51
|
AGUIRIANO-MOSER VICTOR, SVEJDA BERNHARD, LI ZENGXIA, STURM SONJA, STUPPNER HERMANN, INGOLIC ELISABETH, HÖGER HARALD, SIEGL VERONIKA, MEIER-ALLARD NATHALIE, SADJAK ANTON, PFRAGNER ROSWITHA. Ursolic acid from Trailliaedoxa gracilis induces apoptosis in medullary thyroid carcinoma cells. Mol Med Rep 2015; 12:5003-11. [PMID: 26151624 PMCID: PMC4581794 DOI: 10.3892/mmr.2015.4053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 02/10/2015] [Indexed: 01/08/2023] Open
Abstract
Medullary thyroid carcinoma (MTC) originates from the C‑cells of the thyroid and is not sensitive to radiation or chemotherapy. Therefore, surgical removal of the tumor tissue in its entirety is the only curative treatment for MTC. The present study aimed to examine the potential mechanisms of action of extracts of Trailliaedoxa gracilis (TG; WW Smith & Forrest), a plant from the province of Sichuan, China, and of ursolic acid (UA), a pentacyclic triterpen present in TG, on the MTC‑SK MTC cell line. A total of 13 TG fractions and UA were examined in vitro for their effects on cell morphology, cell number, proliferation and rates of apoptosis. Reverse transcription‑quantitative polymerase chain reaction of nuclear factor‑κB essential modifier (NEMO) was performed to delineate the role of the apoptotic pathway following treatment with UA. TG and UA were examined in vivo in xenotransplanted MTC‑bearing severe combined immunodeficient mice. The TG fractions exhibited antiproliferative effects, with inhibition of mitochondrial activity in the tumor cells at concentrations, which caused no impairment of the normal control cells. The apoptotic rates of the MTC‑SK cells treated with the TG fractions and UA were determined, in which no marked tumor inhibition was observed in the treated MTC‑mice, and no change in the expression of NEMO was detected in the treated MTC‑SK cells. The observation of early‑onset activation of caspase 8 suggested that the responsible factor was linked to NEMO, an anti‑apoptotic protein. However, no differences in the mRNA transcription levels of NEMO were detected in MTC‑SK cells treated with UA, suggesting that this protein was not associated with the signal transducer and activator of transcription 3 pathway.
Collapse
Affiliation(s)
- VICTOR AGUIRIANO-MOSER
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, Graz A-8010, Austria
| | - BERNHARD SVEJDA
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, Graz A-8010, Austria
| | - ZENG-XIA LI
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, Graz A-8010, Austria
- Department of Biochemistry & Molecular Biology, Shanghai Medical School, Fudan University, Shanghai 200433, P.R. China
| | - SONJA STURM
- Department of Pharmacognosy, Institute of Pharmacy, Center of Molecular Biosciences, Leopold Franzens University of Innsbruck, Innsbruck A-6010, Austria
| | - HERMANN STUPPNER
- Department of Pharmacognosy, Institute of Pharmacy, Center of Molecular Biosciences, Leopold Franzens University of Innsbruck, Innsbruck A-6010, Austria
| | - ELISABETH INGOLIC
- Core Unit of Biomedical Research, ivision of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg A-2325, Austria
| | - HARALD HÖGER
- Research Institute for Electron Microscopy and Fine Structure Research, University of Technology Graz, Graz A-8010, Austria
| | - VERONIKA SIEGL
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, Graz A-8010, Austria
| | - NATHALIE MEIER-ALLARD
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, Graz A-8010, Austria
| | - ANTON SADJAK
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, Graz A-8010, Austria
| | - ROSWITHA PFRAGNER
- Department of Pathophysiology and Immunology, Center of Molecular Medicine, Medical University of Graz, Graz A-8010, Austria
| |
Collapse
|
52
|
Li L, Feng L, Jiang WD, Jiang J, Wu P, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Dietary pantothenic acid deficiency and excess depress the growth, intestinal mucosal immune and physical functions by regulating NF-κB, TOR, Nrf2 and MLCK signaling pathways in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2015; 45:399-413. [PMID: 25957886 DOI: 10.1016/j.fsi.2015.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
This study investigated the effects of dietary pantothenic acid (PA) on the growth, intestinal mucosal immune and physical barrier, and relative mRNA levels of signaling molecules in the intestine of grass carp (Ctenopharyngodon idella). A total of 540 grass carp (253.44 ± 0.69 g) were fed six diets with graded levels of PA (PA1, PA15, PA30, PA45, PA60 and PA75 diets) for 8 weeks. The results indicated that compared with PA deficiency (PA1 diet) and excess (PA75 diet) groups, optimal PA supplementation increased (P < 0.05): (1) percent weight gain (PWG), feed intake and feed efficiency; (2) lysozyme activity, complement 3 content, liver-expressed antimicrobial peptide 2 and hepcidin, interleukin 10, transforming growth factor β1 and inhibitor of κBα mRNA levels in some intestinal segments; (3) activities and mRNA levels of copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferases and glutathione reductase, and NF-E2-related factor 2 (Nrf2) mRNA level in the whole intestine; (4) Claudin b, Claudin 3, Claudin c, Occludin and ZO-1 mRNA levels in some intestinal segments of grass carp. Conversely, optimal PA supplementation decreased (P < 0.05): (1) tumor necrosis factor α, interleukin 1β, interferon γ2, interleukin 8, nuclear factor κB P65 (NF-κB P65), IκB kinase α, IκB kinase β, IκB kinase γ and target of rapamycin (TOR) mRNA expression levels in some intestinal segments; (2) reactive oxygen species, malondialdehyde and protein carbonyl contents, and Kelch-like ECH-associating protein 1a, Kelch-like ECH-associating protein 1b in the intestine; (3) Claudin 12, Claudin 15a and myosin light-chain kinase (MLCK) mRNA levels in some intestinal segments of grass carp. In conclusion, optimum PA promoted growth, intestinal mucosal immune and physical function, as well as regulated mRNA levels of signaling molecules NF-κB P65, TOR, Nrf2 and MLCK in grass carp intestine. Based on the quadratic regression analysis of PWG and intestinal lysozyme activity, the optimal PA levels in grass carp (253.44-745.25 g) were estimated to be 37.73 mg/kg and 41.38 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Li Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, Sichuan, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, Sichuan, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
53
|
Zymosan and PMA activate the immune responses of Mutz3-derived dendritic cells synergistically. Immunol Lett 2015; 167:41-6. [PMID: 26183538 DOI: 10.1016/j.imlet.2015.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/10/2015] [Accepted: 07/06/2015] [Indexed: 01/22/2023]
Abstract
Beta-glucan (β-glucan) including zymosan has been known as a super food because of its multifunctional activities, such as the enhancement of immune responses. To study the functional mechanism of β-glucan in immune stimulation, the effect of zymosan on dendritic cell (DC) was investigated by monitoring the production of TNF-α, a pro-inflammatory cytokine. DC was differentiated from Mutz-3, a human acute myeloid leukemia cell line, by cytokine treatment and characterized. DC-specific cell surface markers were increased during the differentiation. Especially, Dectin-1, a β-glucan receptor, was upregulated during DC differentiation, and mediated zymosan-induced TNF-α production, which was inhibited by silencing of dectin-1. Zymosan exhibited synergistic effect with other immune stimuli such as lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA), a well-known PKC activator. Simultaneous treatment of zymosan and PMA enhanced the nuclear translocation of NF-κB subunits, p50 and p65, mediating the increase of TNF-α production. Bay 11-7082, an NF-κB inhibitor, blocked morphological changes and TNF-α production induced by zymosan and/or PMA treatment. Western blot analysis has showed zymosan-Dectin-1 pathway mediated destructive phosphorylation of inhibitor of NF-κB (IκB) kinase α subunit (IKKα) in IKK complexes, while PMA-PKC pathway regulated selective phosphorylation and degradation of IKKβ. Simultaneous phosphorylation of separate IKK subunits by co-treatment of zymosan and PMA resulted in cooperative activation of NF-κB and TNF-α production.
Collapse
|
54
|
Le Henaff C, Mansouri R, Modrowski D, Zarka M, Geoffroy V, Marty C, Tarantino N, Laplantine E, Marie PJ. Increased NF-κB Activity and Decreased Wnt/β-Catenin Signaling Mediate Reduced Osteoblast Differentiation and Function in ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mice. J Biol Chem 2015; 290:18009-18017. [PMID: 26060255 DOI: 10.1074/jbc.m115.646208] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 01/11/2023] Open
Abstract
The prevalent human ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is associated with reduced bone formation and bone loss in mice. The molecular mechanisms by which the ΔF508-CFTR mutation causes alterations in bone formation are poorly known. In this study, we analyzed the osteoblast phenotype in ΔF508-CFTR mice and characterized the signaling mechanisms underlying this phenotype. Ex vivo studies showed that the ΔF508-CFTR mutation negatively impacted the differentiation of bone marrow stromal cells into osteoblasts and the activity of osteoblasts, demonstrating that the ΔF508-CFTR mutation alters both osteoblast differentiation and function. Treatment with a CFTR corrector rescued the abnormal collagen gene expression in ΔF508-CFTR osteoblasts. Mechanistic analysis revealed that NF-κB signaling and transcriptional activity were increased in mutant osteoblasts. Functional studies showed that the activation of NF-κB transcriptional activity in mutant osteoblasts resulted in increased β-catenin phosphorylation, reduced osteoblast β-catenin expression, and altered expression of Wnt/β-catenin target genes. Pharmacological inhibition of NF-κB activity or activation of canonical Wnt signaling rescued Wnt target gene expression and corrected osteoblast differentiation and function in bone marrow stromal cells and osteoblasts from ΔF508-CFTR mice. Overall, the results show that the ΔF508-CFTR mutation impairs osteoblast differentiation and function as a result of overactive NF-κB and reduced Wnt/β-catenin signaling. Moreover, the data indicate that pharmacological inhibition of NF-κB or activation of Wnt/β-catenin signaling can rescue the abnormal osteoblast differentiation and function induced by the prevalent ΔF508-CFTR mutation, suggesting novel therapeutic strategies to correct the osteoblast dysfunctions in cystic fibrosis.
Collapse
Affiliation(s)
- Carole Le Henaff
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris
| | - Rafik Mansouri
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris
| | - Dominique Modrowski
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris
| | - Mylène Zarka
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris
| | - Valérie Geoffroy
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris
| | - Caroline Marty
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris
| | - Nadine Tarantino
- Laboratoire de Signalisation et Pathogenèse, Institut Pasteur, 75015 Paris, France
| | - Emmanuel Laplantine
- Laboratoire de Signalisation et Pathogenèse, Institut Pasteur, 75015 Paris, France
| | - Pierre J Marie
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris.
| |
Collapse
|
55
|
Zhao Y, Feng G, Wang Y, Yue Y, Zhao W. A key mediator, PTX3, of IKK/IκB/NF-κB exacerbates human umbilical vein endothelial cell injury and dysfunction. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7699-7707. [PMID: 25550806 PMCID: PMC4270526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study was performed to investigate PTX3-mediated iNOS expression and IKK/IκB/NF-κB activation in PA-induced atherosclerotic HUVECs injury model. METHODS The cell viability was detected by the CCK8 assay. The cell apoptosis was assessed by annexin V-PI double-labeling staining. Expression of genes and proteins were analyzed by real-time PCR and western blotting respectively. Cells were transfected with siRNAs as a gene silencing methods. RESULTS PA induced cell apoptosis in human umbilical vein endothelial cells in a time and dose-dependent manner. PA also induced upregulation expression of PTX3. TPCA-1, an inhibitor of IKK-2, could suppress the expression of PTX3 and phospho-IκB-α in PA-induced endothelial dysfunction cell model. We also found that transfection of cells with PTX3 siRNA reduced the expression of iNOS and NO, and protected PA-induced cell apoptosis in HUVECs. CONCLUSIONS PTX3 could exacerbate endothelial dysfunction, at least partially, through IKK/IκB/NF-κB activation and overexpression of iNOS and NO, and advance the development of atherosclerosis.
