestine and in two mucus layers (inner, outer) in the colon. The main part of the review evaluates the effects of natural additives/substances supplementation to stimulate increased expression of MUC2 mucin in the intestine of animals.
Collapse
|
66
|
Chen D, Wu J, Jin D, Wang B, Cao H. Fecal microbiota transplantation in cancer management: Current status and perspectives. Int J Cancer 2018; 145:2021-2031. [PMID: 30458058 PMCID: PMC6767494 DOI: 10.1002/ijc.32003] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
The human gut is home to a large and diverse microbial community, comprising about 1,000 bacterial species. The gut microbiota exists in a symbiotic relationship with its host, playing a decisive role in the host's nutrition, immunity and metabolism. Accumulating studies have revealed the associations between gut dysbiosis or some special bacteria and various cancers. Emerging data suggest that gut microbiota can modulate the effectiveness of cancer therapies, especially immunotherapy. Manipulating the microbial populations with therapeutic intent has become a hot topic of cancer research, and the most dramatic manipulation of gut microbiota refers to fecal microbiota transplantation (FMT) from healthy individuals to patients. FMT has demonstrated remarkable clinical efficacy against Clostridium difficile infection (CDI) and it is highly recommended for the treatment of recurrent or refractory CDI. Lately, interest is growing in the therapeutic potential of FMT for other diseases, including cancers. We briefly reviewed the current researches about gut microbiota and its link to cancer, and then summarized the recent preclinical and clinical evidence to indicate the potential of FMT in cancer management as well as cancer‐treatment associated complications. We also presented the rationale of FMT for cancer management such as reconstruction of intestinal microbiota, amelioration of bile acid metabolism, and modulation of immunotherapy efficacy. This article would help to better understand this new therapeutic approach for cancer patients by targeting gut microbiota.
Collapse
Affiliation(s)
- Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Duochen Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
67
|
Ma T, Suzuki Y, Guan LL. Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals. Vet Immunol Immunopathol 2018; 205:35-48. [PMID: 30459000 DOI: 10.1016/j.vetimm.2018.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/29/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023]
Abstract
Prophylactic antimicrobials have been widely used in food animal production with the aim to prevent infectious diseases, enhance feed efficiency, and promote growth. However, the extensive use of antimicrobials in food animal production systems has led to the emergence of antimicrobial resistant pathogens, which are potential threats to human and animal health. Probiotics have been proposed to be a promising alternative of prophylactic antimicrobials, with potential beneficial effects on the host animal by improving the balance of intestinal microbiota and host immunity. Although an increasing body of evidence shows that probiotics could directly or indirectly affect gut microbiota and host immune functions, the lack of the understanding of how probiotics influence host-microbial interaction and immunity is one of the reasons for controversial findings from many animal trials, especially in food production animals. Therefore, in this review we focused on the most recent (last ten years) studies on how gut microbiota and host immune function changes in response to probiotics in food production animals (swine, poultry, and ruminant). In addition, the relationship between microbial changes and host immune function was illustrated, and how such relationship differs among animal species was further compared. Moreover, the future directions concerning the mechanisms of how probiotics modulate host-microbial interactions and host immunity were highlighted, which may assist in the optimal supplementation strategy to maximize the efficacy of probiotics to improve animal gut health and productivity.
Collapse
Affiliation(s)
- Tao Ma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; Feed Research Institute, Chinese Academy of Agricultural Sciences, Key laboratory of Feed Biotechnology of the Ministry of Agriculture, Beijing, China
| | - Yutaka Suzuki
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; Laboratory of Animal Function and Nutrition, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
68
|
Liu Y, Tran DQ, Rhoads JM. Probiotics in Disease Prevention and Treatment. J Clin Pharmacol 2018; 58 Suppl 10:S164-S179. [PMID: 30248200 PMCID: PMC6656559 DOI: 10.1002/jcph.1121] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/17/2018] [Indexed: 12/17/2022]
Abstract
Few treatments for human diseases have received as much investigation in the past 20 years as probiotics. In 2017, English-language meta-analyses totaling 52 studies determined the effect of probiotics on conditions ranging from necrotizing enterocolitis and colic in infants to constipation, irritable bowel syndrome, and hepatic encephalopathy in adults. The strongest evidence in favor of probiotics lies in the prevention or treatment of 5 disorders: necrotizing enterocolitis, acute infectious diarrhea, acute respiratory tract infections, antibiotic-associated diarrhea, and infant colic. Probiotic mechanisms of action include the inhibition of bacterial adhesion; enhanced mucosal barrier function; modulation of the innate and adaptive immune systems (including induction of tolerogenic dendritic cells and regulatory T cells); secretion of bioactive metabolites; and regulation of the enteric and central nervous systems. Future research is needed to identify the optimal probiotic and dose for specific diseases, to address whether the addition of prebiotics (to form synbiotics) would enhance activity, and to determine if defined microbial communities would provide benefit exceeding that of single-species probiotics.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, and the Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Dat Q Tran
- Department of Pediatrics, Division of Gastroenterology, and the Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - J Marc Rhoads
- Department of Pediatrics, Division of Gastroenterology, and the Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| |
Collapse
|
69
|
Supplementation of p40, a Lactobacillus rhamnosus GG-derived protein, in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term health outcomes. Mucosal Immunol 2018; 11:1316-1328. [PMID: 29875401 PMCID: PMC6162144 DOI: 10.1038/s41385-018-0034-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 04/01/2018] [Accepted: 04/15/2018] [Indexed: 02/04/2023]
Abstract
The beneficial effects of the gut microbiota on growth in early life are well known. However, knowledge about the mechanisms underlying regulating intestinal development by the microbiota is limited. p40, a Lactobacillus rhamnosus GG-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells for protecting the intestinal epithelium against injury and inflammation. Here, we developed p40-containing pectin/zein hydrogels for targeted delivery of p40 to the small intestine and the colon. Treatment with p40-containing hydrogels from postnatal day 2 to 21 significantly enhanced bodyweight gain prior to weaning and functional maturation of the intestine, including intestinal epithelial cell proliferation, differentiation, and tight junction formation, and IgA production in early life in wild-type mice. These p40-induced effects were abolished in mice with specific deletion of EGFR in intestinal epithelial cells, suggesting that transactivation of EGFR in intestinal epithelial cells may mediate p40-regulated intestinal development. Furthermore, neonatal p40 treatment reduced the susceptibility to intestinal injury and colitis and promoted protective immune responses, including IgA production and differentiation of regulatory T cells, in adult mice. These findings reveal novel roles of neonatal supplementation of probiotic-derived factors in promoting EGFR-mediated maturation of intestinal functions and innate immunity, which likely promote long-term beneficial outcomes.
Collapse
|
70
|
Han X, Lee A, Huang S, Gao J, Spence JR, Owyang C. Lactobacillus rhamnosus GG prevents epithelial barrier dysfunction induced by interferon-gamma and fecal supernatants from irritable bowel syndrome patients in human intestinal enteroids and colonoids. Gut Microbes 2018; 10:59-76. [PMID: 30040527 PMCID: PMC6363076 DOI: 10.1080/19490976.2018.1479625] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Disruption of intestinal barrier homeostasis is an important pathogenic factor in conditions such as irritable bowel syndrome (IBS). Lactobacillus rhamnosus GG (LGG) improves IBS symptoms through unclear mechanisms. Previous studies utilizing colorectal adenocarcinoma cell lines showed that LGG metabolites prevented interferon gamma (IFN-gamma) induced barrier damage but the model employed limited these findings. We aimed to interrogate the protective effects of LGG on epithelial barrier function using human intestinal epithelial cultures (enteroids and colonoids) as a more physiologic model. To investigate how LGG affects epithelial barrier function, we measured FITC-Dextran (FD4) flux across the epithelium as well as tight junction zonula occludens 1 (ZO-1) and occludin (OCLN) expression. Colonoids were incubated with fecal supernatants from IBS patients (IBS-FSN) and healthy controls in the presence or absence of LGG to examine changes in gut permeability. Enteroids incubated with IFN-gamma demonstrated a downregulation of OCLN and ZO-1 expression by 67% and 50%, respectively (p<0.05). This was accompanied by increased paracellular permeability as shown by leakage of FD4. Pretreatment of enteroids with LGG prevented these changes and normalized OCLN and ZO-1 to control levels. These actions were independent of its action against apoptosis. However, these protective effects were not seen with LGG cell wall extracts, LGG DNA, or denatured (boiled) LGG. Intriguingly, IBS-FSN injected into colonoids increased paracellular permeability, which was prevented by LGG. LGG, likely due to secreted proteins, protects against epithelial barrier dysfunction. Bacterial-derived factors to modulate gut barrier function may be a treatment option in disorders such as IBS.
