51
|
Regev-Rudzki N, Yogev O, Pines O. The mitochondrial targeting sequence tilts the balance between mitochondrial and cytosolic dual localization. J Cell Sci 2008; 121:2423-31. [DOI: 10.1242/jcs.029207] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dual localization of proteins in the cell has appeared in recent years to be a more abundant phenomenon than previously reported. One of the mechanisms by which a single translation product is distributed between two compartments, involves retrograde movement of a subset of processed molecules back through the organelle-membrane. Here, we investigated the specific contribution of the mitochondrial targeting sequence (MTS), as a cis element, in the distribution of two proteins, aconitase and fumarase. Whereas the cytosolic presence of fumarase is obvious, the cytosolic amount of aconitase is minute. Therefore, we created (1) MTS-exchange mutants, exchanging the MTS of aconitase and fumarase with each other as well as with those of other proteins and, (2) a set of single mutations, limited to the MTS of these proteins. Distribution of both proteins is affected by mutations, a fact particularly evident for aconitase, which displays extraordinary amounts of processed protein in the cytosol. Thus, we show for the first time, that the MTS has an additional role beyond targeting: it determines the level of retrograde movement of proteins back into the cytosol. Our results suggest that the translocation rate and folding of proteins during import into mitochondria determines the extent to which molecules are withdrawn back into the cytosol.
Collapse
Affiliation(s)
- Neta Regev-Rudzki
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Ohad Yogev
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Ophry Pines
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| |
Collapse
|
52
|
Abstract
Mutations found in PTEN-induced putative kinase 1 (PINK1), a putative mitochondrial serine/threonine kinase of unknown function, have been linked to autosomal recessive Parkinson's disease. It is suggested that mutations can cause a loss of PINK1 kinase activity and eventually lead to mitochondrial dysfunction. In this report, we examined the subcellular localization of PINK1 and the dynamic kinetics of PINK1 processing and degradation. We also identified cytosolic chaperone heat-shock protein 90 (Hsp90) as an interacting protein of PINK1 by PINK1 co-immunoprecipitation. Immunofluorescence of PINK1 protein and mitochondrial isolation show that the precursor form of PINK1 translocates to the mitochondria and is processed into two cleaved forms of PINK1, which in turn localize more to the cytosolic than mitochondrial fraction. The cleavage does not occur and the uncleaved precursor stays associated with the mitochondria when the mitochondrial membrane potential is disrupted. Metabolic labeling analyses show that the PINK1 processing is rapid and the levels of cleaved forms are tightly regulated. Furthermore, cleaved forms of PINK1 are stabilized by Hsp90 interaction as the loss of Hsp90 activity decreases PINK1 level after mitochondrial processing. Lastly, we also find that cleaved forms of PINK1 are degraded by the proteasome, which is uncommon for mitochondrial proteins. Our findings support a dual subcellular localization, implying that PINK1 can reside in the mitochondria and the cytosol. This raises intriguing functional roles that bridge these two cellular compartments.
Collapse
Affiliation(s)
- William Lin
- Committee on Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Un Jung Kang
- Committee on Neurobiology, University of Chicago, Chicago, Illinois, USA
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
53
|
Raimundo N, Ahtinen J, Fumić K, Barić I, Remes AM, Renkonen R, Lapatto R, Suomalainen A. Differential metabolic consequences of fumarate hydratase and respiratory chain defects. Biochim Biophys Acta Mol Basis Dis 2008; 1782:287-94. [DOI: 10.1016/j.bbadis.2008.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 01/22/2008] [Indexed: 12/28/2022]
|
54
|
Yogev O, Karniely S, Pines O. Translation-coupled Translocation of Yeast Fumarase into Mitochondria in Vivo. J Biol Chem 2007; 282:29222-9. [PMID: 17666392 DOI: 10.1074/jbc.m704201200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fumarase represents proteins that cannot be imported into mitochondria after the termination of translation (post-translationally). Utilizing mitochondrial and cytosolic versions of the tobacco etch virus (TEV) protease, we show that mitochondrially targeted fumarase harboring a TEV protease recognition sequence is efficiently cleaved by the mitochondrial but not by the cytosolic TEV protease. Nonetheless, fumarase was readily cleaved by cytosolic TEV when its import into mitochondria was slowed down by either (i) disrupting the activity of the TOM complex, (ii) lowering the growth temperature, or (iii) reducing the inner membrane electrochemical potential. Accessibility of the fumarase nascent chain to TEV protease under such conditions was prevented by low cycloheximide concentrations, which impede translation. In addition, depletion of the ribosome-associated nascent polypeptide-associated complex (NAC) reduced the fumarase rate of translocation into mitochondria and exposed it to TEV cleavage in the cytosol. These results indicate that cytosolic exposure of the fumarase nascent chain depends on both translocation and translation rates, allowing us to discuss the possibility that import of fumarase into mitochondria occurs while the ribosome is still attached to the nascent chain.