Collapse
Affiliation(s)
- Yongbo Zhao
- Department of Cardiovascular Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Guangxing Feng
- Department of Cardiovascular Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Yanzhi Wang
- Department of Cardiovascular Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Yuehong Yue
- Department of Neurology, Hebei General HospitalShijiazhuang, China
| | - Weichao Zhao
- Department of Cardiovascular Surgery, Fourth Hospital of Hebei Medical UniversityShijiazhuang, China
| |
Collapse
|
56
|
Bai X, Wang J, Guo Y, Pan J, Yang Q, Zhang M, Li H, Zhang L, Ma J, Shi F, Shu W, Wang Y, Leng J. Prostaglandin E2 stimulates β1-integrin expression in hepatocellular carcinoma through the EP1 receptor/PKC/NF-κB pathway. Sci Rep 2014; 4:6538. [PMID: 25289898 PMCID: PMC5377465 DOI: 10.1038/srep06538] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023] Open
Abstract
Prostaglandin E2 (PGE2) has been implicated in cell invasion in hepatocellular carcinoma (HCC), via increased β1-integrin expression and cell migration; however, the mechanism remains unclear. PGE2 exerts its effects via four subtypes of the E prostanoid receptor (EP receptor 1–4). The present study investigated the effect of EP1 receptor activation on β1-integrin expression and cell migration in HCC. Cell migration increased by 60% in cells treated with 17-PT-PGE2 (EP1 agonist), which was suppressed by pretreatment with a β1-integrin polyclonal antibody. PGE2 increased β1-integrin expression by approximately 2-fold. EP1 receptor transfection or treatment with 17-PT-PGE2 mimicked the effect of PGE2 treatment. EP1 siRNA blocked PGE2-mediated β1-integrin expression. 17-PT-PGE2 treatment induced PKC and NF-κB activation; PKC and NF-κB inhibitors suppressed 17-PT-PGE2-mediated β1-integrin expression. FoxC2, a β1-integrin transcription factor, was also upregulated by 17-PT-PGE2. NF-κB inhibitor suppressed 17-PT-PGE2-mediated FoxC2 upregulation. Immunohistochemistry showed p65, FoxC2, EP1 receptor and β1-integrin were all highly expressed in the HCC cases. This study suggested that PGE2 upregulates β1-integrin expression and cell migration in HCC cells by activating the PKC/NF-κB signaling pathway. Targeting PGE2/EP1/PKC/NF-κB/FoxC2/β1-integrin pathway may represent a new therapeutic strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Xiaoming Bai
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jie Wang
- Department of Pathology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, P. R. China
| | - Yan Guo
- Institute of Pediatrics, Fourth Clinical Medical College, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jinshun Pan
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Qinyi Yang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Min Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Hai Li
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Li Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Juan Ma
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Feng Shi
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Wei Shu
- Department of Periodontal, Institute of Stomatology, The Stomatological Hospital Affiliated to Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yipin Wang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jing Leng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| |
Collapse
|
57
|
Wang Q, Cai J, Wang J, Xiong C, Yan L, Zhang Z, Fang Y, Zhao J. Down-Regulation of Adiponectin Receptors in Osteoarthritic Chondrocytes. Cell Biochem Biophys 2014; 70:491-7. [DOI: 10.1007/s12013-014-9946-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
58
|
Suh HS, Lo Y, Choi N, Letendre S, Lee SC. Evidence of the innate antiviral and neuroprotective properties of progranulin. PLoS One 2014; 9:e98184. [PMID: 24878635 PMCID: PMC4039467 DOI: 10.1371/journal.pone.0098184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/29/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Compelling data exist that show that normal levels of progranulin (PGRN) are required for successful CNS aging. PGRN production is also modulated by inflammation and infection, but no data are available on the production and role of PGRN during CNS HIV infection. METHODS To determine the relationships between PGRN and HIV disease, neurocognition, and inflammation, we analyzed 107 matched CSF and plasma samples from CHARTER, a well-characterized HIV cohort. Levels of PGRN were determined by ELISA and compared to levels of several inflammatory mediators (IFNγ, IL-6, IL-10, IP-10, MCP-1, TNFα, IL-1β, IL-4 and IL-13), as well as clinical, virologic and demographic parameters. The relationship between HIV infection and PGRN was also examined in HIV-infected primary human microglial cultures. RESULTS In plasma, PGRN levels correlated with the viral load (VL, p<0.001). In the CSF of subjects with undetectable VL, lower PGRN was associated with neurocognitive impairment (p = 0.046). CSF PGRN correlated with CSF IP-10, TNFα and IL-10, and plasma PGRN correlated with plasma IP-10. In vitro, microglial HIV infection increased PGRN production and PGRN knockdown increased HIV replication, demonstrating that PGRN is an innate antiviral protein. CONCLUSIONS We propose that PGRN plays dual roles in people living with HIV disease. With active HIV replication, PGRN is induced in infected macrophages and microglia and functions as an antiviral protein. In individuals without active viral replication, decreased PGRN production contributes to neurocognitive dysfunction, probably through a diminution of its neurotrophic functions. Our results have implications for the pathogenesis, biomarker studies and therapy for HIV diseases including HIV-associated neurocognitive dysfunction (HAND).
Collapse
Affiliation(s)
- Hyeon-Sook Suh
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (HSS); (SCL)
| | - Yungtai Lo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Namjong Choi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Scott Letendre
- Department of Neurology, University of California San Diego, San Diego, California, United States of America
| | - Sunhee C. Lee
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (HSS); (SCL)
| |
Collapse
|
59
|
Abstract
Epiregulin is a 46-amino acid protein that belongs to the epidermal growth factor (EGF) family of peptide hormones. Epiregulin binds to the EGF receptor (EGFR/ErbB1) and ErbB4 (HER4) and can stimulate signaling of ErbB2 (HER2/Neu) and ErbB3 (HER3) through ligand-induced heterodimerization with a cognate receptor. Epiregulin possesses a range of functions in both normal physiologic states as well as in pathologic conditions. Epiregulin contributes to inflammation, wound healing, tissue repair, and oocyte maturation by regulating angiogenesis and vascular remodeling and by stimulating cell proliferation. Deregulated epiregulin activity appears to contribute to the progression of a number of different malignancies, including cancers of the bladder, stomach, colon, breast, lung, head and neck, and liver. Therefore, epiregulin and the elements of the EGF/ErbB signaling network that lie downstream of epiregulin appear to be good targets for therapeutic intervention.
Collapse
|
60
|
Epiregulin: roles in normal physiology and cancer. Semin Cell Dev Biol 2014; 28:49-56. [PMID: 24631357 DOI: 10.1016/j.semcdb.2014.03.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/24/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022]
Abstract
Epiregulin is a 46-amino acid protein that belongs to the epidermal growth factor (EGF) family of peptide hormones. Epiregulin binds to the EGF receptor (EGFR/ErbB1) and ErbB4 (HER4) and can stimulate signaling of ErbB2 (HER2/Neu) and ErbB3 (HER3) through ligand-induced heterodimerization with a cognate receptor. Epiregulin possesses a range of functions in both normal physiologic states as well as in pathologic conditions. Epiregulin contributes to inflammation, wound healing, tissue repair, and oocyte maturation by regulating angiogenesis and vascular remodeling and by stimulating cell proliferation. Deregulated epiregulin activity appears to contribute to the progression of a number of different malignancies, including cancers of the bladder, stomach, colon, breast, lung, head and neck, and liver. Therefore, epiregulin and the elements of the EGF/ErbB signaling network that lie downstream of epiregulin appear to be good targets for therapeutic intervention.
Collapse
|
61
|
Suh HS, Gelman BB, Lee SC. Potential roles of microglial cell progranulin in HIV-associated CNS pathologies and neurocognitive impairment. J Neuroimmune Pharmacol 2014; 9:117-32. [PMID: 23959579 PMCID: PMC3930627 DOI: 10.1007/s11481-013-9495-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/08/2013] [Indexed: 12/12/2022]
Abstract
Progranulin (PGRN) is a highly unusual molecule with both neuronal and microglial expression with two seemingly unrelated functions, i.e., as a neuronal growth factor and a modulator of neuroinflammation. Haploinsufficiency due to loss of function mutations lead to a fatal presenile dementing illness (frontotemporal lobar degeneration), indicating that adequate expression of PGRN is essential for successful aging. PGRN might be a particularly relevant factor in the pathogenesis of HIVencephalitis (HIVE) and HIV-associated neurocognitive disorders (HAND). We present emerging data and a review of the literature which show that cells of myeloid lineage such as macrophages and microglia are the primary sources of PGRN and that PGRN expression contributes to pathogenesis of CNS diseases. We also present evidence that PGRN is a macrophage antiviral cytokine. For example, PGRN mRNA and protein expression are significantly upregulated in brain specimens with HIVE, and in HIV infected microglia in vitro. Paradoxically, our preliminary CHARTER data analyses indicate that lower PGRN levels in CSF trended towards an association with HAND, particularly in those without detectable virus. Based upon these findings, we introduce the hypothesis that PGRN plays dual roles in modulating antiviral immunity and neuronal dysfunction in the context of HIV infection. In the presence of active viral replication, PGRN expression is increased functioning as an anti-viral factor as well as a neuroprotectant. In the absence of active HIV replication, ongoing inflammation or other stressors suppress PGRN production from macrophages/microglia contributing to neurocognitive dysfunction. We propose.
Collapse
Affiliation(s)
- Hyeon-Sook Suh
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Benjamin B. Gelman
- Departments of Pathology and Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX
| | - Sunhee C. Lee
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
62
|
Meyer AN, Drafahl KA, McAndrew CW, Gilda JE, Gallo LH, Haas M, Brill LM, Donoghue DJ. Tyrosine phosphorylation allows integration of multiple signaling inputs by IKKβ. PLoS One 2014; 8:e84497. [PMID: 24386391 PMCID: PMC3873999 DOI: 10.1371/journal.pone.0084497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023] Open
Abstract
Signaling regulated by NFκB and related transcription factors is centrally important to many inflammatory and autoimmune diseases, cancer, and stress responses. The kinase that directly regulates the canonical NFκB transcriptional pathway, Inhibitor of κB kinase β (IKKβ), undergoes activation by Ser phosphorylation mediated by NIK or TAK1 in response to inflammatory signals. Using titanium dioxide-based phosphopeptide enrichment (TiO2)-liquid chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS), we analyzed IKKβ phosphorylation in human HEK293 cells expressing IKKβ and FGFR2, a Receptor tyrosine kinase (RTK) essential for embryonic differentiation and dysregulated in several cancers. We attained unusually high coverage of IKKβ, identifying an abundant site of Tyr phosphorylation at Tyr169 within the Activation Loop. The phosphomimic at this site confers a level of kinase activation and NFκB nuclear localization exceeding the iconic mutant S177E/S181E, demonstrating that RTK-mediated Tyr phosphorylation of IKKβ has the potential to directly regulate NFκB transcriptional activation.