Collapse
Affiliation(s)
- Xu Han
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA
| | - Allen Lee
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA
| | - Sha Huang
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA
| | - Jun Gao
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA
| | - Jason R. Spence
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA
| | - Chung Owyang
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA.,CONTACT Chung Owyang 3912 Taubman Center, 1500 E. Medical Center Dr., SPC 5362, Ann Arbor, MI 48109-5362
| |
Collapse
|
71
|
Fernandez N, Wrzosek L, Radziwill-Bienkowska JM, Ringot-Destrez B, Duviau MP, Noordine ML, Laroute V, Robert V, Cherbuy C, Daveran-Mingot ML, Cocaign-Bousquet M, Léonard R, Robbe-Masselot C, Rul F, Ogier-Denis E, Thomas M, Mercier-Bonin M. Characterization of Mucus-Related Properties of Streptococcus thermophilus: From Adhesion to Induction. Front Physiol 2018; 9:980. [PMID: 30087622 PMCID: PMC6067005 DOI: 10.3389/fphys.2018.00980] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022] Open
Abstract
Mucus is a major component of the intestinal barrier involved both in the protection of the host and the fitness of commensals of the gut. Streptococcus thermophilus is consumed world-wide in fermented dairy products and is also recognized as a probiotic, as its consumption is associated with improved lactose digestion. We determined the overall effect of S. thermophilus on the mucus by evaluating its ability to adhere, degrade, modify, or induce the production of mucus and/or mucins. Adhesion was analyzed in vitro using two types of mucins (from pig or human biopsies) and mucus-producing intestinal HT29-MTX cells. The induction of mucus was characterized in two different rodent models, in which S. thermophilus is the unique bacterial species in the digestive tract or transited as a sub-dominant bacterium through a complex microbiota. S. thermophilus LMD-9 and LMG18311 strains did not grow in sugars used to form mucins as the sole carbon source and displayed weak binding to mucus/mucins relative to the highly adhesive TIL448 Lactococcus lactis. The presence of S. thermophilus as the unique bacteria in the digestive tract of gnotobiotic rats led to accumulation of lactate and increased the number of Alcian-Blue positive goblet cells and the amount of the mucus-inducer KLF4 transcription factor. Lactate significantly increased KLF4 protein levels in HT29-MTX cells. Introduction of S. thermophilusvia transit as a sub-dominant bacterium (103 CFU/g feces) in a complex endogenous microbiota resulted in a slight increase in lactate levels in the digestive tract, no induction of overall mucus production, and moderate induction of sulfated mucin production. We thus show that although S. thermophilus is a poor mucus-adhesive bacterium, it can promote mucus pathway at least in part by producing lactate in the digestive tract.
Collapse
Affiliation(s)
- Neïké Fernandez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Laura Wrzosek
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Belinda Ringot-Destrez
- Université de Lille, Lille, France.,USTL, UGSF, IFR 147, CNRS, Villeneuve-d'Ascq, France.,UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, Villeneuve-d'Ascq, France
| | | | - Marie-Louise Noordine
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Valérie Laroute
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | - Véronique Robert
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Claire Cherbuy
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Renaud Léonard
- Université de Lille, Lille, France.,USTL, UGSF, IFR 147, CNRS, Villeneuve-d'Ascq, France.,UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, Villeneuve-d'Ascq, France
| | - Catherine Robbe-Masselot
- Université de Lille, Lille, France.,USTL, UGSF, IFR 147, CNRS, Villeneuve-d'Ascq, France.,UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, Villeneuve-d'Ascq, France
| | - Françoise Rul
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Ogier-Denis
- INSERM, Research Centre of Inflammation BP 416, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Excellence Labex INFLAMEX, Université Sorbonne Paris Cité, Paris, France
| | - Muriel Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Muriel Mercier-Bonin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
72
|
Metabolism of Caprine Milk Carbohydrates by Probiotic Bacteria and Caco-2:HT29⁻MTX Epithelial Co-Cultures and Their Impact on Intestinal Barrier Integrity. Nutrients 2018; 10:nu10070949. [PMID: 30041482 PMCID: PMC6073262 DOI: 10.3390/nu10070949] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The development and maturation of the neonatal intestine is generally influenced by diet and commensal bacteria, the composition of which, in turn, can be influenced by the diet. Colonisation of the neonatal intestine by probiotic Lactobacillus strains can strengthen, preserve, and improve barrier integrity, and adherence of probiotics to the intestinal epithelium can be influenced by the available carbon sources. The goal of the present study was to examine the role of probiotic lactobacilli strains alone or together with a carbohydrate fraction (CF) from caprine milk on barrier integrity of a co-culture model of the small intestinal epithelium. Barrier integrity (as measured by trans epithelial electrical resistance (TEER)), was enhanced by three bacteria/CF combinations (Lactobacillus rhamnosus HN001, L. plantarum 299v, and L. casei Shirota) to a greater extent than CF or bacteria alone. Levels of occludin mRNA were increased for all treatments compared to untreated co-cultures, and L. plantarum 299v in combination with CF had increased mRNA levels of MUC4, MUC2 and MUC5AC mucins and MUC4 protein abundance. These results indicate that three out of the four probiotic bacteria tested, in combination with CF, were able to elicit a greater increase in barrier integrity of a co-culture model of the small intestinal epithelium compared to that for either component alone. This study provides additional insight into the individual or combined roles of microbe–diet interactions in the small intestine and their beneficial contribution to the intestinal barrier.
Collapse
|
73
|
Berardi A, Bisharat L, AlKhatib HS, Cespi M. Zein as a Pharmaceutical Excipient in Oral Solid Dosage Forms: State of the Art and Future Perspectives. AAPS PharmSciTech 2018; 19:2009-2022. [PMID: 29736888 DOI: 10.1208/s12249-018-1035-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/25/2018] [Indexed: 11/30/2022] Open
Abstract
Zein is the main storage protein of corn and it has several industrial applications. Mainly in the last 10-15 years, zein has emerged as a potential pharmaceutical excipient with unique features. Zein is a natural, biocompatible and biodegradable material produced from renewable sources. It is insoluble, yet due to its amphiphilic nature, it has self-assembling properties, which have been exploited for the formation of micromicroparticle and nanoparticle and films. Moreover, zein can hydrate so it has been used in swellable matrices for controlled drug release. Other pharmaceutical applications of zein in oral drug delivery include its incorporation in solid dispersions of poorly soluble drugs and in colonic drug delivery systems. This review describes the features of zein significant for its use as a pharmaceutical excipient for oral drug delivery, and it summaries the literature relevant to macroscopic zein-based oral dosage forms, i.e. tablets, capsules, beads and powders. Particular attention is paid to the most novel formulations and applications of zein. Moreover, gaps of knowledge as well as possible venues for future investigations on zein are highlighted.
