51
|
Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Heiden MGV, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39:171-83. [PMID: 20670887 PMCID: PMC2946786 DOI: 10.1016/j.molcel.2010.06.022] [Citation(s) in RCA: 1570] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 04/07/2010] [Accepted: 05/14/2010] [Indexed: 12/18/2022]
Abstract
Aberrant activation of the mammalian target of rapamycin complex 1 (mTORC1) is a common molecular event in a variety of pathological settings, including genetic tumor syndromes, cancer, and obesity. However, the cell-intrinsic consequences of mTORC1 activation remain poorly defined. Through a combination of unbiased genomic, metabolomic, and bioinformatic approaches, we demonstrate that mTORC1 activation is sufficient to stimulate specific metabolic pathways, including glycolysis, the oxidative arm of the pentose phosphate pathway, and de novo lipid biosynthesis. This is achieved through the activation of a transcriptional program affecting metabolic gene targets of hypoxia-inducible factor (HIF1alpha) and sterol regulatory element-binding protein (SREBP1 and SREBP2). We find that SREBP1 and 2 promote proliferation downstream of mTORC1, and the activation of these transcription factors is mediated by S6K1. Therefore, in addition to promoting protein synthesis, mTORC1 activates specific bioenergetic and anabolic cellular processes that are likely to contribute to human physiology and disease.
Collapse
Affiliation(s)
- Katrin Düvel
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Jessica L. Yecies
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Suchithra Menon
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Pichai Raman
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Alex I. Lipovsky
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115
| | - Amanda L. Souza
- Metabolite Profiling Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Ellen Triantafellow
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Qicheng Ma
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Regina Gorski
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Stephen Cleaver
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | | | - Jeffrey P. MacKeigan
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Peter M. Finan
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Clary B. Clish
- Metabolite Profiling Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Leon O. Murphy
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Brendan D. Manning
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115
| |
Collapse
|
52
|
Schultze FC, Petrova DT, Oellerich M, Armstrong VW, Asif AR. Differential proteome and phosphoproteome signatures in human T-lymphoblast cells induced by sirolimus. Cell Prolif 2010; 43:396-404. [PMID: 20590665 DOI: 10.1111/j.1365-2184.2010.00690.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The present study was designed to investigate early proteome and phosphoproteome changes during inhibition of lymphocyte proliferation induced by sirolimus (SRL). MATERIALS AND METHODS Proliferation assays were conducted using human CCRF-CEM T lymphoblasts under different SRL concentrations. Total protein lysates after SRL treatment were used to identify significantly regulated proteins and phosphorylated proteins by 2-DE and Q-TOF Ultima Global mass spectrometer. RESULTS AND CONCLUSIONS Incubation with 2.5 micromol/l SRL resulted in a approximately 70% inhibition of cell proliferation. Cells incubated with 2.5 micromol/l for 30 min showed a differential phosphorylation pattern with one higher (TCPQ) and six lower phosphorylation signals (TBA1B, VIME, HNRPD, ENPL, SEPT9, PLSL). On investigating the differential protein expression, five proteins were found to be up-regulated (ECHB, PSB3, MTDC, LDHB and NDKA) and four were down-regulated (EHD1, AATC, LMNB1 and MDHC). Nine of these differentially regulated proteins/phosphoproteins (TCPQ, TBA1B, VIME, HNRPD, ENPL, ECHB, PSB3, LDHB and LMNB1) showed significant interaction potential, through binding protein YWHAZ using MINT software. CONCLUSIONS We report for the first time the simultaneous early influence of SRL on phosphorylation status and on protein expression in the total proteome of CCRF-CEM T lymphoblasts and predict that 56% of the proteins interact with each other, highlighting significance of these results.
Collapse
Affiliation(s)
- F C Schultze
- Department of Clinical Chemistry, University Medicine Goettingen, Goettingen, Germany
| | | | | | | | | |
Collapse
|
53
|
[Replacing calcineurin inhibitors with proliferation signal inhibitors after kidney transplantation: indications, results, and disadvantages]. Nephrol Ther 2010; 5 Suppl 6:S395-9. [PMID: 20129452 DOI: 10.1016/s1769-7255(09)73432-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the kidney transplant patient, calcineurin inhibitor (CNI) treatment is a major risk factor for chronic allograft nephropathy (CAN). Immunosuppressive strategies based on non-nephrotoxic drugs such as proliferation signal inhibitors (PSIs) have been conceived to reduce or even interrupt CNIs. CNI conversion, with progressive cessation over 3 months with a PSI can significantly improve renal function, notably if the patient presents proteinuria less than 0.8 g/day and if conversion is undertaken early, when the glomerular filtration rate (GFR) is 40 ml/min or greater. In these conditions GRF improvement is associated with a histological CADI score and chronic lesion markers. Nevertheless, replacing CNIs with a PSI can occasionally induce proteinuria that is potentially related to direct toxicity of the PSI on the podocytes, which must be monitored to prevent recurrence of nephrotoxicity lesions.
Collapse
|
54
|
Markou T, Marshall AK, Cullingford TE, Tham EL, Sugden PH, Clerk A. Regulation of the cardiomyocyte transcriptome vs translatome by endothelin-1 and insulin: translational regulation of 5' terminal oligopyrimidine tract (TOP) mRNAs by insulin. BMC Genomics 2010; 11:343. [PMID: 20509958 PMCID: PMC2900265 DOI: 10.1186/1471-2164-11-343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/29/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Changes in cellular phenotype result from underlying changes in mRNA transcription and translation. Endothelin-1 stimulates cardiomyocyte hypertrophy with associated changes in mRNA/protein expression and an increase in the rate of protein synthesis. Insulin also increases the rate of translation but does not promote overt cardiomyocyte hypertrophy. One mechanism of translational regulation is through 5' terminal oligopyrimidine tracts (TOPs) that, in response to growth stimuli, promote mRNA recruitment to polysomes for increased translation. TOP mRNAs include those encoding ribosomal proteins, but the full panoply remains to be established. Here, we used microarrays to compare the effects of endothelin-1 and insulin on the global transcriptome of neonatal rat cardiomyocytes, and on mRNA recruitment to polysomes (i.e. the translatome). RESULTS Globally, endothelin-1 and insulin (1 h) promoted >1.5-fold significant (false discovery rate < 0.05) changes in expression of 341 and 38 RNAs, respectively. For these transcripts with this level of change there was little evidence of translational regulation. However, 1336 and 712 RNAs had >1.25-fold significant changes in expression in total and/or polysomal RNA induced by endothelin-1 or insulin, respectively, of which approximately 35% of endothelin-1-responsive and approximately 56% of insulin-responsive transcripts were translationally regulated. Of mRNAs for established proteins recruited to polysomes in response to insulin, 49 were known TOP mRNAs with a further 15 probable/possible TOP mRNAs, but 49 had no identifiable TOP sequences or other consistent features in the 5' untranslated region. CONCLUSIONS Endothelin-1, rather than insulin, substantially affects global transcript expression to promote cardiomyocyte hypertrophy. Effects on RNA recruitment to polysomes are subtle, with differential effects of endothelin-1 and insulin on specific transcripts. Furthermore, although insulin promotes recruitment of TOP mRNAs to cardiomyocyte polysomes, not all recruited mRNAs are TOP mRNAs.
Collapse
Affiliation(s)
- Thomais Markou
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Imperial College London, London, UK
| | - Andrew K Marshall
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Imperial College London, London, UK
| | - Timothy E Cullingford
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Imperial College London, London, UK
| | - El L Tham
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Imperial College London, London, UK
| | - Peter H Sugden
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Imperial College London, London, UK
| | - Angela Clerk
- National Heart and Lung Institute (Cardiovascular Sciences), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
55
|
Albini A, Indraccolo S, Noonan DM, Pfeffer U. Functional genomics of endothelial cells treated with anti-angiogenic or angiopreventive drugs. Clin Exp Metastasis 2010; 27:419-39. [PMID: 20383568 DOI: 10.1007/s10585-010-9312-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/16/2010] [Indexed: 01/28/2023]
Abstract
Angiogenesis is a highly regulated physiological process that has been studied in considerable detail given its importance in several chronic pathologies. Many endogenous factors and hormones intervene in the regulation of angiogensis and classical as well as targeted drugs have been developed for its control. Angiogenesis inhibition has come off the bench and entered into clinical application for cancer therapy, particularly for metastatic disease. While the clinical benefit is currently in terms of months, preclinical data suggest that novel drugs and drug combinations could lead to substantial improvement. The many targets of endogenous angiogenesis inhibitors reflect the complexity of the process; in contrast, current clinical therapies mainly target the vascular endothelial growth factor system. Cancer chemopreventive compounds can retard tumor insurgence and delay or prevent metastasis and many of these molecules hinder angiogenesis, a mechanism that we termed angioprevention. Angiopreventive drugs appear to prevalently act through the inhibition of the pro-inflammatory and anti-apoptotic player NFkappaB, thus contrasting inflammation dependent angiogenesis. Relatively little is known concerning the effects of these angiogenesis inhibitors on gene expression of endothelial cells, the main target of many of these molecules. Here we provide an exhaustive list of anti-angiogenic molecules, and summarize their effects, where known, on the transcriptome and functional genomics of endothelial cells. The regulation of specific genes can be crucial to preventive or therapeutic intervention. Further, novel targets might help to circumvent resistance to anti-angiogenic therapy. The studies we review are relevant not only to cancer but also to other chronic degenerative diseases involving endothelial cells, such as cardiovascular disorders, diabetes, rheumatoid arthritis and retinopaties, as well as vessel aging.