Collapse
Affiliation(s)
- Ohad Yogev
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
55
|
Nunes-Nesi A, Carrari F, Gibon Y, Sulpice R, Lytovchenko A, Fisahn J, Graham J, Ratcliffe RG, Sweetlove LJ, Fernie AR. Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:1093-106. [PMID: 17461782 DOI: 10.1111/j.1365-313x.2007.03115.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of a fumarate hydratase (fumarase) gene in the antisense orientation and exhibiting considerable reductions in the mitochondrial activity of this enzyme show impaired photosynthesis. The rate of the tricarboxylic acid cycle was reduced in the transformants relative to the other major pathways of carbohydrate oxidation and the plants were characterized by a restricted rate of dark respiration. However, biochemical analyses revealed relatively little alteration in leaf metabolism as a consequence of reducing the fumarase activity. That said, in comparison to wild-type plants, CO(2) assimilation was reduced by up to 50% under atmospheric conditions and plants were characterized by a reduced biomass on a whole plant basis. Analysis of further photosynthetic parameters revealed that there was little difference in pigment content in the transformants but that the rate of transpiration and stomatal conductance was markedly reduced. Analysis of the response of the rate of photosynthesis to variation in the concentration of CO(2) confirmed that this restriction was due to a deficiency in stomatal function.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Regev-Rudzki N, Pines O. Eclipsed distribution: A phenomenon of dual targeting of protein and its significance. Bioessays 2007; 29:772-82. [PMID: 17621655 DOI: 10.1002/bies.20609] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
One of the surprises from genome sequencing projects is the apparently small number of predicted genes in different eukaryotic cells, particularly human. One possible reason for this 'shortage' of genes is multiple distribution of proteins; a single protein is targeted to more than one subcellular compartment and consequently participates in different biochemical pathways and might have completely different functions. Indeed, in recent years, there have been reports on proteins that were found to be localized in cellular compartments other than those initially attributed to them. Furthermore, the phenomenon of highly uneven isoprotein distribution was recently observed and termed 'eclipsed distribution'. In these cases, the amount of one of the isoproteins, in one of the locations, is significantly minute and its detection by standard biochemical and visualization methods is masked by the presence of the dominant isoprotein. In fact, the minute amounts of eclipsed proteins can be essential. Since detecting eclipsed distribution is difficult, we assume that this phenomenon is probably more common than currently recorded. Hence, developing methods for localization and functional detection of eclipsed proteins is a challenge in cell biology research. Finally, eclipsed distribution may lead to cellular pathologies as has been suggested to occur in human disorders such as Prion diseases and Alzheimer. This review provides a short description of the eclipsed distribution phenomenon followed by an overview of protein distribution mechanisms, examples of eclipsed distribution and experimental approaches for revealing these elusive proteins.