Collapse
Affiliation(s)
- April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Kristine A. Drafahl
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Christopher W. McAndrew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Jennifer E. Gilda
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Leandro H. Gallo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Martin Haas
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Laurence M. Brill
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, United States of America
- *
| |
Collapse
|
63
|
Auf G, Jabouille A, Delugin M, Guérit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O, Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1α and promotes autocrine growth through EGF receptor. BMC Cancer 2013; 13:597. [PMID: 24330607 PMCID: PMC3878670 DOI: 10.1186/1471-2407-13-597] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 12/10/2013] [Indexed: 01/20/2023] Open
Abstract
Background Epidermal growth factor (EGF) receptors contribute to the development of malignant glioma. Here we considered the possible implication of the EGFR ligand epiregulin (EREG) in glioma development in relation to the activity of the unfolded protein response (UPR) sensor IRE1α. We also examined EREG status in several glioblastoma cell lines and in malignant glioma. Methods Expression and biological properties of EREG were analyzed in human glioma cells in vitro and in human tumor xenografts with regard to the presence of ErbB proteins and to the blockade of IRE1α. Inactivation of IRE1α was achieved by using either the dominant-negative strategy or siRNA-mediated knockdown. Results EREG was secreted in high amounts by U87 cells, which also expressed its cognate EGF receptor (ErbB1). A stimulatory autocrine loop mediated by EREG was evidenced by the decrease in cell proliferation using specific blocking antibodies directed against either ErbB1 (cetuximab) or EREG itself. In comparison, anti-ErbB2 antibodies (trastuzumab) had no significant effect. Inhibition of IRE1α dramatically reduced EREG expression both in cell culture and in human xenograft tumor models. The high-expression rate of EREG in U87 cells was therefore linked to IRE1α, although being modestly affected by chemical inducers of the endoplasmic reticulum stress. In addition, IRE1-mediated production of EREG did not depend on IRE1 RNase domain, as neither the selective dominant-negative invalidation of the RNase activity (IRE1 kinase active) nor the siRNA-mediated knockdown of XBP1 had significant effect on EREG expression. Finally, chemical inhibition of c-Jun N-terminal kinases (JNK) using the SP600125 compound reduced the ability of cells to express EREG, demonstrating a link between the growth factor production and JNK activation under the dependence of IRE1α. Conclusion EREG may contribute to glioma progression under the control of IRE1α, as exemplified here by the autocrine proliferation loop mediated in U87 cells by the growth factor through ErbB1.
Collapse
|
64
|
IKKα/CHUK regulates extracellular matrix remodeling independent of its kinase activity to facilitate articular chondrocyte differentiation. PLoS One 2013; 8:e73024. [PMID: 24023802 PMCID: PMC3759388 DOI: 10.1371/journal.pone.0073024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/16/2013] [Indexed: 12/31/2022] Open
Abstract
Background The non-canonical NF-κB activating kinase IKKα, encoded by CHUK (conserved-helix-loop-helix-ubiquitous-kinase), has been reported to modulate pro- or anti- inflammatory responses, cellular survival and cellular differentiation. Here, we have investigated the mechanism of action of IKKα as a novel effector of human and murine chondrocyte extracellular matrix (ECM) homeostasis and differentiation towards hypertrophy. Methodology/Principal Findings IKKα expression was ablated in primary human osteoarthritic (OA) chondrocytes and in immature murine articular chondrocytes (iMACs) derived from IKKαf/f:CreERT2 mice by retroviral-mediated stable shRNA transduction and Cre recombinase-dependent Lox P site recombination, respectively. MMP-10 was identified as a major target of IKKα in chondrocytes by mRNA profiling, quantitative RT-PCR analysis, immunohistochemistry and immunoblotting. ECM integrity, as assessed by type II collagen (COL2) deposition and the lack of MMP-dependent COL2 degradation products, was enhanced by IKKα ablation in mice. MMP-13 and total collagenase activities were significantly reduced, while TIMP-3 (tissue inhibitor of metalloproteinase-3) protein levels were enhanced in IKKα-deficient chondrocytes. IKKα deficiency suppressed chondrocyte differentiation, as shown by the quantitative inhibition of.Alizarin red staining and the reduced expression of multiple chondrocyte differentiation effectors, including Runx2, Col10a1 and Vegfa,. Importantly, the differentiation of IKKα-deficient chondrocytes was rescued by a kinase-dead IKKα protein mutant. Conclusions/Significance IKKα acts independent of its kinase activity to help drive chondrocyte differentiation towards a hypertrophic-like state. IKKα positively modulates ECM remodeling via multiple downstream targets (including MMP-10 and TIMP-3 at the mRNA and post-transcriptional levels, respectively) to maintain maximal MMP-13 activity, which is required for ECM remodeling leading to chondrocyte differentiation. Chondrocytes are the unique cell component in articular cartilage, which are quiescent and maintain ECM integrity during tissue homeostasis. In OA, chondrocytes reacquire the capacity to proliferate and differentiate and their activation results in pronounced cartilage degeneration. Τηυσ, our findings are also of potential relevance for defining the onset and/or progression of OA disease.
Collapse
|
65
|
Kong BW, Lee J, Bottje WG, Lassiter K, Lee J, Gentles LE, Chandra YG, Foster DN. Microarray analysis of early and late passage chicken embryo fibroblast cells. Poult Sci 2013; 92:770-81. [PMID: 23436528 DOI: 10.3382/ps.2012-02540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary cultured cells derived from normal tissue have a limited lifespan due to replicative senescence and show distinct phenotypes such as irreversible cell cycle arrest and enlarged morphology. Studying senescence-associated genetic alterations in chicken cells will provide valuable knowledge of cellular growth characteristics, when compared with normal and rapidly growing cell lines. Microarray analysis of early- and late-passage (passage 4 and 18, respectively) primary chicken embryo fibroblast (CEF) cells was performed with a 4X44K chicken oligo microarray. A total of 1,888 differentially expressed genes were identified with a 2-fold level cutoff that included 272 upregulated and 1,616 downregulated genes in late-passage senescent CEF cells. Bioinformatic analyses were performed using Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com). Of the 1,888 differentially expressed genes in senescent CEF cells, 458 were identified as functionally known genes and only 61 genes showed upregulation. Because senescent cells generally showed the deactivated states of most cellular mechanisms for proliferation and energy metabolism, intensified analysis on upregulated genes revealed that the molecular mechanisms in senescent CEF cells are characterized by the suppression of cell cycle and proliferation, progression of cell death including apoptosis, and increased expression of various secreting factors. These regulatory pathways may be opposite to those found in the immortal CEF cell line, such as the DF-1 immortal line. Further comparison of differentially expressed genes between senescent and immortal DF-1 CEF cells showed that 35 genes overlapped and were oppositely regulated. The global gene expression profiles may provide insight into the cellular mechanisms that regulate cellular senescence and immortalization of CEF cells.
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
McFarland BC, Gray GK, Nozell SE, Hong SW, Benveniste EN. Activation of the NF-κB pathway by the STAT3 inhibitor JSI-124 in human glioblastoma cells. Mol Cancer Res 2013; 11:494-505. [PMID: 23386688 DOI: 10.1158/1541-7786.mcr-12-0528] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma tumors are characterized by their invasiveness and resistance to therapies. The transcription factor signal transducer and activator of transcription 3 (STAT3) was recently identified as a master transcriptional regulator in the mesenchymal subtype of glioblastoma (GBM), which has generated an increased interest in targeting STAT3. We have evaluated more closely the mechanism of action of one particular STAT3 inhibitor, JSI-124 (cucurbitacin I). In this study, we confirmed that JSI-124 inhibits both constitutive and stimulus-induced Janus kinase 2 (JAK2) and STAT3 phosphorylation, and decreases cell proliferation while inducing apoptosis in cultured GBM cells. However, we discovered that before the inhibition of STAT3, JSI-124 activates the nuclear factor-κB (NF-κB) pathway, via NF-κB p65 phosphorylation and nuclear translocation. In addition, JSI-124 treatment induces the expression of IL-6, IL-8, and suppressor of cytokine signaling (SOCS3) mRNA, which leads to a corresponding increase in IL-6, IL-8, and SOCS3 protein expression. Moreover, the NF-κB-driven SOCS3 expression acts as a negative regulator of STAT3, abrogating any subsequent STAT3 activation and provides a mechanism of STAT3 inhibition after JSI-124 treatment. Chromatin immunoprecipitation analysis confirms that NF-κB p65 in addition to other activating cofactors are found at the promoters of IL-6, IL-8, and SOCS3 after JSI-124 treatment. Using pharmacological inhibition of NF-κB and inducible knockdown of NF-κB p65, we found that JSI-124-induced expression of IL-6, IL-8, and SOCS3 was significantly inhibited, showing an NF-κB-dependent mechanism. Our data indicate that although JSI-124 may show potential antitumor effects through inhibition of STAT3, other off-target proinflammatory pathways are activated, emphasizing that more careful and thorough preclinical investigations must be implemented to prevent potential harmful effects.
Collapse
Affiliation(s)
- Braden C McFarland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | | | |
Collapse
|
67
|
Qin J, Shang L, Ping AS, Li J, Li XJ, Yu H, Magdalou J, Chen LB, Wang H. TNF/TNFR signal transduction pathway-mediated anti-apoptosis and anti-inflammatory effects of sodium ferulate on IL-1β-induced rat osteoarthritis chondrocytes in vitro. Arthritis Res Ther 2012; 14:R242. [PMID: 23134577 PMCID: PMC3674623 DOI: 10.1186/ar4085] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 11/06/2012] [Indexed: 01/25/2023] Open
Abstract
Introduction Sodium ferulate (SF) is a natural component of traditional Chinese herbs. Our previous study shows that SF has a protective effect on osteoarthritis (OA). The objective of this study was to investigate the effect of SF on the TNF/TNF receptor (TNFR) signal transduction pathway of rat OA chondrocytes. Methods Primary rat articular chondrocytes were co-treated with IL-1β and SF. Chondrocyte apoptosis was assessed by fluorescein isothiocyanate-annexin V/propidium iodide assay. The PCR array was used to screen the expression of 84 key genes involved in apoptosis. The release of TNFα and prostaglandin E2 were analyzed by ELISA. Expressions of proteins were assessed by western blotting. The activity of NF-κB was determined by electrophoretic mobility shift assay (EMSA). Gene expression of inducible nitric oxide synthase (iNOS) was evaluated by real-time quantitative PCR. The nitric oxide content was measured with the Griess method. Results After treatment with SF, the apoptosis rate of chondrocytes significantly attenuated (P < 0.01). Results of the apoptosis PCR array suggested that mRNA expression of some core proteins in the TNF/TNFR pathway showed valuable regulation. The protein expressions of TNFα, TNFR-1, TNF receptor-associated death domain, caspase-8 and caspase-3 were prevented by SF in a concentration-dependent manner. SF also inhibited activities of caspase-8 and caspase-3 compared with the OA model control (P < 0.01). TNF receptor-associated factor-2 expression, phosphorylations of inhibitor of NF-κB kinase (IKK) subunits alpha and beta, and NF-κB inhibitor, alpha (IκBα) were all concentration-dependently suppressed by SF treatment. The results of EMSA showed that SF inhibited the activity of NF-κB. In addition, the expressions of cycloxygenase-2 and iNOS and the contents of prostaglandin E2 and NO were attenuated with the treatment of SF (P < 0.01). Conclusion SF has anti-apoptosis and anti-inflammatory effects on an OA model induced by IL-1β in vitro, which were due to inhibitory actions on the caspase-dependent apoptosis pathway and the IKK/NF-κB signal transduction pathway of the TNF/TNFR pathway.