Collapse
Affiliation(s)
- Adriana Albini
- MultiMedica Castellanza (VA) and Oncology Research, IRCCS MultiMedica, 20138 Milan, Italy.
| | | | | | | |
Collapse
|
56
|
Jiang Z, Belforte JE, Lu Y, Yabe Y, Pickel J, Smith CB, Je HS, Lu B, Nakazawa K. eIF2alpha Phosphorylation-dependent translation in CA1 pyramidal cells impairs hippocampal memory consolidation without affecting general translation. J Neurosci 2010; 30:2582-94. [PMID: 20164343 PMCID: PMC2836228 DOI: 10.1523/jneurosci.3971-09.2010] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 12/08/2009] [Accepted: 01/05/2010] [Indexed: 11/21/2022] Open
Abstract
Protein synthesis inhibitor antibiotics are widely used to produce amnesia, and have been recognized to inhibit general or global mRNA translation in the basic translational machinery. For instance, anisomycin interferes with protein synthesis by inhibiting peptidyl transferase or the 80S ribosomal function. Therefore, de novo general or global protein synthesis has been thought to be necessary for long-term memory formation. However, it is unclear which mode of translation-gene-specific translation or general/global translation-is actually crucial for the memory consolidation process in mammalian brains. Here, we generated a conditional transgenic mouse strain in which double-strand RNA-dependent protein kinase (PKR)-mediated phosphorylation of eIF2alpha, a key translation initiation protein, was specifically increased in hippocampal CA1 pyramidal cells by the chemical inducer AP20187. Administration of AP20187 significantly increased activating transcription factor 4 (ATF4) translation and concomitantly suppressed CREB-dependent pathways in CA1 cells; this led to impaired hippocampal late-phase LTP and memory consolidation, with no obvious reduction in general translation. Conversely, inhibition of general translation by low-dose anisomycin failed to block hippocampal-dependent memory consolidation. Together, these results indicated that CA1-restricted genetic manipulation of particular mRNA translations is sufficient to impair the consolidation and that consolidation of memories in CA1 pyramidal cells through eIF2alpha dephosphorylation depends more on transcription/translation of particular genes than on overall levels of general translation. The present study sheds light on the critical importance of gene-specific translations for hippocampal memory consolidation.
Collapse
Affiliation(s)
- Zhihong Jiang
- Unit on the Genetics of Cognition and Behavior, Mood and Anxiety Disorders Program
| | - Juan E. Belforte
- Unit on the Genetics of Cognition and Behavior, Mood and Anxiety Disorders Program
| | - Yuan Lu
- Gene, Cognition, and Psychosis Program
| | - Yoko Yabe
- Unit on the Genetics of Cognition and Behavior, Mood and Anxiety Disorders Program
| | | | - Carolyn Beebe Smith
- Unit on Neuroadaptation and Protein Metabolism, Laboratory of Cerebral Metabolism, National Institute of Mental Health, and
| | - Hyun-Soo Je
- Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Bai Lu
- Gene, Cognition, and Psychosis Program
- Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Kazu Nakazawa
- Unit on the Genetics of Cognition and Behavior, Mood and Anxiety Disorders Program
| |
Collapse
|
57
|
Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 2010; 11:35-46. [PMID: 20074526 PMCID: PMC2824086 DOI: 10.1016/j.cmet.2009.11.010] [Citation(s) in RCA: 770] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 10/13/2009] [Accepted: 11/19/2009] [Indexed: 12/14/2022]
Abstract
The target of rapamycin (TOR) pathway is a major nutrient-sensing pathway that, when genetically downregulated, increases life span in evolutionarily diverse organisms including mammals. The central component of this pathway, TOR kinase, is the target of the inhibitory drug rapamycin, a highly specific and well-described drug approved for human use. We show here that feeding rapamycin to adult Drosophila produces the life span extension seen in some TOR mutants. Increase in life span by rapamycin was associated with increased resistance to both starvation and paraquat. Analysis of the underlying mechanisms revealed that rapamycin increased longevity specifically through the TORC1 branch of the TOR pathway, through alterations to both autophagy and translation. Rapamycin could increase life span of weak insulin/Igf signaling (IIS) pathway mutants and of flies with life span maximized by dietary restriction, indicating additional mechanisms.
Collapse
Affiliation(s)
- Ivana Bjedov
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, UK
| | | | | | | | | | | | | |
Collapse
|
58
|
Williamson AJ, Whetton AD. Development of approaches for systematic analysis of protein networks in stem cells. ACTA ACUST UNITED AC 2010; 50:273-84. [DOI: 10.1016/j.advenzreg.2009.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
59
|
Bandhakavi S, Kim YM, Ro SH, Xie H, Onsongo G, Jun CB, Kim DH, Griffin TJ. Quantitative nuclear proteomics identifies mTOR regulation of DNA damage response. Mol Cell Proteomics 2009; 9:403-14. [PMID: 19955088 DOI: 10.1074/mcp.m900326-mcp200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular nutritional and energy status regulates a wide range of nuclear processes important for cell growth, survival, and metabolic homeostasis. Mammalian target of rapamycin (mTOR) plays a key role in the cellular responses to nutrients. However, the nuclear processes governed by mTOR have not been clearly defined. Using isobaric peptide tagging coupled with linear ion trap mass spectrometry, we performed quantitative proteomics analysis to identify nuclear processes in human cells under control of mTOR. Within 3 h of inhibiting mTOR with rapamycin in HeLa cells, we observed down-regulation of nuclear abundance of many proteins involved in translation and RNA modification. Unexpectedly, mTOR inhibition also down-regulated several proteins functioning in chromosomal integrity and up-regulated those involved in DNA damage responses (DDRs) such as 53BP1. Consistent with these proteomic changes and DDR activation, mTOR inhibition enhanced interaction between 53BP1 and p53 and increased phosphorylation of ataxia telangiectasia mutated (ATM) kinase substrates. ATM substrate phosphorylation was also induced by inhibiting protein synthesis and suppressed by inhibiting proteasomal activity, suggesting that mTOR inhibition reduces steady-state (abundance) levels of proteins that function in cellular pathways of DDR activation. Finally, rapamycin-induced changes led to increased survival after radiation exposure in HeLa cells. These findings reveal a novel functional link between mTOR and DDR pathways in the nucleus potentially operating as a survival mechanism against unfavorable growth conditions.
Collapse
Affiliation(s)
- Sricharan Bandhakavi
- Department of Biochemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Salmond RJ, Emery J, Okkenhaug K, Zamoyska R. MAPK, Phosphatidylinositol 3-Kinase, and Mammalian Target of Rapamycin Pathways Converge at the Level of Ribosomal Protein S6 Phosphorylation to Control Metabolic Signaling in CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:7388-97. [DOI: 10.4049/jimmunol.0902294] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
61
|
de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C. Global signatures of protein and mRNA expression levels. MOLECULAR BIOSYSTEMS 2009; 5:1512-26. [PMID: 20023718 DOI: 10.1039/b908315d] [Citation(s) in RCA: 612] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular states are determined by differential expression of the cell's proteins. The relationship between protein and mRNA expression levels informs about the combined outcomes of translation and protein degradation which are, in addition to transcription and mRNA stability, essential contributors to gene expression regulation. This review summarizes the state of knowledge about large-scale measurements of absolute protein and mRNA expression levels, and the degree of correlation between the two parameters. We summarize the information that can be derived from comparison of protein and mRNA expression levels and discuss how corresponding sequence characteristics suggest modes of regulation.
Collapse
Affiliation(s)
- Raquel de Sousa Abreu
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX, USA
| | | | | | | |
Collapse
|
62
|
Dowling RJO, Pollak M, Sonenberg N. Current status and challenges associated with targeting mTOR for cancer therapy. BioDrugs 2009; 23:77-91. [PMID: 19489650 DOI: 10.2165/00063030-200923020-00002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in the regulation of cellular growth, survival, and proliferation. Inappropriate activation of PI3K/Akt/mTOR signaling can promote a cellular environment that is favorable for transformation. In fact, dysregulation of this pathway, as a result of genetic mutations and amplifications, is implicated in a variety of human cancers. Therefore, mTOR has emerged as a key target for the treatment of cancer, particularly in the treatment of tumors that exhibit increased mTOR signaling as a result of genetic lesions. The immunosuppressant sirolimus (rapamycin) directly inhibits mTOR activity and suppresses the growth of cancer cells in vitro and in vivo. As a result, a number of sirolimus derivatives have been developed as anti-cancer therapies, and these compounds are currently under investigation in phase I-III clinical trials. In this review, we summarize the use of sirolimus derivatives in clinical trials and address some of the challenges associated with targeting mTOR for the treatment of human cancer.
Collapse
Affiliation(s)
- Ryan J O Dowling
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
63
|
Abstract
Translational control is an important but relatively unappreciated mechanism that regulates levels of protein products. In addition to a global translational control that regulates the cell's response to external stimuli such as growth factors, cytokines, stress, and viral infections, selective translational control has recently been demonstrated to affect many genes related to growth and apoptotic processes. Translational infidelity has recently been suggested as a new mechanism of T cell dysregulation in SLE. This review discusses current data on translational control of T cell biology and the central aspect of translational control in the signalling pathway leading to T cell proliferation, apoptotic response, and cytokine production. The utility for global analysis by genomics to study translational control of T cell gene expression is also discussed.
Collapse
Affiliation(s)
- Laura Beretta
- Department of Microbiology and Immunology, University of Michigan, Medical School, Ann Arbor, 48109-0620, USA.
| |
Collapse
|
64
|
Abstract
Cancer has currently overtaken heart disease as the major cause of mortality in the United States. The Human Genome Project, advances in informatics, miniaturization of sample collection, and increased knowledge of cell signaling pathways has revolutionized the study of disease. Genomics, proteomics, and metabolomics are currently being used to develop molecular signatures for disease diagnosis, prognosis, and therapeutic efficacy. Tumor-associated antigens discovered by these methods are being used to develop passive (humoral) as well as active immunotherapy strategies to stimulate the immune system. Development and validation of biomarkers on a parallel track with therapeutics can speed development times by accurate screening of patient populations and substituting surrogate markers that correlate well with clinical outcomes.