Collapse
Affiliation(s)
- Neta Regev-Rudzki
- Molecular Biology, Medical School, Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
57
|
Reisch AS, Elpeleg O. Biochemical assays for mitochondrial activity: assays of TCA cycle enzymes and PDHc. Methods Cell Biol 2007; 80:199-222. [PMID: 17445696 DOI: 10.1016/s0091-679x(06)80010-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ann Saada Reisch
- The Metabolic Disease Unit, Hadassah-Hebrew University Medical Centre, Jerusalem 91120, Israel
| | | |
Collapse
|
58
|
Bowes T, Singh B, Gupta RS. Subcellular localization of fumarase in mammalian cells and tissues. Histochem Cell Biol 2006; 127:335-46. [PMID: 17111171 DOI: 10.1007/s00418-006-0249-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2006] [Indexed: 11/29/2022]
Abstract
Fumarase, a mitochondrial matrix protein, is previously indicated to be present in substantial amounts in the cytosol as well. However, recent studies show that newly synthesized human fumarase is efficiently imported into mitochondria with no detectable amount in the cytosol. To clarify its subcellular localization, the subcellular distribution of fumarase in mammalian cells/tissues was examined by a number of different methods. Cell fractionation using either a mitochondria fraction kit or extraction with low concentrations of digitonin, detected no fumarase in a 100,000 g supernatant fraction. Immunofluorescence labeling with an affinity-purified antibody to fumarase and an antibody to the mitochondrial Hsp60 protein showed identical labeling pattern with labeling seen mainly in mitochondria. Detailed studies were performed using high-resolution immunogold electron microscopy to determine the subcellular localization of fumarase in rat tissues, embedded in LR White resin. In thin sections from kidney, liver, heart, adrenal gland and anterior pituitary, strong and specific labeling due to fumarase antibody was only detected in mitochondria. However, in the pancreatic acinar cells, in addition to mitochondria, highly significant labeling was also observed in the zymogen granules and endoplasmic reticulum. The observed labeling in all cases was completely abolished upon omission of the primary antibody indicating that it was specific. In a western blot of purified zymogen granules, a fumarase-antibody cross-reactive protein of the same molecular mass as seen in the mitochondria was present. These results provide evidence that fumarase in mammalian cells/tissues is mainly localized in mitochondria and significant amounts of this protein are not present in the cytosol. However, these studies also reveal that in certain tissues, in addition to mitochondria, this protein is also present at specific extramitochondrial sites. Although the cellular function of fumarase at these extramitochondrial locations is not known, the appearance/localization of fumarase outside mitochondria may help explain how mutations in this mitochondrial protein can give rise to a number of different types of cancers.
Collapse
Affiliation(s)
- Timothy Bowes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8N 3Z5
| | | | | |
Collapse
|
59
|
Karniely S, Rayzner A, Sass E, Pines O. Alpha-complementation as a probe for dual localization of mitochondrial proteins. Exp Cell Res 2006; 312:3835-46. [PMID: 17034789 DOI: 10.1016/j.yexcr.2006.08.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/12/2006] [Accepted: 08/15/2006] [Indexed: 11/23/2022]
Abstract
There are a growing number of proteins which are reported to reside in multiple compartments within the eukaryotic cell. However, lack of appropriate methods limits our knowledge on the true extent of this phenomenon. In this study, we demonstrate a novel application of beta-galactosidase alpha-complementation to study dual distribution of proteins in yeast cells. Using a simple colony color phenotype, we show that alpha-complementation depends on co-compartmentalization of alpha and omega fragments and exploit this to probe dual localization of proteins between the cytosol and mitochondria in yeast. The quality of our assay was assessed by analysis of the known dual targeted enzyme fumarase and several mutant derivatives, which are exclusively localized to one or the other of these subcellular compartments. Addition of the alpha fragment did not abolish the enzymatic activity of the tagged proteins nor did it affect their localization. By examining 10 yeast gene products for distribution between the cytosol and the mitochondria, we demonstrate the potential of alpha-complementation to screen the mitochondrial proteome for dual distribution. Our data indicate the distribution of two uncharacterized proteins--Bna3 and Nif3--between the cytosol and the mitochondria.