Collapse
|
74
|
Dong W, Liu L, Dou Y, Xu M, Liu T, Wang S, Zhang Y, Deng B, Wang B, Cao H. Deoxycholic acid activates epidermal growth factor receptor and promotes intestinal carcinogenesis by ADAM17-dependent ligand release. J Cell Mol Med 2018; 22:4263-4273. [PMID: 29956475 PMCID: PMC6111862 DOI: 10.1111/jcmm.13709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/04/2018] [Indexed: 12/12/2022] Open
Abstract
High fat diet is implicated in the elevated deoxycholic acid (DCA) in the intestine and correlated with increased colon cancer risk. However, the potential mechanisms of intestinal carcinogenesis by DCA remain unclarified. Here, we investigated the carcinogenic effects and mechanisms of DCA using the intestinal tumour cells and Apcmin/+ mice model. We found that DCA could activate epidermal growth factor receptor (EGFR) and promote the release of EGFR ligand amphiregulin (AREG), but not HB‐EGF or TGF‐α in intestinal tumour cells. Moreover, ADAM‐17 was required in DCA‐induced promotion of shedding of AREG and activation of EGFR/Akt signalling pathway. DCA significantly increased the multiplicity of intestinal tumours and accelerated adenoma‐carcinoma sequence in Apcmin/+ mice. ADAM‐17/EGFR signalling axis was also activated in intestinal tumours of DCA‐treated Apcmin/+ mice, whereas no significant change occurred in tumour adjacent tissues after DCA exposure. Conclusively, DCA activated EGFR and promoted intestinal carcinogenesis by ADAM17‐dependent ligand release.
Collapse
Affiliation(s)
- Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Li Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yan Dou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Baoru Deng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
75
|
Yahfoufi N, Mallet JF, Graham E, Matar C. Role of probiotics and prebiotics in immunomodulation. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
76
|
Suyama Y, Handa O, Naito Y, Takayama S, Mukai R, Ushiroda C, Majima A, Yasuda-Onozawa Y, Higashimura Y, Fukui A, Dohi O, Okayama T, Yoshida N, Katada K, Kamada K, Uchiyama K, Ishikawa T, Takagi T, Konishi H, Itoh Y. Mucus reduction promotes acetyl salicylic acid-induced small intestinal mucosal injury in rats. Biochem Biophys Res Commun 2018; 498:228-233. [PMID: 29501492 DOI: 10.1016/j.bbrc.2018.02.202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Acetyl salicylic acid (ASA) is a useful drug for the secondary prevention of cerebro-cardiovascular diseases, but it has adverse effects on the small intestinal mucosa. The pathogenesis and prophylaxis of ASA-induced small intestinal injury remain unclear. In this study, we focused on the intestinal mucus, as the gastrointestinal tract is covered by mucus, which exhibits protective effects against various gastrointestinal diseases. MATERIALS AND METHODS ASA was injected into the duodenum of rats, and small intestinal mucosal injury was evaluated using Evans blue dye. To investigate the importance of mucus, Polysorbate 80 (P80), an emulsifier, was used before ASA injection. In addition, rebamipide, a mucus secretion inducer in the small intestine, was used to suppress mucus reduction in the small intestine of P80-administered rats. RESULTS The addition of P80 reduced the mucus and exacerbated the ASA-induced small intestinal mucosal injury. Rebamipide significantly suppressed P80-reduced small intestinal mucus and P80-increased intestinal mucosal lesions in ASA-injected rats, demonstrating that mucus is important for the protection against ASA-induced small intestinal mucosal injury. These results provide new insight into the mechanism of ASA-induced small intestinal mucosal injury. CONCLUSION Mucus secretion-increasing therapy might be useful in preventing ASA-induced small intestinal mucosal injury.
Collapse
Affiliation(s)
- Yosuke Suyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Handa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shun Takayama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Rieko Mukai
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chihiro Ushiroda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Majima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuriko Yasuda-Onozawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuki Higashimura
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akifumi Fukui
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Okayama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Yoshida
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideyuki Konishi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
77
|
Wu J, Yang K, Wu W, Tang Q, Zhong Y, Gross G, Lambers TT, van Tol EAF, Cai W. Soluble Mediators From Lactobacillus rhamnosus Gorbach-Goldin Support Intestinal Barrier Function in Rats After Massive Small-Bowel Resection. JPEN J Parenter Enteral Nutr 2018; 42:1026-1034. [PMID: 30133842 DOI: 10.1002/jpen.1044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal barrier plays an essential role in maintaining gastrointestinal health. This study aimed to explore the effects of a soluble mediator preparation derived from Lactobacillus rhamnosus Gorbach-Goldin (LGG) on intestinal barrier function in a rat model of short bowel syndrome (SBS). METHODS Six-week-old male Sprague-Dawley rats underwent 80% small-bowel resection (SBR) and then were supplemented with water (SBS), 5 × 108 colony-forming unit viable LGG (SBS+LGG), or the LGG soluble mediators (SBS+LSM) in an equivalent dose to LGG by intragastric gavage daily from day 2 throughout day 14 after operation. Rats that underwent bowel transection and reanastomosis were used as the sham group. Body weight, ileum histology, intestinal permeability and bacterial translocation, inflammatory cytokines, and tight junction protein expressions of ileum were evaluated. RESULTS Animals undergoing SBR showed higher intestinal permeability and decreased expression of tight junction proteins in the ileum than sham group. Both SBS+LGG and SBS+LSM groups had reduced bacterial translocation and intestinal permeability as compared with the SBS group, with lower levels of serum endotoxin and tumor necrotizing factor alpha in ileum tissues. Moreover, the SBS+LSM group showed better body weight gain, lower endotoxin and FD-40 levels, and higher expressions of claudin-1 and claudin-4 in ileum than the SBS+LGG group. CONCLUSION Enteral supplementation of LSMs or viable LGG can ameliorate intestinal barrier disruption in a rat model of SBS. The LSM preparation not only mimicked biological effects of viable LGG but also was revealed to be more effective in reducing inflammation and supporting intestinal barrier function.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Clinical Nutrition, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Kefeng Yang
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Wu
- Department of Pediatric Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingya Tang
- Department of Clinical Nutrition, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China
| | - Yan Zhong
- Mead Johnson Pediatric Nutrition Institute, Shanghai, China
| | - Gabriele Gross
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Tim T Lambers
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Eric A F van Tol
- Mead Johnson Pediatric Nutrition Institute, Nijmegen, the Netherlands
| | - Wei Cai
- Department of Clinical Nutrition, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute for Pediatric Research, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pediatric Surgery, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
78
|
Yasuda-Onozawa Y, Handa O, Naito Y, Ushiroda C, Suyama Y, Toyokawa Y, Murakami T, Yasuda T, Ueda T, Majima A, Hotta Y, Doi T, Tanaka M, Horii Y, Higashimura Y, Mizushima K, Morita M, Uehara Y, Horie H, Fukui A, Dohi O, Okayama T, Yoshida N, Kamada K, Katada K, Uchiyama K, Ishikawa T, Takagi T, Konishi H, Itoh Y. Rebamipide upregulates mucin secretion of intestinal goblet cells via Akt phosphorylation. Mol Med Rep 2017; 16:8216-8222. [PMID: 28983630 DOI: 10.3892/mmr.2017.7647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/05/2017] [Indexed: 11/05/2022] Open
Abstract
Mucin is produced and secreted by epithelial goblet cells and is a key component of the innate immune system, acting as a barrier in the intestinal tract. However, no studies have been conducted investigating the increase in mucin secretion to enhance the intestinal barrier function. The present study investigated whether rebamipide (Reb) acts as a secretagogue of intestinal mucin and the underlying mechanisms involved, thereby focusing on the effect on goblet cells. The LS174T cell line was used as goblet cell‑like cells. Using Reb‑treated LS174T cells, the level of mucin content was assessed by periodic acid‑Schiff (PAS) staining, and mucin 2, oligomeric mucus/gel‑forming (MUC2) mRNA expression was assessed using quantitative polymerase chain reaction (PCR). Furthermore, MUC2 secretion in the supernatant was quantified by the dot blot method. The present study additionally investigated the involvement of the epidermal growth factor receptor/Akt serine/threonine kinase 1 (Akt) pathway in mucin secretion by western blotting. The results suggested that Reb strongly enhanced the positivity of PAS staining in LS174T cells, thereby suggesting increased intracellular mucin production. The PCR results indicated that Reb significantly increased MUC2 mRNA in whole cell lysate of LS174T cells. In order to assess the subsequent secretion of mucin by LS174T, MUC2 protein expression in the supernatant was assessed using the dot blot method and it was demonstrated that Reb significantly increased the secretion of MUC2 in a concentration‑dependent manner. The p‑Akt was significantly increased by Reb treatment, and an Akt inhibitor specifically suppressed MUC2 secretion. Overall, Reb increased mucin secretion directly via p‑Akt. Reb‑increased mucin may act as a strong non‑specific barrier against pathogenic stimulants in various intestinal diseases.