Collapse
|
68
|
Kanngiesser M, Häussler A, Myrczek T, Küsener N, Lim HY, Geisslinger G, Niederberger E, Tegeder I. Inhibitor kappa B kinase beta dependent cytokine upregulation in nociceptive neurons contributes to nociceptive hypersensitivity after sciatic nerve injury. THE JOURNAL OF PAIN 2012; 13:485-97. [PMID: 22564672 DOI: 10.1016/j.jpain.2012.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/04/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Inhibitor kappa B kinase (IKK)-mediated nuclear factor-kappa B (NF-κB) activation is a major pathway for transcriptional control of various pro-inflammatory factors. We here assessed whether activation of this pathway specifically in primary nociceptive neurons of the dorsal root ganglia (DRG) contributes to the development of nociceptive hypersensitivity. Mice carrying a cre-loxP-mediated deletion of inhibitor kappa B kinase beta (IKKβ) in DRG neurons were protected from nerve injury-evoked allodynia and hyperalgesia. This effect was mimicked by systemic treatment with an IKKβ inhibitor but was not observed upon specific inhibition of IKKβ in the spinal cord, suggesting a specific role of IKKβ in the peripheral neurons. The deletion of IKKβ in DRG neurons did not affect constitutive neuronal NF-κB activity, but reduced nerve injury-evoked NF-κB stimulation in the DRG and was associated with reduced upregulation of interleukin-16, monocyte chemoattractant protein-1/chemokine (CC motif) ligand 2 (MCP-1/CCL2), and tumor necrosis factor alpha (TNFα) in the DRG. These cytokines evoked a rapid rise of intracellular calcium in subsets of primary DRG neurons. The results suggest that IKKβ-mediated NF-κB stimulation in injured primary sensory neurons promotes cytokine and chemokine production and contributes thereby to the development of chronic pain. PERSPECTIVE Inhibitors of IKK that do not pass the blood-brain barrier and act only in the periphery might be useful for reduction of the pro-inflammatory response in peripheral DRG neurons and reduce thereby nerve injury-evoked pain without affecting neuroprotective effects of NF-κB in the central nervous system.
Collapse
Affiliation(s)
- Maike Kanngiesser
- Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
The inhibitor of nuclear factor-κB (IκB) kinase (IKK) complex is the master regulator of the NF-κB signaling pathway. The activation of the IKK complex is a tightly regulated, highly stimulus-specific, and target-specific event that is essential for the plethora of functions attributed to NF-κB. More recently, NF-κB-independent roles of IKK members have brought increased complexity to its biological function. This review highlights some of the major advances in the studies of the process of IKK activation and the biological roles of IKK family members, with a focus on NF-κB-independent functions. Understanding these complex processes is essential for targeting IKK for therapeutics.
Collapse
Affiliation(s)
- Fei Liu
- Laboratory of Genetics, The Salk Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
70
|
Gatta V, Granzotto A, Fincati K, Drago D, Bolognin S, Zatta P, Sensi SL. Microarray analysis of gene expression profiles in human neuroblastoma cells exposed to Aβ–Zn and Aβ–Cu complexes. FUTURE NEUROLOGY 2012. [DOI: 10.2217/fnl.12.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aims: Abnormal metal accumulation is associated with Alzheimer’s disease and plays a relevant role in affecting amyloid-β (Aβ) peptide aggregation and neurotoxicity. Material & Methods: In the present study, employing a microarray analysis of 35,129 genes, we analyzed gene expression profile changes due to exposure to Aβ1-42 –Zn or Aβ1-42 –Cu complexes in neuronal-like cells (SH-SY5Y). Results: Microarray data indicated that Aβ–Zn or Aβ–Cu complexes selectively alter expression of genes mainly related to cell death, inflammatory responses, cytoprotective mechanisms and apoptosis. Conclusions: Taken together, these findings indicate that Aβ1–42 –Zn or Aβ1–42 –Cu show some commonalities in affecting Alzheimer’s disease-related target functions. The overall modulatory activity on these genes supports the idea of a possible net effect resulting in the activation of pathways that counteract toxic effects of Aβ–Zn or Aβ–Cu.
Collapse
Affiliation(s)
- Valentina Gatta
- Department of Oral Health & Biotechnological Sciences, “G. D’Annunzio” University, Chieti-Pescara, Italy
- Functional Genetics Unit – Center of Excellence in Aging (Ce.S.I.), Chieti, Italy
| | | | | | - Denise Drago
- CNS Repair Unit – INSPE, Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bolognin
- Department of Neurological, Neuropsychological, Morphological & Motor Sciences – Physiology & Psychology Unit, Verona, Italy
| | - Paolo Zatta
- National Research Council, Biomedical Technology Institute (CNR-ITB), Metalloproteins Unit, Department of Biology, University of Padua, Padua, Italy
| | - Stefano L Sensi
- Department of Neuroscience & Imaging, “G. D’Annunzio” University, Chieti, Italy
| |
Collapse
|
71
|
Suh HS, Choi N, Tarassishin L, Lee SC. Regulation of progranulin expression in human microglia and proteolysis of progranulin by matrix metalloproteinase-12 (MMP-12). PLoS One 2012; 7:e35115. [PMID: 22509390 PMCID: PMC3324426 DOI: 10.1371/journal.pone.0035115] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/10/2012] [Indexed: 01/26/2023] Open
Abstract
Background The essential role of progranulin (PGRN) as a neurotrophic factor has been demonstrated by the discovery that haploinsufficiency due to GRN gene mutations causes frontotemporal lobar dementia. In addition to neurons, microglia in vivo express PGRN, but little is known about the regulation of PGRN expression by microglia. Goal In the current study, we examined the regulation of expression and function of PGRN, its proteolytic enzyme macrophage elastase (MMP-12), as well as the inhibitor of PGRN proteolysis, secretory leukocyte protease inhibitor (SLPI), in human CNS cells. Methods Cultures of primary human microglia and astrocytes were stimulated with the TLR ligands (LPS or poly IC), Th1 cytokines (IL-1/IFNγ), or Th2 cytokines (IL-4, IL-13). Results were analyzed by Q-PCR, immunoblotting or ELISA. The roles of MMP-12 and SLPI in PGRN cleavage were also examined. Results Unstimulated microglia produced nanogram levels of PGRN, and PGRN release from microglia was suppressed by the TLR ligands or IL-1/IFNγ, but increased by IL-4 or IL-13. Unexpectedly, while astrocytes stimulated with proinflammatory factors released large amounts of SLPI, none were detected in microglial cultures. We also identified MMP-12 as a PGRN proteolytic enzyme, and SLPI as an inhibitor of MMP-12-induced PGRN proteolysis. Experiments employing PGRN siRNA demonstrated that microglial PGRN was involved in the cytokine and chemokine production following TLR3/4 activation, with its effect on TNFα being the most conspicuous. Conclusions Our study is the first detailed examination of PGRN in human microglia. Our results establish microglia as a significant source of PGRN, and MMP-12 and SLPI as modulators of PGRN proteolysis. Negative and positive regulation of microglial PGRN release by the proinflammatory/Th1 and the Th2 stimuli, respectively, suggests a fundamentally different aspect of PGRN regulation compared to other known microglial activation products. Microglial PGRN appears to function as an endogenous modulator of innate immune responses.
Collapse
Affiliation(s)
- Hyeon-Sook Suh
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America.
| | | | | | | |
Collapse
|
72
|
Mafra DG, da Silva PI, Galhardo CS, Nassar R, Daffre S, Sato MN, Borges MM. The spider acylpolyamine Mygalin is a potent modulator of innate immune responses. Cell Immunol 2012; 275:5-11. [PMID: 22541370 DOI: 10.1016/j.cellimm.2012.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 02/21/2012] [Accepted: 04/01/2012] [Indexed: 01/18/2023]
Abstract
Mygalin is an antibacterial molecule isolated from the hemocytes of the spider Acanthoscurria gomesiana. It was identified as bis-acylpolyamine spermidine. We evaluated the modulator effects of synthetic Mygalin in the innate immune response. We demonstrate that Mygalin induces IFN-γ synthesis by splenocytes increasing the nitrite secretion by splenocytes and macrophages. A specific inhibitor of iNOS abrogated Mygalin-induced nitrite production in macrophages independent of IFN-γ activation. In addition, Mygalin-activated macrophages produced TNF-α but not IL-1β, demonstrating that Mygalin does not act directly on the inflammasome. Furthermore, this compound did not affect spontaneous or Concanavalin A-induced proliferative responses by murine splenocytes and did not induce IL-5 or apoptosis of splenocytes or bone marrow-derived macrophages. These data provide evidence that Mygalin modulates the innate immune response by inducing IFN-γ and NO synthesis. The combined immune regulatory and antibacterial qualities of Mygalin should be explored as a strategy to enhance immune responses in infection.
Collapse
|
73
|
Yazdani S, Karimfar MH, Imani Fooladi AA, Mirbagheri L, Ebrahimi M, Ghanei M, Nourani MR. Nuclear factor κB1/RelA mediates the inflammation and/or survival of human airway exposed to sulfur mustard. J Recept Signal Transduct Res 2012; 31:367-73. [PMID: 21929290 DOI: 10.3109/10799893.2011.602415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Sulfur mustard (SM) is known as an effective chemical agent and was used in the 1980s during the Iran-Iraq war against Iranians. At the present time, there are more than 40,000 people suffering from pulmonary lesions due to mustard gas in Iran. Though much is known about the gross pathology of SM damage, the molecular and cellular basis for this pathology is not well understood. OBJECTIVE One of the most important protein groups involved in inflammatory responses is nuclear factor κB protein (NF-κB1) family. They belong to the category of DNA-binding protein factors necessary for transcription of many proinflammatory molecules. In our research, we examined the role of NF-κB1/RelA in the pathophysiology of the lung. MATERIALS AND METHODS We investigated 10 normal individuals and 20 SM induced patients. Expression of NF-κB1/RelA in controls and the SM exposed samples was measured by real-time polymerase chain reaction and localization of NF-κB1 protein was detected by immunohistochemistry staining. RESULTS Our results revealed that expression levels of NF-κB1 and RelA were upregulated 0.64-6.50 fold and 0.83-8.34 fold, respectively, in the SM exposed patients in comparison with control samples. DISCUSSION AND CONCLUSION As far as we know, this is the first finding of induction of NF-κB in patients exposed to SM. NF-κB1/RelA may play a major role in inflammation induced by mustard gas or even in cell survival in the bronchial wall of affected patients.