Collapse
Affiliation(s)
- Sharon Karniely
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
60
|
Singh B, Gupta RS. Mitochondrial import of human and yeast fumarase in live mammalian cells: Retrograde translocation of the yeast enzyme is mainly caused by its poor targeting sequence. Biochem Biophys Res Commun 2006; 346:911-8. [PMID: 16774737 DOI: 10.1016/j.bbrc.2006.05.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Studies on yeast fumarase provide the main evidence for dual localization of a protein in mitochondria and cytosol by means of retrograde translocation. We have examined the subcellular targeting of yeast and human fumarase in live cells to identify factors responsible for this. The cDNAs for mature yeast or human fumarase were fused to the gene for enhanced green fluorescent protein (eGFP) and they contained, at their N-terminus, a mitochondrial targeting sequence (MTS) derived from either yeast fumarase, human fumarase, or cytochrome c oxidase subunit VIII (COX) protein. Two nuclear localization sequences (2x NLS) were also added to these constructs to facilitate detection of any cytosolic protein by its targeting to nucleus. In Cos-1 cells transfected with these constructs, human fumarase with either the native or COX MTSs was detected exclusively in mitochondria in >98% of the cells, while the remainder 1-2% of the cells showed varying amounts of nuclear labeling. In contrast, when human fumarase was fused to the yeast MTS, >50% of the cells showed nuclear labeling. Similar studies with yeast fumarase showed that with its native MTS, nuclear labeling was seen in 80-85% of the cells, but upon fusion to either human or COX MTS, nuclear labeling was observed in only 10-15% of the cells. These results provide evidence that extramitochondrial presence of yeast fumarase is mainly caused by the poor mitochondrial targeting characteristics of its MTS (but also affected by its primary sequence), and that the retrograde translocation mechanism does not play a significant role in the extramitochondrial presence of mammalian fumarase.
Collapse
Affiliation(s)
- Bhag Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada L8N 3Z5
| | | |
Collapse
|
61
|
Deschauer M, Gizatullina Z, Schulze A, Pritsch M, Knöppel C, Knape M, Zierz S, Gellerich FN. Molecular and biochemical investigations in fumarase deficiency. Mol Genet Metab 2006; 88:146-52. [PMID: 16510303 DOI: 10.1016/j.ymgme.2006.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 01/13/2006] [Accepted: 01/18/2006] [Indexed: 11/19/2022]
Abstract
Fumarase (FH) deficiency is a rare autosomal recessive disease of the Krebs cycle causing severe neurological impairment in early childhood, characterized by encephalopathy with seizures and muscular hypotonia. Only a handful of patients with various recessive mutations in the FH gene have been described so far. Interestingly, autosomal dominant mutations in the same gene are associated with hereditary leiomyomatosis and renal cell cancer (HLRCC). We investigated a boy with developmental and growth delay, microcephaly, and muscular hypotonia recognized at the age of 3 months. No leiomyomatosis or renal cancer is known in the parents. Investigation of the patient's urine revealed massive fumarate excretion. FH activity was severely reduced in muscle and fibroblasts. Respirometric investigation of fibroblasts showed only modest changes indicating that fumarate mediated inhibition of enzymatic pathways other than oxidative phosphorylation might be more relevant in pathophysiology of FH deficiency. Molecular analysis revealed a known 435insK mutation on the paternal allele and a novel H275L mutation due to an A to T transversion of nucleotide 824 on the maternal allele. This mutation affects the same codon as a C to T transition of nucleotide 823, resulting in a H275Y mutation that was found in two families with HLRCC.
Collapse
Affiliation(s)
- M Deschauer
- Neurologische Klinik der Universität Halle-Wittenberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Karniely S, Regev-Rudzki N, Pines O. The presequence of fumarase is exposed to the cytosol during import into mitochondria. J Mol Biol 2006; 358:396-405. [PMID: 16530220 DOI: 10.1016/j.jmb.2006.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 02/07/2006] [Accepted: 02/09/2006] [Indexed: 11/28/2022]
Abstract
The majority of mitochondrial proteins can be imported into mitochondria following termination of their translation in the cytosol. Import of fumarase and several other proteins into mitochondria does not appear to occur post-translationally according to standard in vivo and in vitro assays. However, the nature of interaction between the translation and translocation apparatuses during import of these proteins is unknown. Therefore, a major question is whether the nascent chains of these proteins are exposed to the cytosol during import into mitochondria. We asked directly if the presequence of fumarase can be cleaved by externally added mitochondrial processing peptidase (MPP) during import, using an in vitro translation-translocation coupled reaction. The presequence of fumarase was cleaved by externally added MPP during import, indicating a lack of, or a loose physical connection between, the translation and translocation of this protein. Exchanging the authentic presequence of fumarase for that of the more efficient Su9-ATPase presequence reduced the exposure of fumarase precursors to externally added MPP en route to mitochondria. Therefore, exposure to cytosolic MPP is dependent on the presequence and not on the mature part of fumarase. On the other hand, following translation in the absence of mitochondria, the authentic fumarase presequence and that of Su9-ATPase become inaccessible to added MPP when attached to mature fumarase. Thus, folding of the mature portion of fumarase, which conceals the presequence, is the reason for its inability to be imported in classical post-translational assays. Another unique feature of fumarase is its distribution between the mitochondria and the cytosol. We show that in vivo the switch of the authentic presequence with that of Su9-ATPase caused more fumarase molecules to be localized to the mitochondria. A possible mechanism by which the cytosolic exposure, the targeting efficiency, and the subcellular distribution of fumarase are dictated by the presequence is discussed.