Collapse
Affiliation(s)
- Yuriko Yasuda-Onozawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Osamu Handa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Chihiro Ushiroda
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yosuke Suyama
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yuki Toyokawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Takaaki Murakami
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Tomoyo Yasuda
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Tomohiro Ueda
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Atsushi Majima
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yuma Hotta
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Toshifumi Doi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Makoto Tanaka
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yusuke Horii
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yasuki Higashimura
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Katsura Mizushima
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Mayuko Morita
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yukiko Uehara
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hideki Horie
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Akifumi Fukui
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Tetsuya Okayama
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Kazuhiro Kamada
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Kazuhiro Katada
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Kazuhiko Uchiyama
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| |
Collapse
|
79
|
Lukic J, Chen V, Strahinic I, Begovic J, Lev-Tov H, Davis SC, Tomic-Canic M, Pastar I. Probiotics or pro-healers: the role of beneficial bacteria in tissue repair. Wound Repair Regen 2017; 25:912-922. [PMID: 29315980 PMCID: PMC5854537 DOI: 10.1111/wrr.12607] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
Probiotics are beneficial microorganisms, known to exert numerous positive effects on human health, primarily in the battle against pathogens. Probiotics have been associated with improved healing of intestinal ulcers, and healing of infected cutaneous wounds. This article reviews the latest findings on probiotics related to their pro-healing properties on gut epithelium and skin. Proven mechanisms by which probiotic bacteria exert their beneficial effects include direct killing of pathogens, competitive displacement of pathogenic bacteria, reinforcement of epithelial barrier, induction of fibroblasts, and epithelial cells' migration and function. Beneficial immunomodulatory effects of probiotics relate to modulation and activation of intraepithelial lymphocytes, natural killer cells, and macrophages through induced production of cytokines. Systemic effects of beneficial bacteria and link between gut microbiota, immune system, and cutaneous health through gut-brain-skin axes are discussed as well. In light of growing antibiotic resistance of pathogens, antibiotic use is becoming less effective in treating cutaneous and systemic infections. This review points to a new perspective and therapeutic potential of beneficial probiotic species as a safe alternative approach for treatment of patients affected by wound healing disorders and cutaneous infections.
Collapse
Affiliation(s)
- Jovanka Lukic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Vivien Chen
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Ivana Strahinic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Jelena Begovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Laboratory for Molecular Microbiology, Belgrade, Serbia
| | - Hadar Lev-Tov
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Stephen C Davis
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Marjana Tomic-Canic
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| | - Irena Pastar
- University of Miami Miller School Of Medicine, Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miami, FL, USA
| |
Collapse
|
80
|
Hampe CS, Roth CL. Probiotic strains and mechanistic insights for the treatment of type 2 diabetes. Endocrine 2017; 58:207-227. [PMID: 29052181 DOI: 10.1007/s12020-017-1433-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The intestinal microbial composition appears to differ between healthy controls and individuals with Type 2 diabetes (T2D). This observation has led to the hypothesis that perturbations of the intestinal microbiota may contribute to the development of T2D. Manipulations of the intestinal microbiota may therefore provide a novel approach in the prevention and treatment of T2D. Indeed, fecal transplants have shown promising results in both animal models for obesity and T2D and in human clinical trials. To avoid possible complications associated with fecal transplants, probiotics are considered as a viable alternative therapy. An important, however often underappreciated, characteristic of probiotics is that individual strains may have different, even opposing, effects on the host. This strain specificity exists also within the same species. A comprehensive understanding of the underlying mechanisms at the strain level is therefore crucial for the selection of suitable probiotic strains. PURPOSE The aim of this review is to discuss the mechanisms employed by specific probiotic strains of the Lactobacillus and the Bifidobacterium genuses, which showed efficacy in the treatment of obesity and T2D. Some probiotic strains employ recurring beneficial effects, including the production of anti-microbial lactic acid, while other strains display highly unique features, such as hydrolysis of tannins. CONCLUSION A major obstacle in the evaluation of probiotic strains lays in the great number of strains, differences in detection methodology and measured outcome parameters. The understanding of further research should be directed towards the development of standardized evaluation methods to facilitate the comparison of different studies.
Collapse
Affiliation(s)
- Christiane S Hampe
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98109, USA.
| | - Christian L Roth
- Center for Integrative Brain Research, Seattle Children's Hospital & Research Institute, Seattle, WA, 98101, USA
- Pediatric Endocrinology, Seattle Children's Hospital & Research Institute, Seattle, WA, 98101, USA
| |
Collapse
|
81
|
Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clin Microbiol Rev 2017; 30:191-231. [PMID: 27856521 DOI: 10.1128/cmr.00049-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microorganisms hold promise for the treatment of numerous gastrointestinal diseases. The transfer of whole microbiota via fecal transplantation has already been shown to ameliorate the severity of diseases such as Clostridium difficile infection, inflammatory bowel disease, and others. However, the exact mechanisms of fecal microbiota transplant efficacy and the particular strains conferring this benefit are still unclear. Rationally designed combinations of microbial preparations may enable more efficient and effective treatment approaches tailored to particular diseases. Here we use an infectious disease, C. difficile infection, and an inflammatory disorder, the inflammatory bowel disease ulcerative colitis, as examples to facilitate the discussion of how microbial therapy might be rationally designed for specific gastrointestinal diseases. Fecal microbiota transplantation has already shown some efficacy in the treatment of both these disorders; detailed comparisons of studies evaluating commensal and probiotic organisms in the context of these disparate gastrointestinal diseases may shed light on potential protective mechanisms and elucidate how future microbial therapies can be tailored to particular diseases.