Collapse
Affiliation(s)
- Samaneh Yazdani
- Chemical Injury Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
74
|
Liu XY, Wang Q, Xia SJ, Huang JH, Shen ZY, Xu H. Characteristics of lymphocyte nuclear factor-κB signal transduction kinase expression in aging process and regulatory effect of epimedium flavonoids. Chin J Integr Med 2011; 17:704-9. [PMID: 21910073 DOI: 10.1007/s11655-011-0848-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To study the characteristics of lymphocyte nuclear factor kappa B (NF-κB) signal transduction kinase-related molecular mRNA differential expressions at various month age segments in aging process and the intervening effect of Epimedium flavonoids (EF) on it. METHODS Sixty SD rats were divided into six groups, according to animals' age, i.e., the 3 days (d) group, the 4 months (m) group, the 10 m group, the 18 m group, the 27 m group, and the 27 m+EF group. RNA was extracted from separated splenic lymphocytes. Adopting NF-κB signal path functional genome oligonucleotide gene-chip (128 related genes), the integral characteristics and differences of NF-κB signal transduction kinase-related mRNA expressions were determined, and the intervening effect of EF was examined. RESULTS The mean level of the NF-κB signal transduction kinase-related mRNA expressions in rats' splenic lymphocytes lowered with aging; the highest expression was presented at 3 d after birth, and then, it lowered gradually, with the lowest level at 18 m or 27 m. After EF intervention, the expression level was raised to the 10-18 m level in the aged rats. CONCLUSION The changing rules of lymphocyte NF-κB-signal-transduction-kinase-related mRNA expressions in various stages of aging are helpful for selecting the well time for preventing and intervening aging, and will also give a hint to the molecular index for assessment of senility retarding researches.
Collapse
Affiliation(s)
- Xiao-yu Liu
- Shanghai Traditional Chinese Medicine Clinical Center of Cardio-cerebrovascular Diseases in Tenth People's Hospital of Tongji University, China
| | | | | | | | | | | |
Collapse
|
75
|
Cellular effects of progranulin in health and disease. J Mol Neurosci 2011; 45:549-60. [PMID: 21611805 DOI: 10.1007/s12031-011-9553-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/10/2011] [Indexed: 12/12/2022]
Abstract
Progranulin is a fascinating multifunctional protein, which has been implicated in cell growth, wound repair, tumorigenesis, inflammation, neurodevelopment, and more recently in neurodegeneration. The mechanism of action of this protein is still largely unknown, but the knowledge about the cellular effects on various cell types is expanding. In the current review, we will summarize what is known about the cell biology of progranulin. A better understanding of the biology of progranulin will impact diverse areas of research.
Collapse
|
76
|
Gagliardo R, Chanez P, Profita M, Bonanno A, Albano GD, Montalbano AM, Pompeo F, Gagliardo C, Merendino AM, Gjomarkaj M. IκB kinase-driven nuclear factor-κB activation in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 2011; 128:635-45.e1-2. [PMID: 21571356 DOI: 10.1016/j.jaci.2011.03.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 02/25/2011] [Accepted: 03/31/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nuclear factor-κB (NF-κB) is a transcriptional factor of different inflammatory patterns involved in asthma and chronic obstructive pulmonary disease (COPD) that is tightly controlled by IκB kinase (IKK) complex. OBJECTIVE We investigated the dysregulation of IKK-driven NF-κB activation in patients with asthma and COPD. METHODS We assessed IKKα and IKKβ expression and activation, their regulation by glucocorticosteroids, and their involvement in IL-8 synthesis in PBMCs isolated from asthmatic patients, healthy smokers (HSs), patients with COPD, and control subjects. PBMCs from control subjects were stimulated with TNF-α and cigarette smoke extract in the presence or absence of fluticasone propionate (FP), L-glutathione reduced, or both, and IKK activation and IL-8 release were evaluated. RESULTS IKKα activity was higher in patients with COPD and HSs than in asthmatic patients and control subjects. IKKβ activity was higher in asthmatic patients, HSs, and patients with COPD than in control subjects. In vitro FP treatment induced inhibition of both IKKα and IKKβ activity in PBMCs from asthmatic patients, patients with COPD, and HSs, although IKKβ activity was more sensitive to FP than that of IKKα. FP reduced the IL-8 released from PBMCs of asthmatic patients, patients with COPD, and HSs, although IL-8 inhibition was higher in asthmatic patients than in patients with COPD and HSs. FP reduced IKKα and IKKβ activities in TNF-α and cigarette smoke extract-treated PBMCs, with higher levels of inhibition for IKKβ than IKKα activity. L-glutathione reduced improved the downregulatory effects of FP on IKKα and IL-8 levels. CONCLUSION Based on differential activation of IKKα and IKKβ, our findings suggest a different profile in the upstream regulation of the IKK-driven NF-κB system in asthmatic patients and patients with COPD. These differences in the regulation of the inflammatory process may explain, at least in part, the different pharmacologic responses in these patients.
Collapse
Affiliation(s)
- Rosalia Gagliardo
- Institute of Biomedicine and Molecular Immunology, Unit of Immunopathology and Pharmacology of Respiratory System, Italian National Research Council, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Guerra B, Gómez-Cabrera MC, Ponce-González JG, Martinez-Bello VE, Guadalupe-Grau A, Santana A, Sebastia V, Viña J, Calbet JAL. Repeated muscle biopsies through a single skin incision do not elicit muscle signaling, but IL-6 mRNA and STAT3 phosphorylation increase in injured muscle. J Appl Physiol (1985) 2011; 110:1708-15. [PMID: 21436461 DOI: 10.1152/japplphysiol.00091.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine if muscle biopsies can be repeated using a single small (5-6 mm) skin incision without inducing immediate MAPK activation or inflammation in the noninjured areas, the phosphorylation of ERK1/2, p38-MAPK, c-Jun NH(2)-terminal kinases (JNKs), IκBα, IKKα, and signal transducer and activator of transcription 3 (STAT3) was examined concurrent with IL-6 mRNA in six muscle biopsies obtained from the vastus lateralis of five men. Four biopsies were obtained through the same incision (5-6 mm) from the right leg (taken at 0, 30, 123, and 126 min) and another two each from new incisions performed in the left leg (at 31 and 120 min), while the subjects rested supine. The first three biopsies from the right leg were taken ∼3 cm apart from prebiopsied areas. The last biopsy was obtained from the same point from which the second biopsy was sampled. The three biopsies performed through the same skin incision from noninjured muscle areas showed similar levels of ERK1/2, p38-MAPK, JNK, IKKα, IκBα, and STAT3 phosphorylation and similar IL-6 mRNA content. There were no significant differences in the levels of ERK1/2, p38-MAPK, JNK, IKKα, and IκBα phosphorylation between the mean of the three biopsies obtained from the same incision and the sixth biopsy obtained from an injured area. STAT3 phosphorylation was increased by ∼3.5-fold in the sixth biopsy compared with the mean the three biopsies obtained from the same incision (P < 0.05), and IL-6 mRNA content was increased by 1.8-fold (P < 0.05). In summary, repeated muscle biopsies can be performed through a single 5- to 6-mm skin incision without eliciting muscle signaling through cascades responding to cellular stress, inflammation, or muscle damage. STAT3 phosphorylation is an early event in the healing response to muscle injury, probably mediated by the autocrine production of IL-6.
Collapse
Affiliation(s)
- Borja Guerra
- Departamento de Educación Física, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Canary Island, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Yang J, Li X, Hanidu A, Htut TM, Sellati R, Wang L, Jiang H, Li J. Proviral integration site 2 is required for interleukin-6 expression induced by interleukin-1, tumour necrosis factor-α and lipopolysaccharide. Immunology 2011; 131:174-82. [PMID: 20465571 DOI: 10.1111/j.1365-2567.2010.03286.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PIM (proviral integration site) kinases are a distinct class of serine/threonine-specific kinases consisting of PIM1, PIM2 and PIM3. PIM2 is known to function in apoptosis pathways. Expression of PIM2 is highly induced by pro-inflammatory stimuli but the role of PIM2 in the expression of pro-inflammatory cytokines is unclear. In this study, we showed that over-expression of PIM2 in HeLa cells as well as in human umbilical vein endothelial cells enhanced interleukin-1β (IL-1β) -induced and tumour necrosis factor-α-induced IL-6 expression, whereas over-expression of a kinase-dead PIM2 mutant had the opposite effect. Studies with small interfering RNA specific to PIM2 further confirmed that IL-6 expression in HeLa cells requires PIM2. To investigate the function of PIM2 further, we generated PIM2-deficient mice. It was found that IL-6 production was significantly decreased from PIM2-deficient spleen cells after stimulation with lipopolysaccharide. Taken together, we demonstrated an important function of PIM2 in controlling the expression of the pro-inflammatory cytokine IL-6. PIM2 inhibitors may be beneficial for IL-6-mediated diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Jianfei Yang
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT 06877, USA.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Lamprecht B, Bonifer C, Mathas S. Repeat-element driven activation of proto-oncogenes in human malignancies. Cell Cycle 2010; 9:4276-81. [PMID: 20980818 DOI: 10.4161/cc.9.21.13682] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent data demonstrated that the aberrant activity of endogenous repetitive elements of the DNA in humans can drive the expression of proto-oncogenes. This article summarizes these results and gives an outlook on the impact of these findings on the pathogenesis and therapy of human cancer.
Collapse
Affiliation(s)
- Björn Lamprecht
- Max-Delbrück-Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Germany
| | | | | |
Collapse
|
80
|
Hsu D, Fukata M, Hernandez YG, Sotolongo JP, Goo T, Maki J, Hayes LA, Ungaro RC, Chen A, Breglio KJ, Xu R, Abreu MT. Toll-like receptor 4 differentially regulates epidermal growth factor-related growth factors in response to intestinal mucosal injury. J Transl Med 2010; 90:1295-305. [PMID: 20498653 PMCID: PMC10631458 DOI: 10.1038/labinvest.2010.100] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epiregulin (EPI) and amphiregulin (AR) are epidermal growth factor receptor (EGFR) ligands implicated in mucosal repair and tumorigenesis. We have shown that Toll-like receptor 4 (TLR4) induces intestinal epithelial cell (IEC) proliferation by activating EGFR through AR expression. We examined whether TLR4 differentially regulates expression of EGFR ligands in response to mucosal injury. The human IEC line SW480 was examined expression of EGFR ligands, EGFR phosphorylation, and proliferation in response to lipopolysaccharide (LPS). Small-interfering RNA (siRNA) was used to block TLR4. Neutralizing antibodies to EGFR ligands were used to examine inhibition of LPS-dependent EGFR activation. Acute colitis and recovery were examined in the mice given 2.5% dextran sodium sulfate (DSS). Colonic secretion of EPI and AR was analyzed by enzyme-linked immunosorbent assay. LPS selectively induces EPI and AR but not other EGFR ligands. LPS induced early EPI mRNA expression between 30 min and 24 h. The neutralizing antibodies to EPI and AR prevented activation of EGFR by LPS. LPS induces IEC proliferation (200%, P=0.01) in 24 h but blocking EPI and AR significantly decreased proliferation. In vivo, mucosal EPI and AR expression are significantly decreased in TLR4(-/-) mice (P=0.02) compared to wild-type mice during acute colitis. EPI and AR exhibit different kinetics in response to mucosal damage: EPI expression is upregulated acutely at day 7 of DSS, but falls during recovery at day 14. By contrast, a sustained upregulation of AR expression is seen during mucosal injury and repair. We show that TLR4 regulates EPI and AR expression and that both these EGFR ligands are necessary for optimal proliferation of IEC. The diverse kinetics of EPI and AR expression suggest that they function in distinct roles with respect to acute injury vs repair. Our results highlight the role of bacterial sensing for IEC homeostasis and may lead to targeted therapy for mucosal healing and prevention of tumorigenesis.