Collapse
Affiliation(s)
- Sharon Karniely
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
63
|
Pithukpakorn M, Wei MH, Toure O, Steinbach PJ, Glenn GM, Zbar B, Linehan WM, Toro JR. Fumarate hydratase enzyme activity in lymphoblastoid cells and fibroblasts of individuals in families with hereditary leiomyomatosis and renal cell cancer. J Med Genet 2006; 43:755-62. [PMID: 16597677 PMCID: PMC2564577 DOI: 10.1136/jmg.2006.041087] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Hereditary leiomyomatosis and renal cell cancer (HLRCC) is the autosomal dominant heritable syndrome with predisposition to development of renal cell carcinoma and smooth muscle tumours of the skin and uterus. OBJECTIVE To measure the fumarate hydratase (FH) enzyme activity in lymphoblastoid cell lines and fibroblast cell lines of individuals with HLRCC and other familial renal cancer syndromes. METHODS FH enzyme activity was determined in the whole cell, cytosolic, and mitochondrial fractions in 50 lymphoblastoid and 16 fibroblast cell lines including cell lines from individuals with HLRCC with 16 different mutations. RESULTS Lymphoblastoid cell lines (n = 20) and fibroblast cell lines (n = 11) from individuals with HLRCC had lower FH enzyme activity than cells from normal controls (p<0.05). The enzyme activity in lymphoblastoid cell lines from three individuals with mutations in R190 was not significantly different from individuals with other missense mutations. The cytosolic and mitochondrial FH activity of cell lines from individuals with HLRCC was reduced compared with those from control cell lines (p<0.05). There was no significant difference in enzyme activity between control cell lines (n = 4) and cell lines from affected individuals with other hereditary renal cancer syndromes (n = 22). CONCLUSIONS FH enzyme activity testing provides a useful diagnostic method for confirmation of clinical diagnosis and screening of at-risk family members.
Collapse
|
64
|
Mackenzie SA. Plant organellar protein targeting: a traffic plan still under construction. Trends Cell Biol 2005; 15:548-54. [PMID: 16143534 DOI: 10.1016/j.tcb.2005.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 07/21/2005] [Accepted: 08/22/2005] [Indexed: 11/30/2022]
Abstract
It has long been understood that specific features of a protein and its corresponding import apparatus dictate the behavior of mitochondrial proteins in their intracellular targeting behavior. In plants, the process by which proteins are directed to organelles has been influenced uniquely by the introduction to the cell of plastids. Parallel functions carried out within the mitochondrion and plastid permit the sharing of proteins and emergence of mechanisms to facilitate dual-targeting of the nuclear-encoded products to both compartments. These include transcriptional and translational variations, relaxation of translation initiation controls and conditional cellular influences. Details of the dual targeting system are emerging from recent studies, and evidence of variation in protein targeting behavior across plant families and across organisms implies that the system itself is in flux. This trend towards multi-targeting enhances protein versatility across eukaryotes - one means of cellular response to developmental or environmental influence.
Collapse
Affiliation(s)
- Sally A Mackenzie
- Plant Science Initiative, N300 Beadle Center for Genetics Research, University of Nebraska, Lincoln, NE 68588-0660, USA.