Collapse
|
82
|
Lahey KA, Ronaghan NJ, Shang J, Dion SP, Désilets A, Leduc R, MacNaughton WK. Signaling pathways induced by serine proteases to increase intestinal epithelial barrier function. PLoS One 2017; 12:e0180259. [PMID: 28671992 PMCID: PMC5495298 DOI: 10.1371/journal.pone.0180259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/13/2017] [Indexed: 12/30/2022] Open
Abstract
Changes in barrier function of the gastrointestinal tract are thought to contribute to the inflammatory bowel diseases Crohn's disease and ulcerative colitis. Previous work in our lab demonstrated that apical exposure of intestinal epithelial cell lines to serine proteases results in an increase in transepithelial electrical resistance (TER). However, the underlying mechanisms governing this response are unclear. We aimed to determine the requirement for proteolytic activity, epidermal growth factor receptor (EGFR) activation, and downstream intracellular signaling in initiating and maintaining enhanced barrier function following protease treatment using a canine intestinal epithelial cell line (SCBN). We also examined the role of phosphorylation of myosin regulatory light chain on the serine protease-induced increase in TER through. It was found that proteolytic activity of the serine proteases trypsin and matriptase is required to initiate and maintain the protease-mediated increase in TER. We also show that MMP-independent EGFR activation is essential to the sustained phase of the protease response, and that Src kinases may mediate EGFR transactivation. PI3-K and ERK1/2 signaling were important in reaching a maximal increase in TER following protease stimulation; however, their upstream activators are yet to be determined. CK2 inhibition prevented the increase in TER induced by serine proteases. The bradykinin B(2) receptor was not involved in the change in TER in response to serine proteases, and no change in phosphorylation of MLC was observed after trypsin or matriptase treatment. Taken together, our data show a requirement for ongoing proteolytic activity, EGFR transactivation, as well as downstream PI3-K, ERK1/2, and CK2 signaling in protease-mediated barrier enhancement of intestinal epithelial cells. The pathways mediating enhanced barrier function by proteases may be novel therapeutic targets for intestinal disorders characterized by disrupted epithelial barrier function.
Collapse
Affiliation(s)
- Kelcie A. Lahey
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Natalie J. Ronaghan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Judie Shang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Sébastien P. Dion
- Département de Pharmacologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Antoine Désilets
- Département de Pharmacologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Richard Leduc
- Département de Pharmacologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Wallace K. MacNaughton
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
83
|
Rogler G. Resolution of inflammation in inflammatory bowel disease. Lancet Gastroenterol Hepatol 2017; 2:521-530. [PMID: 28606878 DOI: 10.1016/s2468-1253(17)30031-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
Treatment of inflammatory bowel disease at present mainly targets mediators of inflammation to stop or suppress pro-inflammatory processes. Typical examples are steroids, suppression of T cells by thioguanine nucleotides, or antibodies against cytokines such as tumour necrosis factor, interleukin 12, or interleukin 23. In addition to suppression of inflammation, development of therapeutic strategies that support resolution of inflammation or that actively resolve inflammation might be desirable. Resolution of inflammation is now seen as an active process involving specific mediators (eg, lipid mediators or specific cytokines) that is mandatory to restore organ function and completely shut down inflammation. The molecular pathways involved in resolution of inflammation have been investigated in recent years and could be adopted in treatment strategies for inflammatory bowel disease. Among these approaches are anti-integrin strategies and means to produce or locally increase restitution or resolution factors, such as restoration of the activity of transforming growth factor-β by anti-SMAD7 antisense oligonucleotides. The potential role of inflammation-resolving lipid mediators (eg, resolvins), however, still warrants further study and clinical development. This Review focuses on the specific role of active resolution of inflammation in inflammatory bowel disease pathophysiology. Potential therapeutic targets based on these pathways are also discussed.
Collapse
Affiliation(s)
- Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
84
|
Lactobacillus rhamnosus GG supernatant enhance neonatal resistance to systemic Escherichia coli K1 infection by accelerating development of intestinal defense. Sci Rep 2017; 7:43305. [PMID: 28262688 PMCID: PMC5338013 DOI: 10.1038/srep43305] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/12/2017] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to determine whether Lactobacillus rhamnosus GG culture supernatant (LCS) has a preventive effect against gut-derived systemic neonatal Escherichia coli (E. coli) K1 infection. The preventive effects were evaluated in human colonic carcinoma cell line Caco-2 and neonatal rat models. Our in vitro results showed that LCS could block adhesion, invasion and translocation of E. coli K1 to Caco-2 monolayer via up-regulating mucin production and maintaining intestinal integrity. In vivo experiments revealed that pre-treatment with LCS significantly decrease susceptibility of neonatal rats to oral E. coli K1 infection as reflected by reduced bacterial intestinal colonization, translocation, dissemination and systemic infections. Further, we found that LCS treated neonatal rats have higher intestinal expressions of Ki67, MUC2, ZO-1, IgA, mucin and lower barrier permeability than those in untreated rats. These results indicated that LCS could enhance neonatal resistance to systemic E. coli K1 infection via promoting maturation of neonatal intestinal defense. In conclusions, our findings suggested that LCS has a prophylactic effect against systemic E. coli K1 infection in neonates. Future studies aimed at identifying the specific active ingredients in LCS will be helpful in developing effective pharmacological strategies for preventing neonatal E. coli K1 infection.
Collapse
|
85
|
Smolinska S, Groeger D, O'Mahony L. Biology of the Microbiome 1: Interactions with the Host Immune Response. Gastroenterol Clin North Am 2017; 46:19-35. [PMID: 28164850 DOI: 10.1016/j.gtc.2016.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The intestinal immune system is intimately connected with the vast diversity of microbes present within the gut and the diversity of food components that are consumed daily. The discovery of novel molecular mechanisms, which mediate host-microbe-nutrient communication, have highlighted the important roles played by microbes and dietary factors in influencing mucosal immune responses. Dendritic cells, epithelial cells, innate lymphoid cells, T regulatory cells, effector lymphocytes, natural killer T cells, and B cells can all be influenced by the microbiome. Many of the mechanisms being described are bacterial strain or metabolite specific.
Collapse
Affiliation(s)
- Sylwia Smolinska
- Department of Clinical Immunology, Wroclaw Medical University, Chalubinskiego 5, Wroclaw 50-368, Poland
| | - David Groeger
- Alimentary Health Pharma Davos, Obere Strasse 22, Davos Platz 7270, Switzerland
| | - Liam O'Mahony
- Molecular Immunology, Swiss Institute of Allergy and Asthma Research, University of Zurich, Obere Strasse 22, Davos Platz 7270, Switzerland.
| |
Collapse
|
86
|
An LGG-derived protein promotes IgA production through upregulation of APRIL expression in intestinal epithelial cells. Mucosal Immunol 2017; 10:373-384. [PMID: 27353252 PMCID: PMC5199635 DOI: 10.1038/mi.2016.57] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/22/2016] [Indexed: 02/07/2023]
Abstract
p40, a Lactobacillus rhamnosus GG (LGG)-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells, leading to amelioration of intestinal injury and inflammation. To elucidate mechanisms by which p40 regulates mucosal immunity to prevent inflammation, this study aimed to determine the effects and mechanisms of p40 on regulation of a proliferation-inducing ligand (APRIL) expression in intestinal epithelial cells for promoting immunoglobulin A (IgA) production. p40 upregulated April gene expression and protein production in mouse small intestine epithelial (MSIE) cells, which were inhibited by blocking EGFR expression and kinase activity. Enteroids from Egfrfl/fl, but not Egfrfl/fl-Vil-Cre mice with EGFR specifically deleted in intestinal epithelial cells, exhibited increased April gene expression by p40 treatment. p40-conditioned media from MSIE cells increased B-cell class switching to IgA+ cells and IgA production, which was suppressed by APRIL receptor-neutralizing antibodies. Treatment of B cells with p40 did not show any effects on IgA production. p40 treatment increased April gene expression and protein production in small intestinal epithelial cells, fecal IgA levels, IgA+B220+, IgA+CD19+, and IgA+ plasma cells in lamina propria of Egfrfl/fl, but not of Egfrfl/fl-Vil-Cre, mice. Thus p40 upregulates EGFR-dependent APRIL production in intestinal epithelial cells, which may contribute to promoting IgA production.