Collapse
Affiliation(s)
- David Hsu
- Division of Gastroenterology, Department of Medicine, Inflammatory Bowel Disease Center, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Toll-like receptor 3 mediates expression of clusterin/apolipoprotein J in vascular smooth muscle cells stimulated with RNA released from necrotic cells. Exp Cell Res 2010; 316:3489-500. [PMID: 20692254 DOI: 10.1016/j.yexcr.2010.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/30/2010] [Accepted: 07/31/2010] [Indexed: 11/23/2022]
Abstract
Clusterin/Apolipoprotein J is a protein that is upregulated in a broad spectrum of diverse pathological processes. The predominant form is a secreted glycoprotein (sCLU) with cytoprotective and anti-inflammatory properties which shows enhanced expression in vascular smooth muscle cells (VSMC) following aortic injury and in atherosclerotic disease. Recent evidence indicates that during atherosclerosis, Toll-like receptors (TLRs) are activated in vascular cells by endogenous ligands. Here, we analyzed whether CLU expression in VSMC is controlled by TLRs, and stimulated by factors associated with or released by necrotic cells. Activation of TLR3 by the synthetic RNA analogue polyinosinic-polycytidylic acid (poly(I:C)) in CRL2018 VSMC and in mice led to induction of CLU mRNA and protein synthesis, respectively. In TLR3-deficient 10A yolk sac cells, induction of CLU by poly(I:C) challenge depended on the ectopic expression of human TLR3. In mice lacking the TLR3-signaling adaptor protein TRIF (TIR-domain-containing adaptor protein inducing IFN-β) CLU induction by poly(I:C) was abrogated. In addition to poly(I:C) CLU gene expression in CRL2018 cells was induced by purified cellular RNA and RNA present in necrotic cell lysate. Our data indicate that cellular RNA following its release from necrotic cells in atherosclerotic lesions can act as an endogenous TLR3 ligand to induce CLU expression in VSMC and in vivo. Thus, they expand the view on TLR2 and TLR4 as known pro-atherosclerotic effectors toward TLR3. Conclusively, TLR3 activation induces expression of cytoprotective and anti-inflammatory CLU by VSMC and mice, to potentially counteract atherosclerotic pathology.
Collapse
|
82
|
Liu LL, Chen FH, Li ZX, Zhan RX, Gao Y, Chen YH, Li L, Huang QR. Construction and expression of eukaryotic expression plasmids of shRNA targeting the IKKα gene. Shijie Huaren Xiaohua Zazhi 2010; 18:2253-2257. [DOI: 10.11569/wcjd.v18.i21.2253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct eukaryotic expressing plasmids of short hairpin RNA (shRNA) targeting the IKKα gene and to evaluate their inhibitory effect on IKKα expression in human umbilical vein endothelial cells (HUVECs).
METHODS: Three pairs of complementary shRNA oligonucleotides targeting the IKKα gene were designed, synthesized, annealed and inserted into the pGPU6/GFP/Neo plasmid. The recombinant plasmids were identified by restriction enzyme analysis and sequence analysis. The inhibitory effect of recombinant plasmids on IKKα expression in HUVECs was detected by Western blot.
RESULTS: After restriction enzyme analysis and sequence analysis, three eukaryotic expression plasmids of shRNA targeting the IKKα gene were successfully constructed. Western blot analysis showed that pGPU6/GFP/Neo-shRNA3 reduced IKKα expression by 70.6% in HUVECs induced with high glucose.
CONCLUSION: Three eukaryotic expression plasmids of shRNA targeting the IKKα gene are successfully constructed. These recombinant plasmids can efficiently inhibit IKKα expression in HUVECs.
Collapse
|
83
|
Song YS, Kim MS, Kim HA, Jung BI, Yang J, Narasimhan P, Kim GS, Jung JE, Park EH, Chan PH. Oxidative stress increases phosphorylation of IkappaB kinase-alpha by enhancing NF-kappaB-inducing kinase after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2010; 30:1265-74. [PMID: 20125184 PMCID: PMC2888847 DOI: 10.1038/jcbfm.2010.6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/16/2009] [Accepted: 12/29/2009] [Indexed: 12/22/2022]
Abstract
The IkappaB kinase (IKK) complex is a central component in the classic activation of the nuclear factor-kappaB (NF-kappaB) pathway. It has been reported to function in physiologic responses, including cell death and inflammation. We have shown that IKK is regulated by oxidative status after transient focal cerebral ischemia (tFCI) in mice. However, the mechanism by which oxidative stress influences IKKs after tFCI is largely unknown. Nuclear accumulation and phosphorylation of IKKalpha (pIKKalpha) were observed 1 h after 30 mins of tFCI in mice. In copper/zinc-superoxide dismutase knockout mice, levels of NF-kappaB-inducing kinase (NIK) (an upstream kinase of IKKalpha), pIKKalpha, and phosphorylation of histone H3 (pH3) on Ser10 were increased after tFCI and were higher than in wild-type mice. Immunohistochemistry showed nuclear accumulation and pIKKalpha in mouse brain endothelial cells after tFCI. Nuclear factor-kappaB-inducing kinase was increased, and it enhanced pH3 by inducing pIKKalpha after oxygen-glucose deprivation (OGD) in mouse brain endothelial cells. Both NIK and pH3 interactions with IKKalpha were confirmed by coimmunoprecipitation. Treatment with IKKalpha small interfering RNA significantly reduced cell death after OGD. These results suggest that augmentation of NIK, IKKalpha, and pH3 in response to oxidative stress is involved in cell death after cerebral ischemia (or stroke).
Collapse
Affiliation(s)
- Yun Seon Song
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hyun-Ae Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Bo-In Jung
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jiwon Yang
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Purnima Narasimhan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Gab Seok Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Joo Eun Jung
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Eun-Hee Park
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Pak H Chan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
- Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
84
|
Darwech I, Otero JE, Alhawagri MA, Abu-Amer Y. Tyrosine phosphorylation is required for IkappaB kinase-beta (IKKbeta) activation and function in osteoclastogenesis. J Biol Chem 2010; 285:25522-30. [PMID: 20534585 DOI: 10.1074/jbc.m110.121533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transcription factor NF-kappaB is crucial for numerous cellular functions such as survival, differentiation, immunity, and inflammation. A key function of this family of transcription factors is regulation of osteoclast differentiation and function, which in turn controls skeletal homeostasis. The IkappaB kinase (IKK) complex, which contains IKKalpha, IKKbeta, and IKKgamma, is required for activation of NF-kappaB, and deletion of either IKKalpha or IKKbeta resulted with defective osteoclast differentiation and survival. We have recently investigated the details of the mechanisms governing the role of IKKbeta in osteoclastogenesis and found that constitutively active IKKbeta in which serine residues 177/181 were mutated into negatively charged glutamic acids instigates spontaneous bona fide receptor activator of NF-kappaB ligand (RANKL)-independent osteoclastogenesis. To better understand and define the functional role of IKKbeta domains capable of regulating the osteoclastogenic activity of IKK, we investigated key motifs in the activation T loop of IKKbeta, which are potentially capable of modulating its osteoclastogenic activity. We discovered that dual serine (traditional serine residues 177/181) and tyrosine (188/199) phosphorylation events are crucial for IKKbeta activation. Mutation of the latter tyrosine residues blunted the NF-kappaB activity of wild type and constitutively active IKKbeta, and tyrosine 188/199-deficient IKKbeta inhibited osteoclastogenesis. Thus, tyrosines 188/199 are a novel target for regulating IKKbeta activity, at least in osteoclasts.
Collapse
Affiliation(s)
- Isra Darwech
- Department of Orthopedics, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
85
|
Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium. Neurobiol Aging 2010; 33:603-616.e3. [PMID: 20471138 PMCID: PMC3200140 DOI: 10.1016/j.neurobiolaging.2010.04.002] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/11/2010] [Accepted: 04/05/2010] [Indexed: 12/17/2022]
Abstract
Delirium is an acute, severe neuropsychiatric syndrome, characterized by cognitive deficits, that is highly prevalent in aging and dementia and is frequently precipitated by peripheral infections. Delirium is poorly understood and the lack of biologically relevant animal models has limited basic research. Here we hypothesized that synaptic loss and accompanying microglial priming during chronic neurodegeneration in the ME7 mouse model of prion disease predisposes these animals to acute dysfunction in the region of prior pathology upon systemic inflammatory activation. Lipopolysaccharide (LPS; 100 μg/kg) induced acute and transient working memory deficits in ME7 animals on a novel T-maze task, but did not do so in normal animals. LPS-treated ME7 animals showed heightened and prolonged transcription of inflammatory mediators in the central nervous system (CNS), compared with LPS-treated normal animals, despite having equivalent levels of circulating cytokines. The demonstration that prior synaptic loss and microglial priming are predisposing factors for acute cognitive impairments induced by systemic inflammation suggests an important animal model with which to study aspects of delirium during dementia.
Collapse
|
86
|
Ramadas RA, Ewart SL, Medoff BD, LeVine AM. Interleukin-1 family member 9 stimulates chemokine production and neutrophil influx in mouse lungs. Am J Respir Cell Mol Biol 2010; 44:134-45. [PMID: 20299540 DOI: 10.1165/rcmb.2009-0315oc] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interleukin-1 (IL-1) is a proinflammatory cytokine that signals through the Type I IL-1 receptor (IL-1RI). Novel IL-1-like cytokines were recently identified. Their functions in lung disease remain unclear. Interleukin-1 family member-9 (IL-1F9) is one such IL-1-like cytokine, expressed in the lungs of humans and mice. IL-1F9 signals through IL-1 receptor-related protein 2 (IL-1Rrp2/IL-1RL2), which is distinct from IL-1RI. We sought to determine if IL-1F9 acts as a proinflammatory cytokine in lung disease. IL-1F9 protein was increased in lung homogenates of house dust mite-challenged A/J mice compared with controls, and expression was seen in airway epithelial cells. The intratracheal administration of recombinant mouse IL-1F9 increased airway hyperresponsiveness and induced neutrophil influx and mucus production, but not eosinophilic infiltration in the lungs of mice. In addition, IL-1α protein levels in bronchoalveolar lavage fluid, chemokines, and chemokine-receptor mRNA expression in the lungs were increased after the instillation of intratracheal IL-1F9. Consistent with these changes, NF-κB transcription factor activity was increased in the lungs of mice challenged with IL-1F9 and in a macrophage cell line treated with IL-1F9. These data suggest that IL-1F9 is upregulated during inflammation, and acts as a proinflammatory cytokine in the lungs.