| |
Collapse
|
65
|
Sierralta WD, Kohen P, Castro O, Muñoz A, Strauss JF, Devoto L. Ultrastructural and biochemical evidence for the presence of mature steroidogenic acute regulatory protein (StAR) in the cytoplasm of human luteal cells. Mol Cell Endocrinol 2005; 242:103-10. [PMID: 16162390 DOI: 10.1016/j.mce.2005.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 06/06/2005] [Accepted: 08/10/2005] [Indexed: 11/16/2022]
Abstract
The distribution of the steroidogenic acute regulatory protein (StAR) inside thecal and granulosa-lutein cells of human corpus luteum (CL) was assessed by immunoelectron microscopy. We found greater levels of StAR immunolabeling in steroidogenic cells from early- and mid-than in late luteal phase CL and lower levels in cells from women treated with a GnRH antagonist in the mid-luteal phase. Immunoelectron microscopy revealed significant levels of StAR antigen in the mitochondria and in the cytoplasm of luteal cells. The 30 kDa mature StAR protein was present in both mitochondria and cytosol (post-mitochondrial) fractions from homogenates of CL at different ages, whereas cytochrome c and mitochondrial HSP70 were detected only in the mitochondrial fraction. Therefore, we hypothesized that either appreciable processing of StAR 37 kDa pre-protein occurs outside the mitochondria, or mature StAR protein is selectively released into the cytoplasm after mitochondrial processing. The presence of mature StAR in the cytoplasm is consonant with the notion that StAR acts on the outer mitochondrial membrane to effect sterol import, and that StAR may interact with other cytoplasmic proteins involved in cholesterol metabolism, including hormone sensitive lipase.
Collapse
Affiliation(s)
- Walter D Sierralta
- Laboratorio de Estructuras, INTA-Universidad de Chile, Macul 5540, PO Box 138, Santiago 11, Chile.
| | | | | | | | | | | |
Collapse
|
66
|
Kim HY, Gladyshev VN. Role of structural and functional elements of mouse methionine-S-sulfoxide reductase in its subcellular distribution. Biochemistry 2005; 44:8059-67. [PMID: 15924425 DOI: 10.1021/bi0501131] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxidized forms of methionine residues in proteins can be repaired by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). In mammals, three MsrBs are present, which are targeted to various subcellular compartments. In contrast, only a single mammalian MsrA gene is known whose products have been detected in both cytosol and mitochondria. Factors that determine the location of the protein in these compartments are not known. Here, we found that MsrA was present in cytosol, nucleus, and mitochondria in mouse cells and tissues and that the major enzyme forms detected in various compartments were generated from a single-translation product rather than by alternative translation initiation. Both cytosolic and mitochondrial forms were processed with respect to the N-terminal signal peptide, and the distribution of the protein occurred post-translationally. Deletion of amino acids 69-108, 69-83, 84-108, or 217-233, which contained elements important for MsrA structure and function, led to exclusive mitochondrial location of MsrA, whereas a region that affected substrate binding but was not part of the overall fold had no influence on the subcellular distribution. The data suggested that proper structure-function organization of MsrA played a role in subcellular distribution of this protein in mouse cells. These findings were recapitulated by expressing various forms of mouse MsrA in Saccharomyces cerevisiae, suggesting conservation of the mechanisms responsible for distribution of the mammalian enzyme among different cellular compartments.
Collapse
Affiliation(s)
- Hwa-Young Kim
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | | |
Collapse
|
67
|
Karniely S, Pines O. Single translation--dual destination: mechanisms of dual protein targeting in eukaryotes. EMBO Rep 2005; 6:420-5. [PMID: 15864293 PMCID: PMC1299304 DOI: 10.1038/sj.embor.7400394] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 02/23/2005] [Indexed: 11/09/2022] Open
Abstract
It is well documented that single eukaryotic genes can give rise to proteins that are localized to several subcellular locations. This is achieved at the level of transcription, splicing and translation, and results in two or more translation products that either harbour or lack specific targeting signals. Nevertheless, the possibility of dual targeting of a single translation product has recently emerged. Here, we review cases of such dual targeting with emphasis on the mechanisms through which these phenomena occur. Proteins that harbour one signal, two separate signals or an overlapping ambiguous signal may follow dual distribution in the cell. The mechanism of dual targeting is driven by the competition or promiscuity of various molecular events. Protein folding, post-translational modification and protein-protein interaction are key players in this phenomenon.