Collapse
Affiliation(s)
- Uriel M Malyankar
- Biomarkers, Division of Translational Medicine, MannKind Corporation, Valencia, California 91355, USA.
| |
Collapse
|
65
|
Nikolaev SI, Deutsch S, Genolet R, Borel C, Parand L, Ucla C, Schütz F, Duriaux Sail G, Dupré Y, Jaquier-Gubler P, Araud T, Conne B, Descombes P, Vassalli JD, Curran J, Antonarakis SE. Transcriptional and post-transcriptional profile of human chromosome 21. Genome Res 2009; 19:1471-9. [PMID: 19581486 DOI: 10.1101/gr.089425.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated extensive transcriptional activity across the human genome, a substantial fraction of which is not associated with any functional annotation. However, very little is known regarding the post-transcriptional processes that operate within the different classes of RNA molecules. To characterize the post-transcriptional properties of expressed sequences from human chromosome 21 (HSA21), we separated RNA molecules from three cell lines (GM06990, HeLa S3, and SK-N-AS) according to their ribosome content by sucrose gradient fractionation. Polyribosomal-associated RNA and total RNA were subsequently hybridized to genomic tiling arrays. We found that approximately 50% of the transcriptional signals were located outside of annotated exons and were considered as TARs (transcriptionally active regions). Although TARs were observed among polysome-associated RNAs, RT-PCR and RACE experiments revealed that approximately 40% were likely to represent nonspecific cross-hybridization artifacts. Bioinformatics discrimination of TARs according to conservation and sequence complexity allowed us to identify a set of high-confidence TARs. This set of TARs was significantly depleted in the polysomes, suggesting that it was not likely to be involved in translation. Analysis of polysome representation of RefSeq exons showed that at least 15% of RefSeq transcripts undergo significant post-transcriptional regulation in at least two of the three cell lines tested. Among the regulated transcripts, enrichment analysis revealed an over-representation of genes involved in Alzheimer's disease (AD), including APP and the BACE1 protease that cleaves APP to produce the pathogenic beta 42 peptide. We demonstrate that the combination of RNA fractionation and tiling arrays is a powerful method to assess the transcriptional and post-transcriptional properties of genomic regions.
Collapse
Affiliation(s)
- Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Slipczuk L, Bekinschtein P, Katche C, Cammarota M, Izquierdo I, Medina JH. BDNF activates mTOR to regulate GluR1 expression required for memory formation. PLoS One 2009; 4:e6007. [PMID: 19547753 PMCID: PMC2695538 DOI: 10.1371/journal.pone.0006007] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 05/27/2009] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The mammalian target of Rapamycin (mTOR) kinase plays a key role in translational control of a subset of mRNAs through regulation of its initiation step. In neurons, mTOR is present at the synaptic region, where it modulates the activity-dependent expression of locally-translated proteins independently of mRNA synthesis. Indeed, mTOR is necessary for different forms of synaptic plasticity and long-term memory (LTM) formation. However, little is known about the time course of mTOR activation and the extracellular signals governing this process or the identity of the proteins whose translation is regulated by this kinase, during mnemonic processing. METHODOLOGY/PRINCIPAL FINDINGS Here we show that consolidation of inhibitory avoidance (IA) LTM entails mTOR activation in the dorsal hippocampus at the moment of and 3 h after training and is associated with a rapid and rapamycin-sensitive increase in AMPA receptor GluR1 subunit expression, which was also blocked by intra-hippocampal delivery of GluR1 antisense oligonucleotides (ASO). In addition, we found that pre- or post-training administration of function-blocking anti-BDNF antibodies into dorsal CA1 hampered IA LTM retention, abolished the learning-induced biphasic activation of mTOR and its readout, p70S6K and blocked GluR1 expression, indicating that BDNF is an upstream factor controlling mTOR signaling during fear-memory consolidation. Interestingly, BDNF ASO hindered LTM retention only when given into dorsal CA1 1 h after but not 2 h before training, suggesting that BDNF controls the biphasic requirement of mTOR during LTM consolidation through different mechanisms: an early one involving BDNF already available at the moment of training, and a late one, happening around 3 h post-training that needs de novo synthesis of this neurotrophin. CONCLUSIONS/SIGNIFICANCE IN CONCLUSION, OUR FINDINGS DEMONSTRATE THAT: 1) mTOR-mediated mRNA translation is required for memory consolidation during at least two restricted time windows; 2) this kinase acts downstream BDNF in the hippocampus and; 3) it controls the increase of synaptic GluR1 necessary for memory consolidation.
Collapse
Affiliation(s)
- Leandro Slipczuk
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Cynthia Katche
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Martín Cammarota
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Centro de Memoria, Instituto de Pesquisas Biomedicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brasil
| | - Iván Izquierdo
- Centro de Memoria, Instituto de Pesquisas Biomedicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brasil
| | - Jorge H. Medina
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Centro de Memoria, Instituto de Pesquisas Biomedicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brasil
| |
Collapse
|
67
|
Breathing lessons: Tor tackles the mitochondria. Aging (Albany NY) 2009; 1:9-11. [PMID: 20157592 PMCID: PMC2815759 DOI: 10.18632/aging.100013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Accepted: 01/15/2009] [Indexed: 01/20/2023]
|
68
|
Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron 2009; 61:10-26. [PMID: 19146809 PMCID: PMC5154738 DOI: 10.1016/j.neuron.2008.10.055] [Citation(s) in RCA: 744] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/10/2008] [Accepted: 10/17/2008] [Indexed: 01/07/2023]
Abstract
Long-lasting forms of synaptic plasticity and memory are dependent on new protein synthesis. Recent advances obtained from genetic, physiological, pharmacological, and biochemical studies provide strong evidence that translational control plays a key role in regulating long-term changes in neural circuits and thus long-term modifications in behavior. Translational control is important for regulating both general protein synthesis and synthesis of specific proteins in response to neuronal activity. In this review, we summarize and discuss recent progress in the field and highlight the prospects for better understanding of long-lasting changes in synaptic strength, learning, and memory and implications for neurological diseases.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, BT 110, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Nahum Sonenberg
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
69
|
Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SMH, Wendel HG, Brem B, Greger H, Lowe SW, Porco JA, Pelletier J. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 2008; 118:2651-60. [PMID: 18551192 DOI: 10.1172/jci34753] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 05/07/2008] [Indexed: 01/20/2023] Open
Abstract
Disablement of cell death programs in cancer cells contributes to drug resistance and in some cases has been associated with altered translational control. As eukaryotic translation initiation factor 4E (eIF4E) cooperates with c-Myc during lymphomagenesis, induces drug resistance, and is a genetic modifier of the rapamycin response, we have investigated the effect of dysregulation of the ribosome recruitment phase of translation initiation on tumor progression and chemosensitivity. eIF4E is a subunit of eIF4F, a complex that stimulates ribosome recruitment during translation initiation by delivering the DEAD-box RNA helicase eIF4A to the 5' end of mRNAs. eIF4A is thought to prepare a ribosome landing pad on mRNA templates for incoming 40S ribosomes (and associated factors). Using small molecule screening, we found that cyclopenta[b]benzofuran flavaglines, a class of natural products, modulate eIF4A activity and inhibit translation initiation. One member of this class of compounds, silvestrol, was able to enhance chemosensitivity in a mouse lymphoma model in which carcinogenesis is driven by phosphatase and tensin homolog (PTEN) inactivation or elevated eIF4E levels. These results establish that targeting translation initiation can restore drug sensitivity in vivo and provide an approach to modulating chemosensitivity.
Collapse
|
70
|
Bianchini A, Loiarro M, Bielli P, Busà R, Paronetto MP, Loreni F, Geremia R, Sette C. Phosphorylation of eIF4E by MNKs supports protein synthesis, cell cycle progression and proliferation in prostate cancer cells. Carcinogenesis 2008; 29:2279-88. [PMID: 18809972 DOI: 10.1093/carcin/bgn221] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deregulation of the phosphatidyl inositol trisphosphate kinase/AKT/mammalian target of rapamycin (mTOR) and RAS/mitogen-activated protein kinase (MAPK)/MNK pathways frequently occurs in human prostate carcinomas (PCas) and leads to aberrant modulation of messenger RNA (mRNA) translation. We have investigated the relative contribution of these pathways to translational regulation and proliferation of PCa cells. MNK-dependent phosphorylation of eIF4E is elevated in DU145 cells, which have low basal levels of AKT/mTOR activity due to the expression of the tumor suppressor PTEN. In contrast, eIF4E phosphorylation is low in PC3 and LNCaP cells with mutated PTEN and constitutively active AKT/mTOR pathway, but it can be strongly induced through inhibition of mTOR activity by rapamycin or serum depletion. Remarkably, we found that inhibition of MNKs strongly reduced the polysomal recruitment of terminal oligopyrimidine messenger RNAs (TOP mRNAs), which are known targets of mTOR-dependent translational control. Pull-down assays of the eIF4F complex indicated that translation initiation was differently affected by inhibition of MNKs and mTOR. In addition, concomitant treatment with MNK inhibitor and rapamycin exerted additive effects on polysomal recruitment of TOP mRNAs and protein synthesis. The MNK inhibitor was more effective than rapamycin in blocking proliferation of PTEN-expressing cells, whereas combination of the two inhibitors suppressed cell cycle progression in both cell lines. Microarray analysis showed that MNK affected translation of mRNAs involved in cell cycle progression. Thus, our results indicate that a balance between the activity of the AKT/mTOR and the MAPK/MNK pathway in PCa cells maintains a defined translational level of specific mRNAs required for ribosome biogenesis, cell proliferation and stress response and might confer to these cells the ability to overcome negative insults.