Collapse
|
87
|
Kaminska B, Gozdz A, Zawadzka M, Ellert-Miklaszewska A, Lipko M. MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec (Hoboken) 2010; 292:1902-13. [PMID: 19943344 DOI: 10.1002/ar.21047] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A majority, if not all, acute and progressive neurodegenerative diseases are accompanied by local microglia-mediated inflammation, astrogliosis, infiltration of immune cells, and activation of the adaptive immunity. These processes progress by the expression of cytokines, adhesion molecules, proteases, and other inflammation mediators. In response to brain injury or infection, intracellular signaling pathways are activated in microglia, which turn on inflammatory and antigen-presenting cell functions. Different extrinsic signals shape microglial activation toward neuroprotective or neurotoxic phenotype under pathological conditions. This review discusses recent advances regarding molecular mechanisms of inflammatory signal transduction in neurological disorders and in in vitro models of inflammation/gliosis. Mitogen-activated protein kinases (MAPKs) are a family of serine/threonine protein kinases responsible for most cellular responses to cytokines and external stress signals and crucial for regulation of the production of inflammation mediators. Increased activity of MAPKs in activated microglia and astrocytes, and their regulatory role in the synthesis of inflammatory cytokines mediators, make them potential targets for novel therapeutics. MAPK inhibitors emerge as attractive anti-inflammatory drugs, because they are capable of reducing both the synthesis of inflammation mediators at multiple levels and are effective in blocking inflammatory cytokine signaling. Small molecule inhibitors targeting of p38 MAPK and JNK pathways have been developed and offer a great potential as potent modulators of brain inflammation and gliosis in neurological disorders, where cytokine overproduction contributes to disease progression. Many of the pharmacological MAPK inhibitors can be administered orally and initial results show therapeutic benefits in preclinical animal models.
Collapse
Affiliation(s)
- Bozena Kaminska
- Laboratory of Transcription Regulation, Nencki Institute of Experimental Biology, 3 Pasteur Str., Warsaw, Poland.
| | | | | | | | | |
Collapse
|
88
|
Adachi Y, Takeuchi T, Nagayama T, Furihata M. T-cadherin modulates tumor-associated molecules in gallbladder cancer cells. Cancer Invest 2010; 28:120-6. [PMID: 20121546 DOI: 10.3109/07357900903124472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T-cadherin is believed to act against carcinogenesis in various tissues; however, its tumor-suppressor mechanism remains largely unclear. Using subtractive mRNA hybridization and immunoblotting, the present study identified several cancer-associated molecules whose expression was modified by T-cadherin in gallbladder cancer cells. Restoration of T-cadherin decreased the expression of Akt3 and phosphorylated Akt molecules. SET7/9, which stabilizes chromatin-bound p53, was downregulated by silencing of T-cadherin but was not regulated by the expression of T-cadherin. These finding suggest that T-cadherin might inhibit tumor progression through multiple pathways, including the Akt and SET7/9-p53 pathways.
Collapse
Affiliation(s)
- Yoshihiro Adachi
- Department of Pathology, Kochi Medical School, Nankoku 783-8505, Japan
| | | | | | | |
Collapse
|
89
|
Zoubeidi A, Ettinger S, Beraldi E, Hadaschik B, Zardan A, Klomp LWJ, Nelson CC, Rennie PS, Gleave ME. Clusterin facilitates COMMD1 and I-kappaB degradation to enhance NF-kappaB activity in prostate cancer cells. Mol Cancer Res 2010; 8:119-30. [PMID: 20068069 DOI: 10.1158/1541-7786.mcr-09-0277] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Secretory clusterin (sCLU) is a stress-activated, cytoprotective chaperone that confers broad-spectrum cancer treatment resistance, and its targeted inhibitor (OGX-011) is currently in phase II trials for prostate, lung, and breast cancer. However, the molecular mechanisms by which sCLU inhibits treatment-induced apoptosis in prostate cancer remain incompletely defined. We report that sCLU increases NF-kappaB nuclear translocation and transcriptional activity by serving as a ubiquitin-binding protein that enhances COMMD1 and I-kappaB proteasomal degradation by interacting with members of the SCF-betaTrCP E3 ligase family. Knockdown of sCLU in prostate cancer cells stabilizes COMMD1 and I-kappaB, thereby sequestrating NF-kappaB in the cytoplasm and decreasing NF-kappaB transcriptional activity. Comparative microarray profiling of sCLU-overexpressing and sCLU-knockdown prostate cancer cells confirmed that the expression of many NF-kappaB-regulated genes positively correlates with sCLU levels. We propose that elevated levels of sCLU promote prostate cancer cell survival by facilitating degradation of COMMD1 and I-kappaB, thereby activating the canonical NF-kappaB pathway.
Collapse
Affiliation(s)
- Amina Zoubeidi
- The Vancouver Prostate Centre and Department of Urological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Chapter 9: Oxidative stress in malignant progression: The role of Clusterin, a sensitive cellular biosensor of free radicals. Adv Cancer Res 2010; 104:171-210. [PMID: 19878777 DOI: 10.1016/s0065-230x(09)04009-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clusterin/Apolipoprotein J (CLU) gene is expressed in most human tissues and encodes for two protein isoforms; a conventional heterodimeric secreted glycoprotein and a truncated nuclear form. CLU has been functionally implicated in several physiological processes as well as in many pathological conditions including ageing, diabetes, atherosclerosis, degenerative diseases, and tumorigenesis. A major link of all these, otherwise unrelated, diseases is that they are characterized by increased oxidative injury due to impaired balance between production and disposal of reactive oxygen or nitrogen species. Besides the aforementioned diseases, CLU gene is differentially regulated by a wide variety of stimuli which may also promote the production of reactive species including cytokines, interleukins, growth factors, heat shock, radiation, oxidants, and chemotherapeutic drugs. Although at low concentration reactive species may contribute to normal cell signaling and homeostasis, at increased amounts they promote genomic instability, chronic inflammation, lipid oxidation, and amorphous aggregation of target proteins predisposing thus cells for carcinogenesis or other age-related disorders. CLU seems to intervene to these processes due to its small heat-shock protein-like chaperone activity being demonstrated by its property to inhibit protein aggregation and precipitation, a main feature of oxidant injury. The combined presence of many potential regulatory elements in the CLU gene promoter, including a Heat-Shock Transcription Factor-1 and an Activator Protein-1 element, indicates that CLU gene is an extremely sensitive cellular biosensor of even minute alterations in the cellular oxidative load. This review focuses on CLU regulation by oxidative injury that is the common molecular link of most, if not all, pathological conditions where CLU has been functionally implicated.
Collapse
|
91
|
Sala A, Bettuzzi S, Pucci S, Chayka O, Dews M, Thomas-Tikhonenko A. Regulation of CLU gene expression by oncogenes and epigenetic factors implications for tumorigenesis. Adv Cancer Res 2010; 105:115-32. [PMID: 19879426 DOI: 10.1016/s0065-230x(09)05007-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In no other field has the function of clusterin (CLU) been more controversial than in cancer genetics. After more than 20 years of research, there is still uncertainty with regard to the role of CLU in human cancers. Some investigators believe CLU to be an oncogene, others-an inhibitor of tumorigenesis. However, owing to the recent efforts of several laboratories, the role of CLU in important cellular processes like proliferation, apoptosis, differentiation, and transformation is beginning to emerge. The "enigmatic" CLU is becoming less so. In this chapter, we will review the work of research teams interested in understanding how CLU is regulated by oncogenic signaling. We will discuss how and under what circumstances oncogenes and epigenetic factors modify CLU expression, with important consequences for mammalian tumorigenesis.
Collapse
Affiliation(s)
- Arturo Sala
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, United Kingdom
| | | | | | | | | | | |
Collapse
|
92
|
Naphade SB, Kigerl KA, Jakeman LB, Kostyk SK, Popovich PG, Kuret J. Progranulin expression is upregulated after spinal contusion in mice. Acta Neuropathol 2010; 119:123-33. [PMID: 19946692 DOI: 10.1007/s00401-009-0616-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 01/22/2023]
Abstract
Progranulin (proepithelin) is a pleiotropic growth-factor associated with inflammation and wound repair in peripheral tissues. It also has been implicated in the response to acute traumatic brain injury as well as to chronic neurodegenerative diseases. To determine whether changes in progranulin expression also accompany acute spinal cord injury, C57BL/6 mice were subjected to mid-thoracic (T9 level) contusion spinal cord injury and analyzed by immunohistochemical and biochemical methods. Whereas spinal cord sections prepared from non-injured laminectomy control animals contained low basal levels of progranulin immunoreactivity in gray matter, sections from injured animals contained intense immunoreactivity throughout the injury epicenter that peaked 7-14 days post injury. Progranulin immunoreactivity colocalized with myeloid cell markers CD11b and CD68, indicating that expression increased primarily in activated microglia and macrophages. Immunoblot analysis confirmed that progranulin protein levels rose after injury. On the basis of quantitative polymerase chain reaction analysis, increased protein levels resulted from a tenfold rise in progranulin transcripts. These data demonstrate that progranulin is dramatically induced in myeloid cells after experimental spinal cord injury and is positioned appropriately both spatially and temporally to influence recovery after injury.
Collapse
Affiliation(s)
- Swati B Naphade
- Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
93
|
Inhibitor kappaB Kinase beta deficiency in primary nociceptive neurons increases TRP channel sensitivity. J Neurosci 2009; 29:12919-29. [PMID: 19828806 DOI: 10.1523/jneurosci.1496-09.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Inhibitor kappaB kinase (IKK) regulates the activity of the transcription factor nuclear factor-kappa B that normally protects neurons against excitotoxicity. Constitutively active IKK is enriched at axon initial segments and nodes of Ranvier (NR). We used mice with a Cre-loxP-mediated specific deletion of IKKbeta in sensory neurons of the dorsal root ganglion (SNS-IKKbeta(-/-)) to evaluate whether IKK plays a role in sensory neuron excitability and nociception. We observed increased sensitivity to mechanical, cold, noxious heat and chemical stimulation in SNS-IKKbeta(-/-) mice, with normal proprioceptive and motor functions as revealed by gait analysis. This was associated with increased calcium influx and increased inward currents in small- and medium-sized primary sensory neurons of SNS-IKKbeta(-/-) mice during stimulation with capsaicin or Formalin, specific activators of transient receptor potentials TRPV1 and TRPA1 calcium channels, respectively. In vitro stimulation of saphenous nerve preparations of SNS-IKKbeta(-/-) mice showed increased neuronal excitability of A- and C-fibers but unchanged A- and C-fiber conduction velocities, normal voltage-gated sodium channel currents, and normal accumulation of ankyrin G and the sodium channels Nav1.6 at NR. The results suggest that IKKbeta functions as a negative modulator of sensory neuron excitability, mediated at least in part by modulation of TRP channel sensitivity.