Collapse
Affiliation(s)
- Sharon Karniely
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Ophry Pines
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
- Tel: +972 2 675 7203; Fax: +972 2 675 7260;
| |
Collapse
|
68
|
Regev-Rudzki N, Karniely S, Ben-Haim NN, Pines O. Yeast aconitase in two locations and two metabolic pathways: seeing small amounts is believing. Mol Biol Cell 2005; 16:4163-71. [PMID: 15975908 PMCID: PMC1196327 DOI: 10.1091/mbc.e04-11-1028] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The distribution of identical enzymatic activities between different subcellular compartments is a fundamental process of living cells. At present, the Saccharomyces cerevisiae aconitase enzyme has been detected only in mitochondria, where it functions in the tricarboxylic acid (TCA) cycle and is considered a mitochondrial matrix marker. We developed two strategies for physical and functional detection of aconitase in the yeast cytosol: 1) we fused the alpha peptide of the beta-galactosidase enzyme to aconitase and observed alpha complementation in the cytosol; and 2) we created an ACO1-URA3 hybrid gene, which allowed isolation of strains in which the hybrid protein is exclusively targeted to mitochondria. These strains display a specific phenotype consistent with glyoxylate shunt elimination. Together, our data indicate that yeast aconitase isoenzymes distribute between two distinct subcellular compartments and participate in two separate metabolic pathways; the glyoxylate shunt in the cytosol and the TCA cycle in mitochondria. We maintain that such dual distribution phenomena have a wider occurrence than recorded currently, the reason being that in certain cases there is a small fraction of one of the isoenzymes, in one of the locations, making its detection very difficult. We term this phenomenon of highly uneven isoenzyme distribution "eclipsed distribution."
Collapse
Affiliation(s)
- Neta Regev-Rudzki
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
69
|
Kolkman A, Olsthoorn MMA, Heeremans CEM, Heck AJR, Slijper M. Comparative Proteome Analysis of Saccharomyces cerevisiae Grown in Chemostat Cultures Limited for Glucose or Ethanol. Mol Cell Proteomics 2005; 4:1-11. [PMID: 15502163 DOI: 10.1074/mcp.m400087-mcp200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The use of chemostat culturing enables investigation of steady-state physiological characteristics and adaptations to nutrient-limited growth, while all other relevant growth conditions are kept constant. We examined and compared the proteomic response of wild-type Saccharomyces cerevisiae CEN.PK113-7D to growth in aerobic chemostat cultures limited for carbon sources being either glucose or ethanol. To obtain a global overview of changes in the proteome, we performed triplicate analyses using two-dimensional gel electrophoresis and identified proteins of interest using MS. Relative quantities of about 400 proteins were obtained and analyzed statistically to determine which protein steady-state expression levels changed significantly under glucose- or ethanol-limited conditions. Interestingly, only enzymes involved in central carbon metabolism showed a significant change in steady-state expression, whereas expression was only detected in one of both carbon source-limiting conditions for 15 of these enzymes. Side effects that were previously reported for batch cultivation conditions, such as responses to continuous variation of specific growth rate, to carbon-catabolite repression, and to accumulation of toxic substrates, were not observed. Moreover, by comparing our proteome data with corresponding mRNA data, we were able to unravel which processes in the central carbon metabolism were regulated at the level of the proteome, and which processes at the level of transcriptome. Importantly, we show here that the combined approach of chemostat cultivation and comprehensive proteome analysis allowed us to study the primary effect of single limiting conditions on the yeast proteome.
Collapse
Affiliation(s)
- Annemieke Kolkman
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
70
|
Valadi A, Granath K, Gustafsson L, Adler L. Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem 2004; 279:39677-85. [PMID: 15210723 DOI: 10.1074/jbc.m403310200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During anaerobiosis Saccharomyces cerevisiae strongly increases glycerol production to provide for non-respiratory oxidation of NADH to NAD(+). We here report that respiratory-deficient cells become strictly dependent on the Gpd2p isoform of the NAD(+)-linked glycerol-3-phosphate dehydrogenase (Gpd). The growth inhibition of respiratory incompetent cox18Delta cells lacking GPD2 is reversed by the addition of acetoin, an alternative sink for NADH oxidation. Growth is also restored by addition of lysine or glutamic acid/glutamine, the synthesis of which involves production of mitochondrial NADH. Lysine produced a stronger growth stimulating effect than glutamic acid consistent with an upregulated expression of the IDP3 gene for peroxisomal synthesis of the glutamate precursor alpha-ketoglutarate. Gpd2p is known to be a cytosolic protein but possesses a classical mitochondrial presequence, which we show is sufficient for mitochondrial targeting. A partial mitochondrial localization of Gpd2p will provide for establishment of intramitochondrial redox balance under non-respiratory conditions. Gpd1p, the other Gpd isoform, is partly cytosolic and partly peroxisomal and becomes more strictly peroxisomal in respiratory-deficient mutants. The different cellular distribution of Gpd1p and Gpd2p thus appears to be the main reason Gpd1p cannot substitute for Gpd2p in cox18Deltagpd2Delta cells, despite similar kinetic characteristics of the two iso-enzymes.