Collapse
|
87
|
Yan F, Liu L, Cao H, Moore DJ, Washington MK, Wang B, Peek RM, Acra SA, Polk DB. Neonatal colonization of mice with LGG promotes intestinal development and decreases susceptibility to colitis in adulthood. Mucosal Immunol 2017; 10:117-127. [PMID: 27095077 PMCID: PMC5073052 DOI: 10.1038/mi.2016.43] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/19/2016] [Indexed: 02/04/2023]
Abstract
Development of the intestinal microbiota during early life serves as a key regulatory stage in establishing the host-microbial relationship. This symbiotic relationship contributes to developing host immunity and maintaining health throughout the life span. This study was to develop an approach to colonize conventionally raised mice with a model probiotic bacterium, Lactobacillus rhamnosus GG (LGG), and to determine the effects of LGG colonization on intestinal development and prevention of colitis in adulthood. LGG colonization in conventionally raised was established by administering LGG to pregnant mice starting at gestational day 18 and pups at postnatal days 1- 5. LGG colonization promoted bodyweight gain and increased diversity and richness of the colonic mucosa-associated microbiota before weaning. Intestinal epithelial cell proliferation, differentiation, tight junction formation, and mucosal IgA production were all significantly enhanced in LGG-colonized mice. Adult mice colonized with LGG showed increased IgA production and decreased susceptibility to intestinal injury and inflammation induced in the dextran sodium sulfate model of colitis. Thus, neonatal colonization of mice with LGG enhances intestinal functional maturation and IgA production and confers lifelong health consequences on protection from intestinal injury and inflammation. This strategy might be applied for benefiting health in the host.
Collapse
Affiliation(s)
- Fang Yan
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA,Correspondence: D. Brent Polk, M.D., Children’s Hospital Los Angeles, 4650 Sunset Boulevard MS#126, Los Angeles, CA 90027, Tel: 323.361.2278. Fax: 323.361.3719. . Fang Yan, M.D., Ph.D., Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, MRB IV, Room: 1035, Nashville, TN 37232-0696, USA, Tel: 615-343-5021; Fax: 615-343-5323;
| | - Liping Liu
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, P. R. China
| | - Daniel J. Moore
- Department of Pediatrics, Division of Endocrinology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M. Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin 300052, P. R. China
| | - Richard M. Peek
- Departments of Medicine and Cancer Biology, Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sari A. Acra
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - D. Brent Polk
- Departments of Pediatrics and Biochemistry and Molecular Biology, University of Southern California and Saban Research Institute of Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA,Correspondence: D. Brent Polk, M.D., Children’s Hospital Los Angeles, 4650 Sunset Boulevard MS#126, Los Angeles, CA 90027, Tel: 323.361.2278. Fax: 323.361.3719. . Fang Yan, M.D., Ph.D., Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, MRB IV, Room: 1035, Nashville, TN 37232-0696, USA, Tel: 615-343-5021; Fax: 615-343-5323;
| |
Collapse
|
88
|
Sharma M, Shukla G. Metabiotics: One Step ahead of Probiotics; an Insight into Mechanisms Involved in Anticancerous Effect in Colorectal Cancer. Front Microbiol 2016; 7:1940. [PMID: 27994577 PMCID: PMC5133260 DOI: 10.3389/fmicb.2016.01940] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is closely associated with environment, diet and lifestyle. Normally it is treated with surgery, radiotherapy or chemotherapy but increasing systemic toxicity, resistance and recurrence is prompting scientists to devise new potent and safer alternate prophylactic or therapeutic strategies. Among these, probiotics, prebiotics, synbiotics, and metabiotics are being considered as the promising candidates. Metabiotics or probiotic derived factors can optimize various physiological functions of the host and offer an additional advantage to be utilized even in immunosuppressed individuals. Interestingly, anti colon cancer potential of probiotic strains has been attributable to metabiotics that have epigenetic, antimutagenic, immunomodulatory, apoptotic, and antimetastatic effects. Thus, it's time to move one step further to utilize metabiotics more smartly by avoiding the risks associated with probiotics even in certain normal/or immuno compromised host. Here, an attempt is made to provide insight into the adverse effects associated with probiotics and beneficial aspects of metabiotics with main emphasis on the modulatory mechanisms involved in colon cancer.
Collapse
Affiliation(s)
- Mridul Sharma
- Department of Microbiology, Panjab University Chandigarh, India
| | - Geeta Shukla
- Department of Microbiology, Panjab University Chandigarh, India
| |
Collapse
|
89
|
Jin DC, Cao HL, Xu MQ, Wang SN, Wang YM, Yan F, Wang BM. Regulation of the serotonin transporter in the pathogenesis of irritable bowel syndrome. World J Gastroenterol 2016; 22:8137-8148. [PMID: 27688655 PMCID: PMC5037082 DOI: 10.3748/wjg.v22.i36.8137] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/28/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Serotonin (5-HT) and the serotonin transporter (SERT) have earned a tremendous amount of attention regarding the pathogenesis of irritable bowel syndrome (IBS). Considering that enteric 5-HT is responsible for the secretion, motility and perception of the bowel, the involvement of altered enteric 5-HT metabolism in the pathogenesis of IBS has been elucidated. Higher 5-HT availability is commonly associated with depressed SERT mRNA in patients with IBS compared with healthy controls. The expression difference of SERT between IBS patients and healthy controls might suggest that SERT plays an essential role in IBS pathogenesis, and SERT was expected to be a novel therapeutic target for IBS. Progress in this area has begun to illuminate the complex regulatory mechanisms of SERT in the etiology of IBS. In this article, current insights regarding the regulation of SERT in IBS are provided, including aspects of SERT gene polymorphisms, microRNAs, immunity and inflammation, gut microbiota, growth factors, among others. Potential SERT-directed therapies for IBS are also described. The potential regulators of SERT are of clinical importance and are important for better understanding IBS pathophysiology and therapeutic strategies.
Collapse
|
90
|
Wagnerova A, Babickova J, Liptak R, Celec P, Gardlik R. Beneficial effects of live and dead Salmonella
-based vector strain on the course of colitis in mice. Lett Appl Microbiol 2016; 63:340-346. [DOI: 10.1111/lam.12632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022]
Affiliation(s)
- A. Wagnerova
- Institute of Molecular Biomedicine; Faculty of Medicine; Comenius University; Bratislava Slovakia
| | - J. Babickova
- Institute of Molecular Biomedicine; Faculty of Medicine; Comenius University; Bratislava Slovakia
- Institute for Clinical and Translational Research BMC; Biomedical Research Center; Slovak Academy of Sciences; Bratislava Slovakia
| | - R. Liptak
- Institute of Molecular Biomedicine; Faculty of Medicine; Comenius University; Bratislava Slovakia
| | - P. Celec
- Institute of Molecular Biomedicine; Faculty of Medicine; Comenius University; Bratislava Slovakia
- Institute for Clinical and Translational Research BMC; Biomedical Research Center; Slovak Academy of Sciences; Bratislava Slovakia
- Institute of Pathophysiology; Faculty of Medicine; Comenius University; Bratislava Slovakia
- Department of Molecular Biology; Faculty of Natural Sciences; Comenius University; Bratislava Slovakia
| | - R. Gardlik
- Institute of Molecular Biomedicine; Faculty of Medicine; Comenius University; Bratislava Slovakia
- Institute for Clinical and Translational Research BMC; Biomedical Research Center; Slovak Academy of Sciences; Bratislava Slovakia
- Institute of Pathophysiology; Faculty of Medicine; Comenius University; Bratislava Slovakia
| |
Collapse
|
91
|
Förster TM, Mogavero S, Dräger A, Graf K, Polke M, Jacobsen ID, Hube B. Enemies and brothers in arms: Candida albicans and gram-positive bacteria. Cell Microbiol 2016; 18:1709-1715. [PMID: 27552083 DOI: 10.1111/cmi.12657] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/20/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022]
Abstract
Candida albicans is an important human opportunistic fungal pathogen which is frequently found as part of the normal human microbiota. It is well accepted that the fungus interacts with other components of the resident microbiota and that this impacts the commensal or pathogenic outcome of C. albicans colonization. Different types of interactions, including synergism or antagonism, contribute to a complex balance between the multitude of different species. Mixed biofilms of C. albicans and streptococci are a well-studied example of a mutualistic interaction often potentiating the virulence of the individual members. In contrast, other bacteria like lactobacilli are known to antagonize C. albicans, and research has just started elucidating the mechanisms behind these interactions. This scenario is even more complicated by a third player, the host. This review focuses on interactions between C. albicans and gram-positive bacteria whose investigation will without doubt ultimately help understanding C. albicans infections.