Collapse
Affiliation(s)
- Andrea Bianchini
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Genolet R, Araud T, Maillard L, Jaquier-Gubler P, Curran J. An approach to analyse the specific impact of rapamycin on mRNA-ribosome association. BMC Med Genomics 2008; 1:33. [PMID: 18673536 PMCID: PMC2533349 DOI: 10.1186/1755-8794-1-33] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 08/01/2008] [Indexed: 01/06/2023] Open
Abstract
Background Recent work, using both cell culture model systems and tumour derived cell lines, suggests that the differential recruitment into polysomes of mRNA populations may be sufficient to initiate and maintain tumour formation. Consequently, a major effort is underway to use high density microarray profiles to establish molecular fingerprints for cells exposed to defined drug regimes. The aim of these pharmacogenomic approaches is to provide new information on how drugs can impact on the translational read-out within a defined cellular background. Methods We describe an approach that permits the analysis of de-novo mRNA-ribosome association in-vivo during short drug exposures. It combines hypertonic shock, polysome fractionation and high-throughput analysis to provide a molecular phenotype of translationally responsive transcripts. Compared to previous translational profiling studies, the procedure offers increased specificity due to the elimination of the drugs secondary effects (e.g. on the transcriptional read-out). For this pilot "proof-of-principle" assay we selected the drug rapamycin because of its extensively studied impact on translation initiation. Results High throughput analysis on both the light and heavy polysomal fractions has identified mRNAs whose re-recruitment onto free ribosomes responded to short exposure to the drug rapamycin. The results of the microarray have been confirmed using real-time RT-PCR. The selective down-regulation of TOP transcripts is also consistent with previous translational profiling studies using this drug. Conclusion The technical advance outlined in this manuscript offers the possibility of new insights into mRNA features that impact on translation initiation and provides a molecular fingerprint for transcript-ribosome association in any cell type and in the presence of a range of drugs of interest. Such molecular phenotypes defined pre-clinically may ultimately impact on the evaluation of a particular drug in a living cell.
Collapse
Affiliation(s)
- Raphael Genolet
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School (CMU), 1 rue Michel Servet, CH-1211 Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
72
|
Igbp1 is part of a positive feedback loop in stem cell factor-dependent, selective mRNA translation initiation inhibiting erythroid differentiation. Blood 2008; 112:2750-60. [PMID: 18625885 DOI: 10.1182/blood-2008-01-133140] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stem cell factor (SCF)-induced activation of phosphoinositide-3-kinase (PI3K) is required for transient amplification of the erythroblast compartment. PI3K stimulates the activation of mTOR (target of rapamycin) and subsequent release of the cap-binding translation initiation factor 4E (eIF4E) from the 4E-binding protein 4EBP, which controls the recruitment of structured mRNAs to polysomes. Enhanced expression of eIF4E renders proliferation of erythroblasts independent of PI3K. To investigate which mRNAs are selectively recruited to polysomes, we compared SCF-dependent gene expression between total and polysome-bound mRNA. This identified 111 genes primarily subject to translational regulation. For 8 of 9 genes studied in more detail, the SCF-induced polysome recruitment of transcripts exceeded 5-fold regulation and was PI3K-dependent and eIF4E-sensitive, whereas total mRNA was not affected by signal transduction. One of the targets, Immunoglobulin binding protein 1 (Igbp1), is a regulatory subunit of protein phosphatase 2A (Pp2a) sustaining mTOR signaling. Constitutive expression of Igbp1 impaired erythroid differentiation, maintained 4EBP and p70S6k phosphorylation, and enhanced polysome recruitment of multiple eIF4E-sensitive mRNAs. Thus, PI3K-dependent polysome recruitment of Igbp1 acts as a positive feedback mechanism on translation initiation underscoring the important regulatory role of selective mRNA recruitment to polysomes in the balance between proliferation and maturation of erythroblasts.
Collapse
|
73
|
Genomics and functional genomics with haloarchaea. Arch Microbiol 2008; 190:197-215. [PMID: 18493745 DOI: 10.1007/s00203-008-0376-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/08/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional genomics, and molecular genetics of haloarchaea is summarized and selected examples are discussed.
Collapse
|
74
|
Sampath P, Pritchard DK, Pabon L, Reinecke H, Schwartz SM, Morris DR, Murry CE. A Hierarchical Network Controls Protein Translation during Murine Embryonic Stem Cell Self-Renewal and Differentiation. Cell Stem Cell 2008; 2:448-60. [DOI: 10.1016/j.stem.2008.03.013] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 02/02/2008] [Accepted: 03/19/2008] [Indexed: 01/05/2023]
|
75
|
King MA, Hands S, Hafiz F, Mizushima N, Tolkovsky AM, Wyttenbach A. Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis. Mol Pharmacol 2008; 73:1052-63. [PMID: 18199701 DOI: 10.1124/mol.107.043398] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accumulation of misfolded proteins and protein assemblies is associated with neuronal dysfunction and death in several neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease (HD). It is therefore critical to understand the molecular mechanisms of drugs that act on pathways that modulate misfolding and/or aggregation. It is noteworthy that the mammalian target of rapamycin inhibitor rapamycin or its analogs have been proposed as promising therapeutic compounds clearing toxic protein assemblies in these diseases via activation of autophagy. However, using a cellular model of HD, we found that rapamycin significantly decreased aggregation-prone polyglutamine (polyQ) and expanded huntingtin and its inclusion bodies (IB) in both autophagy-proficient and autophagy-deficient cells (by genetic knockout of the atg5 gene in mouse embryonic fibroblasts). This result suggests that rapamycin modulates the levels of misfolded polyQ proteins via pathways other than autophagy. We show that rapamycin reduces the amount of soluble polyQ protein via a modest inhibition of protein synthesis that in turn significantly reduces the formation of insoluble polyQ protein and IB formation. Hence, a modest reduction in huntingtin synthesis by rapamycin may lead to a substantial decrease in the probability of reaching the critical concentration required for a nucleation event and subsequent toxic polyQ aggregation. Thus, in addition to its beneficial effect proposed previously of reducing polyQ aggregation/toxicity via autophagic pathways, rapamycin may alleviate polyQ disease pathology via its effect on global protein synthesis. This finding may have important therapeutic implications.
Collapse
Affiliation(s)
- Matthew A King
- Southampton Neuroscience Group, School of Biological Sciences, University of Southampton. Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | | | |
Collapse
|
76
|
Kitamura H, Ito M, Yuasa T, Kikuguchi C, Hijikata A, Takayama M, Kimura Y, Yokoyama R, Kaji T, Ohara O. Genome-wide identification and characterization of transcripts translationally regulated by bacterial lipopolysaccharide in macrophage-like J774.1 cells. Physiol Genomics 2008; 33:121-32. [DOI: 10.1152/physiolgenomics.00095.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although Escherichia coli LPS is known to elicit various proinflammatory responses in macrophages, its effect on the translational states of transcripts has not yet been explored on a genome-wide scale. To address this, we investigated the mRNA profiles in polysomal and free messenger ribonucleoprotein particle (mRNP) fractions of mouse macrophage-like J774.1 cells, using Affymetrix Mouse Genome 430 2.0 GeneChips. Comparison of the mRNA profiles in total cellular, polysomal, and free mRNP fractions enabled us to identify transcripts that were modulated at the translational level by LPS: among 19,791 transcripts, 115 and 418 were up- and downregulated at 1, 2, or 4 h after LPS stimulation (100 ng/ml) in a translation-dependent manner. Interestingly, gene ontology-based analysis suggested that translation-dependent downregulated genes frequently include those encoding proteins in the mitochondrial respiratory chain. In fact, the mRNA levels of some transcripts for complexes I, IV, and V in the mitochondrial respiratory chain were translationally downregulated, eventually contributing to the decline of their protein levels. Moreover, the amount of metabolically labeled cytochrome oxidase subunit Va in complex IV was decreased without any change of its mRNA level in total cellular fraction after LPS stimulation. Consistently, the total amounts and activities of complexes I and IV were attenuated by LPS stimulation, and the attenuation was independent of nitric oxide. These results demonstrated that translational suppression may play a critical role in the LPS-mediated attenuation of mitochondrial oxidative phosphorylation in a nitric oxide-independent manner in J774.1 cells.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratories for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Yokohama
| | - Masatoshi Ito
- Laboratories for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Yokohama
| | - Tomoko Yuasa
- Laboratories for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Yokohama
| | - Chisato Kikuguchi
- Laboratories for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Yokohama
| | - Atsushi Hijikata
- Laboratories for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Yokohama
| | - Michiyo Takayama
- Laboratories for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Yokohama
| | - Yayoi Kimura
- Laboratories for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Yokohama
| | - Ryo Yokoyama
- Laboratories for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Yokohama
| | - Tomohiro Kaji
- Immunological Memory, RIKEN Research Center for Allergy and Immunology, Yokohama
| | - Osamu Ohara
- Laboratories for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Yokohama
- Laboratory of Genome Technology, Department of Human Genome Research, Kazusa DNA Research Institute, Kisarazu, Japan
| |
Collapse
|
77
|
Le XF, Arachchige-Don AS, Mao W, Horne MC, Bast RC. Roles of human epidermal growth factor receptor 2, c-jun NH2-terminal kinase, phosphoinositide 3-kinase, and p70 S6 kinase pathways in regulation of cyclin G2 expression in human breast cancer cells. Mol Cancer Ther 2008; 6:2843-57. [PMID: 18025271 DOI: 10.1158/1535-7163.mct-07-0109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The CCNG2 gene that encodes the unconventional cyclin G2 was one of the few genes up-regulated on anti-human epidermal growth factor receptor 2 (HER2) antibody-mediated inhibition of HER2 signaling. The purpose of this study was to explore how HER2 signaling modulates cyclin G2 expression and the effect of elevated cyclin G2 on breast cancer cell growth. Treatment of breast cancer cells that overexpress HER2 (BT474, SKBr3, and MDAMB453) with the anti-HER2 antibody trastuzumab or its precursor 4D5 markedly up-regulated cyclin G2 mRNA in vitro and in vivo, as shown by real-time PCR. Immunoblot and immunofluorescence analysis with specific antibodies against cyclin G2 showed that anti-HER2 antibody significantly increased cyclin G2 protein expression and translocated the protein to the nucleus. Trastuzumab was not able to induce cyclin G2 expression in cells weakly expressing HER2 (MCF7) or in cells that had developed resistance to trastuzumab. Enforced expression of HER2 in T47D and MDAMB435 breast cancer cells reduced cyclin G2 levels. Collectively, these data suggest that HER2-mediated signaling negatively regulates cyclin G2 expression. Inhibition of phosphoinositide 3-kinase (LY294002), c-jun NH(2)-terminal kinase (SP600125), and mammalian target of rapamycin (mTOR)/p70 S6 kinase (p70S6K; rapamycin) increased cyclin G2 expression. In contrast, treatment with inhibitors of p38 mitogen-activated protein kinase (SB203580), mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 (U0126), or phospholipase Cgamma (U73122) did not affect cyclin G2 expression. Anti-HER2 antibody in combination with LY294002, rapamycin, or SP600125 induced greater cyclin G2 expression than either agent alone. Ectopic expression of cyclin G2 inhibited cyclin-dependent kinase 2 activity, Rb phosphorylation, cell cycle progression, and cellular proliferation without affecting p27(Kip1) expression. Thus, cyclin G2 expression is modulated by HER2 signaling through multiple pathways including phosphoinositide 3-kinase, c-jun NH(2)-terminal kinase, and mTOR signaling. The negative effects of cyclin G2 on cell cycle and cell proliferation, which occur without altering p27(Kip1) levels, may contribute to the ability of trastuzumab to inhibit breast cancer cell growth.