Collapse
Affiliation(s)
- Asa Valadi
- Department of Cell and Molecular Biology/Microbiology, Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
71
|
Maxfield AB, Heaton DN, Winge DR. Cox17 Is Functional When Tethered to the Mitochondrial Inner Membrane. J Biol Chem 2004; 279:5072-80. [PMID: 14615477 DOI: 10.1074/jbc.m311772200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cox17 is an essential protein in the assembly of cytochrome c oxidase within the mitochondrion. Cox17 is implicated in providing copper ions for formation of CuA and CuB sites in the oxidase complex. To address whether Cox17 is functional in shuttling copper ions to the mitochondrion, Cox17 was tethered to the mitochondrial inner membrane by a fusion to the transmembrane domain of the inner membrane protein, Sco2. The copper-binding domain of Sco2 that projects into the inter-mitochondrial membrane space was replaced with Cox17. The Sco2/Cox17 fusion protein containing the mitochondrial import sequence and transmembrane segment of Sco2 is exclusively localized within the mitochondrion. The Sco2/Cox17 protein restores respiratory growth and normal cytochrome oxidase activity in cox17Delta cells. These studies suggest that the function of Cox17 is confined to the mitochondrial intermembrane space. Domain mapping of yeast Cox17 reveals that the carboxyl-terminal segment of the protein has a function within the intermembrane space that is independent of copper ion binding. The essential C-terminal function of Cox17 maps to a candidate amphipathic helix that is important for mitochondrial uptake and retention of the Cox17 protein. This motif can be spatially separated from the N-terminal copper-binding functional motif. Possible roles of the C-terminal motif are discussed.
Collapse
Affiliation(s)
- Andrew B Maxfield
- University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
72
|
Daran-Lapujade P, Jansen MLA, Daran JM, van Gulik W, de Winde JH, Pronk JT. Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study. J Biol Chem 2003; 279:9125-38. [PMID: 14630934 DOI: 10.1074/jbc.m309578200] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to batch cultivation, chemostat cultivation allows the identification of carbon source responses without interference by carbon-catabolite repression, accumulation of toxic products, and differences in specific growth rate. This study focuses on the yeast Saccharomyces cerevisiae, grown in aerobic, carbon-limited chemostat cultures. Genome-wide transcript levels and in vivo fluxes were compared for growth on two sugars, glucose and maltose, and for two C2-compounds, ethanol and acetate. In contrast to previous reports on batch cultures, few genes (180 genes) responded to changes of the carbon source by a changed transcript level. Very few transcript levels were changed when glucose as the growth-limiting nutrient was compared with maltose (33 transcripts), or when acetate was compared with ethanol (16 transcripts). Although metabolic flux analysis using a stoichiometric model revealed major changes in the central carbon metabolism, only 117 genes exhibited a significantly different transcript level when sugars and C2-compounds were provided as the growth-limiting nutrient. Despite the extensive knowledge on carbon source regulation in yeast, many of the carbon source-responsive genes encoded proteins with unknown or incompletely characterized biological functions. In silico promoter analysis of carbon source-responsive genes confirmed the involvement of several known transcriptional regulators and suggested the involvement of additional regulators. Transcripts involved in the glyoxylate cycle and gluconeogenesis showed a good correlation with in vivo fluxes. This correlation was, however, not observed for other important pathways, including the pentose-phosphate pathway, tricarboxylic acid cycle, and, in particular, glycolysis. These results indicate that in vivo fluxes in the central carbon metabolism of S. cerevisiae grown in steadystate, carbon-limited chemostat cultures are controlled to a large extent via post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Pascale Daran-Lapujade
- Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|