Collapse
Affiliation(s)
- Toni M Förster
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Antonia Dräger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Katja Graf
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Melanie Polke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Friedrich Schiller University, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Friedrich Schiller University, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena, Germany
| |
Collapse
|
92
|
Mode of Delivery Determines Neonatal Pharyngeal Bacterial Composition and Early Intestinal Colonization. J Pediatr Gastroenterol Nutr 2016; 63:320-8. [PMID: 27035381 DOI: 10.1097/mpg.0000000000001124] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Bacterial colonization and succession of the human intestine shape development of immune function and risk for allergic disease, yet these processes remain poorly understood. We investigated the relations between delivery mode, initial bacterial inoculation of the infant oropharynx (OP), and intestinal colonization. METHODS We prospectively collected maternal rectal and vaginal swabs, infant OP aspirates, and infant stool from 23 healthy mother/infant pairs delivering by cesarean (CS) or vaginal delivery (VD) in an academic hospital. Bacterial abundance (16S rRNA sequencing) and community similarity between samples were compared by delivery mode. Shotgun DNA metagenomic sequencing of infant stool was performed. RESULTS VD infants had higher abundance of Firmicutes (mainly lactobacilli) in OP aspirates whereas CS OP aspirates were enriched in skin bacteria. OP aspirates were more similar to maternal vaginal and rectal microbiomes in VD compared with CS. Bacteroidetes were more abundant through 6 weeks in stool of VD infants. Infant fecal microbiomes in both delivery groups did not resemble maternal rectal or vaginal microbiomes. Differences in fecal bacterial gene potential between CS and VD at 6 weeks clustered in metabolic pathways and were mediated by abundance of Proteobacteria and Bacteroidetes. CONCLUSIONS CS infants exhibited different microbiota in the oral inoculum, a chaotic pattern of bacterial succession, and a persistent deficit of intestinal Bacteroidetes. Pioneer OP bacteria transferred from maternal vaginal and intestinal communities were not prominent constituents of the early infant fecal microbiome. Oral inoculation at birth may impact the intestinal microenvironment, thereby modulating early succession of intestinal bacteria.
Collapse
|
93
|
Ahl D, Liu H, Schreiber O, Roos S, Phillipson M, Holm L. Lactobacillus reuteri increases mucus thickness and ameliorates dextran sulphate sodium-induced colitis in mice. Acta Physiol (Oxf) 2016; 217:300-10. [PMID: 27096537 DOI: 10.1111/apha.12695] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/10/2015] [Accepted: 04/14/2016] [Indexed: 02/06/2023]
Abstract
AIM The aim of this study was to investigate whether two Lactobacillus reuteri strains (rat-derived R2LC and human-derived ATCC PTA 4659 (4659)) could protect mice against colitis, as well as delineate the mechanisms behind this protection. METHODS Mice were given L. reuteri R2LC or 4659 by gavage once daily for 14 days, and colitis was induced by addition of 3% DSS (dextran sulphate sodium) to drinking water for the last 7 days of this period. The severity of disease was assessed through clinical observations, histological evaluation and ELISA measurements of myeloperoxidase (MPO) and pro-inflammatory cytokines from colonic samples. Mucus thickness was measured in vivo with micropipettes, and tight junction protein expression was assessed using immunohistochemistry. RESULTS Colitis severity was significantly reduced by L. reuteri R2LC or 4659 when evaluated both clinically and histologically. The inflammation markers MPO, IL-1β, IL-6 and mKC (mouse keratinocyte chemoattractant) were increased by DSS and significantly reduced by the L. reuteri strains. The firmly adherent mucus thickness was reduced by DSS, but significantly increased by L. reuteri in both control and DSS-treated mice. Expression of the tight junction proteins occludin and ZO-1 was significantly increased in the bottom of the colonic crypts by L. reuteri R2LC. CONCLUSION These results demonstrate that each of the two different L. reuteri strains, one human-derived and one-rat-derived, protects against colitis in mice. Mechanisms behind this protection could at least partly be explained by the increased mucus thickness as well as a tightened epithelium in the stem cell area of the crypts.
Collapse
Affiliation(s)
- D. Ahl
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - H. Liu
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - O. Schreiber
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - S. Roos
- Department of Microbiology; Uppsala BioCenter; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - M. Phillipson
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - L. Holm
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| |
Collapse
|
94
|
Lopetuso LR, Petito V, Zambrano D, Orlando D, Dal Lago A, Serrichhio L, Papa A, Gasbarrini A, Scaldaferri F. Gut Microbiota: A Key Modulator of Intestinal Healing in Inflammatory Bowel Disease. Dig Dis 2016; 34:202-9. [PMID: 27028023 DOI: 10.1159/000444460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mucosal healing (MH) represents a crucial factor for maintaining gut homeostasis. Indeed, in inflammatory bowel disease, MH has become the standard therapeutical target, because it is associated with more effective disease control, more frequent steroid-free remission, lower rates of hospitalization and surgery, and improved quality of life. In this scenario, gut microbiota is a crucial player in modulating intestinal repair and regeneration process. It can act on the tumor necrosis factor-α production, modulation of reactive oxygen and nitrogen species, activity of matrix metalloproteinases and on many other mechanisms strictly involved in restoring gut health. In this review, we analyze and review the literature on the role of gut microbiota in sustaining mucosal injury and achieving MH.
Collapse
Affiliation(s)
- L R Lopetuso
- Internal Medicine Department, Gastroenterology Division, Catholic University of Sacred Hearth, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Effects of acute intra-abdominal hypertension on multiple intestinal barrier functions in rats. Sci Rep 2016; 6:22814. [PMID: 26980423 PMCID: PMC4793228 DOI: 10.1038/srep22814] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/15/2016] [Indexed: 12/18/2022] Open
Abstract
Intra-abdominal hypertension (IAH) is a common and serious complication in critically ill patients for which there is no well-defined treatment strategy. Here, we explored the effect of IAH on multiple intestinal barriers and discussed whether the alteration in microflora provides clues to guide the rational therapeutic treatment of intestinal barriers during IAH. Using a rat model, we analysed the expression of tight junction proteins (TJs), mucins, chemotactic factors, and Toll-like receptor 4 (TLR4) by immunohistochemistry. We also analysed the microflora populations using 16S rRNA sequencing. We found that, in addition to enhanced permeability, acute IAH (20 mmHg for 90 min) resulted in significant disturbances to mucosal barriers. Dysbiosis of the intestinal microbiota was also induced, as represented by decreased Firmicutes (relative abundance), increased Proteobacteria and migration of Bacteroidetes from the colon to the jejunum. At the genus level, Lactobacillus species and Peptostreptococcaceae incertae sedis were decreased, whereas levels of lactococci remained unchanged. Our findings outline the characteristics of IAH-induced barrier changes, indicating that intestinal barriers might be treated to alleviate IAH, and the microflora may be an especially relevant target.