Collapse
Affiliation(s)
- Xiao-Feng Le
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
78
|
Bandhakavi S, Xie H, O'Callaghan B, Sakurai H, Kim DH, Griffin TJ. Hsf1 activation inhibits rapamycin resistance and TOR signaling in yeast revealed by combined proteomic and genetic analysis. PLoS One 2008; 3:e1598. [PMID: 18270585 PMCID: PMC2225505 DOI: 10.1371/journal.pone.0001598] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 01/18/2008] [Indexed: 01/07/2023] Open
Abstract
TOR kinases integrate environmental and nutritional signals to regulate cell growth in eukaryotic organisms. Here, we describe results from a study combining quantitative proteomics and comparative expression analysis in the budding yeast, S. cerevisiae, to gain insights into TOR function and regulation. We profiled protein abundance changes under conditions of TOR inhibition by rapamycin treatment, and compared this data to existing expression information for corresponding gene products measured under a variety of conditions in yeast. Among proteins showing abundance changes upon rapamycin treatment, almost 90% of them demonstrated homodirectional (i.e., in similar direction) transcriptomic changes under conditions of heat/oxidative stress. Because the known downstream responses regulated by Tor1/2 did not fully explain the extent of overlap between these two conditions, we tested for novel connections between the major regulators of heat/oxidative stress response and the TOR pathway. Specifically, we hypothesized that activation of regulator(s) of heat/oxidative stress responses phenocopied TOR inhibition and sought to identify these putative TOR inhibitor(s). Among the stress regulators tested, we found that cells (hsf1-R206S, F256S and ssa1-3 ssa2-2) constitutively activated for heat shock transcription factor 1, Hsf1, inhibited rapamycin resistance. Further analysis of the hsf1-R206S, F256S allele revealed that these cells also displayed multiple phenotypes consistent with reduced TOR signaling. Among the multiple Hsf1 targets elevated in hsf1-R206S, F256S cells, deletion of PIR3 and YRO2 suppressed the TOR-regulated phenotypes. In contrast to our observations in cells activated for Hsf1, constitutive activation of other regulators of heat/oxidative stress responses, such as Msn2/4 and Hyr1, did not inhibit TOR signaling. Thus, we propose that activated Hsf1 inhibits rapamycin resistance and TOR signaling via elevated expression of specific target genes in S. cerevisiae. Additionally, these results highlight the value of comparative expression analyses between large-scale proteomic and transcriptomic datasets to reveal new regulatory connections.
Collapse
Affiliation(s)
- Sricharan Bandhakavi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hongwei Xie
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Brennon O'Callaghan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hiroshi Sakurai
- School of Health Sciences, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- *E-mail:
| |
Collapse
|
79
|
Legrier ME, Yang CPH, Yan HG, Lopez-Barcons L, Keller SM, Pérez-Soler R, Horwitz SB, McDaid HM. Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression. Cancer Res 2008; 67:11300-8. [PMID: 18056456 DOI: 10.1158/0008-5472.can-07-0702] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is a genetically heterogeneous disease characterized by the acquisition of somatic mutations in numerous protein kinases, including components of the rat sarcoma viral oncogene homolog (RAS) and AKT signaling cascades. These pathways intersect at various points, rendering this network highly redundant and suggesting that combined mitogen-activated protein/extracellular signal-regulated kinase (MEK) and mammalian target of rapamycin (mTOR) inhibition may be a promising drug combination that can overcome its intrinsic plasticity. The MEK inhibitors, CI-1040 or PD0325901, in combination with the mTOR inhibitor, rapamycin, or its analogue AP23573, exhibited dose-dependent synergism in human lung cancer cell lines that was associated with suppression of proliferation rather than enhancement of cell death. Concurrent suppression of MEK and mTOR inhibited ribosomal biogenesis by 40% within 24 h and was associated with a decreased polysome/monosome ratio that is indicative of reduced protein translation efficiency. Furthermore, the combination of PD0325901 and rapamycin was significantly superior to either drug alone or PD0325901 at the maximum tolerated dose in nude mice bearing human lung tumor xenografts or heterotransplants. Except for a PTEN mutant, all tumor models had sustained tumor regressions and minimal toxicity. These data (a) provide evidence that both pathways converge on factors that regulate translation initiation and (b) support therapeutic strategies in lung cancer that simultaneously suppress the RAS and AKT signaling network.
Collapse
Affiliation(s)
- Marie-Emmanuelle Legrier
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abolition of stress-induced protein synthesis sensitizes leukemia cells to anthracycline-induced death. Blood 2008; 111:2866-77. [PMID: 18182573 DOI: 10.1182/blood-2007-07-103242] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthracycline action has been thought to involve the neosynthesis of proapoptotic gene products and to therefore depend on protein synthesis for optimal effect. We found that inhibition of general, but not rapamycin-sensitive (cap-dependent), protein synthesis in the preapoptotic period enhanced anthracycline-induced acute myelogenous leukemia (AML) cell death, both in vitro and in several animal AML models. Pre-apoptotic anthracycline-exposed AML cells had altered translational specificity, with enhanced synthesis of a subset of proteins, including endoplasmatic reticulum chaperones. The altered translational specificity could be explained by perturbation (protein degradation, truncation, or dephosphorylation) of the cap-dependent translation initiation machinery and of proteins control-ing translation of specific mRNAs. We propose that judiciously timed inhibition of cap-independent translation is considered for combination therapy with anthracyclines in AML.
Collapse
|
81
|
Lackner DH, Bähler J. Translational control of gene expression from transcripts to transcriptomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:199-251. [PMID: 19081544 DOI: 10.1016/s1937-6448(08)01205-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The regulation of gene expression is fundamental to diverse biological processes, including cell growth and division, adaptation to environmental stress, as well as differentiation and development. Gene expression is controlled at multiple levels from transcription to protein degradation. The regulation at the level of translation, from specific transcripts to entire transcriptomes, adds considerable richness and sophistication to gene regulation. The past decade has provided much insight into the diversity of mechanisms and strategies to regulate translation in response to external or internal factors. Moreover, the increased application of different global approaches now provides a wealth of information on gene expression control from a genome-wide perspective. Here, we will (1) describe aspects of mRNA processing and translation that are most relevant to translational regulation, (2) review both well-known and emerging concepts of translational regulation, and (3) survey recent approaches to analyze translational and related posttranscriptional regulation at genome-wide levels.
Collapse
|
82
|
Dowling RJO, Zakikhani M, Fantus IG, Pollak M, Sonenberg N. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 2007; 67:10804-12. [PMID: 18006825 DOI: 10.1158/0008-5472.can-07-2310] [Citation(s) in RCA: 729] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metformin is used for the treatment of type 2 diabetes because of its ability to lower blood glucose. The effects of metformin are explained by the activation of AMP-activated protein kinase (AMPK), which regulates cellular energy metabolism. Recently, we showed that metformin inhibits the growth of breast cancer cells through the activation of AMPK. Here, we show that metformin inhibits translation initiation. In MCF-7 breast cancer cells, metformin treatment led to a 30% decrease in global protein synthesis. Metformin caused a dose-dependent specific decrease in cap-dependent translation, with a maximal inhibition of 40%. Polysome profile analysis showed an inhibition of translation initiation as metformin treatment of MCF-7 cells led to a shift of mRNAs from heavy to light polysomes and a concomitant increase in the amount of 80S ribosomes. The decrease in translation caused by metformin was associated with mammalian target of rapamycin (mTOR) inhibition, and a decrease in the phosphorylation of S6 kinase, ribosomal protein S6, and eIF4E-binding protein 1. The effects of metformin on translation were mediated by AMPK, as treatment of cells with the AMPK inhibitor compound C prevented the inhibition of translation. Furthermore, translation in MDA-MB-231 cells, which lack the AMPK kinase LKB1, and in tuberous sclerosis complex 2 null (TSC2(-/-)) mouse embryonic fibroblasts was unaffected by metformin, indicating that LKB1 and TSC2 are involved in the mechanism of action of metformin. These results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of metformin in the inhibition of cancer cell growth.