Collapse
|
94
|
Srinivasan S, Koduru S, Kumar R, Venguswamy G, Kyprianou N, Damodaran C. Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells. Int J Cancer 2009; 125:961-7. [DOI: 10.1002/ijc.24419] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
95
|
Idris AI, Libouban H, Nyangoga H, Landao-Bassonga E, Chappard D, Ralston SH. Pharmacologic inhibitors of IkappaB kinase suppress growth and migration of mammary carcinosarcoma cells in vitro and prevent osteolytic bone metastasis in vivo. Mol Cancer Ther 2009; 8:2339-47. [PMID: 19671767 DOI: 10.1158/1535-7163.mct-09-0133] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The NF-kappaB signaling pathway is known to play an important role in the regulation of osteoclastic bone resorption and cancer cell growth. Previous studies have shown that genetic inactivation of IkappaB kinase (IKK), a key component of NF-kappaB signaling, inhibits osteoclastogenesis, but the effects of pharmacologic IKK inhibitors on osteolytic bone metastasis are unknown. Here, we studied the effects of the IKK inhibitors celastrol, BMS-345541, parthenolide, and wedelolactone on the proliferation and migration of W256 cells in vitro and osteolytic bone destruction in vivo. All compounds tested inhibited the growth and induced apoptosis of W256 cells as evidenced by caspase-3 activation and nuclear morphology. Celastrol, BMS-345541, and parthenolide abolished IL1beta and tumor necrosis factor alpha-induced IkappaB phosphorylation and prevented nuclear translocation of NF-kappaB and DNA binding. Celastrol and parthenolide but not BMS-345541 prevented the activation of both IKKalpha and IKKbeta, and celastrol inhibited IKKalpha/beta activation by preventing the phosphorylation of TAK1, a key receptor-associated factor upstream of IKK. Celastrol and parthenolide markedly reduced the mRNA expression of matrix metalloproteinase 9 and urinary plasminogen activator, and inhibited W256 migration. Administration of celastrol or parthenolide at a dose of 1 mg/kg/day suppressed trabecular bone loss and reduced the number and size of osteolytic bone lesions following W256 injection in rats. Histomorphometric analysis showed that both compounds decreased osteoclast number and inhibited bone resorption. In conclusion, pharmacologic inhibitors of IKK are effective in preventing osteolytic bone metastasis in this model and might represent a promising class of agents to the prevention and treatment of metastatic bone disease associated with breast cancer.
Collapse
Affiliation(s)
- Aymen I Idris
- Bone Research Group, Institute of Genetic and Molecular Medicine, University of Edinburgh, General Western Hospital, Edinburgh EH4 2XU, United Kingdom.
| | | | | | | | | | | |
Collapse
|
96
|
Markopoulou S, Kontargiris E, Batsi C, Tzavaras T, Trougakos I, Boothman DA, Gonos ES, Kolettas E. Vanadium-induced apoptosis of HaCaT cells is mediated by c-fos and involves nuclear accumulation of clusterin. FEBS J 2009; 276:3784-99. [PMID: 19531052 DOI: 10.1111/j.1742-4658.2009.07093.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vanadium exerts a variety of biological effects, including antiproliferative responses through activation of the respective signaling pathways and the generation of reactive oxygen species. As epidermal cells are exposed to environmental insults, human keratinocytes (HaCaT) were used to investigate the mechanism of the antiproliferative effects of vanadyl(IV) sulfate (VOSO(4)). Treatment of HaCaT cells with VOSO(4) inhibited proliferation and induced apoptosis in a dose-dependent manner. Inhibition of proliferation was associated with downregulation of cyclins D1 and E, E2F1, and the cyclin-dependent kinase inhibitors p21(Cip1/Waf1) and p27(Kip1). Induction of apoptosis correlated with upregulation of the c-fos oncoprotein, changes in the expression of clusterin (CLU), an altered ratio of antiapoptotic to proapoptotic Bcl-2 protein family members, and poly(ADP-ribose) polymerase-1 cleavage. Forced overexpression of c-fos induced apoptosis in HaCaT cells that correlated with secretory CLU downregulation and upregulation of nuclear CLU (nCLU), a pro-death protein. Overexpression of Bcl-2 protected HaCaT cells from vanadium-induced apoptosis, whereas secretory CLU overexpression offered no cytoprotection. In contrast, nCLU sensitized HaCaT cells to apoptosis. Our data suggest that vanadium-mediated apoptosis was promoted by c-fos, leading to alterations in CLU isoform processing and induction of the pro-death nCLU protein.
Collapse
Affiliation(s)
- Soultana Markopoulou
- Cellular and Molecular Physiology Unit, Laboratory of Physiology, School of Medicine, University of Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Mookherjee N, Hamill P, Gardy J, Blimkie D, Falsafi R, Chikatamarla A, Arenillas DJ, Doria S, Kollmann TR, Hancock REW. Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. MOLECULAR BIOSYSTEMS 2009; 5:483-96. [PMID: 19381363 DOI: 10.1039/b813787k] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The immune system is very complex, it involves the integrated regulation and expression of hundreds of proteins. To understand in greater detail how the human host defence immunomodulatory peptide LL-37 interacts with innate immunity, a systems approach was pursued. Polychromatic flow cytometry was employed to demonstrate that within human peripheral blood mononuclear cells, CD14+ monocytes, myeloid and plasmocytoid dendritic cells and T- and B-lymphocytes, all responded to LL-37, with the differential production of intracellular cytokines. Microarray analyses with CD14+ monocytes indicated the differential expression of 475 genes in response to stimulation with LL-37. To understand this complex response, bioinformatic interrogation, using InnateDB, of the gene ontology, signalling pathways and transcription factor binding sites was undertaken. Activation of the IkappaBalpha/NFkappaB, mitogen-activated protein kinases p38, ERK1/2 and JNK, and PI3K signalling pathways in response to LL-37 was demonstrated by pathway and ontology over-representation analyses, and confirmed experimentally by inhibitor studies. Computational analysis of the predicted transcription factor binding sites upstream of the genes that were regulated by LL-37 predicted the involvement of several transcription factors including NFkappaB and five novel factors, AP-1, AP-2, SP-1, E2F1, and EGR, which were experimentally confirmed to respond to LL-37 by performing transcription factor array studies on nuclear extracts from LL-37 treated mononuclear cells. These data are discussed as reflecting the integration of several responsive signalling pathways through the involvement of transcription factor complexes in gene expression activated by LL-37 in human mononuclear cells.
Collapse
Affiliation(s)
- Neeloffer Mookherjee
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
The Nuclear Factor-kappa B (NF-kappaB) family of transcription factors regulates the expression of a wide range of genes critical for immune and inflammatory responses, cell survival, immune development, and cell proliferation. Dysregulated NF-kappaB activity occurs in a number of chronic inflammatory diseases and certain types of cancers making NF-kappaB signaling an attractive target for the development of anti-inflammatory and anti-cancer drugs. A pivotal regulator of all inducible NF-kappaB signaling pathways is the IkappaB kinase (IKK) complex that consists of two kinases (IKKalpha and IKKbeta) and a regulatory subunit named NF-kappaB essential modulator (NEMO). Genetic analysis of the IKK complex has identified two separate pathways named the classical and non-canonical mechanisms that are dependent on either NEMO and IKKbeta (classical) or IKKalpha alone (non-canonical). To better understand the mechanisms that regulate IKK complex activity and to address the differential functions of IKKalpha and IKKbeta we have molecularly dissected the IKKs. We describe here how these studies have identified a unique inhibitor of pro-inflammatory NF-kappaB signaling, an unforeseen role for IKKalpha in the classical NF-kappaB pathway, and a novel functional domain in IKKbeta that is not present in IKKalpha.
Collapse
Affiliation(s)
- Laura A Solt
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street (OVH 200E), Philadelphia, PA, 19104-6045, USA
| | | |
Collapse
|
99
|
The stability of mRNA influences the temporal order of the induction of genes encoding inflammatory molecules. Nat Immunol 2009; 10:281-8. [PMID: 19198593 PMCID: PMC2775040 DOI: 10.1038/ni.1699] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/31/2008] [Indexed: 12/13/2022]
Abstract
The inflammatory response plays out over time in a reproducible and organized way after an initiating stimulus. Here we show that genes activated in cultured mouse fibroblasts in response to the cytokine tumor necrosis factor could be categorized into roughly three groups, each with different induction kinetics. Although differences in transcription were important in determining the grouping of these genes, differences in mRNA stability also exerted a strong influence on the temporal order of gene expression, in some cases overriding that of transcriptional control elements. Transcripts of mRNA expressed early had abundant AU-rich elements in their 3' untranslated regions, whereas those expressed later had fewer. Thus, mRNA stability and transcriptional control, two intrinsic characteristics of genes, control the kinetics of gene expression induced by proinflammatory cytokines.
Collapse
|
100
|
Graham TR, Odero-Marah VA, Chung LW, Agrawal KC, Davis R, Abdel-Mageed AB. PI3K/Akt-dependent transcriptional regulation and activation of BMP-2-Smad signaling by NF-kappaB in metastatic prostate cancer cells. Prostate 2009; 69:168-80. [PMID: 18942118 PMCID: PMC3092122 DOI: 10.1002/pros.20870] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) exert osteoinductive effects in prostate cancer (PC) via uncharacterized mechanisms. In this study, we investigated whether the nuclear transcription factor NF-kappaB, implicated in PC metastasis, is involved in transcriptional regulation and activation of BMP-2 or BMP-4/Smad signaling in PC cells. METHODS NF-kappaB inhibition was achieved by IkappaBalpha super-repressor adenoviral vector and activation was monitored by EMSA and reporter assays. BMP expression and activation was measured by PCR and reporter assays. Promoter binding assay was performed by chromatin immunoprecipitation (ChIP) assay. Smad1/5/8 phosphorylation was measured by Western blot analysis. RESULTS PCR and chimeric BMP-2 and BMP-4 luciferase assays demonstrate that NF-kappaB confers robust and selective activation of BMP-2 in p65 overexpressing or rhTNF-alpha-stimulated PC cells. Inhibition of NF-kappaB significantly reduced transcript levels and autocrine production of BMP-2 by rhTNF-alpha stimulated C4-2B cells and to a lesser extent by the parental LNCaP cells. Selective inhibition of PI3K/Akt suppressed the NF-kappaB-induced BMP-2 promoter activity. Furthermore, suppression of NF-kappaB activation decreased the transcript levels and BMP-2-induced phosphorylation of Smad1/5/8, critical downstream targets of BMP-2 signaling in PC cells. Notably, the activation of BMPRII by BMP-2 is required for modulation of Smad activation by NF-kappaB in PC cells. Based on ChIP analysis, the transcriptional regulation of BMP-2 gene by NF-kappaB may be partially attributed to binding to kappab site on the BMP-2 promoter. CONCLUSIONS The data suggest that PI3K/Akt-NF-kappaB axis may promote PC bone metastasis in part by regulating transcription and activation of the BMP-2-Smad signaling cascade in osteotropic PC cells.
Collapse
Affiliation(s)
- Tisheeka R. Graham
- Department of Urology, Tulane University Health Sciences Center, New Orleans, Louisiana
- Department of Molecular Urology and Therapeutics, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Valerie A. Odero-Marah
- Department of Molecular Urology and Therapeutics, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Leland W. Chung
- Department of Molecular Urology and Therapeutics, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Krishna C. Agrawal
- Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Rodney Davis
- Department of Urology, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Asim B. Abdel-Mageed
- Department of Urology, Tulane University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology, Tulane University Health Sciences Center, New Orleans, Louisiana
- Correspondence to: Prof. Asim B. Abdel-Mageed, PhD, Department of Urology, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-42, New Orleans, LA 70112.
| |
Collapse
|