Collapse
|
96
|
Ambalam P, Raman M, Purama RK, Doble M. Probiotics, prebiotics and colorectal cancer prevention. Best Pract Res Clin Gastroenterol 2016; 30:119-31. [PMID: 27048903 DOI: 10.1016/j.bpg.2016.02.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC), the third major cause of mortality among various cancer types in United States, has been increasing in developing countries due to varying diet and dietary habits and occupational hazards. Recent evidences showed that composition of gut microbiota could be associated with the development of CRC and other gut dysbiosis. Modulation of gut microbiota by probiotics and prebiotics, either alone or in combination could positively influence the cross-talk between immune system and microbiota, would be beneficial in preventing inflammation and CRC. In this review, role of probiotics and prebiotics in the prevention of CRC has been discussed. Various epidemiological and experimental studies, specifically gut microbiome research has effectively improved the understanding about the role of probiotics and microbial treatment as anticarcinogenic agents. A few human studies support the beneficial effect of probiotics and prebiotics; hence, comprehensive understanding is urgent to realize the clinical applications of probiotics and prebiotics in CRC prevention.
Collapse
Affiliation(s)
- Padma Ambalam
- Department of Biotechnology, Christ College, Rajkot, India.
| | - Maya Raman
- Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences and Bioengineering, Indian Institute of Technology, Chennai, India
| | - Ravi Kiran Purama
- School of Biotechnology, Chemical Building, East Campus, NIT Calicut, Calicut, India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences and Bioengineering, Indian Institute of Technology, Chennai, India
| |
Collapse
|
97
|
Sun J, Shen X, Li Y, Guo Z, Zhu W, Zuo L, Zhao J, Gu L, Gong J, Li J. Therapeutic Potential to Modify the Mucus Barrier in Inflammatory Bowel Disease. Nutrients 2016; 8:44. [PMID: 26784223 PMCID: PMC4728657 DOI: 10.3390/nu8010044] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
Recently, numerous studies have shown that disruption of the mucus barrier plays an important role in the exacerbation of inflammatory bowel disease, particularly in ulcerative colitis. Alterations in the mucus barrier are well supported by published data and are widely accepted. The use of fluorescence in situ hybridization and Carnoy's fixation has revealed the importance of the mucus barrier in maintaining a mutualistic relationship between host and bacteria. Studies have raised the possibility that modulation of the mucus barrier may provide therapies for the disease, using agents such as short-chain fatty acids, prebiotics and probiotics. This review describes changes in the mucus barrier of patients with inflammatory bowel disease and in animal models of the disease. We also review the involvement of the mucus barrier in the exacerbation of the disease and explore the therapeutic potential of modifying the mucus barrier with short-chain fatty acids, prebiotics, probiotics, fatty acid synthase, H₂S, neutrophil elastase inhibitor and phophatidyl choline.
Collapse
Affiliation(s)
- Jing Sun
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Xiao Shen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Zhen Guo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Lugen Zuo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Jie Zhao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Lili Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China.
| |
Collapse
|
98
|
Abstract
During pathogenesis, viruses come in contact with the microbiota that colonizes the mucosal sites they infect. The intestinal microbiota has emerged as a critical factor in intestinal viral susceptibility. While the interaction of virus-intestinal commensal bacteria can lead to enhanced or decreased viral infection capacity, several scientific studies support the use of probiotics as antiviral therapies. Thus, probiotics and the modulation of the intestinal microbiota are envisaged as therapeutic strategies in the prevention and treatment of viral infection.
Collapse
|
99
|
Vibrio vulnificus VvpE inhibits mucin 2 expression by hypermethylation via lipid raft-mediated ROS signaling in intestinal epithelial cells. Cell Death Dis 2015; 6:e1787. [PMID: 26086960 PMCID: PMC4669833 DOI: 10.1038/cddis.2015.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 02/07/2023]
Abstract
Mucin is an important physical barrier against enteric pathogens. VvpE is an elastase encoded by Gram-negative bacterium Vibrio vulnificus; however, the functional role of VvpE in intestinal mucin (Muc) production is yet to be elucidated. The recombinant protein (r) VvpE significantly reduced the level of Muc2 in human mucus-secreting HT29-MTX cells. The repression of Muc2 induced by rVvpE was highly susceptible to the knockdown of intelectin-1b (ITLN) and sequestration of cholesterol by methyl-β-cyclodextrin. We found that rVvpE induces the recruitment of NADPH oxidase 2 and neutrophil cytosolic factor 1 into the membrane lipid rafts coupled with ITLN to facilitate the production of reactive oxygen species (ROS). The bacterial signaling of rVvpE through ROS production is uniquely mediated by the phosphorylation of ERK, which was downregulated by the silencing of the PKCδ. Moreover, rVvpE induced region-specific methylation in the Muc2 promoter to promote the transcriptional repression of Muc2. In two mouse models of V. vulnificus infection, the mutation of the vvpE gene from V. vulnificus exhibited an increased survival rate and maintained the level of Muc2 expression in intestine. These results demonstrate that VvpE inhibits Muc2 expression by hypermethylation via lipid raft-mediated ROS signaling in the intestinal epithelial cells.
Collapse
|
100
|
Zhang W, Zhu YH, Yang JC, Yang GY, Zhou D, Wang JF. A Selected Lactobacillus rhamnosus Strain Promotes EGFR-Independent Akt Activation in an Enterotoxigenic Escherichia coli K88-Infected IPEC-J2 Cell Model. PLoS One 2015; 10:e0125717. [PMID: 25915861 PMCID: PMC4411159 DOI: 10.1371/journal.pone.0125717] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/17/2015] [Indexed: 12/24/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are important intestinal pathogens that cause diarrhea in humans and animals. Although probiotic bacteria may protect against ETEC-induced enteric infections, the underlying mechanisms are unknown. In this study, porcine intestinal epithelial J2 cells (IPEC-J2) were pre-incubated with and without Lactobacillus rhamnosus ATCC 7469 and then exposed to F4+ ETEC. Increases in TLR4 and NOD2 mRNA expression were observed at 3 h after F4+ ETEC challenge, but these increases were attenuated by L. rhamnosus treatment. Expression of TLR2 and NOD1 mRNA was up-regulated in cells pre-treated with L. rhamnosus. Pre-treatment with L. rhamnosus counteracted F4+ ETEC-induced increases in TNF-α concentration. Increased PGE2. concentrations were observed in cells infected with F4+ ETEC and in cells treated with L. rhamnosus only. A decrease in phosphorylated epidermal growth factor receptor (EGFR) was observed at 3 h after F4+ ETEC challenge in cells treated with L. rhamnosus. Pre-treatment with L. rhamnosus enhanced Akt phosphorylation and increased ZO-1 and occludin protein expression. Our findings suggest that L. rhamnosus protects intestinal epithelial cells from F4+ ETEC-induced damage, partly through the anti-inflammatory response involving synergism between TLR2 and NOD1. In addition, L. rhamnosus promotes EGFR-independent Akt activation, which may activate intestinal epithelial cells in response to bacterial infection, in turn increasing tight junction integrity and thus enhancing the barrier function and restricting pathogen invasion. Pre-incubation with L. rhamnosus was superior to co-incubation in reducing the adhesion of F4+ ETEC to IPEC-J2 cells and subsequently attenuating F4+ ETEC-induced mucin layer destruction and suppressing apoptosis. Our data indicate that a selected L. rhamnosus strain interacts with porcine intestinal epithelial cells to maintain the epithelial barrier and promote intestinal epithelial cell activation in response to bacterial infection, thus protecting cells from the deleterious effects of F4+ ETEC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yao-Hong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jin-Cai Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gui-Yan Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dong Zhou
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiu-Feng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|