Collapse
Affiliation(s)
- Ryan J O Dowling
- Department of Biochemistry, McGill Cancer Centre, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
83
|
Williamson AJK, Smith DL, Blinco D, Unwin RD, Pearson S, Wilson C, Miller C, Lancashire L, Lacaud G, Kouskoff V, Whetton AD. Quantitative proteomics analysis demonstrates post-transcriptional regulation of embryonic stem cell differentiation to hematopoiesis. Mol Cell Proteomics 2007; 7:459-72. [PMID: 18045800 DOI: 10.1074/mcp.m700370-mcp200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Embryonic stem (ES) cells can differentiate in vitro to produce the endothelial and hematopoietic precursor, the hemangioblasts, which are derived from the mesoderm germ layer. Differentiation of Bry(GFP/+) ES cell to hemangioblasts can be followed by the expression of the Bry(GFP/+) and Flk1 genes. Proteomic and transcriptomic changes during this differentiation process were analyzed to identify mechanisms for phenotypic change during early differentiation. Three populations of differentiating Bry(GFP) ES cells were obtained by flow cytometric sorting, GFP-Flk1- (epiblast), GFP+Flk1- (mesoderm), and GFP+Flk1+ (hemangioblast). Microarray analyses and relative quantification two-dimensional LCLC-MS/MS on nuclear extracts were performed. We identified and quantified 2389 proteins, 1057 of which were associated to their microarray probe set. These included a variety of low abundance transcription factors, e.g. UTF1, Sox2, Oct4, and E2F4, demonstrating a high level of proteomic penetrance. When paired comparisons of changes in the mRNA and protein expression levels were performed low levels of correlation were found. A strong correlation between isobaric tag-derived relative quantification and Western blot analysis was found for a number of nuclear proteins. Pathway and ontology analysis identified proteins known to be involved in the regulation of stem cell differentiation, and proteins with no described function in early ES cell development were also shown to change markedly at the proteome level only. ES cell development is regulated at the mRNA and protein level.
Collapse
Affiliation(s)
- Andrew J K Williamson
- Stem Cell and Leukemia Proteomics Laboratory, Faculty of Medical and Human Sciences, University of Manchester, Kinnaird House, Kinnaird Road, Manchester M20 4QL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Lange C, Zaigler A, Hammelmann M, Twellmeyer J, Raddatz G, Schuster SC, Oesterhelt D, Soppa J. Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea. BMC Genomics 2007; 8:415. [PMID: 17997854 PMCID: PMC3225822 DOI: 10.1186/1471-2164-8-415] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/12/2007] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Differential expression of genes can be regulated on many different levels. Most global studies of gene regulation concentrate on transcript level regulation, and very few global analyses of differential translational efficiencies exist. The studies have revealed that in Saccharomyces cerevisiae, Arabidopsis thaliana, and human cell lines translational regulation plays a significant role. Additional species have not been investigated yet. Particularly, until now no global study of translational control with any prokaryotic species was available. RESULTS A global analysis of translational control was performed with two haloarchaeal model species, Halobacterium salinarum and Haloferax volcanii. To identify differentially regulated genes, exponentially growing and stationary phase cells were compared. More than 20% of H. salinarum transcripts are translated with non-average efficiencies. By far the largest group is comprised of genes that are translated with above-average efficiency specifically in exponential phase, including genes for many ribosomal proteins, RNA polymerase subunits, enzymes, and chemotaxis proteins. Translation of 1% of all genes is specifically repressed in either of the two growth phases. For comparison, DNA microarrays were also used to identify differential transcriptional regulation in H. salinarum, and 17% of all genes were found to have non-average transcript levels in exponential versus stationary phase. In H. volcanii, 12% of all genes are translated with non-average efficiencies. The overlap with H. salinarum is negligible. In contrast to H. salinarum, 4.6% of genes have non-average translational efficiency in both growth phases, and thus they might be regulated by other stimuli than growth phase. CONCLUSION For the first time in any prokaryotic species it was shown that a significant fraction of genes is under differential translational control. Groups of genes with different regulatory patterns were discovered. However, neither the fractions nor the identity of regulated genes are conserved between H. salinarum and H. volcanii, indicating that prokaryotes as well as eukaryotes use differential translational control for the regulation of gene expression, but that the identity of regulated genes is not conserved. For 70 H. salinarum genes potentiation of regulation was observed, but for the majority of regulated genes either transcriptional or translational regulation is employed.
Collapse
Affiliation(s)
- Christian Lange
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt a,M., Germany.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors 2007; 25:209-26. [PMID: 18092230 DOI: 10.1080/08977190701779101] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current understanding of the mechanisms by which cell growth is regulated lags significantly behind our knowledge of the complex processes controlling cell cycle progression. Recent studies suggest that the mammalian target of rapamycin (mTOR) pathway is a key regulator of cell growth via the regulation of protein synthesis. The key mTOR effectors of cell growth are eukaryotic initiation factor 4E-binding protein 1 (4EBP-1) and the ribosomal protein S6 kinase (S6K). Here we will review the current models for mTOR dependent regulation of ribosome function and biogenesis as well as its role in coordinating growth factor and nutrient signaling to facilitate homeostasis of cell growth and proliferation. We will place particular emphasis on the role of S6K1 signaling and will highlight the points of cross talk with other key growth control pathways. Finally, we will discuss the impact of S6K signaling and the consequent feedback regulation of the PI3K/Akt pathway on disease processes including cancer.
Collapse
Affiliation(s)
- Katarzyna Jastrzebski
- Growth Control and Differentiation Program, Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | | | | |
Collapse
|
86
|
Mieulet V, Roceri M, Espeillac C, Sotiropoulos A, Ohanna M, Oorschot V, Klumperman J, Sandri M, Pende M. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am J Physiol Cell Physiol 2007; 293:C712-22. [PMID: 17494629 DOI: 10.1152/ajpcell.00499.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A defect in protein turnover underlies multiple forms of cell atrophy. Since S6 kinase (S6K)-deficient cells are small and display a blunted response to nutrient and growth factor availability, we have hypothesized that mutant cell atrophy may be triggered by a change in global protein synthesis. By using mouse genetics and pharmacological inhibitors targeting the mammalian target of rapamycin (mTOR)/S6K pathway, here we evaluate the control of translational target phosphorylation and protein turnover by the mTOR/S6K pathway in skeletal muscle and liver tissues. The phosphorylation of ribosomal protein S6 (rpS6), eukaryotic initiation factor-4B (eIF4B), and eukaryotic elongation factor-2 (eEF2) is predominantly regulated by mTOR in muscle cells. Conversely, in liver, the MAPK and phosphatidylinositol 3-kinase pathways also play an important role, suggesting a tissue-specific control. S6K deletion in muscle mimics the effect of the mTOR inhibitor rapamycin on rpS6 and eIF4B phosphorylation without affecting eEF2 phosphorylation. To gain insight on the functional consequences of these modifications, methionine incorporation and polysomal distribution were assessed in muscle cells. Rates and rapamycin sensitivity of global translation initiation are not altered in S6K-deficient muscle cells. In addition, two major pathways of protein degradation, autophagy and expression of the muscle-specific atrophy-related E3 ubiquitin ligases, are not affected by S6K deletion. Our results do not support a role for global translational control in the growth defect due to S6K deletion, suggesting specific modes of growth control and translational target regulation downstream of mTOR.
Collapse
MESH Headings
- Animals
- Autophagy
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cells, Cultured
- Elongation Factor 2 Kinase
- Eukaryotic Initiation Factors/metabolism
- Hepatocytes/enzymology
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Insulin/metabolism
- Leucine/metabolism
- Liver/drug effects
- Liver/enzymology
- Liver/growth & development
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Muscle Development
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/enzymology
- Muscular Atrophy/genetics
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Protein Biosynthesis/drug effects
- Protein Kinases/metabolism
- Ribosomal Protein S6/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/deficiency
- Ribosomal Protein S6 Kinases, 90-kDa/genetics
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases
- Ubiquitin-Protein Ligases/metabolism
Collapse
|
87
|
Kazemi S, Mounir Z, Baltzis D, Raven JF, Wang S, Krishnamoorthy JL, Pluquet O, Pelletier J, Koromilas AE. A novel function of eIF2alpha kinases as inducers of the phosphoinositide-3 kinase signaling pathway. Mol Biol Cell 2007; 18:3635-44. [PMID: 17596516 PMCID: PMC1951772 DOI: 10.1091/mbc.e07-01-0053] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphoinositide-3 kinase (PI3K) plays an important role in signal transduction in response to a wide range of cellular stimuli involved in cellular processes that promote cell proliferation and survival. Phosphorylation of the alpha subunit of the eukaryotic translation initiation factor eIF2 at Ser51 takes place in response to various types of environmental stress and is essential for regulation of translation initiation. Herein, we show that a conditionally active form of the eIF2alpha kinase PKR acts upstream of PI3K and turns on the Akt/PKB-FRAP/mTOR pathway leading to S6 and 4E-BP1 phosphorylation. Also, induction of PI3K signaling antagonizes the apoptotic and protein synthesis inhibitory effects of the conditionally active PKR. Furthermore, induction of the PI3K pathway is impaired in PKR(-/-) or PERK(-/-) mouse embryonic fibroblasts (MEFs) in response to various stimuli that activate each eIF2alpha kinase. Mechanistically, PI3K signaling activation is indirect and requires the inhibition of protein synthesis by eIF2alpha phosphorylation as demonstrated by the inactivation of endogenous eIF2alpha by small interfering RNA or utilization of MEFs bearing the eIF2alpha Ser51Ala mutation. Our data reveal a novel property of eIF2alpha kinases as activators of PI3K signaling and cell survival.
Collapse
Affiliation(s)
- Shirin Kazemi
- *Lady Davis Institute, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, QC, Canada H3T 1E2; and
| | - Zineb Mounir
- *Lady Davis Institute, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, QC, Canada H3T 1E2; and
| | - Dionissios Baltzis
- *Lady Davis Institute, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, QC, Canada H3T 1E2; and
| | - Jennifer F. Raven
- *Lady Davis Institute, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, QC, Canada H3T 1E2; and
| | - Shuo Wang
- *Lady Davis Institute, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, QC, Canada H3T 1E2; and
| | | | - Olivier Pluquet
- *Lady Davis Institute, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, QC, Canada H3T 1E2; and
| | - Jerry Pelletier
- Department of Biochemistry and McGill Cancer Center, Montréal, QC, Canada H3G 1Y6
| | - Antonis E. Koromilas
- *Lady Davis Institute, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, QC, Canada H3T 1E2; and
| |
Collapse
|
88
|
Parent R, Kolippakkam D, Booth G, Beretta L. Mammalian target of rapamycin activation impairs hepatocytic differentiation and targets genes moderating lipid homeostasis and hepatocellular growth. Cancer Res 2007; 67:4337-45. [PMID: 17483347 DOI: 10.1158/0008-5472.can-06-3640] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) pathway, a major regulator of translation, is frequently activated in hepatocellular carcinomas. We investigated the effects of mTOR activation in the human HepaRG cells, which possess potent hepatocytic differentiation capability. Differentiation of HepaRG cells into functional and polarized hepatocyte-like cells correlated with a decrease in mTOR and Akt activities. Stable cell lines expressing an activated mutant of mTOR were generated. Sustained activation of mTOR impaired the hepatocytic differentiation capability of these cells as shown by impaired formation of bile canaliculi, absence of polarity, and reduced secretion of alpha1-antitrypsin. An inhibitor of mTOR, rapamycin, was able to revert this phenotype. Furthermore, increased mTOR activity in HepaRG cells resulted in their resistance to the antiproliferative effects of transforming growth factor-beta1. Profiling of polysome-bound transcripts indicated that activated mTOR specifically targeted genes posttranscriptionally regulated on hepatocytic differentiation. Three major biological networks targeted by activated mTOR were identified: (a) cell death associated with tumor necrosis factor superfamily members, IFNs and caspases; (b) lipid homeostasis associated with the transcription factors PPARalpha, PPARdelta, and retinoid X receptor beta; and (c) liver development associated with CCAAT/enhancer binding protein alpha and hepatic mitogens. In conclusion, increased mTOR activity conferred a preneoplastic phenotype to the HepaRG cells by altering the translation of genes vital for establishing normal hepatic energy homeostasis and moderating hepatocellular growth.
Collapse
Affiliation(s)
- Romain Parent
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
89
|
Bilanges B, Argonza-Barrett R, Kolesnichenko M, Skinner C, Nair M, Chen M, Stokoe D. Tuberous sclerosis complex proteins 1 and 2 control serum-dependent translation in a TOP-dependent and -independent manner. Mol Cell Biol 2007; 27:5746-64. [PMID: 17562867 PMCID: PMC1952130 DOI: 10.1128/mcb.02136-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tuberous sclerosis complex (TSC) proteins TSC1 and TSC2 regulate protein translation by inhibiting the serine/threonine kinase mTORC1 (for mammalian target of rapamycin complex 1). However, how TSC1 and TSC2 control overall protein synthesis and the translation of specific mRNAs in response to different mitogenic and nutritional stimuli is largely unknown. We show here that serum withdrawal inhibits mTORC1 signaling, causes disassembly of translation initiation complexes, and causes mRNA redistribution from polysomes to subpolysomes in wild-type mouse embryo fibroblasts (MEFs). In contrast, these responses are defective in Tsc1(-/-) or Tsc2(-/-) MEFs. Microarray analysis of polysome- and subpolysome-associated mRNAs uncovered specific mRNAs that are translationally regulated by serum, 90% of which are TSC1 and TSC2 dependent. Surprisingly, the mTORC1 inhibitor, rapamycin, abolished mTORC1 activity but only affected approximately 40% of the serum-regulated mRNAs. Serum-dependent signaling through mTORC1 and polysome redistribution of global and individual mRNAs were restored upon re-expression of TSC1 and TSC2. Serum-responsive mRNAs that are sensitive to inhibition by rapamycin are highly enriched for terminal oligopyrimidine and for very short 5' and 3' untranslated regions. These data demonstrate that the TSC1/TSC2 complex regulates protein translation through mainly mTORC1-dependent mechanisms and implicates a discrete profile of deregulated mRNA translation in tuberous sclerosis pathology.
Collapse
Affiliation(s)
- Benoit Bilanges
- Cancer Research Institute, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Kakegawa T, Ohuchi N, Hayakawa A, Hirata S, Matsuda M, Kogure K, Kobayashi H, Inoue A, Kaspar RL. Identification of AUF1 as a rapamycin-responsive binding protein to the 5'-terminal oligopyrimidine element of mRNAs. Arch Biochem Biophys 2007; 465:274-81. [PMID: 17603996 DOI: 10.1016/j.abb.2007.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/30/2007] [Accepted: 06/03/2007] [Indexed: 11/29/2022]
Abstract
In vertebrates, mRNAs containing a 5'-terminal oligopyrimidine (TOP) motif are coordinately post-transcriptionally regulated. Binding of specific proteins to this element has been proposed to downregulate expression of TOP mRNAs at the level of translational initiation. We previously reported that rapamycin induces binding activity to the TOP element of ribosomal protein (r-protein) L32 mRNA. In this study, we adapt DEAE-cellulose/oligo dT-cellulose tandem column chromatography to purify TOP element-binding proteins from bovine submaxillary lymph nodes (SLN). We also show by northwestern blot analysis that two proteins of molecular weight 47kDa (47BP) and 43kDa (43BP) specifically bind to a (32)P-labeled riboprobe containing TOP regulatory element of the r-protein L32. Microsequencing of the purified 47BP revealed an internal sequence of 15 amino acids identical to the consensus sequence of the 2x RBD-Gly family. Western blot analysis of the cytoplasm fractions using an AUF1 antibody revealed that these two proteins are p45 AUF1 and p42 AUF1. Increases of the four isoforms of AUF1 protein were observed in 100,000g supernatant fractions of rapamycin-administered rat SLN. Furthermore, decreases of p45 AUF1 and p42 and/or p40 AUF1 were observed in the polysomal fractions of BJAB cells in which translation of TOP mRNAs was selectively suppressed by rapamycin treatment. Taken together, these results suggest that AUF1 is a TOP mRNA-binding protein that may participate in the translational suppression of TOP mRNAs resulting from rapamycin treatment.
Collapse
Affiliation(s)
- Tomohito Kakegawa
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyo, Togane, Chiba 283-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Grant MM, Scheel-Toellner D, Griffiths HR. Contributions to our understanding of T cell physiology through unveiling the T cell proteome. Clin Exp Immunol 2007; 149:9-15. [PMID: 17488298 PMCID: PMC1942030 DOI: 10.1111/j.1365-2249.2007.03395.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since the sequencing of the human genome was completed, attention has turned to examining the functionality of the molecular machinery, in particular of protein expression. Differential proteome analysis by two-dimensional electrophoresis has been adopted to study changes in T cell proteomes during T cell activation, and this work is increasing our understanding of the complexity of signals elicited across multiple pathways. The purpose of this review is to summarize the available evidence in the application of proteomic techniques and methodologies to understand T cell receptor activation from lipid raft and cytoskeletal rearrangements, through to signalling cascades, transcription factor modulation and changes in protein expression patterns. These include post-translational modifications, which are not encoded by the genome.
Collapse
Affiliation(s)
- M M Grant
- School of Dentistry, The University of Birmingham, St Chads Queensway, Birmingham, UK.
| | | | | |
Collapse
|
92
|
Rose NJ, Lever AML. Rapamycin-induced inhibition of HTLV-I LTR activity is rescued by c-Myb. Retrovirology 2007; 4:24. [PMID: 17407584 PMCID: PMC1852806 DOI: 10.1186/1742-4690-4-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 04/03/2007] [Indexed: 11/16/2022] Open
Abstract
Background Rapamycin is an immunosuppressive which represses translation of transcripts harbouring a polypyrimidine motif downstream of the mRNA cap site through the mammalian target of rapamycin complex. It inhibits the abnormal autologous proliferation of T-cell clones containing a transcriptionally active human T-lymphotropic virus, type I (HTLV-I) provirus, generated from infected subjects. We showed previously that this effect is independent of the polypyrimidine motifs in the viral long terminal repeat (LTR) R region suggesting that HTLV-I transcription, and not translation, is being affected. Here we studied whether rapamycin is having an effect on a specific transcription factor pathway. Further, we investigated whether mRNAs encoding transcription factors involved in HTLV-I transcriptional activation, specifically CREB, Ets and c-Myb, are implicated in the rapamycin-sensitivity of the HTLV-I LTR. Results An in vitro analysis of the role of SRE- and NF-κB-mediated transcription highlighted the latter as rapamycin sensitive. Over-expression of c-Myb reversed the rapamycin effect. Conclusion The sensitivity of HTLV-I transcription to rapamycin may be effected through an NF-κB-pathway associated with the rapamycin-sensitive mTORC1 cellular signalling network.
Collapse
Affiliation(s)
- Nicola J Rose
- Division of Retrovirology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Andrew ML Lever
- University of Cambridge Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge. CB2 2QQ, UK
| |
Collapse
|
93
|
Bilanges B, Stokoe D. Mechanisms of translational deregulation in human tumors and therapeutic intervention strategies. Oncogene 2007; 26:5973-90. [PMID: 17404576 DOI: 10.1038/sj.onc.1210431] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Analysis of the recurrent genetic aberrations present in human tumors provides insight into how normal cells escape appropriate proliferation and survival cues. Commonly mutated genes encode proteins that monitor DNA damage (e.g., p53), proteins that regulate the cell cycle (such as Rb), and proteins that regulate signal transduction pathways (such as APC, PTEN and Ras). Analysis of the relevant targets and downstream events of these genes in normal and tumor cells will clearly highlight important pathways for tumorigenesis. However, more infrequent mutations are also informative in defining events critical for the process of tumorigenesis, and often delineate important pathways lying downstream of commonly mutated oncogenes and tumor suppressors. Together, these studies have led to the conclusion that deregulated protein synthesis plays an important role in human cancer. This review will discuss the evidence implicating mRNA translation as an important downstream consequence of signal transduction pathways initiated by mutated oncogenes and tumor suppressors, as well as additional genetic findings implicating the importance of global and specific translational control in human cancer. It will also discuss therapeutic strategies that take advantage of differences in translational regulation between normal and tumor cells.
Collapse
Affiliation(s)
- B Bilanges
- UCSF Cancer Research Institute, San Francisco, CA 94115, USA.
| | | |
Collapse
|
94
|
Stoevesandt O, Köhler K, Wolf S, André T, Hummel W, Brock R. A Network Analysis of Changes in Molecular Interactions in Cellular Signaling. Mol Cell Proteomics 2007; 6:503-13. [PMID: 17190788 DOI: 10.1074/mcp.m600383-mcp200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Multiprotein complexes play an essential role in the propagation and integration of cellular signals. However, systems level analyses of signaling-dependent changes in the pattern of molecular interactions are still missing. Signaling in T-lymphocytes is one prominent example in which multiprotein complexes orchestrate signal transduction. We implemented peptide microarrays comprising a set of interaction motifs of signaling proteins for network-based analyses of signaling-dependent changes in molecular interactions. Lysates of resting or stimulated cells were incubated on these arrays, and the binding of signaling proteins was detected by immunofluorescence. Signaling-dependent complex formation led to changes of signals on the microarrays in two ways. 1) Masking of a binding site of a signaling protein for a peptide on the array resulted in a signal decrease. 2) Interaction of a protein with a second protein, which in turn binds to a peptide on the array, resulted in a signal increase for the first protein. Dissipation of complexes led to the reverse changes. Competition with peptides corresponding to interaction motifs provided detailed information on the architecture of complexes; lack of individual signaling proteins revealed the functional interdependence of interactions in the network. We show that complex formation through phosphorylation of the scaffolding protein LAT (linker for activation of T-cells) acted as a signal amplifier. PLCgamma1 deficiency increased the resting state levels of LAT-dependent complexes and augmented the recruitment of the phosphatase SHPTP2 into complexes. For the analysis of signaling networks, the parallel detection of changes in interactions enabled the identification of functional interdependencies with minimum a priori knowledge.
Collapse
Affiliation(s)
- Oda Stoevesandt
- Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
95
|
del Prete MJ, Vernal R, Dolznig H, Müllner EW, Garcia-Sanz JA. Isolation of polysome-bound mRNA from solid tissues amenable for RT-PCR and profiling experiments. RNA (NEW YORK, N.Y.) 2007; 13:414-21. [PMID: 17237355 PMCID: PMC1800518 DOI: 10.1261/rna.79407] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Using cell lines and primary cells, it has been shown that translation control plays a key role regulating gene expression during physiological and pathological conditions. The relevance of this type of regulation in vivo (tissues, organs) remains to be elucidated, due to the lack of an efficient method for polysome-bound fractionation of solid tissue RNA samples. A simple and efficient method is described, in which tissue samples were pulverized in liquid nitrogen and lysed with NP40-lysis buffer in the presence of the RNAse inhibitors RNAsin and vanadyl-ribonucleoside complex. After cell lysis, the cytoplasmic extract was loaded into sucrose gradients, fractionated, and RNA prepared from each fraction. The obtained RNA was reverse transcribed with a low efficiency, a problem that was overcome by purifying polyA+ RNA. Aiming to use small quantities of solid tissue samples (10-20 mg/sample), polyA+ RNA purification was discarded, and the different components were individually screened for a negative effect on reverse transcription. The polysaccharide heparin, which is present as a nonspecific RNAse inhibitor, inhibits reverse transcriptase activity, and must be removed from RNA samples for an efficient reaction. Heparin was successfully removed by precipitation of the RNA with lithium chloride, as demonstrated by the reversal of the inhibition on RT-PCR reactions. In summary, we present a reliable method allowing us to prepare high-quality polysome-bound mRNA from small quantities of liquid-nitrogen-frozen solid tissue samples from both human and mouse origin, amenable for Northern blotting, RT-PCR reactions, and expression profiling analyses.
Collapse
Affiliation(s)
- M Julieta del Prete
- Department of Immunology, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | | | | | |
Collapse
|
96
|
Mamane Y, Petroulakis E, Martineau Y, Sato TA, Larsson O, Rajasekhar VK, Sonenberg N. Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS One 2007; 2:e242. [PMID: 17311107 PMCID: PMC1797416 DOI: 10.1371/journal.pone.0000242] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 01/23/2007] [Indexed: 12/24/2022] Open
Abstract
Background Translation deregulation is an important mechanism that causes aberrant cell growth, proliferation and survival. eIF4E, the mRNA 5′ cap-binding protein, plays a major role in translational control. To understand how eIF4E affects cell proliferation and survival, we studied mRNA targets that are translationally responsive to eIF4E. Methodology/Principal Findings Microarray analysis of polysomal mRNA from an eIF4E-inducible NIH 3T3 cell line was performed. Inducible expression of eIF4E resulted in increased translation of defined sets of mRNAs. Many of the mRNAs are novel targets, including those that encode large- and small-subunit ribosomal proteins and cell growth-related factors. In addition, there was augmented translation of mRNAs encoding anti-apoptotic proteins, which conferred resistance to endoplasmic reticulum-mediated apoptosis. Conclusions/Significance Our results shed new light on the mechanisms by which eIF4E prevents apoptosis and transforms cells. Downregulation of eIF4E and its downstream targets is a potential therapeutic option for the development of novel anti-cancer drugs.
Collapse
Affiliation(s)
- Yaël Mamane
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Emmanuel Petroulakis
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Yvan Martineau
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Taka-Aki Sato
- Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Ola Larsson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Vinagolu K. Rajasekhar
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Nahum Sonenberg
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
97
|
Noris M, Casiraghi F, Todeschini M, Cravedi P, Cugini D, Monteferrante G, Aiello S, Cassis L, Gotti E, Gaspari F, Cattaneo D, Perico N, Remuzzi G. Regulatory T cells and T cell depletion: role of immunosuppressive drugs. J Am Soc Nephrol 2007; 18:1007-18. [PMID: 17287424 DOI: 10.1681/asn.2006101143] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Allogeneic immune responses are modulated by a subset of host T cells with regulatory function (Treg) contained within the CD4(+)CD25(high) subset. Evidence exists that Treg expand after peritransplantation lymphopenia, inhibit graft rejection, and induce and maintain tolerance. Little, however, is known about the role of Treg in the clinical setting. IL-2 and activation by T cell receptor engagement are instrumental to generate and maintain Treg, but the influence of immunosuppressants on Treg homeostasis in humans in vivo has not been investigated. This study monitored Treg phenotype and function during immune reconstitution in renal transplant recipients who underwent profound T cell depletion with Campath-1H and received sirolimus or cyclosporine (CsA) as part of their maintenance immunosuppressive therapy. CD4(+)CD25(high) cells that expressed FOXP3 underwent homeostatic peripheral expansion during immune reconstitution, more intense in patients who received sirolimus than in those who were given CsA. T cells that were isolated from peripheral blood long term after transplantation were hyporesponsive to alloantigens in both groups. In sirolimus- but not CsA-treated patients, hyporesponsiveness was reversed by Treg depletion. T cells from CsA-treated patients were anergic. Thus, lymphopenia and calcineurin-dependent signaling seem to be primary mediators of CD4(+)CD25(high) Treg expansion in renal transplant patients. These findings will be instrumental in developing "tolerance permissive" immunosuppressive regimens in the clinical setting.
Collapse
Affiliation(s)
- Marina Noris
- Department of Immunology and Organ Transplantation, Ospedali Riuniti-Mario Negri Institute for Pharmacological Research, Bergamo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
|
99
|
Abstract
Control of mRNA translation plays a fundamental role in many aspects of cell metabolism. It constitutes a critical step in the control of gene expression, and consequently cell growth, proliferation and differentiation. Translation is regulated in response to nutrient availability, hormones, mitogenic and growth factor stimulation and is coupled with cell cycle progression and cell growth. Signaling by the PI3K/Akt/mTOR pathway profoundly affects mRNA translation through phosphorylation of downstream targets such as 4E-BP and S6K. Inhibitors of this pathway and thus cap-dependent translation are emerging as promising therapeutic options for the treatment of cancer.
Collapse
Affiliation(s)
- Y Mamane
- Department of Biochemistry, McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
100
|
Witzig TE, Kaufmann SH. Inhibition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway in hematologic malignancies. Curr Treat Options Oncol 2006; 7:285-94. [PMID: 16916489 DOI: 10.1007/s11864-006-0038-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3-K)/mammalian target of rapamycin (mTOR) signal transduction pathway integrates signals from multiple receptor tyrosine kinases to control cell proliferation and survival. Key components of the pathway are the lipid kinase PI3-K, the small guanosine triphosphate-binding protein Rheb, and the protein kinases Akt and mTOR. Important natural inhibitors of the pathway include the lipid phosphatase PTEN and the tuberous sclerosis complex. Several components of this pathway are targeted by investigational antineoplastic agents. Rapamycin (sirolimus), the prototypic mTOR inhibitor, exhibits activity in acute myeloid leukemia. Three rapamycin analogs, temsirolimus, everolimus, and AP23573, are in clinical trials for various hematologic malignancies. Temsirolimus has produced a 38% overall response rate in relapsed mantle cell lymphoma, and AP23573 has demonstrated activity in acute leukemia. Everolimus is undergoing clinical testing in lymphoma (Hodgkin and non-Hodgkin) and multiple myeloma. In addition, perifosine, an inhibitor of Akt activation that exhibits substantial antimyeloma activity in preclinical models, is being examined in relapsed multiple myeloma. Based on results obtained to date, it appears that inhibitors of the PI3-K/mTOR pathway hold promise as single agents and in combination for hematologic malignancies.
Collapse
Affiliation(s)
- Thomas E Witzig
- Mayo Clinic, Stabile 628, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|